linux/drivers/mfd/db8500-prcmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
  39#include <linux/platform_data/ux500_wdt.h>
  40#include "db8500-prcmu-regs.h"
  41
  42/* Index of different voltages to be used when accessing AVSData */
  43#define PRCM_AVS_BASE           0x2FC
  44#define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
  45#define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
  46#define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
  47#define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
  48#define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
  49#define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
  50#define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
  51#define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
  52#define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
  53#define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
  54#define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
  55#define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
  56#define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
  57
  58#define PRCM_AVS_VOLTAGE                0
  59#define PRCM_AVS_VOLTAGE_MASK           0x3f
  60#define PRCM_AVS_ISSLOWSTARTUP          6
  61#define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
  62#define PRCM_AVS_ISMODEENABLE           7
  63#define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
  64
  65#define PRCM_BOOT_STATUS        0xFFF
  66#define PRCM_ROMCODE_A2P        0xFFE
  67#define PRCM_ROMCODE_P2A        0xFFD
  68#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  69
  70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  71
  72#define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
  73#define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
  74#define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
  75#define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
  76#define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
  77#define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
  78#define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
  79#define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
  80
  81/* Req Mailboxes */
  82#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  85#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  86#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  87#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  88
  89/* Ack Mailboxes */
  90#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  96
  97/* Mailbox 0 headers */
  98#define MB0H_POWER_STATE_TRANS          0
  99#define MB0H_CONFIG_WAKEUPS_EXE         1
 100#define MB0H_READ_WAKEUP_ACK            3
 101#define MB0H_CONFIG_WAKEUPS_SLEEP       4
 102
 103#define MB0H_WAKEUP_EXE 2
 104#define MB0H_WAKEUP_SLEEP 5
 105
 106/* Mailbox 0 REQs */
 107#define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
 108#define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
 109#define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
 110#define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
 111#define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
 112#define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
 113
 114/* Mailbox 0 ACKs */
 115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
 116#define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
 117#define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
 118#define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
 119#define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
 120#define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
 121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
 122
 123/* Mailbox 1 headers */
 124#define MB1H_ARM_APE_OPP 0x0
 125#define MB1H_RESET_MODEM 0x2
 126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 128#define MB1H_RELEASE_USB_WAKEUP 0x5
 129#define MB1H_PLL_ON_OFF 0x6
 130
 131/* Mailbox 1 Requests */
 132#define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
 133#define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
 134#define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
 135#define PLL_SOC0_OFF    0x1
 136#define PLL_SOC0_ON     0x2
 137#define PLL_SOC1_OFF    0x4
 138#define PLL_SOC1_ON     0x8
 139
 140/* Mailbox 1 ACKs */
 141#define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
 142#define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
 143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
 144#define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
 145
 146/* Mailbox 2 headers */
 147#define MB2H_DPS        0x0
 148#define MB2H_AUTO_PWR   0x1
 149
 150/* Mailbox 2 REQs */
 151#define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
 152#define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
 153#define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
 154#define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
 155#define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
 156#define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
 157#define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
 158#define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
 159#define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
 160#define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
 161
 162/* Mailbox 2 ACKs */
 163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 164#define HWACC_PWR_ST_OK 0xFE
 165
 166/* Mailbox 3 headers */
 167#define MB3H_ANC        0x0
 168#define MB3H_SIDETONE   0x1
 169#define MB3H_SYSCLK     0xE
 170
 171/* Mailbox 3 Requests */
 172#define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
 173#define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
 174#define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
 175#define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
 178#define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
 179
 180/* Mailbox 4 headers */
 181#define MB4H_DDR_INIT   0x0
 182#define MB4H_MEM_ST     0x1
 183#define MB4H_HOTDOG     0x12
 184#define MB4H_HOTMON     0x13
 185#define MB4H_HOT_PERIOD 0x14
 186#define MB4H_A9WDOG_CONF 0x16
 187#define MB4H_A9WDOG_EN   0x17
 188#define MB4H_A9WDOG_DIS  0x18
 189#define MB4H_A9WDOG_LOAD 0x19
 190#define MB4H_A9WDOG_KICK 0x20
 191
 192/* Mailbox 4 Requests */
 193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
 194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
 195#define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
 196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
 198#define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
 199#define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
 200#define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
 201#define HOTMON_CONFIG_LOW                       BIT(0)
 202#define HOTMON_CONFIG_HIGH                      BIT(1)
 203#define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
 204#define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
 205#define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
 206#define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
 207#define A9WDOG_AUTO_OFF_EN                      BIT(7)
 208#define A9WDOG_AUTO_OFF_DIS                     0
 209#define A9WDOG_ID_MASK                          0xf
 210
 211/* Mailbox 5 Requests */
 212#define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
 213#define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
 214#define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
 215#define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
 216#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 217#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 218#define PRCMU_I2C_STOP_EN               BIT(3)
 219
 220/* Mailbox 5 ACKs */
 221#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
 222#define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
 223#define I2C_WR_OK 0x1
 224#define I2C_RD_OK 0x2
 225
 226#define NUM_MB 8
 227#define MBOX_BIT BIT
 228#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 229
 230/*
 231 * Wakeups/IRQs
 232 */
 233
 234#define WAKEUP_BIT_RTC BIT(0)
 235#define WAKEUP_BIT_RTT0 BIT(1)
 236#define WAKEUP_BIT_RTT1 BIT(2)
 237#define WAKEUP_BIT_HSI0 BIT(3)
 238#define WAKEUP_BIT_HSI1 BIT(4)
 239#define WAKEUP_BIT_CA_WAKE BIT(5)
 240#define WAKEUP_BIT_USB BIT(6)
 241#define WAKEUP_BIT_ABB BIT(7)
 242#define WAKEUP_BIT_ABB_FIFO BIT(8)
 243#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 244#define WAKEUP_BIT_CA_SLEEP BIT(10)
 245#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 246#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 247#define WAKEUP_BIT_ANC_OK BIT(13)
 248#define WAKEUP_BIT_SW_ERROR BIT(14)
 249#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 250#define WAKEUP_BIT_ARM BIT(17)
 251#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 252#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 253#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 254#define WAKEUP_BIT_GPIO0 BIT(23)
 255#define WAKEUP_BIT_GPIO1 BIT(24)
 256#define WAKEUP_BIT_GPIO2 BIT(25)
 257#define WAKEUP_BIT_GPIO3 BIT(26)
 258#define WAKEUP_BIT_GPIO4 BIT(27)
 259#define WAKEUP_BIT_GPIO5 BIT(28)
 260#define WAKEUP_BIT_GPIO6 BIT(29)
 261#define WAKEUP_BIT_GPIO7 BIT(30)
 262#define WAKEUP_BIT_GPIO8 BIT(31)
 263
 264static struct {
 265        bool valid;
 266        struct prcmu_fw_version version;
 267} fw_info;
 268
 269static struct irq_domain *db8500_irq_domain;
 270
 271/*
 272 * This vector maps irq numbers to the bits in the bit field used in
 273 * communication with the PRCMU firmware.
 274 *
 275 * The reason for having this is to keep the irq numbers contiguous even though
 276 * the bits in the bit field are not. (The bits also have a tendency to move
 277 * around, to further complicate matters.)
