linux/drivers/media/i2c/ccs/ccs-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/media/i2c/ccs/ccs-core.c
   4 *
   5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
   6 *
   7 * Copyright (C) 2020 Intel Corporation
   8 * Copyright (C) 2010--2012 Nokia Corporation
   9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
  10 *
  11 * Based on smiapp driver by Vimarsh Zutshi
  12 * Based on jt8ev1.c by Vimarsh Zutshi
  13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/device.h>
  19#include <linux/firmware.h>
  20#include <linux/gpio.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/module.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/property.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/slab.h>
  27#include <linux/smiapp.h>
  28#include <linux/v4l2-mediabus.h>
  29#include <media/v4l2-fwnode.h>
  30#include <media/v4l2-device.h>
  31#include <uapi/linux/ccs.h>
  32
  33#include "ccs.h"
  34
  35#define CCS_ALIGN_DIM(dim, flags)       \
  36        ((flags) & V4L2_SEL_FLAG_GE     \
  37         ? ALIGN((dim), 2)              \
  38         : (dim) & ~1)
  39
  40static struct ccs_limit_offset {
  41        u16     lim;
  42        u16     info;
  43} ccs_limit_offsets[CCS_L_LAST + 1];
  44
  45/*
  46 * ccs_module_idents - supported camera modules
  47 */
  48static const struct ccs_module_ident ccs_module_idents[] = {
  49        CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
  50        CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
  51        CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
  52        CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
  53        CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
  54        CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
  55        CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
  56        CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
  57        CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
  58        CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
  59        CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
  60};
  61
  62#define CCS_DEVICE_FLAG_IS_SMIA         BIT(0)
  63
  64struct ccs_device {
  65        unsigned char flags;
  66};
  67
  68static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
  69
  70/*
  71 *
  72 * Dynamic Capability Identification
  73 *
  74 */
  75
  76static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
  77{
  78        switch (width) {
  79        case sizeof(u8):
  80                *(u8 *)ptr = val;
  81                break;
  82        case sizeof(u16):
  83                *(u16 *)ptr = val;
  84                break;
  85        case sizeof(u32):
  86                *(u32 *)ptr = val;
  87                break;
  88        }
  89}
  90
  91static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
  92                         unsigned int offset, void **__ptr)
  93{
  94        const struct ccs_limit *linfo;
  95
  96        if (WARN_ON(limit >= CCS_L_LAST))
  97                return -EINVAL;
  98
  99        linfo = &ccs_limits[ccs_limit_offsets[limit].info];
 100
 101        if (WARN_ON(!sensor->ccs_limits) ||
 102            WARN_ON(offset + ccs_reg_width(linfo->reg) >
 103                    ccs_limit_offsets[limit + 1].lim))
 104                return -EINVAL;
 105
 106        *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
 107
 108        return 0;
 109}
 110
 111void ccs_replace_limit(struct ccs_sensor *sensor,
 112                       unsigned int limit, unsigned int offset, u32 val)
 113{
 114        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 115        const struct ccs_limit *linfo;
 116        void *ptr;
 117        int ret;
 118
 119        ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
 120        if (ret)
 121                return;
 122
 123        linfo = &ccs_limits[ccs_limit_offsets[limit].info];
 124
 125        dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n",
 126                linfo->reg, linfo->name, offset, val, val);
 127
 128        ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
 129}
 130
 131u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
 132                  unsigned int offset)
 133{
 134        void *ptr;
 135        u32 val;
 136        int ret;
 137
 138        ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
 139        if (ret)
 140                return 0;
 141
 142        switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
 143        case sizeof(u8):
 144                val = *(u8 *)ptr;
 145                break;
 146        case sizeof(u16):
 147                val = *(u16 *)ptr;
 148                break;
 149        case sizeof(u32):
 150                val = *(u32 *)ptr;
 151                break;
 152        default:
 153                WARN_ON(1);
 154                return 0;
 155        }
 156
 157        return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
 158}
 159
 160static int ccs_read_all_limits(struct ccs_sensor *sensor)
 161{
 162        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 163        void *ptr, *alloc, *end;
 164        unsigned int i, l;
 165        int ret;
 166
 167        kfree(sensor->ccs_limits);
 168        sensor->ccs_limits = NULL;
 169
 170        alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
 171        if (!alloc)
 172                return -ENOMEM;
 173
 174        end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
 175
 176        for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
 177                u32 reg = ccs_limits[i].reg;
 178                unsigned int width = ccs_reg_width(reg);
 179                unsigned int j;
 180
 181                if (l == CCS_L_LAST) {
 182                        dev_err(&client->dev,
 183                                "internal error --- end of limit array\n");
 184                        ret = -EINVAL;
 185                        goto out_err;
 186                }
 187
 188                for (j = 0; j < ccs_limits[i].size / width;
 189                     j++, reg += width, ptr += width) {
 190                        u32 val;
 191
 192                        ret = ccs_read_addr_noconv(sensor, reg, &val);
 193                        if (ret)
 194                                goto out_err;
 195
 196                        if (ptr + width > end) {
 197                                dev_err(&client->dev,
 198                                        "internal error --- no room for regs\n");
 199                                ret = -EINVAL;
 200                                goto out_err;
 201                        }
 202
 203                        if (!val && j)
 204                                break;
 205
 206                        ccs_assign_limit(ptr, width, val);
 207
 208                        dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
 209                                reg, ccs_limits[i].name, val, val);
 210                }
 211
 212                if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
 213                        continue;
 214
 215                l++;
 216                ptr = alloc + ccs_limit_offsets[l].lim;
 217        }
 218
 219        if (l != CCS_L_LAST) {
 220                dev_err(&client->dev,
 221                        "internal error --- insufficient limits\n");
 222                ret = -EINVAL;
 223                goto out_err;
 224        }
 225
 226        sensor->ccs_limits = alloc;
 227
 228        if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
 229                ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
 230
 231        return 0;
 232
 233out_err:
 234        kfree(alloc);
 235
 236        return ret;
 237}
 238
 239static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
 240{
 241        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 242        u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
 243        unsigned int i;
 244        int pixel_count = 0;
 245        int line_count = 0;
 246
 247        fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
 248        fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
 249
 250        ncol_desc = (fmt_model_subtype
 251                     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
 252                >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
 253        nrow_desc = fmt_model_subtype
 254                & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
 255
 256        dev_dbg(&client->dev, "format_model_type %s\n",
 257                fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
 258                ? "2 byte" :
 259                fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
 260                ? "4 byte" : "is simply bad");
 261
 262        dev_dbg(&client->dev, "%u column and %u row descriptors\n",
 263                ncol_desc, nrow_desc);
 264
 265        for (i = 0; i < ncol_desc + nrow_desc; i++) {
 266                u32 desc;
 267                u32 pixelcode;
 268                u32 pixels;
 269                char *which;
 270                char *what;
 271
 272                if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
 273                        desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
 274
 275                        pixelcode =
 276                                (desc
 277                                 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
 278                                >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
 279                        pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
 280                } else if (fmt_model_type
 281                           == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
 282                        desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
 283
 284                        pixelcode =
 285                                (desc
 286                                 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
 287                                >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
 288                        pixels = desc &
 289                                CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
 290                } else {
 291                        dev_dbg(&client->dev,
 292                                "invalid frame format model type %d\n",
 293                                fmt_model_type);
 294                        return -EINVAL;
 295                }
 296
 297                if (i < ncol_desc)
 298                        which = "columns";
 299                else
 300                        which = "rows";
 301
 302                switch (pixelcode) {
 303                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
 304                        what = "embedded";
 305                        break;
 306                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
 307                        what = "dummy";
 308                        break;
 309                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
 310                        what = "black";
 311                        break;
 312                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
 313                        what = "dark";
 314                        break;
 315                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
 316                        what = "visible";
 317                        break;
 318                default:
 319                        what = "invalid";
 320                        break;
 321                }
 322
 323                dev_dbg(&client->dev,
 324                        "%s pixels: %d %s (pixelcode %u)\n",
 325                        what, pixels, which, pixelcode);
 326
 327                if (i < ncol_desc) {
 328                        if (pixelcode ==
 329                            CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
 330                                sensor->visible_pixel_start = pixel_count;
 331                        pixel_count += pixels;
 332                        continue;
 333                }
 334
 335                /* Handle row descriptors */
 336                switch (pixelcode) {
 337                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
 338                        if (sensor->embedded_end)
 339                                break;
 340                        sensor->embedded_start = line_count;
 341                        sensor->embedded_end = line_count + pixels;
 342                        break;
 343                case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
 344                        sensor->image_start = line_count;
 345                        break;
 346                }
 347                line_count += pixels;
 348        }
 349
 350        if (sensor->embedded_end > sensor->image_start) {
 351                dev_dbg(&client->dev,
 352                        "adjusting image start line to %u (was %u)\n",
 353                        sensor->embedded_end, sensor->image_start);
 354                sensor->image_start = sensor->embedded_end;
 355        }
 356
 357        dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
 358                sensor->embedded_start, sensor->embedded_end);
 359        dev_dbg(&client->dev, "image data starts at line %d\n",
 360                sensor->image_start);
 361
 362        return 0;
 363}
 364
 365static int ccs_pll_configure(struct ccs_sensor *sensor)
 366{
 367        struct ccs_pll *pll = &sensor->pll;
 368        int rval;
 369
 370        rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
 371        if (rval < 0)
 372                return rval;
 373
 374        rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
 375        if (rval < 0)
 376                return rval;
 377
 378        rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
 379        if (rval < 0)
 380                return rval;
 381
 382        rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
 383        if (rval < 0)
 384                return rval;
 385
 386        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
 387              CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
 388                /* Lane op clock ratio does not apply here. */
 389                rval = ccs_write(sensor, REQUESTED_LINK_RATE,
 390                                 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
 391                                              1000000 / 256 / 256) *
 392                                 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
 393                                  sensor->pll.csi2.lanes : 1) <<
 394                                 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
 395                                  1 : 0));
 396                if (rval < 0)
 397                        return rval;
 398        }
 399
 400        if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
 401                return 0;
 402
 403        rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
 404        if (rval < 0)
 405                return rval;
 406
 407        rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
 408        if (rval < 0)
 409                return rval;
 410
 411        if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
 412                return 0;
 413
 414        rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
 415        if (rval < 0)
 416                return rval;
 417
 418        rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
 419                         pll->op_fr.pre_pll_clk_div);
 420        if (rval < 0)
 421                return rval;
 422
 423        return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
 424}
 425
 426static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
 427{
 428        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 429        struct ccs_pll_limits lim = {
 430                .vt_fr = {
 431                        .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
 432                        .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
 433                        .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
 434                        .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
 435                        .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
 436                        .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
 437                        .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
 438                        .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
 439                },
 440                .op_fr = {
 441                        .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
 442                        .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
 443                        .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
 444                        .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
 445                        .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
 446                        .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
 447                        .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
 448                        .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
 449                },
 450                .op_bk = {
 451                         .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
 452                         .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
 453                         .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
 454                         .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
 455                         .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
 456                         .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
 457                         .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
 458                         .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
 459                 },
 460                .vt_bk = {
 461                         .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
 462                         .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
 463                         .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
 464                         .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
 465                         .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
 466                         .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
 467                         .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
 468                         .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
 469                 },
 470                .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
 471                .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
 472        };
 473
 474        return ccs_pll_calculate(&client->dev, &lim, pll);
 475}
 476
 477static int ccs_pll_update(struct ccs_sensor *sensor)
 478{
 479        struct ccs_pll *pll = &sensor->pll;
 480        int rval;
 481
 482        pll->binning_horizontal = sensor->binning_horizontal;
 483        pll->binning_vertical = sensor->binning_vertical;
 484        pll->link_freq =
 485                sensor->link_freq->qmenu_int[sensor->link_freq->val];
 486        pll->scale_m = sensor->scale_m;
 487        pll->bits_per_pixel = sensor->csi_format->compressed;
 488
 489        rval = ccs_pll_try(sensor, pll);
 490        if (rval < 0)
 491                return rval;
 492
 493        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
 494                                 pll->pixel_rate_pixel_array);
 495        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
 496
 497        return 0;
 498}
 499
 500
 501/*
 502 *
 503 * V4L2 Controls handling
 504 *
 505 */
 506
 507static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
 508{
 509        struct v4l2_ctrl *ctrl = sensor->exposure;
 510        int max;
 511
 512        max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
 513                + sensor->vblank->val
 514                - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
 515
 516        __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
 517}
 518
 519/*
 520 * Order matters.
 521 *
 522 * 1. Bits-per-pixel, descending.
 523 * 2. Bits-per-pixel compressed, descending.
 524 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 525 *    orders must be defined.
