linux/drivers/media/platform/vsp1/vsp1_rpf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
   4 *
   5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/device.h>
  11
  12#include <media/v4l2-subdev.h>
  13
  14#include "vsp1.h"
  15#include "vsp1_dl.h"
  16#include "vsp1_pipe.h"
  17#include "vsp1_rwpf.h"
  18#include "vsp1_video.h"
  19
  20#define RPF_MAX_WIDTH                           8190
  21#define RPF_MAX_HEIGHT                          8190
  22
  23/* Pre extended display list command data structure. */
  24struct vsp1_extcmd_auto_fld_body {
  25        u32 top_y0;
  26        u32 bottom_y0;
  27        u32 top_c0;
  28        u32 bottom_c0;
  29        u32 top_c1;
  30        u32 bottom_c1;
  31        u32 reserved0;
  32        u32 reserved1;
  33} __packed;
  34
  35/* -----------------------------------------------------------------------------
  36 * Device Access
  37 */
  38
  39static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
  40                                  struct vsp1_dl_body *dlb, u32 reg, u32 data)
  41{
  42        vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
  43                               data);
  44}
  45
  46/* -----------------------------------------------------------------------------
  47 * V4L2 Subdevice Operations
  48 */
  49
  50static const struct v4l2_subdev_ops rpf_ops = {
  51        .pad    = &vsp1_rwpf_pad_ops,
  52};
  53
  54/* -----------------------------------------------------------------------------
  55 * VSP1 Entity Operations
  56 */
  57
  58static void rpf_configure_stream(struct vsp1_entity *entity,
  59                                 struct vsp1_pipeline *pipe,
  60                                 struct vsp1_dl_list *dl,
  61                                 struct vsp1_dl_body *dlb)
  62{
  63        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
  64        const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
  65        const struct v4l2_pix_format_mplane *format = &rpf->format;
  66        const struct v4l2_mbus_framefmt *source_format;
  67        const struct v4l2_mbus_framefmt *sink_format;
  68        unsigned int left = 0;
  69        unsigned int top = 0;
  70        u32 pstride;
  71        u32 infmt;
  72
  73        /* Stride */
  74        pstride = format->plane_fmt[0].bytesperline
  75                << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
  76        if (format->num_planes > 1)
  77                pstride |= format->plane_fmt[1].bytesperline
  78                        << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
  79
  80        /*
  81         * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
  82         * of pstride by 2 is conveniently OK here as we are multiplying both
  83         * values.
  84         */
  85        if (pipe->interlaced)
  86                pstride *= 2;
  87
  88        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
  89
  90        /* Format */
  91        sink_format = vsp1_entity_get_pad_format(&rpf->entity,
  92                                                 rpf->entity.config,
  93                                                 RWPF_PAD_SINK);
  94        source_format = vsp1_entity_get_pad_format(&rpf->entity,
  95                                                   rpf->entity.config,
  96                                                   RWPF_PAD_SOURCE);
  97
  98        infmt = VI6_RPF_INFMT_CIPM
  99              | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
 100
 101        if (fmtinfo->swap_yc)
 102                infmt |= VI6_RPF_INFMT_SPYCS;
 103        if (fmtinfo->swap_uv)
 104                infmt |= VI6_RPF_INFMT_SPUVS;
 105
 106        if (sink_format->code != source_format->code)
 107                infmt |= VI6_RPF_INFMT_CSC;
 108
 109        vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
 110        vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
 111
 112        /* Output location. */
 113        if (pipe->brx) {
 114                const struct v4l2_rect *compose;
 115
 116                compose = vsp1_entity_get_pad_selection(pipe->brx,
 117                                                        pipe->brx->config,
 118                                                        rpf->brx_input,
 119                                                        V4L2_SEL_TGT_COMPOSE);
 120                left = compose->left;
 121                top = compose->top;
 122        }
 123
 124        if (pipe->interlaced)
 125                top /= 2;
 126
 127        vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
 128                       (left << VI6_RPF_LOC_HCOORD_SHIFT) |
 129                       (top << VI6_RPF_LOC_VCOORD_SHIFT));
 130
 131        /*
 132         * On Gen2 use the alpha channel (extended to 8 bits) when available or
 133         * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
 134         * otherwise.
