linux/drivers/memory/samsung/exynos5422-dmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
   4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/devfreq.h>
   9#include <linux/devfreq-event.h>
  10#include <linux/device.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/mfd/syscon.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_opp.h>
  18#include <linux/platform_device.h>
  19#include <linux/regmap.h>
  20#include <linux/regulator/consumer.h>
  21#include <linux/slab.h>
  22#include "../jedec_ddr.h"
  23#include "../of_memory.h"
  24
  25static int irqmode;
  26module_param(irqmode, int, 0644);
  27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
  28
  29#define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
  30#define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
  31#define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
  32#define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
  33#define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
  34#define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
  35#define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
  36#define CDREX_PAUSE                             (0x2091c)
  37#define CDREX_LPDDR3PHY_CON3                    (0x20a20)
  38#define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
  39#define EXYNOS5_TIMING_SET_SWI                  BIT(28)
  40#define USE_MX_MSPLL_TIMINGS                    (1)
  41#define USE_BPLL_TIMINGS                        (0)
  42#define EXYNOS5_AREF_NORMAL                     (0x2e)
  43
  44#define DREX_PPCCLKCON          (0x0130)
  45#define DREX_PEREV2CONFIG       (0x013c)
  46#define DREX_PMNC_PPC           (0xE000)
  47#define DREX_CNTENS_PPC         (0xE010)
  48#define DREX_CNTENC_PPC         (0xE020)
  49#define DREX_INTENS_PPC         (0xE030)
  50#define DREX_INTENC_PPC         (0xE040)
  51#define DREX_FLAG_PPC           (0xE050)
  52#define DREX_PMCNT2_PPC         (0xE130)
  53
  54/*
  55 * A value for register DREX_PMNC_PPC which should be written to reset
  56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
  57 * CCNT counter.
  58 */
  59#define CC_RESET                BIT(2)
  60
  61/*
  62 * A value for register DREX_PMNC_PPC which does the reset of all performance
  63 * counters to zero.
  64 */
  65#define PPC_COUNTER_RESET       BIT(1)
  66
  67/*
  68 * Enables all configured counters (including cycle counter). The value should
  69 * be written to the register DREX_PMNC_PPC.
  70 */
  71#define PPC_ENABLE              BIT(0)
  72
  73/* A value for register DREX_PPCCLKCON which enables performance events clock.
  74 * Must be written before first access to the performance counters register
  75 * set, otherwise it could crash.
  76 */
  77#define PEREV_CLK_EN            BIT(0)
  78
  79/*
  80 * Values which are used to enable counters, interrupts or configure flags of
  81 * the performance counters. They configure counter 2 and cycle counter.
  82 */
  83#define PERF_CNT2               BIT(2)
  84#define PERF_CCNT               BIT(31)
  85
  86/*
  87 * Performance event types which are used for setting the preferred event
  88 * to track in the counters.
  89 * There is a set of different types, the values are from range 0 to 0x6f.
  90 * These settings should be written to the configuration register which manages
  91 * the type of the event (register DREX_PEREV2CONFIG).
  92 */
  93#define READ_TRANSFER_CH0       (0x6d)
  94#define READ_TRANSFER_CH1       (0x6f)
  95
  96#define PERF_COUNTER_START_VALUE 0xff000000
  97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
  98
  99/**
 100 * struct dmc_opp_table - Operating level desciption
 101 * @freq_hz:            target frequency in Hz
 102 * @volt_uv:            target voltage in uV
 103 *
 104 * Covers frequency and voltage settings of the DMC operating mode.
 105 */
 106struct dmc_opp_table {
 107        u32 freq_hz;
 108        u32 volt_uv;
 109};
 110
 111/**
 112 * struct exynos5_dmc - main structure describing DMC device
 113 * @dev:                DMC device
 114 * @df:                 devfreq device structure returned by devfreq framework
 115 * @gov_data:           configuration of devfreq governor
 116 * @base_drexi0:        DREX0 registers mapping
 117 * @base_drexi1:        DREX1 registers mapping
 118 * @clk_regmap:         regmap for clock controller registers
 119 * @lock:               protects curr_rate and frequency/voltage setting section
 120 * @curr_rate:          current frequency
 121 * @curr_volt:          current voltage
 122 * @opp:                OPP table
 123 * @opp_count:          number of 'opp' elements
 124 * @timings_arr_size:   number of 'timings' elements
 125 * @timing_row:         values for timing row register, for each OPP
 126 * @timing_data:        values for timing data register, for each OPP
 127 * @timing_power:       balues for timing power register, for each OPP
 128 * @timings:            DDR memory timings, from device tree
 129 * @min_tck:            DDR memory minimum timing values, from device tree
 130 * @bypass_timing_row:  value for timing row register for bypass timings
 131 * @bypass_timing_data: value for timing data register for bypass timings
 132 * @bypass_timing_power:        value for timing power register for bypass
 133 *                              timings
 134 * @vdd_mif:            Memory interface regulator
 135 * @fout_spll:          clock: SPLL
 136 * @fout_bpll:          clock: BPLL
 137 * @mout_spll:          clock: mux SPLL
 138 * @mout_bpll:          clock: mux BPLL
 139 * @mout_mclk_cdrex:    clock: mux mclk_cdrex
 140 * @mout_mx_mspll_ccore:        clock: mux mx_mspll_ccore
 141 * @counter:            devfreq events
 142 * @num_counters:       number of 'counter' elements
 143 * @last_overflow_ts:   time (in ns) of last overflow of each DREX
 144 * @load:               utilization in percents
 145 * @total:              total time between devfreq events
 146 * @in_irq_mode:        whether running in interrupt mode (true)
 147 *                      or polling (false)
 148 *
 149 * The main structure for the Dynamic Memory Controller which covers clocks,
 150 * memory regions, HW information, parameters and current operating mode.