 526 */
 527static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
 528        { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
 529        { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
 530        { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
 531        { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
 532        { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
 533        { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
 534        { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
 535        { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
 536        { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
 537        { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
 538        { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
 539        { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
 540        { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
 541        { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
 542        { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
 543        { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
 544        { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
 545        { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
 546        { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
 547        { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
 548        { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
 549        { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
 550        { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
 551        { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
 552};
 553
 554static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
 555
 556#define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
 557                                 - (unsigned long)ccs_csi_data_formats) \
 558                                / sizeof(*ccs_csi_data_formats))
 559
 560static u32 ccs_pixel_order(struct ccs_sensor *sensor)
 561{
 562        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 563        int flip = 0;
 564
 565        if (sensor->hflip) {
 566                if (sensor->hflip->val)
 567                        flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
 568
 569                if (sensor->vflip->val)
 570                        flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
 571        }
 572
 573        flip ^= sensor->hvflip_inv_mask;
 574
 575        dev_dbg(&client->dev, "flip %d\n", flip);
 576        return sensor->default_pixel_order ^ flip;
 577}
 578
 579static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
 580{
 581        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 582        unsigned int csi_format_idx =
 583                to_csi_format_idx(sensor->csi_format) & ~3;
 584        unsigned int internal_csi_format_idx =
 585                to_csi_format_idx(sensor->internal_csi_format) & ~3;
 586        unsigned int pixel_order = ccs_pixel_order(sensor);
 587
 588        if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
 589                         pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
 590                return;
 591
 592        sensor->mbus_frame_fmts =
 593                sensor->default_mbus_frame_fmts << pixel_order;
 594        sensor->csi_format =
 595                &ccs_csi_data_formats[csi_format_idx + pixel_order];
 596        sensor->internal_csi_format =
 597                &ccs_csi_data_formats[internal_csi_format_idx
 598                                         + pixel_order];
 599
 600        dev_dbg(&client->dev, "new pixel order %s\n",
 601                pixel_order_str[pixel_order]);
 602}
 603
 604static const char * const ccs_test_patterns[] = {
 605        "Disabled",
 606        "Solid Colour",
 607        "Eight Vertical Colour Bars",
 608        "Colour Bars With Fade to Grey",
 609        "Pseudorandom Sequence (PN9)",
 610};
 611
 612static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
 613{
 614        struct ccs_sensor *sensor =
 615                container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
 616                        ->sensor;
 617        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 618        int pm_status;
 619        u32 orient = 0;
 620        unsigned int i;
 621        int exposure;
 622        int rval;
 623
 624        switch (ctrl->id) {
 625        case V4L2_CID_HFLIP:
 626        case V4L2_CID_VFLIP:
 627                if (sensor->streaming)
 628                        return -EBUSY;
 629
 630                if (sensor->hflip->val)
 631                        orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
 632
 633                if (sensor->vflip->val)
 634                        orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
 635
 636                orient ^= sensor->hvflip_inv_mask;
 637
 638                ccs_update_mbus_formats(sensor);
 639
 640                break;
 641        case V4L2_CID_VBLANK:
 642                exposure = sensor->exposure->val;
 643
 644                __ccs_update_exposure_limits(sensor);
 645
 646                if (exposure > sensor->exposure->maximum) {
 647                        sensor->exposure->val = sensor->exposure->maximum;
 648                        rval = ccs_set_ctrl(sensor->exposure);
 649                        if (rval < 0)
 650                                return rval;
 651                }
 652
 653                break;
 654        case V4L2_CID_LINK_FREQ:
 655                if (sensor->streaming)
 656                        return -EBUSY;
 657
 658                rval = ccs_pll_update(sensor);
 659                if (rval)
 660                        return rval;
 661
 662                return 0;
 663        case V4L2_CID_TEST_PATTERN:
 664                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
 665                        v4l2_ctrl_activate(
 666                                sensor->test_data[i],
 667                                ctrl->val ==
 668                                V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
 669
 670                break;
 671        }
 672
 673        pm_status = pm_runtime_get_if_active(&client->dev, true);
 674        if (!pm_status)
 675                return 0;
 676
 677        switch (ctrl->id) {
 678        case V4L2_CID_ANALOGUE_GAIN:
 679                rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
 680
 681                break;
 682
 683        case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
 684                rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
 685
 686                break;
 687
 688        case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
 689                rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
 690                                 ctrl->val);
 691
 692                break;
 693
 694        case V4L2_CID_DIGITAL_GAIN:
 695                if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 696                    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
 697                        rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
 698                                         ctrl->val);
 699                        break;
 700                }
 701
 702                rval = ccs_write_addr(sensor,
 703                                      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
 704                                      ctrl->val);
 705                if (rval)
 706                        break;
 707
 708                rval = ccs_write_addr(sensor,
 709                                      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
 710                                      ctrl->val);
 711                if (rval)
 712                        break;
 713
 714                rval = ccs_write_addr(sensor,
 715                                      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
 716                                      ctrl->val);
 717                if (rval)
 718                        break;
 719
 720                rval = ccs_write_addr(sensor,
 721                                      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
 722                                      ctrl->val);
 723
 724                break;
 725        case V4L2_CID_EXPOSURE:
 726                rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
 727
 728                break;
 729        case V4L2_CID_HFLIP:
 730        case V4L2_CID_VFLIP:
 731                rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
 732
 733                break;
 734        case V4L2_CID_VBLANK:
 735                rval = ccs_write(sensor, FRAME_LENGTH_LINES,
 736                                 sensor->pixel_array->crop[
 737                                         CCS_PA_PAD_SRC].height
 738                                 + ctrl->val);
 739
 740                break;
 741        case V4L2_CID_HBLANK:
 742                rval = ccs_write(sensor, LINE_LENGTH_PCK,
 743                                 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
 744                                 + ctrl->val);
 745
 746                break;
 747        case V4L2_CID_TEST_PATTERN:
 748                rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
 749
 750                break;
 751        case V4L2_CID_TEST_PATTERN_RED:
 752                rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
 753
 754                break;
 755        case V4L2_CID_TEST_PATTERN_GREENR:
 756                rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
 757
 758                break;
 759        case V4L2_CID_TEST_PATTERN_BLUE:
 760                rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
 761
 762                break;
 763        case V4L2_CID_TEST_PATTERN_GREENB:
 764                rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
 765
 766                break;
 767        case V4L2_CID_CCS_SHADING_CORRECTION:
 768                rval = ccs_write(sensor, SHADING_CORRECTION_EN,
 769                                 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
 770                                 0);
 771
 772                if (!rval && sensor->luminance_level)
 773                        v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
 774
 775                break;
 776        case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
 777                rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
 778
 779                break;
 780        case V4L2_CID_PIXEL_RATE:
 781                /* For v4l2_ctrl_s_ctrl_int64() used internally. */
 782                rval = 0;
 783
 784                break;
 785        default:
 786                rval = -EINVAL;
 787        }
 788
 789        if (pm_status > 0) {
 790                pm_runtime_mark_last_busy(&client->dev);
 791                pm_runtime_put_autosuspend(&client->dev);
 792        }
 793
 794        return rval;
 795}
 796
 797static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
 798        .s_ctrl = ccs_set_ctrl,
 799};
 800
 801static int ccs_init_controls(struct ccs_sensor *sensor)
 802{
 803        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 804        int rval;
 805
 806        rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17);
 807        if (rval)
 808                return rval;
 809
 810        sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
 811
 812        switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
 813        case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
 814                struct {
 815                        const char *name;
 816                        u32 id;
 817                        s32 value;
 818                } const gain_ctrls[] = {
 819                        { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
 820                          CCS_LIM(sensor, ANALOG_GAIN_M0), },
 821                        { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
 822                          CCS_LIM(sensor, ANALOG_GAIN_C0), },
 823                        { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
 824                          CCS_LIM(sensor, ANALOG_GAIN_M1), },
 825                        { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
 826                          CCS_LIM(sensor, ANALOG_GAIN_C1), },
 827                };
 828                struct v4l2_ctrl_config ctrl_cfg = {
 829                        .type = V4L2_CTRL_TYPE_INTEGER,
 830                        .ops = &ccs_ctrl_ops,
 831                        .flags = V4L2_CTRL_FLAG_READ_ONLY,
 832                        .step = 1,
 833                };
 834                unsigned int i;
 835
 836                for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
 837                        ctrl_cfg.name = gain_ctrls[i].name;
 838                        ctrl_cfg.id = gain_ctrls[i].id;
 839                        ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
 840                                gain_ctrls[i].value;
 841
 842                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 843                                             &ctrl_cfg, NULL);
 844                }
 845
 846                v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
 847                                  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
 848                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
 849                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
 850                                  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
 851                                      1U),
 852                                  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
 853        }
 854                break;
 855
 856        case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
 857                struct {
 858                        const char *name;
 859                        u32 id;
 860                        u16 min, max, step;
 861                } const gain_ctrls[] = {
 862                        {
 863                                "Analogue Linear Gain",
 864                                V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
 865                                CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
 866                                CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
 867                                max(CCS_LIM(sensor,
 868                                            ANALOG_LINEAR_GAIN_STEP_SIZE),
 869                                    1U),
 870                        },
 871                        {
 872                                "Analogue Exponential Gain",
 873                                V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
 874                                CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
 875                                CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
 876                                max(CCS_LIM(sensor,
 877                                            ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
 878                                    1U),
 879                        },
 880                };
 881                struct v4l2_ctrl_config ctrl_cfg = {
 882                        .type = V4L2_CTRL_TYPE_INTEGER,
 883                        .ops = &ccs_ctrl_ops,
 884                };
 885                unsigned int i;
 886
 887                for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
 888                        ctrl_cfg.name = gain_ctrls[i].name;
 889                        ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
 890                        ctrl_cfg.max = gain_ctrls[i].max;
 891                        ctrl_cfg.step = gain_ctrls[i].step;
 892                        ctrl_cfg.id = gain_ctrls[i].id;
 893
 894                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 895                                             &ctrl_cfg, NULL);
 896                }
 897        }
 898        }
 899
 900        if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
 901            (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
 902             CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
 903                const struct v4l2_ctrl_config ctrl_cfg = {
 904                        .name = "Shading Correction",
 905                        .type = V4L2_CTRL_TYPE_BOOLEAN,
 906                        .id = V4L2_CID_CCS_SHADING_CORRECTION,
 907                        .ops = &ccs_ctrl_ops,
 908                        .max = 1,
 909                        .step = 1,
 910                };
 911
 912                v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 913                                     &ctrl_cfg, NULL);
 914        }
 915
 916        if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
 917            CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
 918                const struct v4l2_ctrl_config ctrl_cfg = {
 919                        .name = "Luminance Correction Level",
 920                        .type = V4L2_CTRL_TYPE_BOOLEAN,
 921                        .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
 922                        .ops = &ccs_ctrl_ops,
 923                        .max = 255,
 924                        .step = 1,
 925                        .def = 128,
 926                };
 927
 928                sensor->luminance_level =
 929                        v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
 930                                             &ctrl_cfg, NULL);
 931        }
 932
 933        if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 934            CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
 935            CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
 936            SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
 937                v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
 938                                  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
 939                                  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
 940                                  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
 941                                  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
 942                                      1U),
 943                                  0x100);
 944
 945        /* Exposure limits will be updated soon, use just something here. */
 946        sensor->exposure = v4l2_ctrl_new_std(
 947                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 948                V4L2_CID_EXPOSURE, 0, 0, 1, 0);
 949
 950        sensor->hflip = v4l2_ctrl_new_std(
 951                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 952                V4L2_CID_HFLIP, 0, 1, 1, 0);
 953        sensor->vflip = v4l2_ctrl_new_std(
 954                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 955                V4L2_CID_VFLIP, 0, 1, 1, 0);
 956
 957        sensor->vblank = v4l2_ctrl_new_std(
 958                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 959                V4L2_CID_VBLANK, 0, 1, 1, 0);
 960
 961        if (sensor->vblank)
 962                sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 963
 964        sensor->hblank = v4l2_ctrl_new_std(
 965                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 966                V4L2_CID_HBLANK, 0, 1, 1, 0);
 967
 968        if (sensor->hblank)
 969                sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 970
 971        sensor->pixel_rate_parray = v4l2_ctrl_new_std(
 972                &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
 973                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 974
 975        v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
 976                                     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
 977                                     ARRAY_SIZE(ccs_test_patterns) - 1,
 978                                     0, 0, ccs_test_patterns);
 979
 980        if (sensor->pixel_array->ctrl_handler.error) {
 981                dev_err(&client->dev,
 982                        "pixel array controls initialization failed (%d)\n",
 983                        sensor->pixel_array->ctrl_handler.error);
 984                return sensor->pixel_array->ctrl_handler.error;
 985        }
 986
 987        sensor->pixel_array->sd.ctrl_handler =
 988                &sensor->pixel_array->ctrl_handler;
 989
 990        v4l2_ctrl_cluster(2, &sensor->hflip);
 991
 992        rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
 993        if (rval)
 994                return rval;
 995
 996        sensor->src->ctrl_handler.lock = &sensor->mutex;
 997
 998        sensor->pixel_rate_csi = v4l2_ctrl_new_std(
 999                &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1000                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1001
1002        if (sensor->src->ctrl_handler.error) {
1003                dev_err(&client->dev,
1004                        "src controls initialization failed (%d)\n",
1005                        sensor->src->ctrl_handler.error);
1006                return sensor->src->ctrl_handler.error;
1007        }
1008
1009        sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1010
1011        return 0;
1012}
1013
1014/*
1015 * For controls that require information on available media bus codes
1016 * and linke frequencies.