 135         *
 136         * The Gen3 RPF has extended alpha capability and can both multiply the
 137         * alpha channel by a fixed global alpha value, and multiply the pixel
 138         * components to convert the input to premultiplied alpha.
 139         *
 140         * As alpha premultiplication is available in the BRx for both Gen2 and
 141         * Gen3 we handle it there and use the Gen3 alpha multiplier for global
 142         * alpha multiplication only. This however prevents conversion to
 143         * premultiplied alpha if no BRx is present in the pipeline. If that use
 144         * case turns out to be useful we will revisit the implementation (for
 145         * Gen3 only).
 146         *
 147         * We enable alpha multiplication on Gen3 using the fixed alpha value
 148         * set through the V4L2_CID_ALPHA_COMPONENT control when the input
 149         * contains an alpha channel. On Gen2 the global alpha is ignored in
 150         * that case.
 151         *
 152         * In all cases, disable color keying.
 153         */
 154        vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
 155                       (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
 156                                       : VI6_RPF_ALPH_SEL_ASEL_FIXED));
 157
 158        if (entity->vsp1->info->gen == 3) {
 159                u32 mult;
 160
 161                if (fmtinfo->alpha) {
 162                        /*
 163                         * When the input contains an alpha channel enable the
 164                         * alpha multiplier. If the input is premultiplied we
 165                         * need to multiply both the alpha channel and the pixel
 166                         * components by the global alpha value to keep them
 167                         * premultiplied. Otherwise multiply the alpha channel
 168                         * only.
 169                         */
 170                        bool premultiplied = format->flags
 171                                           & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
 172
 173                        mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
 174                             | (premultiplied ?
 175                                VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
 176                                VI6_RPF_MULT_ALPHA_P_MMD_NONE);
 177                } else {
 178                        /*
 179                         * When the input doesn't contain an alpha channel the
 180                         * global alpha value is applied in the unpacking unit,
 181                         * the alpha multiplier isn't needed and must be
 182                         * disabled.
 183                         */
 184                        mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
 185                             | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
 186                }
 187
 188                rpf->mult_alpha = mult;
 189        }
 190
 191        vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
 192        vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
 193
 194}
 195
 196static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
 197                                       struct vsp1_dl_list *dl)
 198{
 199        const struct v4l2_pix_format_mplane *format = &rpf->format;
 200        struct vsp1_dl_ext_cmd *cmd;
 201        struct vsp1_extcmd_auto_fld_body *auto_fld;
 202        u32 offset_y, offset_c;
 203
 204        cmd = vsp1_dl_get_pre_cmd(dl);
 205        if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
 206                return;
 207
 208        /* Re-index our auto_fld to match the current RPF. */
 209        auto_fld = cmd->data;
 210        auto_fld = &auto_fld[rpf->entity.index];
 211
 212        auto_fld->top_y0 = rpf->mem.addr[0];
 213        auto_fld->top_c0 = rpf->mem.addr[1];
 214        auto_fld->top_c1 = rpf->mem.addr[2];
 215
 216        offset_y = format->plane_fmt[0].bytesperline;
 217        offset_c = format->plane_fmt[1].bytesperline;
 218
 219        auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
 220        auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
 221        auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
 222
 223        cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
 224}
 225
 226static void rpf_configure_frame(struct vsp1_entity *entity,
 227                                struct vsp1_pipeline *pipe,
 228                                struct vsp1_dl_list *dl,
 229                                struct vsp1_dl_body *dlb)
 230{
 231        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 232
 233        vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
 234                       rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
 235        vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
 236                       (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
 237
 238        vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
 239}
 240
 241static void rpf_configure_partition(struct vsp1_entity *entity,
 242                                    struct vsp1_pipeline *pipe,
 243                                    struct vsp1_dl_list *dl,
 244                                    struct vsp1_dl_body *dlb)
 245{
 246        struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 247        struct vsp1_rwpf_memory mem = rpf->mem;
 248        struct vsp1_device *vsp1 = rpf->entity.vsp1;
 249        const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
 250        const struct v4l2_pix_format_mplane *format = &rpf->format;
 251        struct v4l2_rect crop;
 252
 253        /*
 254         * Source size and crop offsets.