 151 */
 152struct exynos5_dmc {
 153        struct device *dev;
 154        struct devfreq *df;
 155        struct devfreq_simple_ondemand_data gov_data;
 156        void __iomem *base_drexi0;
 157        void __iomem *base_drexi1;
 158        struct regmap *clk_regmap;
 159        /* Protects curr_rate and frequency/voltage setting section */
 160        struct mutex lock;
 161        unsigned long curr_rate;
 162        unsigned long curr_volt;
 163        struct dmc_opp_table *opp;
 164        int opp_count;
 165        u32 timings_arr_size;
 166        u32 *timing_row;
 167        u32 *timing_data;
 168        u32 *timing_power;
 169        const struct lpddr3_timings *timings;
 170        const struct lpddr3_min_tck *min_tck;
 171        u32 bypass_timing_row;
 172        u32 bypass_timing_data;
 173        u32 bypass_timing_power;
 174        struct regulator *vdd_mif;
 175        struct clk *fout_spll;
 176        struct clk *fout_bpll;
 177        struct clk *mout_spll;
 178        struct clk *mout_bpll;
 179        struct clk *mout_mclk_cdrex;
 180        struct clk *mout_mx_mspll_ccore;
 181        struct devfreq_event_dev **counter;
 182        int num_counters;
 183        u64 last_overflow_ts[2];
 184        unsigned long load;
 185        unsigned long total;
 186        bool in_irq_mode;
 187};
 188
 189#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
 190        { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
 191
 192#define TIMING_VAL2REG(timing, t_val)                   \
 193({                                                      \
 194                u32 __val;                              \
 195                __val = (t_val) << (timing)->bit_beg;   \
 196                __val;                                  \
 197})
 198
 199struct timing_reg {
 200        char *name;
 201        int bit_beg;
 202        int bit_end;
 203        unsigned int val;
 204};
 205
 206static const struct timing_reg timing_row_reg_fields[] = {
 207        TIMING_FIELD("tRFC", 24, 31),
 208        TIMING_FIELD("tRRD", 20, 23),
 209        TIMING_FIELD("tRP", 16, 19),
 210        TIMING_FIELD("tRCD", 12, 15),
 211        TIMING_FIELD("tRC", 6, 11),
 212        TIMING_FIELD("tRAS", 0, 5),
 213};
 214
 215static const struct timing_reg timing_data_reg_fields[] = {
 216        TIMING_FIELD("tWTR", 28, 31),
 217        TIMING_FIELD("tWR", 24, 27),
 218        TIMING_FIELD("tRTP", 20, 23),
 219        TIMING_FIELD("tW2W-C2C", 14, 14),
 220        TIMING_FIELD("tR2R-C2C", 12, 12),
 221        TIMING_FIELD("WL", 8, 11),
 222        TIMING_FIELD("tDQSCK", 4, 7),
 223        TIMING_FIELD("RL", 0, 3),
 224};
 225
 226static const struct timing_reg timing_power_reg_fields[] = {
 227        TIMING_FIELD("tFAW", 26, 31),
 228        TIMING_FIELD("tXSR", 16, 25),
 229        TIMING_FIELD("tXP", 8, 15),
 230        TIMING_FIELD("tCKE", 4, 7),
 231        TIMING_FIELD("tMRD", 0, 3),
 232};
 233
 234#define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
 235                      ARRAY_SIZE(timing_data_reg_fields) + \
 236                      ARRAY_SIZE(timing_power_reg_fields))
 237
 238static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
 239{
 240        int i, ret;
 241
 242        for (i = 0; i < dmc->num_counters; i++) {
 243                if (!dmc->counter[i])
 244                        continue;
 245                ret = devfreq_event_set_event(dmc->counter[i]);
 246                if (ret < 0)
 247                        return ret;
 248        }
 249        return 0;
 250}
 251
 252static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
 253{
 254        int i, ret;
 255
 256        for (i = 0; i < dmc->num_counters; i++) {
 257                if (!dmc->counter[i])
 258                        continue;
 259                ret = devfreq_event_enable_edev(dmc->counter[i]);
 260                if (ret < 0)
 261                        return ret;
 262        }
 263        return 0;
 264}
 265
 266static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
 267{
 268        int i, ret;
 269
 270        for (i = 0; i < dmc->num_counters; i++) {
 271                if (!dmc->counter[i])
 272                        continue;
 273                ret = devfreq_event_disable_edev(dmc->counter[i]);
 274                if (ret < 0)
 275                        return ret;
 276        }
 277        return 0;
 278}
 279
 280/**
 281 * find_target_freq_idx() - Finds requested frequency in local DMC configuration
 282 * @dmc:        device for which the information is checked
 283 * @target_rate:        requested frequency in KHz
 284 *
 285 * Seeks in the local DMC driver structure for the requested frequency value
 286 * and returns index or error value.
 287 */
 288static int find_target_freq_idx(struct exynos5_dmc *dmc,
 289                                unsigned long target_rate)
 290{
 291        int i;
 292
 293        for (i = dmc->opp_count - 1; i >= 0; i--)
 294                if (dmc->opp[i].freq_hz <= target_rate)
 295                        return i;
 296
 297        return -EINVAL;
 298}
 299
 300/**
 301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
 302 * @dmc:        device for which the new settings is going to be applied
 303 * @set:        boolean variable passing set value
 304 *
 305 * Changes the register set, which holds timing parameters.
 306 * There is two register sets: 0 and 1. The register set 0
 307 * is used in normal operation when the clock is provided from main PLL.
 308 * The bank register set 1 is used when the main PLL frequency is going to be
 309 * changed and the clock is taken from alternative, stable source.
 310 * This function switches between these banks according to the
 311 * currently used clock source.
 312 */
 313static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
 314{
 315        unsigned int reg;
 316        int ret;
 317
 318        ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
 319        if (ret)
 320                return ret;
 321
 322        if (set)
 323                reg |= EXYNOS5_TIMING_SET_SWI;
 324        else
 325                reg &= ~EXYNOS5_TIMING_SET_SWI;
 326
 327        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
 328
 329        return 0;
 330}
 331
 332/**
 333 * exynos5_init_freq_table() - Initialized PM OPP framework
 334 * @dmc:        DMC device for which the frequencies are used for OPP init
 335 * @profile:    devfreq device's profile
 336 *
 337 * Populate the devfreq device's OPP table based on current frequency, voltage.