1017 */
1018static int ccs_init_late_controls(struct ccs_sensor *sensor)
1019{
1020        unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1021                sensor->csi_format->compressed - sensor->compressed_min_bpp];
1022        unsigned int i;
1023
1024        for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1025                int max_value = (1 << sensor->csi_format->width) - 1;
1026
1027                sensor->test_data[i] = v4l2_ctrl_new_std(
1028                                &sensor->pixel_array->ctrl_handler,
1029                                &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1030                                0, max_value, 1, max_value);
1031        }
1032
1033        sensor->link_freq = v4l2_ctrl_new_int_menu(
1034                &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1035                V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1036                __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1037
1038        return sensor->src->ctrl_handler.error;
1039}
1040
1041static void ccs_free_controls(struct ccs_sensor *sensor)
1042{
1043        unsigned int i;
1044
1045        for (i = 0; i < sensor->ssds_used; i++)
1046                v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1047}
1048
1049static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1050{
1051        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1052        struct ccs_pll *pll = &sensor->pll;
1053        u8 compressed_max_bpp = 0;
1054        unsigned int type, n;
1055        unsigned int i, pixel_order;
1056        int rval;
1057
1058        type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1059
1060        dev_dbg(&client->dev, "data_format_model_type %d\n", type);
1061
1062        rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1063        if (rval)
1064                return rval;
1065
1066        if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1067                dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
1068                return -EINVAL;
1069        }
1070
1071        dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
1072                pixel_order_str[pixel_order]);
1073
1074        switch (type) {
1075        case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1076                n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1077                break;
1078        case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1079                n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1080                break;
1081        default:
1082                return -EINVAL;
1083        }
1084
1085        sensor->default_pixel_order = pixel_order;
1086        sensor->mbus_frame_fmts = 0;
1087
1088        for (i = 0; i < n; i++) {
1089                unsigned int fmt, j;
1090
1091                fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1092
1093                dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1094                        i, fmt >> 8, (u8)fmt);
1095
1096                for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1097                        const struct ccs_csi_data_format *f =
1098                                &ccs_csi_data_formats[j];
1099
1100                        if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1101                                continue;
1102
1103                        if (f->width != fmt >>
1104                            CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1105                            f->compressed !=
1106                            (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1107                                continue;
1108
1109                        dev_dbg(&client->dev, "jolly good! %d\n", j);
1110
1111                        sensor->default_mbus_frame_fmts |= 1 << j;
1112                }
1113        }
1114
1115        /* Figure out which BPP values can be used with which formats. */
1116        pll->binning_horizontal = 1;
1117        pll->binning_vertical = 1;
1118        pll->scale_m = sensor->scale_m;
1119
1120        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1121                sensor->compressed_min_bpp =
1122                        min(ccs_csi_data_formats[i].compressed,
1123                            sensor->compressed_min_bpp);
1124                compressed_max_bpp =
1125                        max(ccs_csi_data_formats[i].compressed,
1126                            compressed_max_bpp);
1127        }
1128
1129        sensor->valid_link_freqs = devm_kcalloc(
1130                &client->dev,
1131                compressed_max_bpp - sensor->compressed_min_bpp + 1,
1132                sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1133        if (!sensor->valid_link_freqs)
1134                return -ENOMEM;
1135
1136        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1137                const struct ccs_csi_data_format *f =
1138                        &ccs_csi_data_formats[i];
1139                unsigned long *valid_link_freqs =
1140                        &sensor->valid_link_freqs[
1141                                f->compressed - sensor->compressed_min_bpp];
1142                unsigned int j;
1143
1144                if (!(sensor->default_mbus_frame_fmts & 1 << i))
1145                        continue;
1146
1147                pll->bits_per_pixel = f->compressed;
1148
1149                for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1150                        pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1151
1152                        rval = ccs_pll_try(sensor, pll);
1153                        dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1154                                pll->link_freq, pll->bits_per_pixel,
1155                                rval ? "not ok" : "ok");
1156                        if (rval)
1157                                continue;
1158
1159                        set_bit(j, valid_link_freqs);
1160                }
1161
1162                if (!*valid_link_freqs) {
1163                        dev_info(&client->dev,
1164                                 "no valid link frequencies for %u bpp\n",
1165                                 f->compressed);
1166                        sensor->default_mbus_frame_fmts &= ~BIT(i);
1167                        continue;
1168                }
1169
1170                if (!sensor->csi_format
1171                    || f->width > sensor->csi_format->width
1172                    || (f->width == sensor->csi_format->width
1173                        && f->compressed > sensor->csi_format->compressed)) {
1174                        sensor->csi_format = f;
1175                        sensor->internal_csi_format = f;
1176                }
1177        }
1178
1179        if (!sensor->csi_format) {
1180                dev_err(&client->dev, "no supported mbus code found\n");
1181                return -EINVAL;
1182        }
1183
1184        ccs_update_mbus_formats(sensor);
1185
1186        return 0;
1187}
1188
1189static void ccs_update_blanking(struct ccs_sensor *sensor)
1190{
1191        struct v4l2_ctrl *vblank = sensor->vblank;
1192        struct v4l2_ctrl *hblank = sensor->hblank;
1193        u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1194        int min, max;
1195
1196        if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1197                min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1198                max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1199                min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1200                max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1201                min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1202        } else {
1203                min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1204                max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1205                min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1206                max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1207                min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1208        }
1209
1210        min = max_t(int,
1211                    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1212                    min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1213        max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1214
1215        __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1216
1217        min = max_t(int,
1218                    min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1219                    min_lbp);
1220        max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1221
1222        __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1223
1224        __ccs_update_exposure_limits(sensor);
1225}
1226
1227static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1228{
1229        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1230        int rval;
1231
1232        rval = ccs_pll_update(sensor);
1233        if (rval < 0)
1234                return rval;
1235
1236        /* Output from pixel array, including blanking */
1237        ccs_update_blanking(sensor);
1238
1239        dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1240        dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1241
1242        dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1243                sensor->pll.pixel_rate_pixel_array /
1244                ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1245                  + sensor->hblank->val) *
1246                 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1247                  + sensor->vblank->val) / 100));
1248
1249        return 0;
1250}
1251
1252/*
1253 *
1254 * SMIA++ NVM handling
1255 *
1256 */
1257
1258static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1259                             u8 *status)
1260{
1261        unsigned int i;
1262        int rval;
1263        u32 s;
1264
1265        *status = 0;
1266
1267        rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1268        if (rval)
1269                return rval;
1270
1271        rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1272                         CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1273        if (rval)
1274                return rval;
1275
1276        rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1277        if (rval)
1278                return rval;
1279
1280        if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1281                *status = s;
1282                return -ENODATA;
1283        }
1284
1285        if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1286            CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1287                for (i = 1000; i > 0; i--) {
1288                        if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1289                                break;
1290
1291                        rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1292                        if (rval)
1293                                return rval;
1294                }
1295
1296                if (!i)
1297                        return -ETIMEDOUT;
1298        }
1299
1300        for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1301                u32 v;
1302
1303                rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1304                if (rval)
1305                        return rval;
1306
1307                *nvm++ = v;
1308        }
1309
1310        return 0;
1311}
1312
1313static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1314                        size_t nvm_size)
1315{
1316        u8 status = 0;
1317        u32 p;
1318        int rval = 0, rval2;
1319
1320        for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1321                     && !rval; p++) {
1322                rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1323                nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1324        }
1325
1326        if (rval == -ENODATA &&
1327            status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1328                rval = 0;
1329
1330        rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1331        if (rval < 0)
1332                return rval;
1333        else
1334                return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1335}
1336
1337/*
1338 *
1339 * SMIA++ CCI address control
1340 *
1341 */
1342static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1343{
1344        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1345        int rval;
1346        u32 val;
1347
1348        client->addr = sensor->hwcfg.i2c_addr_dfl;
1349
1350        rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1351                         sensor->hwcfg.i2c_addr_alt << 1);
1352        if (rval)
1353                return rval;
1354
1355        client->addr = sensor->hwcfg.i2c_addr_alt;
1356
1357        /* verify addr change went ok */
1358        rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1359        if (rval)
1360                return rval;
1361
1362        if (val != sensor->hwcfg.i2c_addr_alt << 1)
1363                return -ENODEV;
1364
1365        return 0;
1366}
1367
1368/*
1369 *
1370 * SMIA++ Mode Control
1371 *
1372 */
1373static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1374{
1375        struct ccs_flash_strobe_parms *strobe_setup;
1376        unsigned int ext_freq = sensor->hwcfg.ext_clk;
1377        u32 tmp;
1378        u32 strobe_adjustment;
1379        u32 strobe_width_high_rs;
1380        int rval;
1381
1382        strobe_setup = sensor->hwcfg.strobe_setup;
1383
1384        /*
1385         * How to calculate registers related to strobe length. Please
1386         * do not change, or if you do at least know what you're
1387         * doing. :-)
1388         *
1389         * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1390         *
1391         * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1392         *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1393         *
1394         * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1395         * flash_strobe_adjustment E N, [1 - 0xff]
1396         *
1397         * The formula above is written as below to keep it on one
1398         * line:
1399         *
1400         * l / 10^6 = w / e * a
1401         *
1402         * Let's mark w * a by x:
1403         *
1404         * x = w * a
1405         *
1406         * Thus, we get:
1407         *
1408         * x = l * e / 10^6
1409         *
1410         * The strobe width must be at least as long as requested,
1411         * thus rounding upwards is needed.
1412         *
1413         * x = (l * e + 10^6 - 1) / 10^6
1414         * -----------------------------
1415         *
1416         * Maximum possible accuracy is wanted at all times. Thus keep
1417         * a as small as possible.
1418         *
1419         * Calculate a, assuming maximum w, with rounding upwards:
1420         *
1421         * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1422         * -------------------------------------
1423         *
1424         * Thus, we also get w, with that a, with rounding upwards:
1425         *
1426         * w = (x + a - 1) / a
1427         * -------------------
1428         *
1429         * To get limits:
1430         *
1431         * x E [1, (2^16 - 1) * (2^8 - 1)]
1432         *
1433         * Substituting maximum x to the original formula (with rounding),
1434         * the maximum l is thus
1435         *
1436         * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1437         *
1438         * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1439         * --------------------------------------------------
1440         *
1441         * flash_strobe_length must be clamped between 1 and
1442         * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1443         *
1444         * Then,
1445         *
1446         * flash_strobe_adjustment = ((flash_strobe_length *
1447         *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1448         *
1449         * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1450         *      EXTCLK freq + 10^6 - 1) / 10^6 +
1451         *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1452         */
1453        tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1454                      1000000 + 1, ext_freq);
1455        strobe_setup->strobe_width_high_us =
1456                clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1457
1458        tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1459                        1000000 - 1), 1000000ULL);
1460        strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1461        strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1462                                strobe_adjustment;
1463
1464        rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1465        if (rval < 0)
1466                goto out;
1467
1468        rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1469        if (rval < 0)
1470                goto out;
1471
1472        rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1473                         strobe_width_high_rs);
1474        if (rval < 0)
1475                goto out;
1476
1477        rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1478                         strobe_setup->strobe_delay);
1479        if (rval < 0)
1480                goto out;
1481
1482        rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1483                         strobe_setup->stobe_start_point);
1484        if (rval < 0)
1485                goto out;
1486
1487        rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1488
1489out:
1490        sensor->hwcfg.strobe_setup->trigger = 0;
1491
1492        return rval;
1493}
1494
1495/* -----------------------------------------------------------------------------
1496 * Power management
1497 */
1498
1499static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1500{
1501        int rval;
1502
1503        rval = ccs_write_data_regs(sensor,
1504                                   sensor->sdata.sensor_manufacturer_regs,
1505                                   sensor->sdata.num_sensor_manufacturer_regs);
1506        if (rval)
1507                return rval;
1508
1509        return ccs_write_data_regs(sensor,
1510                                   sensor->mdata.module_manufacturer_regs,
1511                                   sensor->mdata.num_module_manufacturer_regs);
1512}
1513
1514static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1515{
1516        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1517        u8 val;
1518
1519        if (!sensor->ccs_limits)
1520                return 0;
1521
1522        if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1523            CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1524                val = CCS_PHY_CTRL_AUTO;
1525        } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1526                   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1527                val = CCS_PHY_CTRL_UI;
1528        } else {
1529                dev_err(&client->dev, "manual PHY control not supported\n");
1530                return -EINVAL;
1531        }
1532
1533        return ccs_write(sensor, PHY_CTRL, val);
1534}
1535
1536static int ccs_power_on(struct device *dev)
1537{
1538        struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1539        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1540        /*
1541         * The sub-device related to the I2C device is always the
1542         * source one, i.e. ssds[0].