 278 */
 279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 281
 282#define IRQ_PRCMU_RTC 0
 283#define IRQ_PRCMU_RTT0 1
 284#define IRQ_PRCMU_RTT1 2
 285#define IRQ_PRCMU_HSI0 3
 286#define IRQ_PRCMU_HSI1 4
 287#define IRQ_PRCMU_CA_WAKE 5
 288#define IRQ_PRCMU_USB 6
 289#define IRQ_PRCMU_ABB 7
 290#define IRQ_PRCMU_ABB_FIFO 8
 291#define IRQ_PRCMU_ARM 9
 292#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 293#define IRQ_PRCMU_GPIO0 11
 294#define IRQ_PRCMU_GPIO1 12
 295#define IRQ_PRCMU_GPIO2 13
 296#define IRQ_PRCMU_GPIO3 14
 297#define IRQ_PRCMU_GPIO4 15
 298#define IRQ_PRCMU_GPIO5 16
 299#define IRQ_PRCMU_GPIO6 17
 300#define IRQ_PRCMU_GPIO7 18
 301#define IRQ_PRCMU_GPIO8 19
 302#define IRQ_PRCMU_CA_SLEEP 20
 303#define IRQ_PRCMU_HOTMON_LOW 21
 304#define IRQ_PRCMU_HOTMON_HIGH 22
 305#define NUM_PRCMU_WAKEUPS 23
 306
 307static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 308        IRQ_ENTRY(RTC),
 309        IRQ_ENTRY(RTT0),
 310        IRQ_ENTRY(RTT1),
 311        IRQ_ENTRY(HSI0),
 312        IRQ_ENTRY(HSI1),
 313        IRQ_ENTRY(CA_WAKE),
 314        IRQ_ENTRY(USB),
 315        IRQ_ENTRY(ABB),
 316        IRQ_ENTRY(ABB_FIFO),
 317        IRQ_ENTRY(CA_SLEEP),
 318        IRQ_ENTRY(ARM),
 319        IRQ_ENTRY(HOTMON_LOW),
 320        IRQ_ENTRY(HOTMON_HIGH),
 321        IRQ_ENTRY(MODEM_SW_RESET_REQ),
 322        IRQ_ENTRY(GPIO0),
 323        IRQ_ENTRY(GPIO1),
 324        IRQ_ENTRY(GPIO2),
 325        IRQ_ENTRY(GPIO3),
 326        IRQ_ENTRY(GPIO4),
 327        IRQ_ENTRY(GPIO5),
 328        IRQ_ENTRY(GPIO6),
 329        IRQ_ENTRY(GPIO7),
 330        IRQ_ENTRY(GPIO8)
 331};
 332
 333#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 334#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 335static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 336        WAKEUP_ENTRY(RTC),
 337        WAKEUP_ENTRY(RTT0),
 338        WAKEUP_ENTRY(RTT1),
 339        WAKEUP_ENTRY(HSI0),
 340        WAKEUP_ENTRY(HSI1),
 341        WAKEUP_ENTRY(USB),
 342        WAKEUP_ENTRY(ABB),
 343        WAKEUP_ENTRY(ABB_FIFO),
 344        WAKEUP_ENTRY(ARM)
 345};
 346
 347/*
 348 * mb0_transfer - state needed for mailbox 0 communication.
 349 * @lock:               The transaction lock.
 350 * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
 351 *                      the request data.
 352 * @mask_work:          Work structure used for (un)masking wakeup interrupts.
 353 * @req:                Request data that need to persist between requests.
 354 */
 355static struct {
 356        spinlock_t lock;
 357        spinlock_t dbb_irqs_lock;
 358        struct work_struct mask_work;
 359        struct mutex ac_wake_lock;
 360        struct completion ac_wake_work;
 361        struct {
 362                u32 dbb_irqs;
 363                u32 dbb_wakeups;
 364                u32 abb_events;
 365        } req;
 366} mb0_transfer;
 367
 368/*
 369 * mb1_transfer - state needed for mailbox 1 communication.
 370 * @lock:       The transaction lock.
 371 * @work:       The transaction completion structure.
 372 * @ape_opp:    The current APE OPP.
 373 * @ack:        Reply ("acknowledge") data.
 374 */
 375static struct {
 376        struct mutex lock;
 377        struct completion work;
 378        u8 ape_opp;
 379        struct {
 380                u8 header;
 381                u8 arm_opp;
 382                u8 ape_opp;
 383                u8 ape_voltage_status;
 384        } ack;
 385} mb1_transfer;
 386
 387/*
 388 * mb2_transfer - state needed for mailbox 2 communication.
 389 * @lock:            The transaction lock.
 390 * @work:            The transaction completion structure.
 391 * @auto_pm_lock:    The autonomous power management configuration lock.
 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 393 * @req:             Request data that need to persist between requests.
 394 * @ack:             Reply ("acknowledge") data.
 395 */
 396static struct {
 397        struct mutex lock;
 398        struct completion work;
 399        spinlock_t auto_pm_lock;
 400        bool auto_pm_enabled;
 401        struct {
 402                u8 status;
 403        } ack;
 404} mb2_transfer;
 405
 406/*
 407 * mb3_transfer - state needed for mailbox 3 communication.
 408 * @lock:               The request lock.
 409 * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
 410 * @sysclk_work:        Work structure used for sysclk requests.
 411 */
 412static struct {
 413        spinlock_t lock;
 414        struct mutex sysclk_lock;
 415        struct completion sysclk_work;
 416} mb3_transfer;
 417
 418/*
 419 * mb4_transfer - state needed for mailbox 4 communication.
 420 * @lock:       The transaction lock.
 421 * @work:       The transaction completion structure.
 422 */
 423static struct {
 424        struct mutex lock;
 425        struct completion work;
 426} mb4_transfer;
 427
 428/*
 429 * mb5_transfer - state needed for mailbox 5 communication.
 430 * @lock:       The transaction lock.
 431 * @work:       The transaction completion structure.
 432 * @ack:        Reply ("acknowledge") data.
 433 */
 434static struct {
 435        struct mutex lock;
 436        struct completion work;
 437        struct {
 438                u8 status;
 439                u8 value;
 440        } ack;
 441} mb5_transfer;
 442
 443static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 444
 445/* Spinlocks */
 446static DEFINE_SPINLOCK(prcmu_lock);
 447static DEFINE_SPINLOCK(clkout_lock);
 448
 449/* Global var to runtime determine TCDM base for v2 or v1 */
 450static __iomem void *tcdm_base;
 451static __iomem void *prcmu_base;
 452
 453struct clk_mgt {
 454        u32 offset;
 455        u32 pllsw;
 456        int branch;
 457        bool clk38div;
 458};
 459
 460enum {
 461        PLL_RAW,
 462        PLL_FIX,
 463        PLL_DIV
 464};
 465
 466static DEFINE_SPINLOCK(clk_mgt_lock);
 467
 468#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 469        { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 470static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 471        CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 472        CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 473        CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 474        CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 475        CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 476        CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 477        CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 478        CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 479        CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 480        CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 481        CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 482        CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 483        CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 484        CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 485        CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 486        CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 487        CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 488        CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 489        CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 490        CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 491        CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 492        CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 493        CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 494        CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 495        CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 496        CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 497        CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 498        CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 499        CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 500};
 501
 502struct dsiclk {
 503        u32 divsel_mask;
 504        u32 divsel_shift;
 505        u32 divsel;
 506};
 507
 508static struct dsiclk dsiclk[2] = {
 509        {
 510                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 511                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 512                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 513        },
 514        {
 515                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 516                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 517                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 518        }
 519};
 520
 521struct dsiescclk {
 522        u32 en;
 523        u32 div_mask;
 524        u32 div_shift;
 525};
 526
 527static struct dsiescclk dsiescclk[3] = {
 528        {
 529                .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 530                .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 531                .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 532        },
 533        {
 534                .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 535                .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 536                .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 537        },
 538        {
 539                .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 540                .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 541                .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 542        }
 543};
 544
 545u32 db8500_prcmu_read(unsigned int reg)
 546{
 547        return readl(prcmu_base + reg);
 548}
 549
 550void db8500_prcmu_write(unsigned int reg, u32 value)
 551{
 552        unsigned long flags;
 553
 554        spin_lock_irqsave(&prcmu_lock, flags);
 555        writel(value, (prcmu_base + reg));
 556        spin_unlock_irqrestore(&prcmu_lock, flags);
 557}
 558
 559void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 560{
 561        u32 val;
 562        unsigned long flags;
 563
 564        spin_lock_irqsave(&prcmu_lock, flags);
 565        val = readl(prcmu_base + reg);
 566        val = ((val & ~mask) | (value & mask));
 567        writel(val, (prcmu_base + reg));
 568        spin_unlock_irqrestore(&prcmu_lock, flags);
 569}
 570
 571struct prcmu_fw_version *prcmu_get_fw_version(void)
 572{
 573        return fw_info.valid ? &fw_info.version : NULL;
 574}
 575
 576static bool prcmu_is_ulppll_disabled(void)
 577{
 578        struct prcmu_fw_version *ver;
 579
 580        ver = prcmu_get_fw_version();
 581        return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 582}
 583
 584bool prcmu_has_arm_maxopp(void)
 585{
 586        return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 587                PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 588}
 589
 590/**
 591 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 592 * @val: Value to be set, i.e. transition requested
 593 * Returns: 0 on success, -EINVAL on invalid argument
 594 *
 595 * This function is used to run the following power state sequences -
 596 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 597 */
 598int prcmu_set_rc_a2p(enum romcode_write val)
 599{
 600        if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 601                return -EINVAL;
 602        writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 603        return 0;
 604}
 605
 606/**
 607 * prcmu_get_rc_p2a - This function is used to get power state sequences
 608 * Returns: the power transition that has last happened
 609 *
 610 * This function can return the following transitions-
 611 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 612 */
 613enum romcode_read prcmu_get_rc_p2a(void)
 614{
 615        return readb(tcdm_base + PRCM_ROMCODE_P2A);
 616}
 617
 618/**
 619 * prcmu_get_xp70_current_state - Return the current XP70 power mode
 620 * Returns: Returns the current AP(ARM) power mode: init,
 621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 622 */
 623enum ap_pwrst prcmu_get_xp70_current_state(void)
 624{
 625        return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 626}
 627
 628/**
 629 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 630 * @clkout:     The CLKOUT number (0 or 1).