 338 */
 339static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
 340                                   struct devfreq_dev_profile *profile)
 341{
 342        int i, ret;
 343        int idx;
 344        unsigned long freq;
 345
 346        ret = devm_pm_opp_of_add_table(dmc->dev);
 347        if (ret < 0) {
 348                dev_err(dmc->dev, "Failed to get OPP table\n");
 349                return ret;
 350        }
 351
 352        dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
 353
 354        dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
 355                                      sizeof(struct dmc_opp_table), GFP_KERNEL);
 356        if (!dmc->opp)
 357                return -ENOMEM;
 358
 359        idx = dmc->opp_count - 1;
 360        for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
 361                struct dev_pm_opp *opp;
 362
 363                opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
 364                if (IS_ERR(opp))
 365                        return PTR_ERR(opp);
 366
 367                dmc->opp[idx - i].freq_hz = freq;
 368                dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
 369
 370                dev_pm_opp_put(opp);
 371        }
 372
 373        return 0;
 374}
 375
 376/**
 377 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
 378 * @dmc:        device for which the new settings is going to be applied
 379 *
 380 * Low-level function for changing timings for DRAM memory clocking from
 381 * 'bypass' clock source (fixed frequency @400MHz).
 382 * It uses timing bank registers set 1.
 383 */
 384static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
 385{
 386        writel(EXYNOS5_AREF_NORMAL,
 387               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 388
 389        writel(dmc->bypass_timing_row,
 390               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
 391        writel(dmc->bypass_timing_row,
 392               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
 393        writel(dmc->bypass_timing_data,
 394               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
 395        writel(dmc->bypass_timing_data,
 396               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
 397        writel(dmc->bypass_timing_power,
 398               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
 399        writel(dmc->bypass_timing_power,
 400               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
 401}
 402
 403/**
 404 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
 405 * @dmc:        device for which the new settings is going to be applied
 406 * @target_rate:        target frequency of the DMC
 407 *
 408 * Low-level function for changing timings for DRAM memory operating from main
 409 * clock source (BPLL), which can have different frequencies. Thus, each
 410 * frequency must have corresponding timings register values in order to keep
 411 * the needed delays.
 412 * It uses timing bank registers set 0.
 413 */
 414static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
 415                                       unsigned long target_rate)
 416{
 417        int idx;
 418
 419        for (idx = dmc->opp_count - 1; idx >= 0; idx--)
 420                if (dmc->opp[idx].freq_hz <= target_rate)
 421                        break;
 422
 423        if (idx < 0)
 424                return -EINVAL;
 425
 426        writel(EXYNOS5_AREF_NORMAL,
 427               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 428
 429        writel(dmc->timing_row[idx],
 430               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
 431        writel(dmc->timing_row[idx],
 432               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
 433        writel(dmc->timing_data[idx],
 434               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
 435        writel(dmc->timing_data[idx],
 436               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
 437        writel(dmc->timing_power[idx],
 438               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
 439        writel(dmc->timing_power[idx],
 440               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
 441
 442        return 0;
 443}
 444
 445/**
 446 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
 447 * @dmc:        device for which it is going to be set
 448 * @target_volt:        new voltage which is chosen to be final
 449 *
 450 * Function tries to align voltage to the safe level for 'normal' mode.
 451 * It checks the need of higher voltage and changes the value. The target
 452 * voltage might be lower that currently set and still the system will be
 453 * stable.
 454 */
 455static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
 456                                            unsigned long target_volt)
 457{
 458        int ret = 0;
 459
 460        if (dmc->curr_volt <= target_volt)
 461                return 0;
 462
 463        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 464                                    target_volt);
 465        if (!ret)
 466                dmc->curr_volt = target_volt;
 467
 468        return ret;
 469}
 470
 471/**
 472 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
 473 * @dmc:        device for which it is going to be set
 474 * @target_volt:        new voltage which is chosen to be final
 475 *
 476 * Function tries to align voltage to the safe level for the 'bypass' mode.
 477 * It checks the need of higher voltage and changes the value.
 478 * The target voltage must not be less than currently needed, because
 479 * for current frequency the device might become unstable.
 480 */
 481static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
 482                                            unsigned long target_volt)
 483{
 484        int ret = 0;
 485
 486        if (dmc->curr_volt >= target_volt)
 487                return 0;
 488
 489        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 490                                    target_volt);
 491        if (!ret)
 492                dmc->curr_volt = target_volt;
 493
 494        return ret;
 495}
 496
 497/**
 498 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
 499 * @dmc:        device for which it is going to be set
 500 * @target_rate:        new frequency which is chosen to be final
 501 *
 502 * Function changes the DRAM timings for the temporary 'bypass' mode.
 503 */
 504static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
 505                                                 unsigned long target_rate)
 506{
 507        int idx = find_target_freq_idx(dmc, target_rate);
 508
 509        if (idx < 0)
 510                return -EINVAL;
 511
 512        exynos5_set_bypass_dram_timings(dmc);
 513
 514        return 0;
 515}
 516
 517/**
 518 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
 519 * @dmc:        DMC device for which the switching is going to happen
 520 * @target_rate:        new frequency which is going to be set as a final
 521 * @target_volt:        new voltage which is going to be set as a final
 522 *
 523 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
 524 * This mode is used only temporary but if required, changes voltage and timings
 525 * for DRAM chips. It switches the main clock to stable clock source for the
 526 * period of the main PLL reconfiguration.
 527 */
 528static int
 529exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
 530                                           unsigned long target_rate,
 531                                           unsigned long target_volt)
 532{
 533        int ret;
 534
 535        /*
 536         * Having higher voltage for a particular frequency does not harm
 537         * the chip. Use it for the temporary frequency change when one
 538         * voltage manipulation might be avoided.
 539         */
 540        ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
 541        if (ret)
 542                return ret;
 543
 544        /*
 545         * Longer delays for DRAM does not cause crash, the opposite does.
 546         */
 547        ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
 548        if (ret)
 549                return ret;
 550
 551        /*
 552         * Delays are long enough, so use them for the new coming clock.
 553         */
 554        ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
 555
 556        return ret;
 557}
 558
 559/**
 560 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
 561 * using safe procedure
 562 * @dmc:        device for which the frequency is going to be changed
 563 * @target_rate:        requested new frequency
 564 * @target_volt:        requested voltage which corresponds to the new frequency
 565 *
 566 * The DMC frequency change procedure requires a few steps.
 567 * The main requirement is to change the clock source in the clk mux
 568 * for the time of main clock PLL locking. The assumption is that the
 569 * alternative clock source set as parent is stable.
 570 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
 571 * clock. This requires alignment in DRAM timing parameters for the new
 572 * T-period. There is two bank sets for keeping DRAM
 573 * timings: set 0 and set 1. The set 0 is used when main clock source is
 574 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
 575 * the two bank sets is part of the process.