1543         */
1544        struct ccs_sensor *sensor =
1545                container_of(ssd, struct ccs_sensor, ssds[0]);
1546        const struct ccs_device *ccsdev = device_get_match_data(dev);
1547        int rval;
1548
1549        rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1550                                     sensor->regulators);
1551        if (rval) {
1552                dev_err(dev, "failed to enable vana regulator\n");
1553                return rval;
1554        }
1555
1556        if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1557                unsigned int sleep;
1558
1559                rval = clk_prepare_enable(sensor->ext_clk);
1560                if (rval < 0) {
1561                        dev_dbg(dev, "failed to enable xclk\n");
1562                        goto out_xclk_fail;
1563                }
1564
1565                gpiod_set_value(sensor->reset, 0);
1566                gpiod_set_value(sensor->xshutdown, 1);
1567
1568                if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1569                        sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1570                else
1571                        sleep = 5000;
1572
1573                usleep_range(sleep, sleep);
1574        }
1575
1576        /*
1577         * Failures to respond to the address change command have been noticed.
1578         * Those failures seem to be caused by the sensor requiring a longer
1579         * boot time than advertised. An additional 10ms delay seems to work
1580         * around the issue, but the SMIA++ I2C write retry hack makes the delay
1581         * unnecessary. The failures need to be investigated to find a proper
1582         * fix, and a delay will likely need to be added here if the I2C write
1583         * retry hack is reverted before the root cause of the boot time issue
1584         * is found.
1585         */
1586
1587        if (!sensor->reset && !sensor->xshutdown) {
1588                u8 retry = 100;
1589                u32 reset;
1590
1591                rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1592                if (rval < 0) {
1593                        dev_err(dev, "software reset failed\n");
1594                        goto out_cci_addr_fail;
1595                }
1596
1597                do {
1598                        rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1599                        reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1600                        if (reset)
1601                                break;
1602
1603                        usleep_range(1000, 2000);
1604                } while (--retry);
1605
1606                if (!reset)
1607                        return -EIO;
1608        }
1609
1610        if (sensor->hwcfg.i2c_addr_alt) {
1611                rval = ccs_change_cci_addr(sensor);
1612                if (rval) {
1613                        dev_err(dev, "cci address change error\n");
1614                        goto out_cci_addr_fail;
1615                }
1616        }
1617
1618        rval = ccs_write(sensor, COMPRESSION_MODE,
1619                         CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1620        if (rval) {
1621                dev_err(dev, "compression mode set failed\n");
1622                goto out_cci_addr_fail;
1623        }
1624
1625        rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1626                         sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1627        if (rval) {
1628                dev_err(dev, "extclk frequency set failed\n");
1629                goto out_cci_addr_fail;
1630        }
1631
1632        rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1633        if (rval) {
1634                dev_err(dev, "csi lane mode set failed\n");
1635                goto out_cci_addr_fail;
1636        }
1637
1638        rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1639                         CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1640        if (rval) {
1641                dev_err(dev, "fast standby set failed\n");
1642                goto out_cci_addr_fail;
1643        }
1644
1645        rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1646                         sensor->hwcfg.csi_signalling_mode);
1647        if (rval) {
1648                dev_err(dev, "csi signalling mode set failed\n");
1649                goto out_cci_addr_fail;
1650        }
1651
1652        rval = ccs_update_phy_ctrl(sensor);
1653        if (rval < 0)
1654                goto out_cci_addr_fail;
1655
1656        rval = ccs_write_msr_regs(sensor);
1657        if (rval)
1658                goto out_cci_addr_fail;
1659
1660        rval = ccs_call_quirk(sensor, post_poweron);
1661        if (rval) {
1662                dev_err(dev, "post_poweron quirks failed\n");
1663                goto out_cci_addr_fail;
1664        }
1665
1666        return 0;
1667
1668out_cci_addr_fail:
1669        gpiod_set_value(sensor->reset, 1);
1670        gpiod_set_value(sensor->xshutdown, 0);
1671        clk_disable_unprepare(sensor->ext_clk);
1672
1673out_xclk_fail:
1674        regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1675                               sensor->regulators);
1676
1677        return rval;
1678}
1679
1680static int ccs_power_off(struct device *dev)
1681{
1682        struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1683        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1684        struct ccs_sensor *sensor =
1685                container_of(ssd, struct ccs_sensor, ssds[0]);
1686
1687        /*
1688         * Currently power/clock to lens are enable/disabled separately
1689         * but they are essentially the same signals. So if the sensor is
1690         * powered off while the lens is powered on the sensor does not
1691         * really see a power off and next time the cci address change
1692         * will fail. So do a soft reset explicitly here.
1693         */
1694        if (sensor->hwcfg.i2c_addr_alt)
1695                ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1696
1697        gpiod_set_value(sensor->reset, 1);
1698        gpiod_set_value(sensor->xshutdown, 0);
1699        clk_disable_unprepare(sensor->ext_clk);
1700        usleep_range(5000, 5000);
1701        regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1702                               sensor->regulators);
1703        sensor->streaming = false;
1704
1705        return 0;
1706}
1707
1708/* -----------------------------------------------------------------------------
1709 * Video stream management
1710 */
1711
1712static int ccs_start_streaming(struct ccs_sensor *sensor)
1713{
1714        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1715        unsigned int binning_mode;
1716        int rval;
1717
1718        mutex_lock(&sensor->mutex);
1719
1720        rval = ccs_write(sensor, CSI_DATA_FORMAT,
1721                         (sensor->csi_format->width << 8) |
1722                         sensor->csi_format->compressed);
1723        if (rval)
1724                goto out;
1725
1726        /* Binning configuration */
1727        if (sensor->binning_horizontal == 1 &&
1728            sensor->binning_vertical == 1) {
1729                binning_mode = 0;
1730        } else {
1731                u8 binning_type =
1732                        (sensor->binning_horizontal << 4)
1733                        | sensor->binning_vertical;
1734
1735                rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1736                if (rval < 0)
1737                        goto out;
1738
1739                binning_mode = 1;
1740        }
1741        rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1742        if (rval < 0)
1743                goto out;
1744
1745        /* Set up PLL */
1746        rval = ccs_pll_configure(sensor);
1747        if (rval)
1748                goto out;
1749
1750        /* Analog crop start coordinates */
1751        rval = ccs_write(sensor, X_ADDR_START,
1752                         sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1753        if (rval < 0)
1754                goto out;
1755
1756        rval = ccs_write(sensor, Y_ADDR_START,
1757                         sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1758        if (rval < 0)
1759                goto out;
1760
1761        /* Analog crop end coordinates */
1762        rval = ccs_write(
1763                sensor, X_ADDR_END,
1764                sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1765                + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1766        if (rval < 0)
1767                goto out;
1768
1769        rval = ccs_write(
1770                sensor, Y_ADDR_END,
1771                sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1772                + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1773        if (rval < 0)
1774                goto out;
1775
1776        /*
1777         * Output from pixel array, including blanking, is set using
1778         * controls below. No need to set here.
1779         */
1780
1781        /* Digital crop */
1782        if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1783            == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1784                rval = ccs_write(
1785                        sensor, DIGITAL_CROP_X_OFFSET,
1786                        sensor->scaler->crop[CCS_PAD_SINK].left);
1787                if (rval < 0)
1788                        goto out;
1789
1790                rval = ccs_write(
1791                        sensor, DIGITAL_CROP_Y_OFFSET,
1792                        sensor->scaler->crop[CCS_PAD_SINK].top);
1793                if (rval < 0)
1794                        goto out;
1795
1796                rval = ccs_write(
1797                        sensor, DIGITAL_CROP_IMAGE_WIDTH,
1798                        sensor->scaler->crop[CCS_PAD_SINK].width);
1799                if (rval < 0)
1800                        goto out;
1801
1802                rval = ccs_write(
1803                        sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1804                        sensor->scaler->crop[CCS_PAD_SINK].height);
1805                if (rval < 0)
1806                        goto out;
1807        }
1808
1809        /* Scaling */
1810        if (CCS_LIM(sensor, SCALING_CAPABILITY)
1811            != CCS_SCALING_CAPABILITY_NONE) {
1812                rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1813                if (rval < 0)
1814                        goto out;
1815
1816                rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1817                if (rval < 0)
1818                        goto out;
1819        }
1820
1821        /* Output size from sensor */
1822        rval = ccs_write(sensor, X_OUTPUT_SIZE,
1823                         sensor->src->crop[CCS_PAD_SRC].width);
1824        if (rval < 0)
1825                goto out;
1826        rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1827                         sensor->src->crop[CCS_PAD_SRC].height);
1828        if (rval < 0)
1829                goto out;
1830
1831        if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1832            (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1833             SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1834            sensor->hwcfg.strobe_setup != NULL &&
1835            sensor->hwcfg.strobe_setup->trigger != 0) {
1836                rval = ccs_setup_flash_strobe(sensor);
1837                if (rval)
1838                        goto out;
1839        }
1840
1841        rval = ccs_call_quirk(sensor, pre_streamon);
1842        if (rval) {
1843                dev_err(&client->dev, "pre_streamon quirks failed\n");
1844                goto out;
1845        }
1846
1847        rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1848
1849out:
1850        mutex_unlock(&sensor->mutex);
1851
1852        return rval;
1853}
1854
1855static int ccs_stop_streaming(struct ccs_sensor *sensor)
1856{
1857        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1858        int rval;
1859
1860        mutex_lock(&sensor->mutex);
1861        rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1862        if (rval)
1863                goto out;
1864
1865        rval = ccs_call_quirk(sensor, post_streamoff);
1866        if (rval)
1867                dev_err(&client->dev, "post_streamoff quirks failed\n");
1868
1869out:
1870        mutex_unlock(&sensor->mutex);
1871        return rval;
1872}
1873
1874/* -----------------------------------------------------------------------------
1875 * V4L2 subdev video operations
1876 */
1877
1878static int ccs_pm_get_init(struct ccs_sensor *sensor)
1879{
1880        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1881        int rval;
1882
1883        /*
1884         * It can't use pm_runtime_resume_and_get() here, as the driver
1885         * relies at the returned value to detect if the device was already
1886         * active or not.