 631 * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
 632 * @div:        The divider to be applied.
 633 *
 634 * Configures one of the programmable clock outputs (CLKOUTs).
 635 * @div should be in the range [1,63] to request a configuration, or 0 to
 636 * inform that the configuration is no longer requested.
 637 */
 638int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 639{
 640        static int requests[2];
 641        int r = 0;
 642        unsigned long flags;
 643        u32 val;
 644        u32 bits;
 645        u32 mask;
 646        u32 div_mask;
 647
 648        BUG_ON(clkout > 1);
 649        BUG_ON(div > 63);
 650        BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 651
 652        if (!div && !requests[clkout])
 653                return -EINVAL;
 654
 655        if (clkout == 0) {
 656                div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 657                mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 658                bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 659                        (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 660        } else {
 661                div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 662                mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 663                        PRCM_CLKOCR_CLK1TYPE);
 664                bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 665                        (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 666        }
 667        bits &= mask;
 668
 669        spin_lock_irqsave(&clkout_lock, flags);
 670
 671        val = readl(PRCM_CLKOCR);
 672        if (val & div_mask) {
 673                if (div) {
 674                        if ((val & mask) != bits) {
 675                                r = -EBUSY;
 676                                goto unlock_and_return;
 677                        }
 678                } else {
 679                        if ((val & mask & ~div_mask) != bits) {
 680                                r = -EINVAL;
 681                                goto unlock_and_return;
 682                        }
 683                }
 684        }
 685        writel((bits | (val & ~mask)), PRCM_CLKOCR);
 686        requests[clkout] += (div ? 1 : -1);
 687
 688unlock_and_return:
 689        spin_unlock_irqrestore(&clkout_lock, flags);
 690
 691        return r;
 692}
 693
 694int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 695{
 696        unsigned long flags;
 697
 698        BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 699
 700        spin_lock_irqsave(&mb0_transfer.lock, flags);
 701
 702        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 703                cpu_relax();
 704
 705        writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 706        writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 707        writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 708        writeb((keep_ulp_clk ? 1 : 0),
 709                (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 710        writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 711        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 712
 713        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 714
 715        return 0;
 716}
 717
 718u8 db8500_prcmu_get_power_state_result(void)
 719{
 720        return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 721}
 722
 723/* This function should only be called while mb0_transfer.lock is held. */
 724static void config_wakeups(void)
 725{
 726        const u8 header[2] = {
 727                MB0H_CONFIG_WAKEUPS_EXE,
 728                MB0H_CONFIG_WAKEUPS_SLEEP
 729        };
 730        static u32 last_dbb_events;
 731        static u32 last_abb_events;
 732        u32 dbb_events;
 733        u32 abb_events;
 734        unsigned int i;
 735
 736        dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 737        dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 738
 739        abb_events = mb0_transfer.req.abb_events;
 740
 741        if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 742                return;
 743
 744        for (i = 0; i < 2; i++) {
 745                while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 746                        cpu_relax();
 747                writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 748                writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 749                writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 750                writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 751        }
 752        last_dbb_events = dbb_events;
 753        last_abb_events = abb_events;
 754}
 755
 756void db8500_prcmu_enable_wakeups(u32 wakeups)
 757{
 758        unsigned long flags;
 759        u32 bits;
 760        int i;
 761
 762        BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 763
 764        for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 765                if (wakeups & BIT(i))
 766                        bits |= prcmu_wakeup_bit[i];
 767        }
 768
 769        spin_lock_irqsave(&mb0_transfer.lock, flags);
 770
 771        mb0_transfer.req.dbb_wakeups = bits;
 772        config_wakeups();
 773
 774        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 775}
 776
 777void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 778{
 779        unsigned long flags;
 780
 781        spin_lock_irqsave(&mb0_transfer.lock, flags);
 782
 783        mb0_transfer.req.abb_events = abb_events;
 784        config_wakeups();
 785
 786        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 787}
 788
 789void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 790{
 791        if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 792                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 793        else
 794                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 795}
 796
 797/**
 798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 799 * @opp: The new ARM operating point to which transition is to be made
 800 * Returns: 0 on success, non-zero on failure
 801 *
 802 * This function sets the the operating point of the ARM.
 803 */
 804int db8500_prcmu_set_arm_opp(u8 opp)
 805{
 806        int r;
 807
 808        if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 809                return -EINVAL;
 810
 811        r = 0;
 812
 813        mutex_lock(&mb1_transfer.lock);
 814
 815        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 816                cpu_relax();
 817
 818        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 819        writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 820        writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 821
 822        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 823        wait_for_completion(&mb1_transfer.work);
 824
 825        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 826                (mb1_transfer.ack.arm_opp != opp))
 827                r = -EIO;
 828
 829        mutex_unlock(&mb1_transfer.lock);
 830
 831        return r;
 832}
 833
 834/**
 835 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 836 *
 837 * Returns: the current ARM OPP
 838 */
 839int db8500_prcmu_get_arm_opp(void)
 840{
 841        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 842}
 843
 844/**
 845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 846 *
 847 * Returns: the current DDR OPP
 848 */
 849int db8500_prcmu_get_ddr_opp(void)
 850{
 851        return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 852}
 853
 854/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 855static void request_even_slower_clocks(bool enable)
 856{
 857        u32 clock_reg[] = {
 858                PRCM_ACLK_MGT,
 859                PRCM_DMACLK_MGT
 860        };
 861        unsigned long flags;
 862        unsigned int i;
 863
 864        spin_lock_irqsave(&clk_mgt_lock, flags);
 865
 866        /* Grab the HW semaphore. */
 867        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 868                cpu_relax();
 869
 870        for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 871                u32 val;
 872                u32 div;
 873
 874                val = readl(prcmu_base + clock_reg[i]);
 875                div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 876                if (enable) {
 877                        if ((div <= 1) || (div > 15)) {
 878                                pr_err("prcmu: Bad clock divider %d in %s\n",
 879                                        div, __func__);
 880                                goto unlock_and_return;
 881                        }
 882                        div <<= 1;
 883                } else {
 884                        if (div <= 2)
 885                                goto unlock_and_return;
 886                        div >>= 1;
 887                }
 888                val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 889                        (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 890                writel(val, prcmu_base + clock_reg[i]);
 891        }
 892
 893unlock_and_return:
 894        /* Release the HW semaphore. */
 895        writel(0, PRCM_SEM);
 896
 897        spin_unlock_irqrestore(&clk_mgt_lock, flags);
 898}
 899
 900/**
 901 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
 902 * @opp: The new APE operating point to which transition is to be made
 903 * Returns: 0 on success, non-zero on failure
 904 *
 905 * This function sets the operating point of the APE.