 576 * The voltage must also be aligned to the minimum required level. There is
 577 * this intermediate step with switching to 'bypass' parent clock source.
 578 * if the old voltage is lower, it requires an increase of the voltage level.
 579 * The complexity of the voltage manipulation is hidden in low level function.
 580 * In this function there is last alignment of the voltage level at the end.
 581 */
 582static int
 583exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
 584                                 unsigned long target_rate,
 585                                 unsigned long target_volt)
 586{
 587        int ret;
 588
 589        ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
 590                                                         target_volt);
 591        if (ret)
 592                return ret;
 593
 594        /*
 595         * Voltage is set at least to a level needed for this frequency,
 596         * so switching clock source is safe now.
 597         */
 598        clk_prepare_enable(dmc->fout_spll);
 599        clk_prepare_enable(dmc->mout_spll);
 600        clk_prepare_enable(dmc->mout_mx_mspll_ccore);
 601
 602        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
 603        if (ret)
 604                goto disable_clocks;
 605
 606        /*
 607         * We are safe to increase the timings for current bypass frequency.
 608         * Thanks to this the settings will be ready for the upcoming clock
 609         * source change.
 610         */
 611        exynos5_dram_change_timings(dmc, target_rate);
 612
 613        clk_set_rate(dmc->fout_bpll, target_rate);
 614
 615        ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
 616        if (ret)
 617                goto disable_clocks;
 618
 619        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
 620        if (ret)
 621                goto disable_clocks;
 622
 623        /*
 624         * Make sure if the voltage is not from 'bypass' settings and align to
 625         * the right level for power efficiency.
 626         */
 627        ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
 628
 629disable_clocks:
 630        clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
 631        clk_disable_unprepare(dmc->mout_spll);
 632        clk_disable_unprepare(dmc->fout_spll);
 633
 634        return ret;
 635}
 636
 637/**
 638 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
 639 * table.
 640 * @dmc:        device for which the frequency is going to be changed
 641 * @freq:       requested frequency in KHz
 642 * @target_rate:        returned frequency which is the same or lower than
 643 *                      requested
 644 * @target_volt:        returned voltage which corresponds to the returned
 645 *                      frequency
 646 * @flags:      devfreq flags provided for this frequency change request
 647 *
 648 * Function gets requested frequency and checks OPP framework for needed
 649 * frequency and voltage. It populates the values 'target_rate' and
 650 * 'target_volt' or returns error value when OPP framework fails.
 651 */
 652static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
 653                                     unsigned long *freq,
 654                                     unsigned long *target_rate,
 655                                     unsigned long *target_volt, u32 flags)
 656{
 657        struct dev_pm_opp *opp;
 658
 659        opp = devfreq_recommended_opp(dmc->dev, freq, flags);
 660        if (IS_ERR(opp))
 661                return PTR_ERR(opp);
 662
 663        *target_rate = dev_pm_opp_get_freq(opp);
 664        *target_volt = dev_pm_opp_get_voltage(opp);
 665        dev_pm_opp_put(opp);
 666
 667        return 0;
 668}
 669
 670/**
 671 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
 672 * @dev:        device for which the frequency is going to be changed
 673 * @freq:       requested frequency in KHz
 674 * @flags:      flags provided for this frequency change request
 675 *
 676 * An entry function provided to the devfreq framework which provides frequency
 677 * change of the DMC. The function gets the possible rate from OPP table based
 678 * on requested frequency. It calls the next function responsible for the
 679 * frequency and voltage change. In case of failure, does not set 'curr_rate'
 680 * and returns error value to the framework.
 681 */
 682static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
 683                              u32 flags)
 684{
 685        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 686        unsigned long target_rate = 0;
 687        unsigned long target_volt = 0;
 688        int ret;
 689
 690        ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
 691                                        flags);
 692
 693        if (ret)
 694                return ret;
 695
 696        if (target_rate == dmc->curr_rate)
 697                return 0;
 698
 699        mutex_lock(&dmc->lock);
 700
 701        ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
 702
 703        if (ret) {
 704                mutex_unlock(&dmc->lock);
 705                return ret;
 706        }
 707
 708        dmc->curr_rate = target_rate;
 709
 710        mutex_unlock(&dmc->lock);
 711        return 0;
 712}
 713
 714/**
 715 * exynos5_counters_get() - Gets the performance counters values.
 716 * @dmc:        device for which the counters are going to be checked
 717 * @load_count: variable which is populated with counter value
 718 * @total_count:        variable which is used as 'wall clock' reference
 719 *
 720 * Function which provides performance counters values. It sums up counters for
 721 * two DMC channels. The 'total_count' is used as a reference and max value.
 722 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
 723 */
 724static int exynos5_counters_get(struct exynos5_dmc *dmc,
 725                                unsigned long *load_count,
 726                                unsigned long *total_count)
 727{
 728        unsigned long total = 0;
 729        struct devfreq_event_data event;
 730        int ret, i;
 731
 732        *load_count = 0;
 733
 734        /* Take into account only read+write counters, but stop all */
 735        for (i = 0; i < dmc->num_counters; i++) {
 736                if (!dmc->counter[i])
 737                        continue;
 738
 739                ret = devfreq_event_get_event(dmc->counter[i], &event);
 740                if (ret < 0)
 741                        return ret;
 742
 743                *load_count += event.load_count;
 744
 745                if (total < event.total_count)
 746                        total = event.total_count;
 747        }
 748
 749        *total_count = total;
 750
 751        return 0;
 752}
 753
 754/**
 755 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
 756 * @dmc:        device for which the counters are going to be checked
 757 * @beg_value:  initial value for the counter
 758 *
 759 * Function which enables needed counters, interrupts and sets initial values
 760 * then starts the counters.
 761 */
 762static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
 763                                          u32 beg_value)
 764{
 765        /* Enable interrupts for counter 2 */
 766        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
 767        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
 768
 769        /* Enable counter 2 and CCNT  */
 770        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
 771        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
 772
 773        /* Clear overflow flag for all counters */
 774        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 775        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 776
 777        /* Reset all counters */
 778        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
 779        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
 780
 781        /*
 782         * Set start value for the counters, the number of samples that
 783         * will be gathered is calculated as: 0xffffffff - beg_value
 784         */
 785        writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
 786        writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
 787
 788        /* Start all counters */
 789        writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
 790        writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
 791}
 792
 793/**
 794 * exynos5_dmc_perf_events_calc() - Calculate utilization
 795 * @dmc:        device for which the counters are going to be checked
 796 * @diff_ts:    time between last interrupt and current one
 797 *
 798 * Function which calculates needed utilization for the devfreq governor.