1887         */
1888        rval = pm_runtime_get_sync(&client->dev);
1889        if (rval < 0)
1890                goto error;
1891
1892        /* Device was already active, so don't set controls */
1893        if (rval == 1)
1894                return 0;
1895
1896        /* Restore V4L2 controls to the previously suspended device */
1897        rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1898        if (rval)
1899                goto error;
1900
1901        rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1902        if (rval)
1903                goto error;
1904
1905        /* Keep PM runtime usage_count incremented on success */
1906        return 0;
1907error:
1908        pm_runtime_put(&client->dev);
1909        return rval;
1910}
1911
1912static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1913{
1914        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1915        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1916        int rval;
1917
1918        if (sensor->streaming == enable)
1919                return 0;
1920
1921        if (!enable) {
1922                ccs_stop_streaming(sensor);
1923                sensor->streaming = false;
1924                pm_runtime_mark_last_busy(&client->dev);
1925                pm_runtime_put_autosuspend(&client->dev);
1926
1927                return 0;
1928        }
1929
1930        rval = ccs_pm_get_init(sensor);
1931        if (rval)
1932                return rval;
1933
1934        sensor->streaming = true;
1935
1936        rval = ccs_start_streaming(sensor);
1937        if (rval < 0) {
1938                sensor->streaming = false;
1939                pm_runtime_mark_last_busy(&client->dev);
1940                pm_runtime_put_autosuspend(&client->dev);
1941        }
1942
1943        return rval;
1944}
1945
1946static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1947{
1948        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1949        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1950        int rval;
1951
1952        if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1953                switch (sensor->hwcfg.csi_signalling_mode) {
1954                case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1955                        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1956                              CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1957                                return -EACCES;
1958                        break;
1959                case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1960                        if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1961                              CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1962                                return -EACCES;
1963                        break;
1964                default:
1965                        return -EACCES;
1966                }
1967        }
1968
1969        rval = ccs_pm_get_init(sensor);
1970        if (rval)
1971                return rval;
1972
1973        if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1974                rval = ccs_write(sensor, MANUAL_LP_CTRL,
1975                                 CCS_MANUAL_LP_CTRL_ENABLE);
1976                if (rval)
1977                        pm_runtime_put(&client->dev);
1978        }
1979
1980        return rval;
1981}
1982
1983static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1984{
1985        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1986        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1987
1988        return pm_runtime_put(&client->dev);
1989}
1990
1991static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1992                              struct v4l2_subdev_state *sd_state,
1993                              struct v4l2_subdev_mbus_code_enum *code)
1994{
1995        struct i2c_client *client = v4l2_get_subdevdata(subdev);
1996        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1997        unsigned int i;
1998        int idx = -1;
1999        int rval = -EINVAL;
2000
2001        mutex_lock(&sensor->mutex);
2002
2003        dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
2004                subdev->name, code->pad, code->index);
2005
2006        if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2007                if (code->index)
2008                        goto out;
2009
2010                code->code = sensor->internal_csi_format->code;
2011                rval = 0;
2012                goto out;
2013        }
2014
2015        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2016                if (sensor->mbus_frame_fmts & (1 << i))
2017                        idx++;
2018
2019                if (idx == code->index) {
2020                        code->code = ccs_csi_data_formats[i].code;
2021                        dev_err(&client->dev, "found index %d, i %d, code %x\n",
2022                                code->index, i, code->code);
2023                        rval = 0;
2024                        break;
2025                }
2026        }
2027
2028out:
2029        mutex_unlock(&sensor->mutex);
2030
2031        return rval;
2032}
2033
2034static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2035{
2036        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2037
2038        if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2039                return sensor->csi_format->code;
2040        else
2041                return sensor->internal_csi_format->code;
2042}
2043
2044static int __ccs_get_format(struct v4l2_subdev *subdev,
2045                            struct v4l2_subdev_state *sd_state,
2046                            struct v4l2_subdev_format *fmt)
2047{
2048        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2049
2050        if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
2051                fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
2052                                                          fmt->pad);
2053        } else {
2054                struct v4l2_rect *r;
2055
2056                if (fmt->pad == ssd->source_pad)
2057                        r = &ssd->crop[ssd->source_pad];
2058                else
2059                        r = &ssd->sink_fmt;
2060
2061                fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2062                fmt->format.width = r->width;
2063                fmt->format.height = r->height;
2064                fmt->format.field = V4L2_FIELD_NONE;
2065        }
2066
2067        return 0;
2068}
2069
2070static int ccs_get_format(struct v4l2_subdev *subdev,
2071                          struct v4l2_subdev_state *sd_state,
2072                          struct v4l2_subdev_format *fmt)
2073{
2074        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2075        int rval;
2076
2077        mutex_lock(&sensor->mutex);
2078        rval = __ccs_get_format(subdev, sd_state, fmt);
2079        mutex_unlock(&sensor->mutex);
2080
2081        return rval;
2082}
2083
2084static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2085                                 struct v4l2_subdev_state *sd_state,
2086                                 struct v4l2_rect **crops,
2087                                 struct v4l2_rect **comps, int which)
2088{
2089        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2090        unsigned int i;
2091
2092        if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2093                if (crops)
2094                        for (i = 0; i < subdev->entity.num_pads; i++)
2095                                crops[i] = &ssd->crop[i];
2096                if (comps)
2097                        *comps = &ssd->compose;
2098        } else {
2099                if (crops) {
2100                        for (i = 0; i < subdev->entity.num_pads; i++)
2101                                crops[i] = v4l2_subdev_get_try_crop(subdev,
2102                                                                    sd_state,
2103                                                                    i);
2104                }
2105                if (comps)
2106                        *comps = v4l2_subdev_get_try_compose(subdev, sd_state,
2107                                                             CCS_PAD_SINK);
2108        }
2109}
2110
2111/* Changes require propagation only on sink pad. */
2112static void ccs_propagate(struct v4l2_subdev *subdev,
2113                          struct v4l2_subdev_state *sd_state, int which,
2114                          int target)
2115{
2116        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2117        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2118        struct v4l2_rect *comp, *crops[CCS_PADS];
2119
2120        ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
2121
2122        switch (target) {
2123        case V4L2_SEL_TGT_CROP:
2124                comp->width = crops[CCS_PAD_SINK]->width;
2125                comp->height = crops[CCS_PAD_SINK]->height;
2126                if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2127                        if (ssd == sensor->scaler) {
2128                                sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2129                                sensor->scaling_mode =
2130                                        CCS_SCALING_MODE_NO_SCALING;
2131                        } else if (ssd == sensor->binner) {
2132                                sensor->binning_horizontal = 1;
2133                                sensor->binning_vertical = 1;
2134                        }
2135                }
2136                fallthrough;
2137        case V4L2_SEL_TGT_COMPOSE:
2138                *crops[CCS_PAD_SRC] = *comp;
2139                break;
2140        default:
2141                WARN_ON_ONCE(1);
2142        }
2143}
2144
2145static const struct ccs_csi_data_format
2146*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2147{
2148        unsigned int i;
2149
2150        for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2151                if (sensor->mbus_frame_fmts & (1 << i) &&
2152                    ccs_csi_data_formats[i].code == code)
2153                        return &ccs_csi_data_formats[i];
2154        }
2155
2156        return sensor->csi_format;
2157}
2158
2159static int ccs_set_format_source(struct v4l2_subdev *subdev,
2160                                 struct v4l2_subdev_state *sd_state,
2161                                 struct v4l2_subdev_format *fmt)
2162{
2163        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2164        const struct ccs_csi_data_format *csi_format,
2165                *old_csi_format = sensor->csi_format;
2166        unsigned long *valid_link_freqs;
2167        u32 code = fmt->format.code;
2168        unsigned int i;
2169        int rval;
2170
2171        rval = __ccs_get_format(subdev, sd_state, fmt);
2172        if (rval)
2173                return rval;
2174
2175        /*
2176         * Media bus code is changeable on src subdev's source pad. On
2177         * other source pads we just get format here.
2178         */
2179        if (subdev != &sensor->src->sd)
2180                return 0;
2181
2182        csi_format = ccs_validate_csi_data_format(sensor, code);
2183
2184        fmt->format.code = csi_format->code;
2185
2186        if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2187                return 0;
2188
2189        sensor->csi_format = csi_format;
2190
2191        if (csi_format->width != old_csi_format->width)
2192                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2193                        __v4l2_ctrl_modify_range(
2194                                sensor->test_data[i], 0,
2195                                (1 << csi_format->width) - 1, 1, 0);
2196
2197        if (csi_format->compressed == old_csi_format->compressed)
2198                return 0;
2199
2200        valid_link_freqs =
2201                &sensor->valid_link_freqs[sensor->csi_format->compressed
2202                                          - sensor->compressed_min_bpp];
2203
2204        __v4l2_ctrl_modify_range(
2205                sensor->link_freq, 0,
2206                __fls(*valid_link_freqs), ~*valid_link_freqs,
2207                __ffs(*valid_link_freqs));
2208
2209        return ccs_pll_update(sensor);
2210}
2211
2212static int ccs_set_format(struct v4l2_subdev *subdev,
2213                          struct v4l2_subdev_state *sd_state,
2214                          struct v4l2_subdev_format *fmt)
2215{
2216        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2217        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2218        struct v4l2_rect *crops[CCS_PADS];
2219
2220        mutex_lock(&sensor->mutex);
2221
2222        if (fmt->pad == ssd->source_pad) {
2223                int rval;
2224
2225                rval = ccs_set_format_source(subdev, sd_state, fmt);
2226
2227                mutex_unlock(&sensor->mutex);
2228
2229                return rval;
2230        }
2231
2232        /* Sink pad. Width and height are changeable here. */
2233        fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2234        fmt->format.width &= ~1;
2235        fmt->format.height &= ~1;
2236        fmt->format.field = V4L2_FIELD_NONE;
2237
2238        fmt->format.width =
2239                clamp(fmt->format.width,
2240                      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2241                      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2242        fmt->format.height =
2243                clamp(fmt->format.height,
2244                      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2245                      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2246
2247        ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
2248
2249        crops[ssd->sink_pad]->left = 0;
2250        crops[ssd->sink_pad]->top = 0;
2251        crops[ssd->sink_pad]->width = fmt->format.width;
2252        crops[ssd->sink_pad]->height = fmt->format.height;
2253        if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2254                ssd->sink_fmt = *crops[ssd->sink_pad];
2255        ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2256
2257        mutex_unlock(&sensor->mutex);
2258
2259        return 0;
2260}
2261
2262/*
2263 * Calculate goodness of scaled image size compared to expected image
2264 * size and flags provided.
2265 */
2266#define SCALING_GOODNESS                100000
2267#define SCALING_GOODNESS_EXTREME        100000000
2268static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2269                            int h, int ask_h, u32 flags)
2270{
2271        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2272        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2273        int val = 0;
2274
2275        w &= ~1;
2276        ask_w &= ~1;
2277        h &= ~1;
2278        ask_h &= ~1;
2279
2280        if (flags & V4L2_SEL_FLAG_GE) {
2281                if (w < ask_w)
2282                        val -= SCALING_GOODNESS;
2283                if (h < ask_h)
2284                        val -= SCALING_GOODNESS;
2285        }
2286
2287        if (flags & V4L2_SEL_FLAG_LE) {
2288                if (w > ask_w)
2289                        val -= SCALING_GOODNESS;
2290                if (h > ask_h)
2291                        val -= SCALING_GOODNESS;
2292        }
2293
2294        val -= abs(w - ask_w);
2295        val -= abs(h - ask_h);
2296
2297        if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2298                val -= SCALING_GOODNESS_EXTREME;
2299
2300        dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2301                w, ask_w, h, ask_h, val);
2302
2303        return val;
2304}
2305
2306static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2307                                   struct v4l2_subdev_state *sd_state,
2308                                   struct v4l2_subdev_selection *sel,
2309                                   struct v4l2_rect **crops,
2310                                   struct v4l2_rect *comp)
2311{
2312        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2313        unsigned int i;
2314        unsigned int binh = 1, binv = 1;
2315        int best = scaling_goodness(
2316                subdev,
2317                crops[CCS_PAD_SINK]->width, sel->r.width,
2318                crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2319
2320        for (i = 0; i < sensor->nbinning_subtypes; i++) {
2321                int this = scaling_goodness(
2322                        subdev,
2323                        crops[CCS_PAD_SINK]->width
2324                        / sensor->binning_subtypes[i].horizontal,
2325                        sel->r.width,
2326                        crops[CCS_PAD_SINK]->height
2327                        / sensor->binning_subtypes[i].vertical,
2328                        sel->r.height, sel->flags);
2329
2330                if (this > best) {
2331                        binh = sensor->binning_subtypes[i].horizontal;
2332                        binv = sensor->binning_subtypes[i].vertical;
2333                        best = this;
2334                }
2335        }
2336        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2337                sensor->binning_vertical = binv;
2338                sensor->binning_horizontal = binh;
2339        }
2340
2341        sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2342        sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2343}
2344
2345/*
2346 * Calculate best scaling ratio and mode for given output resolution.
2347 *
2348 * Try all of these: horizontal ratio, vertical ratio and smallest
2349 * size possible (horizontally).
2350 *
2351 * Also try whether horizontal scaler or full scaler gives a better
2352 * result.