 906 */
 907int db8500_prcmu_set_ape_opp(u8 opp)
 908{
 909        int r = 0;
 910
 911        if (opp == mb1_transfer.ape_opp)
 912                return 0;
 913
 914        mutex_lock(&mb1_transfer.lock);
 915
 916        if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 917                request_even_slower_clocks(false);
 918
 919        if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 920                goto skip_message;
 921
 922        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 923                cpu_relax();
 924
 925        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 926        writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 927        writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 928                (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 929
 930        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 931        wait_for_completion(&mb1_transfer.work);
 932
 933        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 934                (mb1_transfer.ack.ape_opp != opp))
 935                r = -EIO;
 936
 937skip_message:
 938        if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 939                (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 940                request_even_slower_clocks(true);
 941        if (!r)
 942                mb1_transfer.ape_opp = opp;
 943
 944        mutex_unlock(&mb1_transfer.lock);
 945
 946        return r;
 947}
 948
 949/**
 950 * db8500_prcmu_get_ape_opp - get the current APE OPP
 951 *
 952 * Returns: the current APE OPP
 953 */
 954int db8500_prcmu_get_ape_opp(void)
 955{
 956        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 957}
 958
 959/**
 960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 961 * @enable: true to request the higher voltage, false to drop a request.
 962 *
 963 * Calls to this function to enable and disable requests must be balanced.
 964 */
 965int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 966{
 967        int r = 0;
 968        u8 header;
 969        static unsigned int requests;
 970
 971        mutex_lock(&mb1_transfer.lock);
 972
 973        if (enable) {
 974                if (0 != requests++)
 975                        goto unlock_and_return;
 976                header = MB1H_REQUEST_APE_OPP_100_VOLT;
 977        } else {
 978                if (requests == 0) {
 979                        r = -EIO;
 980                        goto unlock_and_return;
 981                } else if (1 != requests--) {
 982                        goto unlock_and_return;
 983                }
 984                header = MB1H_RELEASE_APE_OPP_100_VOLT;
 985        }
 986
 987        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 988                cpu_relax();
 989
 990        writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 991
 992        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 993        wait_for_completion(&mb1_transfer.work);
 994
 995        if ((mb1_transfer.ack.header != header) ||
 996                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 997                r = -EIO;
 998
 999unlock_and_return:
1000        mutex_unlock(&mb1_transfer.lock);
1001
1002        return r;
1003}
1004
1005/**
1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007 *
1008 * This function releases the power state requirements of a USB wakeup.
1009 */
1010int prcmu_release_usb_wakeup_state(void)
1011{
1012        int r = 0;
1013
1014        mutex_lock(&mb1_transfer.lock);
1015
1016        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017                cpu_relax();
1018
1019        writeb(MB1H_RELEASE_USB_WAKEUP,
1020                (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021
1022        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023        wait_for_completion(&mb1_transfer.work);
1024
1025        if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027                r = -EIO;
1028
1029        mutex_unlock(&mb1_transfer.lock);
1030
1031        return r;
1032}
1033
1034static int request_pll(u8 clock, bool enable)
1035{
1036        int r = 0;
1037
1038        if (clock == PRCMU_PLLSOC0)
1039                clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040        else if (clock == PRCMU_PLLSOC1)
1041                clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042        else
1043                return -EINVAL;
1044
1045        mutex_lock(&mb1_transfer.lock);
1046
1047        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048                cpu_relax();
1049
1050        writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051        writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052
1053        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054        wait_for_completion(&mb1_transfer.work);
1055
1056        if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057                r = -EIO;
1058
1059        mutex_unlock(&mb1_transfer.lock);
1060
1061        return r;
1062}
1063
1064/**
1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066 * @epod_id: The EPOD to set
1067 * @epod_state: The new EPOD state
1068 *
1069 * This function sets the state of a EPOD (power domain). It may not be called
1070 * from interrupt context.
1071 */
1072int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073{
1074        int r = 0;
1075        bool ram_retention = false;
1076        int i;
1077
1078        /* check argument */
1079        BUG_ON(epod_id >= NUM_EPOD_ID);
1080
1081        /* set flag if retention is possible */
1082        switch (epod_id) {
1083        case EPOD_ID_SVAMMDSP:
1084        case EPOD_ID_SIAMMDSP:
1085        case EPOD_ID_ESRAM12:
1086        case EPOD_ID_ESRAM34:
1087                ram_retention = true;
1088                break;
1089        }
1090
1091        /* check argument */
1092        BUG_ON(epod_state > EPOD_STATE_ON);
1093        BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094
1095        /* get lock */
1096        mutex_lock(&mb2_transfer.lock);
1097
1098        /* wait for mailbox */
1099        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100                cpu_relax();
1101
1102        /* fill in mailbox */
1103        for (i = 0; i < NUM_EPOD_ID; i++)
1104                writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105        writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106
1107        writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108
1109        writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110
1111        /*
1112         * The current firmware version does not handle errors correctly,
1113         * and we cannot recover if there is an error.
1114         * This is expected to change when the firmware is updated.
1115         */
1116        if (!wait_for_completion_timeout(&mb2_transfer.work,
1117                        msecs_to_jiffies(20000))) {
1118                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119                        __func__);
1120                r = -EIO;
1121                goto unlock_and_return;
1122        }
1123
1124        if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125                r = -EIO;
1126
1127unlock_and_return:
1128        mutex_unlock(&mb2_transfer.lock);
1129        return r;
1130}
1131
1132/**
1133 * prcmu_configure_auto_pm - Configure autonomous power management.
1134 * @sleep: Configuration for ApSleep.
1135 * @idle:  Configuration for ApIdle.
1136 */
1137void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138        struct prcmu_auto_pm_config *idle)
1139{
1140        u32 sleep_cfg;
1141        u32 idle_cfg;
1142        unsigned long flags;
1143
1144        BUG_ON((sleep == NULL) || (idle == NULL));
1145
1146        sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148        sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149        sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150        sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152
1153        idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154        idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155        idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156        idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157        idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158        idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159
1160        spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161
1162        /*
1163         * The autonomous power management configuration is done through
1164         * fields in mailbox 2, but these fields are only used as shared
1165         * variables - i.e. there is no need to send a message.
1166         */
1167        writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168        writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169
1170        mb2_transfer.auto_pm_enabled =
1171                ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172                 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173                 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174                 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175
1176        spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177}
1178EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179
1180bool prcmu_is_auto_pm_enabled(void)
1181{
1182        return mb2_transfer.auto_pm_enabled;
1183}
1184
1185static int request_sysclk(bool enable)
1186{
1187        int r;
1188        unsigned long flags;
1189
1190        r = 0;
1191
1192        mutex_lock(&mb3_transfer.sysclk_lock);
1193
1194        spin_lock_irqsave(&mb3_transfer.lock, flags);
1195
1196        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197                cpu_relax();
1198
1199        writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200
1201        writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202        writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203
1204        spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205
1206        /*
1207         * The firmware only sends an ACK if we want to enable the
1208         * SysClk, and it succeeds.
1209         */
1210        if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211                        msecs_to_jiffies(20000))) {
1212                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213                        __func__);
1214                r = -EIO;
1215        }
1216
1217        mutex_unlock(&mb3_transfer.sysclk_lock);
1218
1219        return r;
1220}
1221
1222static int request_timclk(bool enable)
1223{
1224        u32 val;
1225
1226        /*
1227         * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228         * PLL is disabled so we cannot use doze mode, this will
1229         * stop the clock on this firmware.