 799 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
 800 * between interrupts, which approximates utilization.
 801 */
 802static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
 803{
 804        /*
 805         * This is a simple algorithm for managing traffic on DMC.
 806         * When there is almost no load the counters overflow every 4s,
 807         * no mater the DMC frequency.
 808         * The high load might be approximated using linear function.
 809         * Knowing that, simple calculation can provide 'busy_time' and
 810         * 'total_time' to the devfreq governor which picks up target
 811         * frequency.
 812         * We want a fast ramp up and slow decay in frequency change function.
 813         */
 814        if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
 815                /*
 816                 * Set higher utilization for the simple_ondemand governor.
 817                 * The governor should increase the frequency of the DMC.
 818                 */
 819                dmc->load = 70;
 820                dmc->total = 100;
 821        } else {
 822                /*
 823                 * Set low utilization for the simple_ondemand governor.
 824                 * The governor should decrease the frequency of the DMC.
 825                 */
 826                dmc->load = 35;
 827                dmc->total = 100;
 828        }
 829
 830        dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
 831}
 832
 833/**
 834 * exynos5_dmc_perf_events_check() - Checks the status of the counters
 835 * @dmc:        device for which the counters are going to be checked
 836 *
 837 * Function which is called from threaded IRQ to check the counters state
 838 * and to call approximation for the needed utilization.
 839 */
 840static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
 841{
 842        u32 val;
 843        u64 diff_ts, ts;
 844
 845        ts = ktime_get_ns();
 846
 847        /* Stop all counters */
 848        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 849        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 850
 851        /* Check the source in interrupt flag registers (which channel) */
 852        val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
 853        if (val) {
 854                diff_ts = ts - dmc->last_overflow_ts[0];
 855                dmc->last_overflow_ts[0] = ts;
 856                dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
 857        } else {
 858                val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
 859                diff_ts = ts - dmc->last_overflow_ts[1];
 860                dmc->last_overflow_ts[1] = ts;
 861                dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
 862        }
 863
 864        exynos5_dmc_perf_events_calc(dmc, diff_ts);
 865
 866        exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
 867}
 868
 869/**
 870 * exynos5_dmc_enable_perf_events() - Enable performance events
 871 * @dmc:        device for which the counters are going to be checked
 872 *
 873 * Function which is setup needed environment and enables counters.
 874 */
 875static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
 876{
 877        u64 ts;
 878
 879        /* Enable Performance Event Clock */
 880        writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
 881        writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
 882
 883        /* Select read transfers as performance event2 */
 884        writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
 885        writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
 886
 887        ts = ktime_get_ns();
 888        dmc->last_overflow_ts[0] = ts;
 889        dmc->last_overflow_ts[1] = ts;
 890
 891        /* Devfreq shouldn't be faster than initialization, play safe though. */
 892        dmc->load = 99;
 893        dmc->total = 100;
 894}
 895
 896/**
 897 * exynos5_dmc_disable_perf_events() - Disable performance events
 898 * @dmc:        device for which the counters are going to be checked
 899 *
 900 * Function which stops, disables performance event counters and interrupts.
 901 */
 902static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
 903{
 904        /* Stop all counters */
 905        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 906        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 907
 908        /* Disable interrupts for counter 2 */
 909        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
 910        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
 911
 912        /* Disable counter 2 and CCNT  */
 913        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
 914        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
 915
 916        /* Clear overflow flag for all counters */
 917        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 918        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 919}
 920
 921/**
 922 * exynos5_dmc_get_status() - Read current DMC performance statistics.
 923 * @dev:        device for which the statistics are requested
 924 * @stat:       structure which has statistic fields
 925 *
 926 * Function reads the DMC performance counters and calculates 'busy_time'
 927 * and 'total_time'. To protect from overflow, the values are shifted right
 928 * by 10. After read out the counters are setup to count again.
 929 */
 930static int exynos5_dmc_get_status(struct device *dev,
 931                                  struct devfreq_dev_status *stat)
 932{
 933        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 934        unsigned long load, total;
 935        int ret;
 936
 937        if (dmc->in_irq_mode) {
 938                mutex_lock(&dmc->lock);
 939                stat->current_frequency = dmc->curr_rate;
 940                mutex_unlock(&dmc->lock);
 941
 942                stat->busy_time = dmc->load;
 943                stat->total_time = dmc->total;
 944        } else {
 945                ret = exynos5_counters_get(dmc, &load, &total);
 946                if (ret < 0)
 947                        return -EINVAL;
 948
 949                /* To protect from overflow, divide by 1024 */
 950                stat->busy_time = load >> 10;
 951                stat->total_time = total >> 10;
 952
 953                ret = exynos5_counters_set_event(dmc);
 954                if (ret < 0) {
 955                        dev_err(dev, "could not set event counter\n");
 956                        return ret;
 957                }
 958        }
 959
 960        return 0;
 961}
 962
 963/**
 964 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
 965 * @dev:        device for which the framework checks operating frequency
 966 * @freq:       returned frequency value
 967 *
 968 * It returns the currently used frequency of the DMC. The real operating
 969 * frequency might be lower when the clock source value could not be divided
 970 * to the requested value.
 971 */
 972static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
 973{
 974        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 975
 976        mutex_lock(&dmc->lock);
 977        *freq = dmc->curr_rate;
 978        mutex_unlock(&dmc->lock);
 979
 980        return 0;
 981}
 982
 983/*
 984 * exynos5_dmc_df_profile - Devfreq governor's profile structure
 985 *
 986 * It provides to the devfreq framework needed functions and polling period.
 987 */
 988static struct devfreq_dev_profile exynos5_dmc_df_profile = {
 989        .timer = DEVFREQ_TIMER_DELAYED,
 990        .target = exynos5_dmc_target,
 991        .get_dev_status = exynos5_dmc_get_status,
 992        .get_cur_freq = exynos5_dmc_get_cur_freq,
 993};
 994
 995/**
 996 * exynos5_dmc_align_init_freq() - Align initial frequency value
 997 * @dmc:        device for which the frequency is going to be set
 998 * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
 999 *
1000 * The initial bootloader frequency, which is present during boot, might be
1001 * different that supported frequency values in the driver. It is possible
1002 * due to different PLL settings or used PLL as a source.