2353 */
2354static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2355                                   struct v4l2_subdev_state *sd_state,
2356                                   struct v4l2_subdev_selection *sel,
2357                                   struct v4l2_rect **crops,
2358                                   struct v4l2_rect *comp)
2359{
2360        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2361        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2362        u32 min, max, a, b, max_m;
2363        u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2364        int mode = CCS_SCALING_MODE_HORIZONTAL;
2365        u32 try[4];
2366        u32 ntry = 0;
2367        unsigned int i;
2368        int best = INT_MIN;
2369
2370        sel->r.width = min_t(unsigned int, sel->r.width,
2371                             crops[CCS_PAD_SINK]->width);
2372        sel->r.height = min_t(unsigned int, sel->r.height,
2373                              crops[CCS_PAD_SINK]->height);
2374
2375        a = crops[CCS_PAD_SINK]->width
2376                * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2377        b = crops[CCS_PAD_SINK]->height
2378                * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2379        max_m = crops[CCS_PAD_SINK]->width
2380                * CCS_LIM(sensor, SCALER_N_MIN)
2381                / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2382
2383        a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2384                  CCS_LIM(sensor, SCALER_M_MAX));
2385        b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2386                  CCS_LIM(sensor, SCALER_M_MAX));
2387        max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2388                      CCS_LIM(sensor, SCALER_M_MAX));
2389
2390        dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
2391
2392        min = min(max_m, min(a, b));
2393        max = min(max_m, max(a, b));
2394
2395        try[ntry] = min;
2396        ntry++;
2397        if (min != max) {
2398                try[ntry] = max;
2399                ntry++;
2400        }
2401        if (max != max_m) {
2402                try[ntry] = min + 1;
2403                ntry++;
2404                if (min != max) {
2405                        try[ntry] = max + 1;
2406                        ntry++;
2407                }
2408        }
2409
2410        for (i = 0; i < ntry; i++) {
2411                int this = scaling_goodness(
2412                        subdev,
2413                        crops[CCS_PAD_SINK]->width
2414                        / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2415                        sel->r.width,
2416                        crops[CCS_PAD_SINK]->height,
2417                        sel->r.height,
2418                        sel->flags);
2419
2420                dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2421
2422                if (this > best) {
2423                        scale_m = try[i];
2424                        mode = CCS_SCALING_MODE_HORIZONTAL;
2425                        best = this;
2426                }
2427
2428                if (CCS_LIM(sensor, SCALING_CAPABILITY)
2429                    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2430                        continue;
2431
2432                this = scaling_goodness(
2433                        subdev, crops[CCS_PAD_SINK]->width
2434                        / try[i]
2435                        * CCS_LIM(sensor, SCALER_N_MIN),
2436                        sel->r.width,
2437                        crops[CCS_PAD_SINK]->height
2438                        / try[i]
2439                        * CCS_LIM(sensor, SCALER_N_MIN),
2440                        sel->r.height,
2441                        sel->flags);
2442
2443                if (this > best) {
2444                        scale_m = try[i];
2445                        mode = SMIAPP_SCALING_MODE_BOTH;
2446                        best = this;
2447                }
2448        }
2449
2450        sel->r.width =
2451                (crops[CCS_PAD_SINK]->width
2452                 / scale_m
2453                 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2454        if (mode == SMIAPP_SCALING_MODE_BOTH)
2455                sel->r.height =
2456                        (crops[CCS_PAD_SINK]->height
2457                         / scale_m
2458                         * CCS_LIM(sensor, SCALER_N_MIN))
2459                        & ~1;
2460        else
2461                sel->r.height = crops[CCS_PAD_SINK]->height;
2462
2463        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2464                sensor->scale_m = scale_m;
2465                sensor->scaling_mode = mode;
2466        }
2467}
2468/* We're only called on source pads. This function sets scaling. */
2469static int ccs_set_compose(struct v4l2_subdev *subdev,
2470                           struct v4l2_subdev_state *sd_state,
2471                           struct v4l2_subdev_selection *sel)
2472{
2473        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2474        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2475        struct v4l2_rect *comp, *crops[CCS_PADS];
2476
2477        ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2478
2479        sel->r.top = 0;
2480        sel->r.left = 0;
2481
2482        if (ssd == sensor->binner)
2483                ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2484        else
2485                ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2486
2487        *comp = sel->r;
2488        ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2489
2490        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2491                return ccs_pll_blanking_update(sensor);
2492
2493        return 0;
2494}
2495
2496static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2497                               struct v4l2_subdev_selection *sel)
2498{
2499        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2500        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2501
2502        /* We only implement crop in three places. */
2503        switch (sel->target) {
2504        case V4L2_SEL_TGT_CROP:
2505        case V4L2_SEL_TGT_CROP_BOUNDS:
2506                if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2507                        return 0;
2508                if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2509                        return 0;
2510                if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2511                    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2512                    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2513                        return 0;
2514                return -EINVAL;
2515        case V4L2_SEL_TGT_NATIVE_SIZE:
2516                if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2517                        return 0;
2518                return -EINVAL;
2519        case V4L2_SEL_TGT_COMPOSE:
2520        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2521                if (sel->pad == ssd->source_pad)
2522                        return -EINVAL;
2523                if (ssd == sensor->binner)
2524                        return 0;
2525                if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2526                    != CCS_SCALING_CAPABILITY_NONE)
2527                        return 0;
2528                fallthrough;
2529        default:
2530                return -EINVAL;
2531        }
2532}
2533
2534static int ccs_set_crop(struct v4l2_subdev *subdev,
2535                        struct v4l2_subdev_state *sd_state,
2536                        struct v4l2_subdev_selection *sel)
2537{
2538        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2539        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2540        struct v4l2_rect *src_size, *crops[CCS_PADS];
2541        struct v4l2_rect _r;
2542
2543        ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
2544
2545        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2546                if (sel->pad == ssd->sink_pad)
2547                        src_size = &ssd->sink_fmt;
2548                else
2549                        src_size = &ssd->compose;
2550        } else {
2551                if (sel->pad == ssd->sink_pad) {
2552                        _r.left = 0;
2553                        _r.top = 0;
2554                        _r.width = v4l2_subdev_get_try_format(subdev,
2555                                                              sd_state,
2556                                                              sel->pad)
2557                                ->width;
2558                        _r.height = v4l2_subdev_get_try_format(subdev,
2559                                                               sd_state,
2560                                                               sel->pad)
2561                                ->height;
2562                        src_size = &_r;
2563                } else {
2564                        src_size = v4l2_subdev_get_try_compose(
2565                                subdev, sd_state, ssd->sink_pad);
2566                }
2567        }
2568
2569        if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2570                sel->r.left = 0;
2571                sel->r.top = 0;
2572        }
2573
2574        sel->r.width = min(sel->r.width, src_size->width);
2575        sel->r.height = min(sel->r.height, src_size->height);
2576
2577        sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2578        sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2579
2580        *crops[sel->pad] = sel->r;
2581
2582        if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2583                ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2584
2585        return 0;
2586}
2587
2588static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2589{
2590        r->top = 0;
2591        r->left = 0;
2592        r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2593        r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2594}
2595
2596static int __ccs_get_selection(struct v4l2_subdev *subdev,
2597                               struct v4l2_subdev_state *sd_state,
2598                               struct v4l2_subdev_selection *sel)
2599{
2600        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2601        struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2602        struct v4l2_rect *comp, *crops[CCS_PADS];
2603        struct v4l2_rect sink_fmt;
2604        int ret;
2605
2606        ret = __ccs_sel_supported(subdev, sel);
2607        if (ret)
2608                return ret;
2609
2610        ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2611
2612        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2613                sink_fmt = ssd->sink_fmt;
2614        } else {
2615                struct v4l2_mbus_framefmt *fmt =
2616                        v4l2_subdev_get_try_format(subdev, sd_state,
2617                                                   ssd->sink_pad);
2618
2619                sink_fmt.left = 0;
2620                sink_fmt.top = 0;
2621                sink_fmt.width = fmt->width;
2622                sink_fmt.height = fmt->height;
2623        }
2624
2625        switch (sel->target) {
2626        case V4L2_SEL_TGT_CROP_BOUNDS:
2627        case V4L2_SEL_TGT_NATIVE_SIZE:
2628                if (ssd == sensor->pixel_array)
2629                        ccs_get_native_size(ssd, &sel->r);
2630                else if (sel->pad == ssd->sink_pad)
2631                        sel->r = sink_fmt;
2632                else
2633                        sel->r = *comp;
2634                break;
2635        case V4L2_SEL_TGT_CROP:
2636        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2637                sel->r = *crops[sel->pad];
2638                break;
2639        case V4L2_SEL_TGT_COMPOSE:
2640                sel->r = *comp;
2641                break;
2642        }
2643
2644        return 0;
2645}
2646
2647static int ccs_get_selection(struct v4l2_subdev *subdev,
2648                             struct v4l2_subdev_state *sd_state,
2649                             struct v4l2_subdev_selection *sel)
2650{
2651        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2652        int rval;
2653
2654        mutex_lock(&sensor->mutex);
2655        rval = __ccs_get_selection(subdev, sd_state, sel);
2656        mutex_unlock(&sensor->mutex);
2657
2658        return rval;
2659}
2660
2661static int ccs_set_selection(struct v4l2_subdev *subdev,
2662                             struct v4l2_subdev_state *sd_state,
2663                             struct v4l2_subdev_selection *sel)
2664{
2665        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2666        int ret;
2667
2668        ret = __ccs_sel_supported(subdev, sel);
2669        if (ret)
2670                return ret;
2671
2672        mutex_lock(&sensor->mutex);
2673
2674        sel->r.left = max(0, sel->r.left & ~1);
2675        sel->r.top = max(0, sel->r.top & ~1);
2676        sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2677        sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2678
2679        sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2680                             sel->r.width);
2681        sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2682                              sel->r.height);
2683
2684        switch (sel->target) {
2685        case V4L2_SEL_TGT_CROP:
2686                ret = ccs_set_crop(subdev, sd_state, sel);
2687                break;
2688        case V4L2_SEL_TGT_COMPOSE:
2689                ret = ccs_set_compose(subdev, sd_state, sel);
2690                break;
2691        default:
2692                ret = -EINVAL;
2693        }
2694
2695        mutex_unlock(&sensor->mutex);
2696        return ret;
2697}
2698
2699static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2700{
2701        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2702
2703        *frames = sensor->frame_skip;
2704        return 0;
2705}
2706
2707static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2708{
2709        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2710
2711        *lines = sensor->image_start;
2712
2713        return 0;
2714}
2715
2716/* -----------------------------------------------------------------------------
2717 * sysfs attributes
2718 */
2719
2720static ssize_t
2721nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2722{
2723        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2724        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2725        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2726        int rval;
2727
2728        if (!sensor->dev_init_done)
2729                return -EBUSY;
2730
2731        rval = ccs_pm_get_init(sensor);
2732        if (rval < 0)
2733                return -ENODEV;
2734
2735        rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2736        if (rval < 0) {
2737                pm_runtime_put(&client->dev);
2738                dev_err(&client->dev, "nvm read failed\n");
2739                return -ENODEV;
2740        }
2741
2742        pm_runtime_mark_last_busy(&client->dev);
2743        pm_runtime_put_autosuspend(&client->dev);
2744
2745        /*
2746         * NVM is still way below a PAGE_SIZE, so we can safely
2747         * assume this for now.
2748         */
2749        return rval;
2750}
2751static DEVICE_ATTR_RO(nvm);
2752
2753static ssize_t
2754ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2755{
2756        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2757        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2758        struct ccs_module_info *minfo = &sensor->minfo;
2759
2760        if (minfo->mipi_manufacturer_id)
2761                return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n",
2762                                minfo->mipi_manufacturer_id, minfo->model_id,
2763                                minfo->revision_number) + 1;
2764        else
2765                return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2766                                minfo->smia_manufacturer_id, minfo->model_id,
2767                                minfo->revision_number) + 1;
2768}
2769static DEVICE_ATTR_RO(ident);
2770
2771/* -----------------------------------------------------------------------------
2772 * V4L2 subdev core operations
2773 */
2774
2775static int ccs_identify_module(struct ccs_sensor *sensor)
2776{
2777        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2778        struct ccs_module_info *minfo = &sensor->minfo;
2779        unsigned int i;
2780        u32 rev;
2781        int rval = 0;
2782
2783        /* Module info */
2784        rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2785                        &minfo->mipi_manufacturer_id);
2786        if (!rval && !minfo->mipi_manufacturer_id)
2787                rval = ccs_read_addr_8only(sensor,
2788                                           SMIAPP_REG_U8_MANUFACTURER_ID,
2789                                           &minfo->smia_manufacturer_id);
2790        if (!rval)
2791                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2792                                           &minfo->model_id);
2793        if (!rval)
2794                rval = ccs_read_addr_8only(sensor,
2795                                           CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2796                                           &rev);
2797        if (!rval) {
2798                rval = ccs_read_addr_8only(sensor,
2799                                           CCS_R_MODULE_REVISION_NUMBER_MINOR,
2800                                           &minfo->revision_number);
2801                minfo->revision_number |= rev << 8;
2802        }
2803        if (!rval)
2804                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2805                                           &minfo->module_year);
2806        if (!rval)
2807                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2808                                           &minfo->module_month);
2809        if (!rval)
2810                rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2811                                           &minfo->module_day);
2812
2813        /* Sensor info */
2814        if (!rval)
2815                rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2816                                &minfo->sensor_mipi_manufacturer_id);
2817        if (!rval && !minfo->sensor_mipi_manufacturer_id)
2818                rval = ccs_read_addr_8only(sensor,
2819                                           CCS_R_SENSOR_MANUFACTURER_ID,
2820                                           &minfo->sensor_smia_manufacturer_id);
2821        if (!rval)
2822                rval = ccs_read_addr_8only(sensor,
2823                                           CCS_R_SENSOR_MODEL_ID,
2824                                           &minfo->sensor_model_id);
2825        if (!rval)
2826                rval = ccs_read_addr_8only(sensor,
2827                                           CCS_R_SENSOR_REVISION_NUMBER,
2828                                           &minfo->sensor_revision_number);
2829        if (!rval)
2830                rval = ccs_read_addr_8only(sensor,
2831                                           CCS_R_SENSOR_FIRMWARE_VERSION,
2832                                           &minfo->sensor_firmware_version);
2833
2834        /* SMIA */
2835        if (!rval)
2836                rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2837        if (!rval && !minfo->ccs_version)
2838                rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2839                                           &minfo->smia_version);
2840        if (!rval && !minfo->ccs_version)
2841                rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2842                                           &minfo->smiapp_version);
2843
2844        if (rval) {
2845                dev_err(&client->dev, "sensor detection failed\n");
2846                return -ENODEV;
2847        }
2848
2849        if (minfo->mipi_manufacturer_id)
2850                dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2851                        minfo->mipi_manufacturer_id, minfo->model_id);
2852        else
2853                dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2854                        minfo->smia_manufacturer_id, minfo->model_id);
2855
2856        dev_dbg(&client->dev,
2857                "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2858                minfo->revision_number, minfo->module_year, minfo->module_month,
2859                minfo->module_day);
2860
2861        if (minfo->sensor_mipi_manufacturer_id)
2862                dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2863                        minfo->sensor_mipi_manufacturer_id,
2864                        minfo->sensor_model_id);
2865        else
2866                dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2867                        minfo->sensor_smia_manufacturer_id,
2868                        minfo->sensor_model_id);
2869
2870        dev_dbg(&client->dev,
2871                "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2872                minfo->sensor_revision_number, minfo->sensor_firmware_version);
2873
2874        if (minfo->ccs_version) {
2875                dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2876                        (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2877                        >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2878                        (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2879                minfo->name = CCS_NAME;
2880        } else {
2881                dev_dbg(&client->dev,
2882                        "smia version %2.2d smiapp version %2.2d\n",
2883                        minfo->smia_version, minfo->smiapp_version);
2884                minfo->name = SMIAPP_NAME;
2885        }
2886
2887        /*
2888         * Some modules have bad data in the lvalues below. Hope the
2889         * rvalues have better stuff. The lvalues are module
2890         * parameters whereas the rvalues are sensor parameters.