 255         *
 256         * The crop offsets correspond to the location of the crop
 257         * rectangle top left corner in the plane buffer. Only two
 258         * offsets are needed, as planes 2 and 3 always have identical
 259         * strides.
 260         */
 261        crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
 262
 263        /*
 264         * Partition Algorithm Control
 265         *
 266         * The partition algorithm can split this frame into multiple
 267         * slices. We must scale our partition window based on the pipe
 268         * configuration to match the destination partition window.
 269         * To achieve this, we adjust our crop to provide a 'sub-crop'
 270         * matching the expected partition window. Only 'left' and
 271         * 'width' need to be adjusted.
 272         */
 273        if (pipe->partitions > 1) {
 274                crop.width = pipe->partition->rpf.width;
 275                crop.left += pipe->partition->rpf.left;
 276        }
 277
 278        if (pipe->interlaced) {
 279                crop.height = round_down(crop.height / 2, fmtinfo->vsub);
 280                crop.top = round_down(crop.top / 2, fmtinfo->vsub);
 281        }
 282
 283        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
 284                       (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
 285                       (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
 286        vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
 287                       (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
 288                       (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
 289
 290        mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
 291                     + crop.left * fmtinfo->bpp[0] / 8;
 292
 293        if (format->num_planes > 1) {
 294                unsigned int offset;
 295
 296                offset = crop.top * format->plane_fmt[1].bytesperline
 297                       + crop.left / fmtinfo->hsub
 298                       * fmtinfo->bpp[1] / 8;
 299                mem.addr[1] += offset;
 300                mem.addr[2] += offset;
 301        }
 302
 303        /*
 304         * On Gen3 hardware the SPUVS bit has no effect on 3-planar
 305         * formats. Swap the U and V planes manually in that case.
 306         */
 307        if (vsp1->info->gen == 3 && format->num_planes == 3 &&
 308            fmtinfo->swap_uv)
 309                swap(mem.addr[1], mem.addr[2]);
 310
 311        /*
 312         * Interlaced pipelines will use the extended pre-cmd to process
 313         * SRCM_ADDR_{Y,C0,C1}.
 314         */
 315        if (pipe->interlaced) {
 316                vsp1_rpf_configure_autofld(rpf, dl);
 317        } else {
 318                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
 319                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
 320                vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
 321        }
 322}
 323
 324static void rpf_partition(struct vsp1_entity *entity,
 325                          struct vsp1_pipeline *pipe,
 326                          struct vsp1_partition *partition,
 327                          unsigned int partition_idx,
 328                          struct vsp1_partition_window *window)
 329{
 330        partition->rpf = *window;
 331}
 332
 333static const struct vsp1_entity_operations rpf_entity_ops = {
 334        .configure_stream = rpf_configure_stream,
 335        .configure_frame = rpf_configure_frame,
 336        .configure_partition = rpf_configure_partition,
 337        .partition = rpf_partition,
 338};
 339
 340/* -----------------------------------------------------------------------------
 341 * Initialization and Cleanup
 342 */
 343
 344struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
 345{
 346        struct vsp1_rwpf *rpf;
 347        char name[6];
 348        int ret;
 349
 350        rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
 351        if (rpf == NULL)
 352                return ERR_PTR(-ENOMEM);
 353
 354        rpf->max_width = RPF_MAX_WIDTH;
 355        rpf->max_height = RPF_MAX_HEIGHT;
 356
 357        rpf->entity.ops = &rpf_entity_ops;
 358        rpf->entity.type = VSP1_ENTITY_RPF;
 359        rpf->entity.index = index;
 360
 361        sprintf(name, "rpf.%u", index);
 362        ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
 363                               MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
 364        if (ret < 0)
 365                return ERR_PTR(ret);
 366
 367        /* Initialize the control handler. */
 368        ret = vsp1_rwpf_init_ctrls(rpf, 0);
 369        if (ret < 0) {
 370                dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
 371                        index);
 372                goto error;
 373        }
 374
 375        v4l2_ctrl_handler_setup(&rpf->ctrls);
 376
 377        return rpf;
 378
 379error:
 380        vsp1_entity_destroy(&rpf->entity);
 381        return ERR_PTR(ret);
 382}
 383