1003 * This function provides the 'initial_freq' for the devfreq framework
1004 * statistics engine which supports only registered values. Thus, some alignment
1005 * must be made.
1006 */
1007static unsigned long
1008exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1009                            unsigned long bootloader_init_freq)
1010{
1011        unsigned long aligned_freq;
1012        int idx;
1013
1014        idx = find_target_freq_idx(dmc, bootloader_init_freq);
1015        if (idx >= 0)
1016                aligned_freq = dmc->opp[idx].freq_hz;
1017        else
1018                aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1019
1020        return aligned_freq;
1021}
1022
1023/**
1024 * create_timings_aligned() - Create register values and align with standard
1025 * @dmc:        device for which the frequency is going to be set
1026 * @reg_timing_row:     array to fill with values for timing row register
1027 * @reg_timing_data:    array to fill with values for timing data register
1028 * @reg_timing_power:   array to fill with values for timing power register
1029 * @clk_period_ps:      the period of the clock, known as tCK
1030 *
1031 * The function calculates timings and creates a register value ready for
1032 * a frequency transition. The register contains a few timings. They are
1033 * shifted by a known offset. The timing value is calculated based on memory
1034 * specyfication: minimal time required and minimal cycles required.
1035 */
1036static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1037                                  u32 *reg_timing_data, u32 *reg_timing_power,
1038                                  u32 clk_period_ps)
1039{
1040        u32 val;
1041        const struct timing_reg *reg;
1042
1043        if (clk_period_ps == 0)
1044                return -EINVAL;
1045
1046        *reg_timing_row = 0;
1047        *reg_timing_data = 0;
1048        *reg_timing_power = 0;
1049
1050        val = dmc->timings->tRFC / clk_period_ps;
1051        val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1052        val = max(val, dmc->min_tck->tRFC);
1053        reg = &timing_row_reg_fields[0];
1054        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1055
1056        val = dmc->timings->tRRD / clk_period_ps;
1057        val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1058        val = max(val, dmc->min_tck->tRRD);
1059        reg = &timing_row_reg_fields[1];
1060        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1061
1062        val = dmc->timings->tRPab / clk_period_ps;
1063        val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1064        val = max(val, dmc->min_tck->tRPab);
1065        reg = &timing_row_reg_fields[2];
1066        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1067
1068        val = dmc->timings->tRCD / clk_period_ps;
1069        val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1070        val = max(val, dmc->min_tck->tRCD);
1071        reg = &timing_row_reg_fields[3];
1072        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1073
1074        val = dmc->timings->tRC / clk_period_ps;
1075        val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1076        val = max(val, dmc->min_tck->tRC);
1077        reg = &timing_row_reg_fields[4];
1078        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1079
1080        val = dmc->timings->tRAS / clk_period_ps;
1081        val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1082        val = max(val, dmc->min_tck->tRAS);
1083        reg = &timing_row_reg_fields[5];
1084        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1085
1086        /* data related timings */
1087        val = dmc->timings->tWTR / clk_period_ps;
1088        val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1089        val = max(val, dmc->min_tck->tWTR);
1090        reg = &timing_data_reg_fields[0];
1091        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1092
1093        val = dmc->timings->tWR / clk_period_ps;
1094        val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1095        val = max(val, dmc->min_tck->tWR);
1096        reg = &timing_data_reg_fields[1];
1097        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1098
1099        val = dmc->timings->tRTP / clk_period_ps;
1100        val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1101        val = max(val, dmc->min_tck->tRTP);
1102        reg = &timing_data_reg_fields[2];
1103        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1104
1105        val = dmc->timings->tW2W_C2C / clk_period_ps;
1106        val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1107        val = max(val, dmc->min_tck->tW2W_C2C);
1108        reg = &timing_data_reg_fields[3];
1109        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1110
1111        val = dmc->timings->tR2R_C2C / clk_period_ps;
1112        val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1113        val = max(val, dmc->min_tck->tR2R_C2C);
1114        reg = &timing_data_reg_fields[4];
1115        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1116
1117        val = dmc->timings->tWL / clk_period_ps;
1118        val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1119        val = max(val, dmc->min_tck->tWL);
1120        reg = &timing_data_reg_fields[5];
1121        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1122
1123        val = dmc->timings->tDQSCK / clk_period_ps;
1124        val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1125        val = max(val, dmc->min_tck->tDQSCK);
1126        reg = &timing_data_reg_fields[6];
1127        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1128
1129        val = dmc->timings->tRL / clk_period_ps;
1130        val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1131        val = max(val, dmc->min_tck->tRL);
1132        reg = &timing_data_reg_fields[7];
1133        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1134
1135        /* power related timings */
1136        val = dmc->timings->tFAW / clk_period_ps;
1137        val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1138        val = max(val, dmc->min_tck->tFAW);
1139        reg = &timing_power_reg_fields[0];
1140        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1141
1142        val = dmc->timings->tXSR / clk_period_ps;
1143        val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1144        val = max(val, dmc->min_tck->tXSR);
1145        reg = &timing_power_reg_fields[1];
1146        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1147
1148        val = dmc->timings->tXP / clk_period_ps;
1149        val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1150        val = max(val, dmc->min_tck->tXP);
1151        reg = &timing_power_reg_fields[2];
1152        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1153
1154        val = dmc->timings->tCKE / clk_period_ps;
1155        val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1156        val = max(val, dmc->min_tck->tCKE);
1157        reg = &timing_power_reg_fields[3];
1158        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1159
1160        val = dmc->timings->tMRD / clk_period_ps;
1161        val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1162        val = max(val, dmc->min_tck->tMRD);
1163        reg = &timing_power_reg_fields[4];
1164        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1165
1166        return 0;
1167}
1168
1169/**
1170 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1171 * @dmc:        device for which the frequency is going to be set
1172 *
1173 * The function parses DT entries with DRAM information.