2891         */
2892        if (minfo->sensor_smia_manufacturer_id &&
2893            !minfo->smia_manufacturer_id && !minfo->model_id) {
2894                minfo->smia_manufacturer_id =
2895                        minfo->sensor_smia_manufacturer_id;
2896                minfo->model_id = minfo->sensor_model_id;
2897                minfo->revision_number = minfo->sensor_revision_number;
2898        }
2899
2900        for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2901                if (ccs_module_idents[i].mipi_manufacturer_id &&
2902                    ccs_module_idents[i].mipi_manufacturer_id
2903                    != minfo->mipi_manufacturer_id)
2904                        continue;
2905                if (ccs_module_idents[i].smia_manufacturer_id &&
2906                    ccs_module_idents[i].smia_manufacturer_id
2907                    != minfo->smia_manufacturer_id)
2908                        continue;
2909                if (ccs_module_idents[i].model_id != minfo->model_id)
2910                        continue;
2911                if (ccs_module_idents[i].flags
2912                    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2913                        if (ccs_module_idents[i].revision_number_major
2914                            < (minfo->revision_number >> 8))
2915                                continue;
2916                } else {
2917                        if (ccs_module_idents[i].revision_number_major
2918                            != (minfo->revision_number >> 8))
2919                                continue;
2920                }
2921
2922                minfo->name = ccs_module_idents[i].name;
2923                minfo->quirk = ccs_module_idents[i].quirk;
2924                break;
2925        }
2926
2927        if (i >= ARRAY_SIZE(ccs_module_idents))
2928                dev_warn(&client->dev,
2929                         "no quirks for this module; let's hope it's fully compliant\n");
2930
2931        dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2932
2933        return 0;
2934}
2935
2936static const struct v4l2_subdev_ops ccs_ops;
2937static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2938static const struct media_entity_operations ccs_entity_ops;
2939
2940static int ccs_register_subdev(struct ccs_sensor *sensor,
2941                               struct ccs_subdev *ssd,
2942                               struct ccs_subdev *sink_ssd,
2943                               u16 source_pad, u16 sink_pad, u32 link_flags)
2944{
2945        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2946        int rval;
2947
2948        if (!sink_ssd)
2949                return 0;
2950
2951        rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2952        if (rval) {
2953                dev_err(&client->dev, "media_entity_pads_init failed\n");
2954                return rval;
2955        }
2956
2957        rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2958        if (rval) {
2959                dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2960                return rval;
2961        }
2962
2963        rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2964                                     &sink_ssd->sd.entity, sink_pad,
2965                                     link_flags);
2966        if (rval) {
2967                dev_err(&client->dev, "media_create_pad_link failed\n");
2968                v4l2_device_unregister_subdev(&ssd->sd);
2969                return rval;
2970        }
2971
2972        return 0;
2973}
2974
2975static void ccs_unregistered(struct v4l2_subdev *subdev)
2976{
2977        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2978        unsigned int i;
2979
2980        for (i = 1; i < sensor->ssds_used; i++)
2981                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2982}
2983
2984static int ccs_registered(struct v4l2_subdev *subdev)
2985{
2986        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2987        int rval;
2988
2989        if (sensor->scaler) {
2990                rval = ccs_register_subdev(sensor, sensor->binner,
2991                                           sensor->scaler,
2992                                           CCS_PAD_SRC, CCS_PAD_SINK,
2993                                           MEDIA_LNK_FL_ENABLED |
2994                                           MEDIA_LNK_FL_IMMUTABLE);
2995                if (rval < 0)
2996                        return rval;
2997        }
2998
2999        rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
3000                                   CCS_PA_PAD_SRC, CCS_PAD_SINK,
3001                                   MEDIA_LNK_FL_ENABLED |
3002                                   MEDIA_LNK_FL_IMMUTABLE);
3003        if (rval)
3004                goto out_err;
3005
3006        return 0;
3007
3008out_err:
3009        ccs_unregistered(subdev);
3010
3011        return rval;
3012}
3013
3014static void ccs_cleanup(struct ccs_sensor *sensor)
3015{
3016        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3017
3018        device_remove_file(&client->dev, &dev_attr_nvm);
3019        device_remove_file(&client->dev, &dev_attr_ident);
3020
3021        ccs_free_controls(sensor);
3022}
3023
3024static void ccs_create_subdev(struct ccs_sensor *sensor,
3025                              struct ccs_subdev *ssd, const char *name,
3026                              unsigned short num_pads, u32 function)
3027{
3028        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3029
3030        if (!ssd)
3031                return;
3032
3033        if (ssd != sensor->src)
3034                v4l2_subdev_init(&ssd->sd, &ccs_ops);
3035
3036        ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3037        ssd->sd.entity.function = function;
3038        ssd->sensor = sensor;
3039
3040        ssd->npads = num_pads;
3041        ssd->source_pad = num_pads - 1;
3042
3043        v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
3044
3045        ccs_get_native_size(ssd, &ssd->sink_fmt);
3046
3047        ssd->compose.width = ssd->sink_fmt.width;
3048        ssd->compose.height = ssd->sink_fmt.height;
3049        ssd->crop[ssd->source_pad] = ssd->compose;
3050        ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3051        if (ssd != sensor->pixel_array) {
3052                ssd->crop[ssd->sink_pad] = ssd->compose;
3053                ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
3054        }
3055
3056        ssd->sd.entity.ops = &ccs_entity_ops;
3057
3058        if (ssd == sensor->src)
3059                return;
3060
3061        ssd->sd.internal_ops = &ccs_internal_ops;
3062        ssd->sd.owner = THIS_MODULE;
3063        ssd->sd.dev = &client->dev;
3064        v4l2_set_subdevdata(&ssd->sd, client);
3065}
3066
3067static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
3068{
3069        struct ccs_subdev *ssd = to_ccs_subdev(sd);
3070        struct ccs_sensor *sensor = ssd->sensor;
3071        unsigned int i;
3072
3073        mutex_lock(&sensor->mutex);
3074
3075        for (i = 0; i < ssd->npads; i++) {
3076                struct v4l2_mbus_framefmt *try_fmt =
3077                        v4l2_subdev_get_try_format(sd, fh->state, i);
3078                struct v4l2_rect *try_crop =
3079                        v4l2_subdev_get_try_crop(sd, fh->state, i);
3080                struct v4l2_rect *try_comp;
3081
3082                ccs_get_native_size(ssd, try_crop);
3083
3084                try_fmt->width = try_crop->width;
3085                try_fmt->height = try_crop->height;
3086                try_fmt->code = sensor->internal_csi_format->code;
3087                try_fmt->field = V4L2_FIELD_NONE;
3088
3089                if (ssd != sensor->pixel_array)
3090                        continue;
3091
3092                try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
3093                *try_comp = *try_crop;
3094        }
3095
3096        mutex_unlock(&sensor->mutex);
3097
3098        return 0;
3099}
3100
3101static const struct v4l2_subdev_video_ops ccs_video_ops = {
3102        .s_stream = ccs_set_stream,
3103        .pre_streamon = ccs_pre_streamon,
3104        .post_streamoff = ccs_post_streamoff,
3105};
3106
3107static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3108        .enum_mbus_code = ccs_enum_mbus_code,
3109        .get_fmt = ccs_get_format,
3110        .set_fmt = ccs_set_format,
3111        .get_selection = ccs_get_selection,
3112        .set_selection = ccs_set_selection,
3113};
3114
3115static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3116        .g_skip_frames = ccs_get_skip_frames,
3117        .g_skip_top_lines = ccs_get_skip_top_lines,
3118};
3119
3120static const struct v4l2_subdev_ops ccs_ops = {
3121        .video = &ccs_video_ops,
3122        .pad = &ccs_pad_ops,
3123        .sensor = &ccs_sensor_ops,
3124};
3125
3126static const struct media_entity_operations ccs_entity_ops = {
3127        .link_validate = v4l2_subdev_link_validate,
3128};
3129
3130static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3131        .registered = ccs_registered,
3132        .unregistered = ccs_unregistered,
3133        .open = ccs_open,
3134};
3135
3136static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
3137        .open = ccs_open,
3138};
3139
3140/* -----------------------------------------------------------------------------
3141 * I2C Driver
3142 */
3143
3144static int __maybe_unused ccs_suspend(struct device *dev)
3145{
3146        struct i2c_client *client = to_i2c_client(dev);
3147        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3148        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3149        bool streaming = sensor->streaming;
3150        int rval;
3151
3152        rval = pm_runtime_resume_and_get(dev);
3153        if (rval < 0)
3154                return rval;
3155
3156        if (sensor->streaming)
3157                ccs_stop_streaming(sensor);
3158
3159        /* save state for resume */
3160        sensor->streaming = streaming;
3161
3162        return 0;
3163}
3164
3165static int __maybe_unused ccs_resume(struct device *dev)
3166{
3167        struct i2c_client *client = to_i2c_client(dev);
3168        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3169        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3170        int rval = 0;
3171
3172        pm_runtime_put(dev);
3173
3174        if (sensor->streaming)
3175                rval = ccs_start_streaming(sensor);
3176
3177        return rval;
3178}
3179
3180static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3181{
3182        struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3183        struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3184        struct fwnode_handle *ep;
3185        struct fwnode_handle *fwnode = dev_fwnode(dev);
3186        u32 rotation;
3187        int i;
3188        int rval;
3189
3190        ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3191                                             FWNODE_GRAPH_ENDPOINT_NEXT);
3192        if (!ep)
3193                return -ENODEV;
3194
3195        /*
3196         * Note that we do need to rely on detecting the bus type between CSI-2
3197         * D-PHY and CCP2 as the old bindings did not require it.
3198         */
3199        rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3200        if (rval)
3201                goto out_err;
3202
3203        switch (bus_cfg.bus_type) {
3204        case V4L2_MBUS_CSI2_DPHY:
3205                hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3206                hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3207                break;
3208        case V4L2_MBUS_CSI2_CPHY:
3209                hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3210                hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3211                break;
3212        case V4L2_MBUS_CSI1:
3213        case V4L2_MBUS_CCP2:
3214                hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3215                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3216                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3217                hwcfg->lanes = 1;
3218                break;
3219        default:
3220                dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3221                rval = -EINVAL;
3222                goto out_err;
3223        }
3224
3225        dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
3226
3227        rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
3228        if (!rval) {
3229                switch (rotation) {
3230                case 180:
3231                        hwcfg->module_board_orient =
3232                                CCS_MODULE_BOARD_ORIENT_180;
3233                        fallthrough;
3234                case 0:
3235                        break;
3236                default:
3237                        dev_err(dev, "invalid rotation %u\n", rotation);
3238                        rval = -EINVAL;
3239                        goto out_err;
3240                }
3241        }
3242
3243        rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3244                                        &hwcfg->ext_clk);
3245        if (rval)
3246                dev_info(dev, "can't get clock-frequency\n");
3247
3248        dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
3249                hwcfg->csi_signalling_mode);
3250
3251        if (!bus_cfg.nr_of_link_frequencies) {
3252                dev_warn(dev, "no link frequencies defined\n");
3253                rval = -EINVAL;
3254                goto out_err;
3255        }
3256
3257        hwcfg->op_sys_clock = devm_kcalloc(
3258                dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3259                sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3260        if (!hwcfg->op_sys_clock) {
3261                rval = -ENOMEM;
3262                goto out_err;
3263        }
3264
3265        for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3266                hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3267                dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
3268        }
3269
3270        v4l2_fwnode_endpoint_free(&bus_cfg);
3271        fwnode_handle_put(ep);
3272
3273        return 0;
3274
3275out_err:
3276        v4l2_fwnode_endpoint_free(&bus_cfg);
3277        fwnode_handle_put(ep);
3278
3279        return rval;
3280}
3281
3282static int ccs_probe(struct i2c_client *client)
3283{
3284        struct ccs_sensor *sensor;
3285        const struct firmware *fw;
3286        char filename[40];
3287        unsigned int i;
3288        int rval;
3289
3290        sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3291        if (sensor == NULL)
3292                return -ENOMEM;
3293
3294        rval = ccs_get_hwconfig(sensor, &client->dev);
3295        if (rval)
3296                return rval;
3297
3298        sensor->src = &sensor->ssds[sensor->ssds_used];
3299
3300        v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3301        sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3302
3303        sensor->regulators = devm_kcalloc(&client->dev,
3304                                          ARRAY_SIZE(ccs_regulators),
3305                                          sizeof(*sensor->regulators),
3306                                          GFP_KERNEL);
3307        if (!sensor->regulators)
3308                return -ENOMEM;
3309
3310        for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3311                sensor->regulators[i].supply = ccs_regulators[i];
3312
3313        rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3314                                       sensor->regulators);
3315        if (rval) {
3316                dev_err(&client->dev, "could not get regulators\n");
3317                return rval;
3318        }
3319
3320        sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3321        if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3322                dev_info(&client->dev, "no clock defined, continuing...\n");
3323                sensor->ext_clk = NULL;
3324        } else if (IS_ERR(sensor->ext_clk)) {
3325                dev_err(&client->dev, "could not get clock (%ld)\n",
3326                        PTR_ERR(sensor->ext_clk));
3327                return -EPROBE_DEFER;
3328        }
3329
3330        if (sensor->ext_clk) {
3331                if (sensor->hwcfg.ext_clk) {
3332                        unsigned long rate;
3333
3334                        rval = clk_set_rate(sensor->ext_clk,
3335                                            sensor->hwcfg.ext_clk);
3336                        if (rval < 0) {
3337                                dev_err(&client->dev,
3338                                        "unable to set clock freq to %u\n",
3339                                        sensor->hwcfg.ext_clk);
3340                                return rval;
3341                        }
3342
3343                        rate = clk_get_rate(sensor->ext_clk);
3344                        if (rate != sensor->hwcfg.ext_clk) {
3345                                dev_err(&client->dev,
3346                                        "can't set clock freq, asked for %u but got %lu\n",
3347                                        sensor->hwcfg.ext_clk, rate);
3348                                return -EINVAL;
3349                        }
3350                } else {
3351                        sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3352                        dev_dbg(&client->dev, "obtained clock freq %u\n",
3353                                sensor->hwcfg.ext_clk);
3354                }
3355        } else if (sensor->hwcfg.ext_clk) {
3356                dev_dbg(&client->dev, "assuming clock freq %u\n",
3357                        sensor->hwcfg.ext_clk);
3358        } else {
3359                dev_err(&client->dev, "unable to obtain clock freq\n");
3360                return -EINVAL;
3361        }
3362
3363        if (!sensor->hwcfg.ext_clk) {
3364                dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3365                return -EINVAL;
3366        }
3367
3368        sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3369                                                GPIOD_OUT_HIGH);
3370        if (IS_ERR(sensor->reset))
3371                return PTR_ERR(sensor->reset);
3372        /* Support old users that may have used "xshutdown" property. */
3373        if (!sensor->reset)
3374                sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3375                                                            "xshutdown",
3376                                                            GPIOD_OUT_LOW);
3377        if (IS_ERR(sensor->xshutdown))
3378                return PTR_ERR(sensor->xshutdown);
3379
3380        rval = ccs_power_on(&client->dev);
3381        if (rval < 0)
3382                return rval;
3383
3384        mutex_init(&sensor->mutex);
3385
3386        rval = ccs_identify_module(sensor);
3387        if (rval) {
3388                rval = -ENODEV;
3389                goto out_power_off;
3390        }
3391
3392        rval = snprintf(filename, sizeof(filename),
3393                        "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
3394                        sensor->minfo.sensor_mipi_manufacturer_id,
3395                        sensor->minfo.sensor_model_id,
3396                        sensor->minfo.sensor_revision_number);
3397        if (rval >= sizeof(filename)) {
3398                rval = -ENOMEM;
3399                goto out_power_off;
3400        }
3401
3402        rval = request_firmware(&fw, filename, &client->dev);
3403        if (!rval) {
3404                ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3405                               true);
3406                release_firmware(fw);
3407        }
3408
3409        rval = snprintf(filename, sizeof(filename),
3410                        "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
3411                        sensor->minfo.mipi_manufacturer_id,
3412                        sensor->minfo.model_id,
3413                        sensor->minfo.revision_number);
3414        if (rval >= sizeof(filename)) {
3415                rval = -ENOMEM;
3416                goto out_release_sdata;
3417        }
3418
3419        rval = request_firmware(&fw, filename, &client->dev);
3420        if (!rval) {
3421                ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
3422                               true);
3423                release_firmware(fw);
3424        }
3425
3426        rval = ccs_read_all_limits(sensor);
3427        if (rval)
3428                goto out_release_mdata;
3429
3430        rval = ccs_read_frame_fmt(sensor);
3431        if (rval) {
3432                rval = -ENODEV;
3433                goto out_free_ccs_limits;
3434        }
3435
3436        rval = ccs_update_phy_ctrl(sensor);
3437        if (rval < 0)
3438                goto out_free_ccs_limits;
3439
3440        /*
3441         * Handle Sensor Module orientation on the board.