1230         */
1231        if (prcmu_is_ulppll_disabled())
1232                val = 0;
1233        else
1234                val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235
1236        if (!enable)
1237                val |= PRCM_TCR_STOP_TIMERS |
1238                        PRCM_TCR_DOZE_MODE |
1239                        PRCM_TCR_TENSEL_MASK;
1240
1241        writel(val, PRCM_TCR);
1242
1243        return 0;
1244}
1245
1246static int request_clock(u8 clock, bool enable)
1247{
1248        u32 val;
1249        unsigned long flags;
1250
1251        spin_lock_irqsave(&clk_mgt_lock, flags);
1252
1253        /* Grab the HW semaphore. */
1254        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255                cpu_relax();
1256
1257        val = readl(prcmu_base + clk_mgt[clock].offset);
1258        if (enable) {
1259                val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260        } else {
1261                clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262                val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263        }
1264        writel(val, prcmu_base + clk_mgt[clock].offset);
1265
1266        /* Release the HW semaphore. */
1267        writel(0, PRCM_SEM);
1268
1269        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270
1271        return 0;
1272}
1273
1274static int request_sga_clock(u8 clock, bool enable)
1275{
1276        u32 val;
1277        int ret;
1278
1279        if (enable) {
1280                val = readl(PRCM_CGATING_BYPASS);
1281                writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282        }
1283
1284        ret = request_clock(clock, enable);
1285
1286        if (!ret && !enable) {
1287                val = readl(PRCM_CGATING_BYPASS);
1288                writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289        }
1290
1291        return ret;
1292}
1293
1294static inline bool plldsi_locked(void)
1295{
1296        return (readl(PRCM_PLLDSI_LOCKP) &
1297                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301}
1302
1303static int request_plldsi(bool enable)
1304{
1305        int r = 0;
1306        u32 val;
1307
1308        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310                PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311
1312        val = readl(PRCM_PLLDSI_ENABLE);
1313        if (enable)
1314                val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315        else
1316                val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317        writel(val, PRCM_PLLDSI_ENABLE);
1318
1319        if (enable) {
1320                unsigned int i;
1321                bool locked = plldsi_locked();
1322
1323                for (i = 10; !locked && (i > 0); --i) {
1324                        udelay(100);
1325                        locked = plldsi_locked();
1326                }
1327                if (locked) {
1328                        writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329                                PRCM_APE_RESETN_SET);
1330                } else {
1331                        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332                                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333                                PRCM_MMIP_LS_CLAMP_SET);
1334                        val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335                        writel(val, PRCM_PLLDSI_ENABLE);
1336                        r = -EAGAIN;
1337                }
1338        } else {
1339                writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340        }
1341        return r;
1342}
1343
1344static int request_dsiclk(u8 n, bool enable)
1345{
1346        u32 val;
1347
1348        val = readl(PRCM_DSI_PLLOUT_SEL);
1349        val &= ~dsiclk[n].divsel_mask;
1350        val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351                dsiclk[n].divsel_shift);
1352        writel(val, PRCM_DSI_PLLOUT_SEL);
1353        return 0;
1354}
1355
1356static int request_dsiescclk(u8 n, bool enable)
1357{
1358        u32 val;
1359
1360        val = readl(PRCM_DSITVCLK_DIV);
1361        enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362        writel(val, PRCM_DSITVCLK_DIV);
1363        return 0;
1364}
1365
1366/**
1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368 * @clock:      The clock for which the request is made.
1369 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1370 *
1371 * This function should only be used by the clock implementation.
1372 * Do not use it from any other place!
1373 */
1374int db8500_prcmu_request_clock(u8 clock, bool enable)
1375{
1376        if (clock == PRCMU_SGACLK)
1377                return request_sga_clock(clock, enable);
1378        else if (clock < PRCMU_NUM_REG_CLOCKS)
1379                return request_clock(clock, enable);
1380        else if (clock == PRCMU_TIMCLK)
1381                return request_timclk(enable);
1382        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383                return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385                return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386        else if (clock == PRCMU_PLLDSI)
1387                return request_plldsi(enable);
1388        else if (clock == PRCMU_SYSCLK)
1389                return request_sysclk(enable);
1390        else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391                return request_pll(clock, enable);
1392        else
1393                return -EINVAL;
1394}
1395
1396static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397        int branch)
1398{
1399        u64 rate;
1400        u32 val;
1401        u32 d;
1402        u32 div = 1;
1403
1404        val = readl(reg);
1405
1406        rate = src_rate;
1407        rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408
1409        d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410        if (d > 1)
1411                div *= d;
1412
1413        d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414        if (d > 1)
1415                div *= d;
1416
1417        if (val & PRCM_PLL_FREQ_SELDIV2)
1418                div *= 2;
1419
1420        if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421                (val & PRCM_PLL_FREQ_DIV2EN) &&
1422                ((reg == PRCM_PLLSOC0_FREQ) ||
1423                 (reg == PRCM_PLLARM_FREQ) ||
1424                 (reg == PRCM_PLLDDR_FREQ))))
1425                div *= 2;
1426
1427        (void)do_div(rate, div);
1428
1429        return (unsigned long)rate;
1430}
1431
1432#define ROOT_CLOCK_RATE 38400000
1433
1434static unsigned long clock_rate(u8 clock)
1435{
1436        u32 val;
1437        u32 pllsw;
1438        unsigned long rate = ROOT_CLOCK_RATE;
1439
1440        val = readl(prcmu_base + clk_mgt[clock].offset);
1441
1442        if (val & PRCM_CLK_MGT_CLK38) {
1443                if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444                        rate /= 2;
1445                return rate;
1446        }
1447
1448        val |= clk_mgt[clock].pllsw;
1449        pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450
1451        if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452                rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454                rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456                rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457        else
1458                return 0;
1459
1460        if ((clock == PRCMU_SGACLK) &&
1461                (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462                u64 r = (rate * 10);
1463
1464                (void)do_div(r, 25);
1465                return (unsigned long)r;
1466        }
1467        val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468        if (val)
1469                return rate / val;
1470        else
1471                return 0;
1472}
1473
1474static unsigned long armss_rate(void)
1475{
1476        u32 r;
1477        unsigned long rate;
1478
1479        r = readl(PRCM_ARM_CHGCLKREQ);
1480
1481        if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482                /* External ARMCLKFIX clock */
1483
1484                rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485
1486                /* Check PRCM_ARM_CHGCLKREQ divider */
1487                if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488                        rate /= 2;
1489
1490                /* Check PRCM_ARMCLKFIX_MGT divider */
1491                r = readl(PRCM_ARMCLKFIX_MGT);
1492                r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493                rate /= r;
1494
1495        } else {/* ARM PLL */
1496                rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497        }
1498
1499        return rate;
1500}
1501
1502static unsigned long dsiclk_rate(u8 n)
1503{
1504        u32 divsel;
1505        u32 div = 1;
1506
1507        divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508        divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509
1510        if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511                divsel = dsiclk[n].divsel;
1512        else
1513                dsiclk[n].divsel = divsel;
1514
1515        switch (divsel) {
1516        case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517                div *= 2;
1518                fallthrough;
1519        case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520                div *= 2;
1521                fallthrough;
1522        case PRCM_DSI_PLLOUT_SEL_PHI:
1523                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524                        PLL_RAW) / div;
1525        default:
1526                return 0;
1527        }
1528}
1529
1530static unsigned long dsiescclk_rate(u8 n)
1531{
1532        u32 div;
1533
1534        div = readl(PRCM_DSITVCLK_DIV);
1535        div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536        return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537}
1538
1539unsigned long prcmu_clock_rate(u8 clock)
1540{
1541        if (clock < PRCMU_NUM_REG_CLOCKS)
1542                return clock_rate(clock);
1543        else if (clock == PRCMU_TIMCLK)
1544                return prcmu_is_ulppll_disabled() ?