1174 */
1175static int of_get_dram_timings(struct exynos5_dmc *dmc)
1176{
1177        int ret = 0;
1178        int idx;
1179        struct device_node *np_ddr;
1180        u32 freq_mhz, clk_period_ps;
1181
1182        np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1183        if (!np_ddr) {
1184                dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1185                return -EINVAL;
1186        }
1187
1188        dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1189                                             sizeof(u32), GFP_KERNEL);
1190        if (!dmc->timing_row)
1191                return -ENOMEM;
1192
1193        dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1194                                              sizeof(u32), GFP_KERNEL);
1195        if (!dmc->timing_data)
1196                return -ENOMEM;
1197
1198        dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1199                                               sizeof(u32), GFP_KERNEL);
1200        if (!dmc->timing_power)
1201                return -ENOMEM;
1202
1203        dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1204                                                 DDR_TYPE_LPDDR3,
1205                                                 &dmc->timings_arr_size);
1206        if (!dmc->timings) {
1207                of_node_put(np_ddr);
1208                dev_warn(dmc->dev, "could not get timings from DT\n");
1209                return -EINVAL;
1210        }
1211
1212        dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1213        if (!dmc->min_tck) {
1214                of_node_put(np_ddr);
1215                dev_warn(dmc->dev, "could not get tck from DT\n");
1216                return -EINVAL;
1217        }
1218
1219        /* Sorted array of OPPs with frequency ascending */
1220        for (idx = 0; idx < dmc->opp_count; idx++) {
1221                freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1222                clk_period_ps = 1000000 / freq_mhz;
1223
1224                ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1225                                             &dmc->timing_data[idx],
1226                                             &dmc->timing_power[idx],
1227                                             clk_period_ps);
1228        }
1229
1230        of_node_put(np_ddr);
1231
1232        /* Take the highest frequency's timings as 'bypass' */
1233        dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1234        dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1235        dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1236
1237        return ret;
1238}
1239
1240/**
1241 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242 * @dmc:        DMC structure containing needed fields
1243 *
1244 * Get the needed clocks defined in DT device, enable and set the right parents.
1245 * Read current frequency and initialize the initial rate for governor.
1246 */
1247static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1248{
1249        int ret;
1250        unsigned long target_volt = 0;
1251        unsigned long target_rate = 0;
1252        unsigned int tmp;
1253
1254        dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1255        if (IS_ERR(dmc->fout_spll))
1256                return PTR_ERR(dmc->fout_spll);
1257
1258        dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1259        if (IS_ERR(dmc->fout_bpll))
1260                return PTR_ERR(dmc->fout_bpll);
1261
1262        dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1263        if (IS_ERR(dmc->mout_mclk_cdrex))
1264                return PTR_ERR(dmc->mout_mclk_cdrex);
1265
1266        dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1267        if (IS_ERR(dmc->mout_bpll))
1268                return PTR_ERR(dmc->mout_bpll);
1269
1270        dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1271                                                "mout_mx_mspll_ccore");
1272        if (IS_ERR(dmc->mout_mx_mspll_ccore))
1273                return PTR_ERR(dmc->mout_mx_mspll_ccore);
1274
1275        dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1276        if (IS_ERR(dmc->mout_spll)) {
1277                dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1278                if (IS_ERR(dmc->mout_spll))
1279                        return PTR_ERR(dmc->mout_spll);
1280        }
1281
1282        /*
1283         * Convert frequency to KHz values and set it for the governor.
1284         */
1285        dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1286        dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1287        exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1288
1289        ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1290                                        &target_volt, 0);
1291        if (ret)
1292                return ret;
1293
1294        dmc->curr_volt = target_volt;
1295
1296        ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1297        if (ret)
1298                return ret;
1299
1300        clk_prepare_enable(dmc->fout_bpll);
1301        clk_prepare_enable(dmc->mout_bpll);
1302
1303        /*
1304         * Some bootloaders do not set clock routes correctly.
1305         * Stop one path in clocks to PHY.
1306         */
1307        regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1308        tmp &= ~(BIT(1) | BIT(0));
1309        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1310
1311        return 0;
1312}
1313
1314/**
1315 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316 * @dmc:        DMC for which it does the setup
1317 *
1318 * Initialization of performance counters in DMC for estimating usage.
1319 * The counter's values are used for calculation of a memory bandwidth and based
1320 * on that the governor changes the frequency.
1321 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1322 */
1323static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1324{
1325        int counters_size;
1326        int ret, i;
1327
1328        dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1329                                                        "devfreq-events");
1330        if (dmc->num_counters < 0) {
1331                dev_err(dmc->dev, "could not get devfreq-event counters\n");
1332                return dmc->num_counters;
1333        }
1334
1335        counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1336        dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1337        if (!dmc->counter)
1338                return -ENOMEM;
1339
1340        for (i = 0; i < dmc->num_counters; i++) {
1341                dmc->counter[i] =
1342                        devfreq_event_get_edev_by_phandle(dmc->dev,
1343                                                "devfreq-events", i);
1344                if (IS_ERR_OR_NULL(dmc->counter[i]))
1345                        return -EPROBE_DEFER;
1346        }
1347
1348        ret = exynos5_counters_enable_edev(dmc);
1349        if (ret < 0) {
1350                dev_err(dmc->dev, "could not enable event counter\n");
1351                return ret;
1352        }
1353
1354        ret = exynos5_counters_set_event(dmc);
1355        if (ret < 0) {
1356                exynos5_counters_disable_edev(dmc);
1357                dev_err(dmc->dev, "could not set event counter\n");
1358                return ret;
1359        }
1360
1361        return 0;
1362}
1363
1364/**
1365 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1366 * @dmc:        device which is used for changing this feature
1367 *
1368 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1369 * changes its configuration. In such situation access to the memory is blocked
1370 * in DMC automatically. This feature is used when clock frequency change
1371 * request appears and touches clock tree.
1372 */
1373static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1374{
1375        unsigned int val;
1376        int ret;
1377
1378        ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1379        if (ret)
1380                return ret;
1381
1382        val |= 1UL;
1383        regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1384
1385        return 0;
1386}
1387
1388static irqreturn_t dmc_irq_thread(int irq, void *priv)
1389{
1390        int res;
1391        struct exynos5_dmc *dmc = priv;
1392
1393        mutex_lock(&dmc->df->lock);
1394        exynos5_dmc_perf_events_check(dmc);
1395        res = update_devfreq(dmc->df);
1396        mutex_unlock(&dmc->df->lock);
1397
1398        if (res)
1399                dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1400
1401        return IRQ_HANDLED;
1402}
1403
1404/**
1405 * exynos5_dmc_probe() - Probe function for the DMC driver
1406 * @pdev:       platform device for which the driver is going to be initialized
1407 *
1408 * Initialize basic components: clocks, regulators, performance counters, etc.