3442         *
3443         * The application of H-FLIP and V-FLIP on the sensor is modified by
3444         * the sensor orientation on the board.
3445         *
3446         * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
3447         * both H-FLIP and V-FLIP for normal operation which also implies
3448         * that a set/unset operation for user space HFLIP and VFLIP v4l2
3449         * controls will need to be internally inverted.
3450         *
3451         * Rotation also changes the bayer pattern.
3452         */
3453        if (sensor->hwcfg.module_board_orient ==
3454            CCS_MODULE_BOARD_ORIENT_180)
3455                sensor->hvflip_inv_mask =
3456                        CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
3457                        CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
3458
3459        rval = ccs_call_quirk(sensor, limits);
3460        if (rval) {
3461                dev_err(&client->dev, "limits quirks failed\n");
3462                goto out_free_ccs_limits;
3463        }
3464
3465        if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3466                sensor->nbinning_subtypes =
3467                        min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3468                              CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3469
3470                for (i = 0; i < sensor->nbinning_subtypes; i++) {
3471                        sensor->binning_subtypes[i].horizontal =
3472                                CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3473                                CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3474                        sensor->binning_subtypes[i].vertical =
3475                                CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3476                                CCS_BINNING_SUB_TYPE_ROW_MASK;
3477
3478                        dev_dbg(&client->dev, "binning %xx%x\n",
3479                                sensor->binning_subtypes[i].horizontal,
3480                                sensor->binning_subtypes[i].vertical);
3481                }
3482        }
3483        sensor->binning_horizontal = 1;
3484        sensor->binning_vertical = 1;
3485
3486        if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3487                dev_err(&client->dev, "sysfs ident entry creation failed\n");
3488                rval = -ENOENT;
3489                goto out_free_ccs_limits;
3490        }
3491
3492        if (sensor->minfo.smiapp_version &&
3493            CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3494            CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3495                if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3496                        dev_err(&client->dev, "sysfs nvm entry failed\n");
3497                        rval = -EBUSY;
3498                        goto out_cleanup;
3499                }
3500        }
3501
3502        if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3503            !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3504            !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3505            !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3506                /* No OP clock branch */
3507                sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3508        } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3509                   != CCS_SCALING_CAPABILITY_NONE ||
3510                   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3511                   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3512                /* We have a scaler or digital crop. */
3513                sensor->scaler = &sensor->ssds[sensor->ssds_used];
3514                sensor->ssds_used++;
3515        }
3516        sensor->binner = &sensor->ssds[sensor->ssds_used];
3517        sensor->ssds_used++;
3518        sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3519        sensor->ssds_used++;
3520
3521        sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3522
3523        /* prepare PLL configuration input values */
3524        sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3525        sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3526        if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3527            CCS_CLOCK_CALCULATION_LANE_SPEED) {
3528                sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3529                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3530                    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3531                        sensor->pll.vt_lanes =
3532                                CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3533                        sensor->pll.op_lanes =
3534                                CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3535                        sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3536                } else {
3537                        sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3538                        sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3539                }
3540        }
3541        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3542            CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3543                sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3544        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3545            CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3546                sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3547        if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3548            CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3549                sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3550        if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3551            CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3552                sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3553                                     CCS_PLL_FLAG_FIFO_OVERRATING;
3554        if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3555            CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3556                if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3557                    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3558                        u32 v;
3559
3560                        /* Use sensor default in PLL mode selection */
3561                        rval = ccs_read(sensor, PLL_MODE, &v);
3562                        if (rval)
3563                                goto out_cleanup;
3564
3565                        if (v == CCS_PLL_MODE_DUAL)
3566                                sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3567                } else {
3568                        sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3569                }
3570                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3571                    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3572                        sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3573                if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3574                    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3575                        sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3576        }
3577        sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3578        sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3579        sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3580
3581        ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3582                          MEDIA_ENT_F_PROC_VIDEO_SCALER);
3583        ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3584                          MEDIA_ENT_F_PROC_VIDEO_SCALER);
3585        ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3586                          MEDIA_ENT_F_CAM_SENSOR);
3587
3588        rval = ccs_init_controls(sensor);
3589        if (rval < 0)
3590                goto out_cleanup;
3591
3592        rval = ccs_call_quirk(sensor, init);
3593        if (rval)
3594                goto out_cleanup;
3595
3596        rval = ccs_get_mbus_formats(sensor);
3597        if (rval) {
3598                rval = -ENODEV;
3599                goto out_cleanup;
3600        }
3601
3602        rval = ccs_init_late_controls(sensor);
3603        if (rval) {
3604                rval = -ENODEV;
3605                goto out_cleanup;
3606        }
3607
3608        mutex_lock(&sensor->mutex);
3609        rval = ccs_pll_blanking_update(sensor);
3610        mutex_unlock(&sensor->mutex);
3611        if (rval) {
3612                dev_err(&client->dev, "update mode failed\n");
3613                goto out_cleanup;
3614        }
3615
3616        sensor->streaming = false;
3617        sensor->dev_init_done = true;
3618
3619        rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3620                                 sensor->src->pads);
3621        if (rval < 0)
3622                goto out_media_entity_cleanup;
3623
3624        rval = ccs_write_msr_regs(sensor);
3625        if (rval)
3626                goto out_media_entity_cleanup;
3627
3628        pm_runtime_set_active(&client->dev);
3629        pm_runtime_get_noresume(&client->dev);
3630        pm_runtime_enable(&client->dev);
3631
3632        rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3633        if (rval < 0)
3634                goto out_disable_runtime_pm;
3635
3636        pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3637        pm_runtime_use_autosuspend(&client->dev);
3638        pm_runtime_put_autosuspend(&client->dev);
3639
3640        return 0;
3641
3642out_disable_runtime_pm:
3643        pm_runtime_put_noidle(&client->dev);
3644        pm_runtime_disable(&client->dev);
3645
3646out_media_entity_cleanup:
3647        media_entity_cleanup(&sensor->src->sd.entity);
3648
3649out_cleanup:
3650        ccs_cleanup(sensor);
3651
3652out_release_mdata:
3653        kvfree(sensor->mdata.backing);
3654
3655out_release_sdata:
3656        kvfree(sensor->sdata.backing);
3657
3658out_free_ccs_limits:
3659        kfree(sensor->ccs_limits);
3660
3661out_power_off:
3662        ccs_power_off(&client->dev);
3663        mutex_destroy(&sensor->mutex);
3664
3665        return rval;
3666}
3667
3668static int ccs_remove(struct i2c_client *client)
3669{
3670        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3671        struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3672        unsigned int i;
3673
3674        v4l2_async_unregister_subdev(subdev);
3675
3676        pm_runtime_disable(&client->dev);
3677        if (!pm_runtime_status_suspended(&client->dev))
3678                ccs_power_off(&client->dev);
3679        pm_runtime_set_suspended(&client->dev);
3680
3681        for (i = 0; i < sensor->ssds_used; i++) {
3682                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3683                media_entity_cleanup(&sensor->ssds[i].sd.entity);
3684        }
3685        ccs_cleanup(sensor);
3686        mutex_destroy(&sensor->mutex);
3687        kfree(sensor->ccs_limits);
3688        kvfree(sensor->sdata.backing);
3689        kvfree(sensor->mdata.backing);
3690
3691        return 0;
3692}
3693
3694static const struct ccs_device smia_device = {
3695        .flags = CCS_DEVICE_FLAG_IS_SMIA,
3696};
3697
3698static const struct ccs_device ccs_device = {};
3699
3700static const struct acpi_device_id ccs_acpi_table[] = {
3701        { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3702        { },
3703};
3704MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3705
3706static const struct of_device_id ccs_of_table[] = {
3707        { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3708        { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3709        { .compatible = "mipi-ccs", .data = &ccs_device },
3710        { .compatible = "nokia,smia", .data = &smia_device },
3711        { },
3712};
3713MODULE_DEVICE_TABLE(of, ccs_of_table);
3714
3715static const struct dev_pm_ops ccs_pm_ops = {
3716        SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3717        SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3718};
3719
3720static struct i2c_driver ccs_i2c_driver = {
3721        .driver = {
3722                .acpi_match_table = ccs_acpi_table,
3723                .of_match_table = ccs_of_table,
3724                .name = CCS_NAME,
3725                .pm = &ccs_pm_ops,
3726        },
3727        .probe_new = ccs_probe,
3728        .remove = ccs_remove,
3729};
3730
3731static int ccs_module_init(void)
3732{
3733        unsigned int i, l;
3734
3735        for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3736                if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3737                        ccs_limit_offsets[l + 1].lim =
3738                                ALIGN(ccs_limit_offsets[l].lim +
3739                                      ccs_limits[i].size,
3740                                      ccs_reg_width(ccs_limits[i + 1].reg));
3741                        ccs_limit_offsets[l].info = i;
3742                        l++;
3743                } else {
3744                        ccs_limit_offsets[l].lim += ccs_limits[i].size;
3745                }
3746        }
3747
3748        if (WARN_ON(ccs_limits[i].size))
3749                return -EINVAL;
3750
3751        if (WARN_ON(l != CCS_L_LAST))
3752                return -EINVAL;
3753
3754        return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3755}
3756
3757static void ccs_module_cleanup(void)
3758{
3759        i2c_del_driver(&ccs_i2c_driver);
3760}
3761
3762module_init(ccs_module_init);
3763module_exit(ccs_module_cleanup);
3764
3765MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3766MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3767MODULE_LICENSE("GPL v2");
3768MODULE_ALIAS("smiapp");
3769