1545                        32768 : ROOT_CLOCK_RATE / 16;
1546        else if (clock == PRCMU_SYSCLK)
1547                return ROOT_CLOCK_RATE;
1548        else if (clock == PRCMU_PLLSOC0)
1549                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550        else if (clock == PRCMU_PLLSOC1)
1551                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552        else if (clock == PRCMU_ARMSS)
1553                return armss_rate();
1554        else if (clock == PRCMU_PLLDDR)
1555                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556        else if (clock == PRCMU_PLLDSI)
1557                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558                        PLL_RAW);
1559        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560                return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562                return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563        else
1564                return 0;
1565}
1566
1567static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568{
1569        if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570                return ROOT_CLOCK_RATE;
1571        clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572        if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578        else
1579                return 0;
1580}
1581
1582static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583{
1584        u32 div;
1585
1586        div = (src_rate / rate);
1587        if (div == 0)
1588                return 1;
1589        if (rate < (src_rate / div))
1590                div++;
1591        return div;
1592}
1593
1594static long round_clock_rate(u8 clock, unsigned long rate)
1595{
1596        u32 val;
1597        u32 div;
1598        unsigned long src_rate;
1599        long rounded_rate;
1600
1601        val = readl(prcmu_base + clk_mgt[clock].offset);
1602        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603                clk_mgt[clock].branch);
1604        div = clock_divider(src_rate, rate);
1605        if (val & PRCM_CLK_MGT_CLK38) {
1606                if (clk_mgt[clock].clk38div) {
1607                        if (div > 2)
1608                                div = 2;
1609                } else {
1610                        div = 1;
1611                }
1612        } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613                u64 r = (src_rate * 10);
1614
1615                (void)do_div(r, 25);
1616                if (r <= rate)
1617                        return (unsigned long)r;
1618        }
1619        rounded_rate = (src_rate / min(div, (u32)31));
1620
1621        return rounded_rate;
1622}
1623
1624static const unsigned long db8500_armss_freqs[] = {
1625        199680000,
1626        399360000,
1627        798720000,
1628        998400000
1629};
1630
1631/* The DB8520 has slightly higher ARMSS max frequency */
1632static const unsigned long db8520_armss_freqs[] = {
1633        199680000,
1634        399360000,
1635        798720000,
1636        1152000000
1637};
1638
1639static long round_armss_rate(unsigned long rate)
1640{
1641        unsigned long freq = 0;
1642        const unsigned long *freqs;
1643        int nfreqs;
1644        int i;
1645
1646        if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1647                freqs = db8520_armss_freqs;
1648                nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1649        } else {
1650                freqs = db8500_armss_freqs;
1651                nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1652        }
1653
1654        /* Find the corresponding arm opp from the cpufreq table. */
1655        for (i = 0; i < nfreqs; i++) {
1656                freq = freqs[i];
1657                if (rate <= freq)
1658                        break;
1659        }
1660
1661        /* Return the last valid value, even if a match was not found. */
1662        return freq;
1663}
1664
1665#define MIN_PLL_VCO_RATE 600000000ULL
1666#define MAX_PLL_VCO_RATE 1680640000ULL
1667
1668static long round_plldsi_rate(unsigned long rate)
1669{
1670        long rounded_rate = 0;
1671        unsigned long src_rate;
1672        unsigned long rem;
1673        u32 r;
1674
1675        src_rate = clock_rate(PRCMU_HDMICLK);
1676        rem = rate;
1677
1678        for (r = 7; (rem > 0) && (r > 0); r--) {
1679                u64 d;
1680
1681                d = (r * rate);
1682                (void)do_div(d, src_rate);
1683                if (d < 6)
1684                        d = 6;
1685                else if (d > 255)
1686                        d = 255;
1687                d *= src_rate;
1688                if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1689                        ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1690                        continue;
1691                (void)do_div(d, r);
1692                if (rate < d) {
1693                        if (rounded_rate == 0)
1694                                rounded_rate = (long)d;
1695                        break;
1696                }
1697                if ((rate - d) < rem) {
1698                        rem = (rate - d);
1699                        rounded_rate = (long)d;
1700                }
1701        }
1702        return rounded_rate;
1703}
1704
1705static long round_dsiclk_rate(unsigned long rate)
1706{
1707        u32 div;
1708        unsigned long src_rate;
1709        long rounded_rate;
1710
1711        src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712                PLL_RAW);
1713        div = clock_divider(src_rate, rate);
1714        rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1715
1716        return rounded_rate;
1717}
1718
1719static long round_dsiescclk_rate(unsigned long rate)
1720{
1721        u32 div;
1722        unsigned long src_rate;
1723        long rounded_rate;
1724
1725        src_rate = clock_rate(PRCMU_TVCLK);
1726        div = clock_divider(src_rate, rate);
1727        rounded_rate = (src_rate / min(div, (u32)255));
1728
1729        return rounded_rate;
1730}
1731
1732long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1733{
1734        if (clock < PRCMU_NUM_REG_CLOCKS)
1735                return round_clock_rate(clock, rate);
1736        else if (clock == PRCMU_ARMSS)
1737                return round_armss_rate(rate);
1738        else if (clock == PRCMU_PLLDSI)
1739                return round_plldsi_rate(rate);
1740        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1741                return round_dsiclk_rate(rate);
1742        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1743                return round_dsiescclk_rate(rate);
1744        else
1745                return (long)prcmu_clock_rate(clock);
1746}
1747
1748static void set_clock_rate(u8 clock, unsigned long rate)
1749{
1750        u32 val;
1751        u32 div;
1752        unsigned long src_rate;
1753        unsigned long flags;
1754
1755        spin_lock_irqsave(&clk_mgt_lock, flags);
1756
1757        /* Grab the HW semaphore. */
1758        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1759                cpu_relax();
1760
1761        val = readl(prcmu_base + clk_mgt[clock].offset);
1762        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1763                clk_mgt[clock].branch);
1764        div = clock_divider(src_rate, rate);
1765        if (val & PRCM_CLK_MGT_CLK38) {
1766                if (clk_mgt[clock].clk38div) {
1767                        if (div > 1)
1768                                val |= PRCM_CLK_MGT_CLK38DIV;
1769                        else
1770                                val &= ~PRCM_CLK_MGT_CLK38DIV;
1771                }
1772        } else if (clock == PRCMU_SGACLK) {
1773                val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1774                        PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1775                if (div == 3) {
1776                        u64 r = (src_rate * 10);
1777
1778                        (void)do_div(r, 25);
1779                        if (r <= rate) {
1780                                val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1781                                div = 0;
1782                        }
1783                }
1784                val |= min(div, (u32)31);
1785        } else {
1786                val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1787                val |= min(div, (u32)31);
1788        }
1789        writel(val, prcmu_base + clk_mgt[clock].offset);
1790
1791        /* Release the HW semaphore. */
1792        writel(0, PRCM_SEM);
1793
1794        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1795}
1796
1797static int set_armss_rate(unsigned long rate)
1798{
1799        unsigned long freq;
1800        u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1801        const unsigned long *freqs;
1802        int nfreqs;
1803        int i;
1804
1805        if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1806                freqs = db8520_armss_freqs;
1807                nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1808        } else {
1809                freqs = db8500_armss_freqs;
1810                nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1811        }
1812
1813        /* Find the corresponding arm opp from the cpufreq table. */
1814        for (i = 0; i < nfreqs; i++) {
1815                freq = freqs[i];
1816                if (rate == freq)
1817                        break;
1818        }
1819
1820        if (rate != freq)
1821                return -EINVAL;
1822
1823        /* Set the new arm opp. */
1824        pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1825        return db8500_prcmu_set_arm_opp(opps[i]);
1826}
1827
1828static int set_plldsi_rate(unsigned long rate)
1829{
1830        unsigned long src_rate;
1831        unsigned long rem;
1832        u32 pll_freq = 0;
1833        u32 r;
1834
1835        src_rate = clock_rate(PRCMU_HDMICLK);
1836        rem = rate;
1837
1838        for (r = 7; (rem > 0) && (r > 0); r--) {
1839                u64 d;
1840                u64 hwrate;
1841
1842                d = (r * rate);
1843                (void)do_div(d, src_rate);
1844                if (d < 6)
1845                        d = 6;
1846                else if (d > 255)
1847                        d = 255;
1848                hwrate = (d * src_rate);
1849                if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1850                        ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1851                        continue;
1852                (void)do_div(hwrate, r);
1853                if (rate < hwrate) {
1854                        if (pll_freq == 0)
1855                                pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1856                                        (r << PRCM_PLL_FREQ_R_SHIFT));
1857                        break;
1858                }
1859                if ((rate - hwrate) < rem) {
1860                        rem = (rate - hwrate);
1861                        pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1862                                (r << PRCM_PLL_FREQ_R_SHIFT));
1863                }
1864        }
1865        if (pll_freq == 0)
1866                return -EINVAL;
1867
1868        pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1869        writel(pll_freq, PRCM_PLLDSI_FREQ);
1870
1871        return 0;
1872}
1873
1874static void set_dsiclk_rate(u8 n, unsigned long rate)
1875{
1876        u32 val;
1877        u32 div;
1878
1879        div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1880                        clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1881