1409 * Read out product version and based on the information setup
1410 * internal structures for the controller (frequency and voltage) and for DRAM
1411 * memory parameters: timings for each operating frequency.
1412 * Register new devfreq device for controlling DVFS of the DMC.
1413 */
1414static int exynos5_dmc_probe(struct platform_device *pdev)
1415{
1416        int ret = 0;
1417        struct device *dev = &pdev->dev;
1418        struct device_node *np = dev->of_node;
1419        struct exynos5_dmc *dmc;
1420        int irq[2];
1421
1422        dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1423        if (!dmc)
1424                return -ENOMEM;
1425
1426        mutex_init(&dmc->lock);
1427
1428        dmc->dev = dev;
1429        platform_set_drvdata(pdev, dmc);
1430
1431        dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1432        if (IS_ERR(dmc->base_drexi0))
1433                return PTR_ERR(dmc->base_drexi0);
1434
1435        dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1436        if (IS_ERR(dmc->base_drexi1))
1437                return PTR_ERR(dmc->base_drexi1);
1438
1439        dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1440                                                          "samsung,syscon-clk");
1441        if (IS_ERR(dmc->clk_regmap))
1442                return PTR_ERR(dmc->clk_regmap);
1443
1444        ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1445        if (ret) {
1446                dev_warn(dev, "couldn't initialize frequency settings\n");
1447                return ret;
1448        }
1449
1450        dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1451        if (IS_ERR(dmc->vdd_mif)) {
1452                ret = PTR_ERR(dmc->vdd_mif);
1453                return ret;
1454        }
1455
1456        ret = exynos5_dmc_init_clks(dmc);
1457        if (ret)
1458                return ret;
1459
1460        ret = of_get_dram_timings(dmc);
1461        if (ret) {
1462                dev_warn(dev, "couldn't initialize timings settings\n");
1463                goto remove_clocks;
1464        }
1465
1466        ret = exynos5_dmc_set_pause_on_switching(dmc);
1467        if (ret) {
1468                dev_warn(dev, "couldn't get access to PAUSE register\n");
1469                goto remove_clocks;
1470        }
1471
1472        /* There is two modes in which the driver works: polling or IRQ */
1473        irq[0] = platform_get_irq_byname(pdev, "drex_0");
1474        irq[1] = platform_get_irq_byname(pdev, "drex_1");
1475        if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1476                ret = devm_request_threaded_irq(dev, irq[0], NULL,
1477                                                dmc_irq_thread, IRQF_ONESHOT,
1478                                                dev_name(dev), dmc);
1479                if (ret) {
1480                        dev_err(dev, "couldn't grab IRQ\n");
1481                        goto remove_clocks;
1482                }
1483
1484                ret = devm_request_threaded_irq(dev, irq[1], NULL,
1485                                                dmc_irq_thread, IRQF_ONESHOT,
1486                                                dev_name(dev), dmc);
1487                if (ret) {
1488                        dev_err(dev, "couldn't grab IRQ\n");
1489                        goto remove_clocks;
1490                }
1491
1492                /*
1493                 * Setup default thresholds for the devfreq governor.
1494                 * The values are chosen based on experiments.
1495                 */
1496                dmc->gov_data.upthreshold = 55;
1497                dmc->gov_data.downdifferential = 5;
1498
1499                exynos5_dmc_enable_perf_events(dmc);
1500
1501                dmc->in_irq_mode = 1;
1502        } else {
1503                ret = exynos5_performance_counters_init(dmc);
1504                if (ret) {
1505                        dev_warn(dev, "couldn't probe performance counters\n");
1506                        goto remove_clocks;
1507                }
1508
1509                /*
1510                 * Setup default thresholds for the devfreq governor.
1511                 * The values are chosen based on experiments.
1512                 */
1513                dmc->gov_data.upthreshold = 10;
1514                dmc->gov_data.downdifferential = 5;
1515
1516                exynos5_dmc_df_profile.polling_ms = 100;
1517        }
1518
1519        dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1520                                          DEVFREQ_GOV_SIMPLE_ONDEMAND,
1521                                          &dmc->gov_data);
1522
1523        if (IS_ERR(dmc->df)) {
1524                ret = PTR_ERR(dmc->df);
1525                goto err_devfreq_add;
1526        }
1527
1528        if (dmc->in_irq_mode)
1529                exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1530
1531        dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1532
1533        return 0;
1534
1535err_devfreq_add:
1536        if (dmc->in_irq_mode)
1537                exynos5_dmc_disable_perf_events(dmc);
1538        else
1539                exynos5_counters_disable_edev(dmc);
1540remove_clocks:
1541        clk_disable_unprepare(dmc->mout_bpll);
1542        clk_disable_unprepare(dmc->fout_bpll);
1543
1544        return ret;
1545}
1546
1547/**
1548 * exynos5_dmc_remove() - Remove function for the platform device
1549 * @pdev:       platform device which is going to be removed
1550 *
1551 * The function relies on 'devm' framework function which automatically
1552 * clean the device's resources. It just calls explicitly disable function for
1553 * the performance counters.
1554 */
1555static int exynos5_dmc_remove(struct platform_device *pdev)
1556{
1557        struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1558
1559        if (dmc->in_irq_mode)
1560                exynos5_dmc_disable_perf_events(dmc);
1561        else
1562                exynos5_counters_disable_edev(dmc);
1563
1564        clk_disable_unprepare(dmc->mout_bpll);
1565        clk_disable_unprepare(dmc->fout_bpll);
1566
1567        return 0;
1568}
1569
1570static const struct of_device_id exynos5_dmc_of_match[] = {
1571        { .compatible = "samsung,exynos5422-dmc", },
1572        { },
1573};
1574MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1575
1576static struct platform_driver exynos5_dmc_platdrv = {
1577        .probe  = exynos5_dmc_probe,
1578        .remove = exynos5_dmc_remove,
1579        .driver = {
1580                .name   = "exynos5-dmc",
1581                .of_match_table = exynos5_dmc_of_match,
1582        },
1583};
1584module_platform_driver(exynos5_dmc_platdrv);
1585MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1586MODULE_LICENSE("GPL v2");
1587MODULE_AUTHOR("Lukasz Luba");
1588