1882        dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1883                           (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1884                           /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1885
1886        val = readl(PRCM_DSI_PLLOUT_SEL);
1887        val &= ~dsiclk[n].divsel_mask;
1888        val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1889        writel(val, PRCM_DSI_PLLOUT_SEL);
1890}
1891
1892static void set_dsiescclk_rate(u8 n, unsigned long rate)
1893{
1894        u32 val;
1895        u32 div;
1896
1897        div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1898        val = readl(PRCM_DSITVCLK_DIV);
1899        val &= ~dsiescclk[n].div_mask;
1900        val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1901        writel(val, PRCM_DSITVCLK_DIV);
1902}
1903
1904int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1905{
1906        if (clock < PRCMU_NUM_REG_CLOCKS)
1907                set_clock_rate(clock, rate);
1908        else if (clock == PRCMU_ARMSS)
1909                return set_armss_rate(rate);
1910        else if (clock == PRCMU_PLLDSI)
1911                return set_plldsi_rate(rate);
1912        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1913                set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1914        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1915                set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1916        return 0;
1917}
1918
1919int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1920{
1921        if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1922            (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1923                return -EINVAL;
1924
1925        mutex_lock(&mb4_transfer.lock);
1926
1927        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1928                cpu_relax();
1929
1930        writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1931        writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1932               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1933        writeb(DDR_PWR_STATE_ON,
1934               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1935        writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1936
1937        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1938        wait_for_completion(&mb4_transfer.work);
1939
1940        mutex_unlock(&mb4_transfer.lock);
1941
1942        return 0;
1943}
1944
1945int db8500_prcmu_config_hotdog(u8 threshold)
1946{
1947        mutex_lock(&mb4_transfer.lock);
1948
1949        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1950                cpu_relax();
1951
1952        writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1953        writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1954
1955        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1956        wait_for_completion(&mb4_transfer.work);
1957
1958        mutex_unlock(&mb4_transfer.lock);
1959
1960        return 0;
1961}
1962
1963int db8500_prcmu_config_hotmon(u8 low, u8 high)
1964{
1965        mutex_lock(&mb4_transfer.lock);
1966
1967        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1968                cpu_relax();
1969
1970        writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1971        writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1972        writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1973                (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1974        writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1975
1976        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1977        wait_for_completion(&mb4_transfer.work);
1978
1979        mutex_unlock(&mb4_transfer.lock);
1980
1981        return 0;
1982}
1983EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1984
1985static int config_hot_period(u16 val)
1986{
1987        mutex_lock(&mb4_transfer.lock);
1988
1989        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1990                cpu_relax();
1991
1992        writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1993        writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1994
1995        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1996        wait_for_completion(&mb4_transfer.work);
1997
1998        mutex_unlock(&mb4_transfer.lock);
1999
2000        return 0;
2001}
2002
2003int db8500_prcmu_start_temp_sense(u16 cycles32k)
2004{
2005        if (cycles32k == 0xFFFF)
2006                return -EINVAL;
2007
2008        return config_hot_period(cycles32k);
2009}
2010EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2011
2012int db8500_prcmu_stop_temp_sense(void)
2013{
2014        return config_hot_period(0xFFFF);
2015}
2016EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2017
2018static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2019{
2020
2021        mutex_lock(&mb4_transfer.lock);
2022
2023        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2024                cpu_relax();
2025
2026        writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2027        writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2028        writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2029        writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2030
2031        writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2032
2033        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2034        wait_for_completion(&mb4_transfer.work);
2035
2036        mutex_unlock(&mb4_transfer.lock);
2037
2038        return 0;
2039
2040}
2041
2042int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2043{
2044        BUG_ON(num == 0 || num > 0xf);
2045        return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2046                            sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2047                            A9WDOG_AUTO_OFF_DIS);
2048}
2049EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2050
2051int db8500_prcmu_enable_a9wdog(u8 id)
2052{
2053        return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2054}
2055EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2056
2057int db8500_prcmu_disable_a9wdog(u8 id)
2058{
2059        return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2060}
2061EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2062
2063int db8500_prcmu_kick_a9wdog(u8 id)
2064{
2065        return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2066}
2067EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2068
2069/*
2070 * timeout is 28 bit, in ms.
2071 */
2072int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2073{
2074        return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2075                            (id & A9WDOG_ID_MASK) |
2076                            /*
2077                             * Put the lowest 28 bits of timeout at
2078                             * offset 4. Four first bits are used for id.
2079                             */
2080                            (u8)((timeout << 4) & 0xf0),
2081                            (u8)((timeout >> 4) & 0xff),
2082                            (u8)((timeout >> 12) & 0xff),
2083                            (u8)((timeout >> 20) & 0xff));
2084}
2085EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2086
2087/**
2088 * prcmu_abb_read() - Read register value(s) from the ABB.
2089 * @slave:      The I2C slave address.
2090 * @reg:        The (start) register address.
2091 * @value:      The read out value(s).
2092 * @size:       The number of registers to read.
2093 *
2094 * Reads register value(s) from the ABB.
2095 * @size has to be 1 for the current firmware version.
2096 */
2097int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2098{
2099        int r;
2100
2101        if (size != 1)
2102                return -EINVAL;
2103
2104        mutex_lock(&mb5_transfer.lock);
2105
2106        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2107                cpu_relax();
2108
2109        writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2110        writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2111        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2112        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2113        writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2114
2115        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2116
2117        if (!wait_for_completion_timeout(&mb5_transfer.work,
2118                                msecs_to_jiffies(20000))) {
2119                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2120                        __func__);
2121                r = -EIO;
2122        } else {
2123                r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2124        }
2125
2126        if (!r)
2127                *value = mb5_transfer.ack.value;
2128
2129        mutex_unlock(&mb5_transfer.lock);
2130
2131        return r;
2132}
2133
2134/**
2135 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2136 * @slave:      The I2C slave address.
2137 * @reg:        The (start) register address.
2138 * @value:      The value(s) to write.
2139 * @mask:       The mask(s) to use.
2140 * @size:       The number of registers to write.
2141 *
2142 * Writes masked register value(s) to the ABB.
2143 * For each @value, only the bits set to 1 in the corresponding @mask
2144 * will be written. The other bits are not changed.
2145 * @size has to be 1 for the current firmware version.
2146 */
2147int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2148{
2149        int r;
2150
2151        if (size != 1)
2152                return -EINVAL;
2153
2154        mutex_lock(&mb5_transfer.lock);
2155
2156        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2157                cpu_relax();
2158
2159        writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2160        writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2161        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2162        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2163        writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2164
2165        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2166
2167        if (!wait_for_completion_timeout(&mb5_transfer.work,
2168                                msecs_to_jiffies(20000))) {
2169                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2170                        __func__);
2171                r = -EIO;
2172        } else {
2173                r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2174        }
2175
2176        mutex_unlock(&mb5_transfer.lock);
2177
2178        return r;
2179}
2180
2181/**
2182 * prcmu_abb_write() - Write register value(s) to the ABB.
2183 * @slave:      The I2C slave address.
2184 * @reg:        The (start) register address.
2185 * @value:      The value(s) to write.
2186 * @size:       The number of registers to write.
2187 *
2188 * Writes register value(s) to the ABB.
2189 * @size has to be 1 for the current firmware version.
2190 */
2191int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2192{
2193        u8 mask = ~0;
2194
2195        return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2196}
2197
2198/**
2199 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2200 */
2201int prcmu_ac_wake_req(void)
2202{
2203        u32 val;
2204        int ret = 0;
2205
2206        mutex_lock(&mb0_transfer.ac_wake_lock);
2207
2208        val = readl(PRCM_HOSTACCESS_REQ);
2209        if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2210                goto unlock_and_return;
2211
2212        atomic_set(&ac_wake_req_state, 1);
2213
2214        /*
2215         * Force Modem Wake-up before hostaccess_req ping-pong.
2216         * It prevents Modem to enter in Sleep while acking the hostaccess
2217         * request. The 31us delay has been calculated by HWI.
2218         */
2219        val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2220        writel(val, PRCM_HOSTACCESS_REQ);
2221
2222        udelay(31);
2223
2224        val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2225        writel(val, PRCM_HOSTACCESS_REQ);
2226
2227        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2228                        msecs_to_jiffies(5000))) {
2229                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2230                        __func__);
2231                ret = -EFAULT;
2232        }
2233
2234unlock_and_return:
2235        mutex_unlock(&mb0_transfer.ac_wake_lock);
2236        return ret;
2237}
2238
2239/**
2240 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2241 */
2242void prcmu_ac_sleep_req(void)
2243{
2244        u32 val;
2245
2246        mutex_lock(&mb0_transfer.ac_wake_lock);
2247
2248        val = readl(PRCM_HOSTACCESS_REQ);
2249        if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2250                goto unlock_and_return;
2251
2252        writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2253                PRCM_HOSTACCESS_REQ);
2254
2255        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2256                        msecs_to_jiffies(5000))) {
2257                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2258                        __func__);
2259        }
2260
2261        atomic_set(&ac_wake_req_state, 0);
2262
2263unlock_and_return:
2264        mutex_unlock(&mb0_transfer.ac_wake_lock);
2265}
2266
2267bool db8500_prcmu_is_ac_wake_requested(void)
2268{
2269        return (atomic_read(&ac_wake_req_state) != 0);
2270}
2271
2272/**
2273 * db8500_prcmu_system_reset - System reset
2274 *
2275 * Saves the reset reason code and then sets the APE_SOFTRST register which
2276 * fires interrupt to fw
2277 *
2278 * @reset_code: The reason for system reset
2279 */
2280void db8500_prcmu_system_reset(u16 reset_code)
2281{
2282        writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2283        writel(1, PRCM_APE_SOFTRST);
2284}
2285
2286/**
2287 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2288 *
2289 * Retrieves the reset reason code stored by prcmu_system_reset() before
2290 * last restart.
2291 */
2292u16 db8500_prcmu_get_reset_code(void)
2293{
2294        return readw(tcdm_base + PRCM_SW_RST_REASON);
2295}
2296
2297/**
2298 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2299 */
2300void db8500_prcmu_modem_reset(void)
2301{
2302        mutex_lock(&mb1_transfer.lock);
2303
2304        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2305                cpu_relax();
2306
2307        writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2308        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2309        wait_for_completion(&mb1_transfer.work);
2310
2311        /*
2312         * No need to check return from PRCMU as modem should go in reset state
2313         * This state is already managed by upper layer
2314         */
2315
2316        mutex_unlock(&mb1_transfer.lock);
2317}
2318
2319static void ack_dbb_wakeup(void)
2320{
2321        unsigned long flags;
2322
2323        spin_lock_irqsave(&mb0_transfer.lock, flags);
2324
2325        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2326                cpu_relax();
2327
2328        writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2329        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2330
2331        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2332}
2333
2334static inline void print_unknown_header_warning(u8 n, u8 header)
2335{
2336        pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2337                header, n);
2338}
2339
2340static bool read_mailbox_0(void)
2341{
2342        bool r;
2343        u32 ev;
2344        unsigned int n;
2345        u8 header;
2346
2347        header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2348        switch (header) {
2349        case MB0H_WAKEUP_EXE:
2350        case MB0H_WAKEUP_SLEEP:
2351                if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2352                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2353                else
2354                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2355
2356                if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2357                        complete(&mb0_transfer.ac_wake_work);
2358                if (ev & WAKEUP_BIT_SYSCLK_OK)
2359                        complete(&mb3_transfer.sysclk_work);
2360
2361                ev &= mb0_transfer.req.dbb_irqs;
2362
2363                for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2364                        if (ev & prcmu_irq_bit[n])
2365                                generic_handle_domain_irq(db8500_irq_domain, n);
2366                }
2367                r = true;
2368                break;
2369        default:
2370                print_unknown_header_warning(0, header);
2371                r = false;
2372                break;
2373        }
2374        writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2375        return r;
2376}
2377
2378static bool read_mailbox_1(void)
2379{
2380        mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2381        mb1_transfer.ack.arm_opp = readb(tcdm_base +
2382                PRCM_ACK_MB1_CURRENT_ARM_OPP);
2383        mb1_transfer.ack.ape_opp = readb(tcdm_base +
2384                PRCM_ACK_MB1_CURRENT_APE_OPP);
2385        mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2386                PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2387        writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2388        complete(&mb1_transfer.work);
2389        return false;
2390}
2391
2392static bool read_mailbox_2(void)
2393{
2394        mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2395        writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2396        complete(&mb2_transfer.work);
2397        return false;
2398}
2399
2400static bool read_mailbox_3(void)
2401{
2402        writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2403        return false;
2404}
2405
2406static bool read_mailbox_4(void)
2407{
2408        u8 header;
2409        bool do_complete = true;
2410
2411        header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2412        switch (header) {
2413        case MB4H_MEM_ST:
2414        case MB4H_HOTDOG:
2415        case MB4H_HOTMON:
2416        case MB4H_HOT_PERIOD:
2417        case MB4H_A9WDOG_CONF:
2418        case MB4H_A9WDOG_EN:
2419        case MB4H_A9WDOG_DIS:
2420        case MB4H_A9WDOG_LOAD:
2421        case MB4H_A9WDOG_KICK:
2422                break;
2423        default:
2424                print_unknown_header_warning(4, header);
2425                do_complete = false;
2426                break;
2427        }
2428
2429        writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2430
2431        if (do_complete)
2432                complete(&mb4_transfer.work);
2433
2434        return false;
2435}
2436
2437static bool read_mailbox_5(void)
2438{
2439        mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2440        mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2441        writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2442        complete(&mb5_transfer.work);
2443        return false;
2444}
2445
2446static bool read_mailbox_6(void)
2447{
2448        writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2449        return false;
2450}
2451
2452static bool read_mailbox_7(void)
2453{
2454        writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2455        return false;
2456}
2457
2458static bool (* const read_mailbox[NUM_MB])(void) = {
2459        read_mailbox_0,
2460        read_mailbox_1,
2461        read_mailbox_2,
2462        read_mailbox_3,
2463        read_mailbox_4,
2464        read_mailbox_5,
2465        read_mailbox_6,
2466        read_mailbox_7
2467};
2468
2469static irqreturn_t prcmu_irq_handler(int irq, void *data)
2470{
2471        u32 bits;
2472        u8 n;
2473        irqreturn_t r;
2474
2475        bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2476        if (unlikely(!bits))
2477                return IRQ_NONE;
2478
2479        r = IRQ_HANDLED;
2480        for (n = 0; bits; n++) {
2481                if (bits & MBOX_BIT(n)) {
2482                        bits -= MBOX_BIT(n);
2483                        if (read_mailbox[n]())
2484                                r = IRQ_WAKE_THREAD;
2485                }
2486        }
2487        return r;
2488}
2489
2490static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2491{
2492        ack_dbb_wakeup();
2493        return IRQ_HANDLED;
2494}
2495
2496static void prcmu_mask_work(struct work_struct *work)
2497{
2498        unsigned long flags;
2499
2500        spin_lock_irqsave(&mb0_transfer.lock, flags);
2501
2502        config_wakeups();
2503
2504        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2505}
2506
2507static void prcmu_irq_mask(struct irq_data *d)
2508{
2509        unsigned long flags;
2510
2511        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2512
2513        mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2514
2515        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2516
2517        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2518                schedule_work(&mb0_transfer.mask_work);
2519}
2520
2521static void prcmu_irq_unmask(struct irq_data *d)
2522{
2523        unsigned long flags;
2524
2525        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2526
2527        mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2528
2529        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2530
2531        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2532                schedule_work(&mb0_transfer.mask_work);
2533}
2534
2535static void noop(struct irq_data *d)
2536{
2537}
2538
2539static struct irq_chip prcmu_irq_chip = {
2540        .name           = "prcmu",
2541        .irq_disable    = prcmu_irq_mask,
2542        .irq_ack        = noop,
2543        .irq_mask       = prcmu_irq_mask,
2544        .irq_unmask     = prcmu_irq_unmask,
2545};
2546
2547static char *fw_project_name(u32 project)
2548{
2549        switch (project) {
2550        case PRCMU_FW_PROJECT_U8500:
2551                return "U8500";
2552        case PRCMU_FW_PROJECT_U8400:
2553                return "U8400";
2554        case PRCMU_FW_PROJECT_U9500:
2555                return "U9500";
2556        case PRCMU_FW_PROJECT_U8500_MBB:
2557                return "U8500 MBB";
2558        case PRCMU_FW_PROJECT_U8500_C1:
2559                return "U8500 C1";
2560        case PRCMU_FW_PROJECT_U8500_C2:
2561                return "U8500 C2";
2562        case PRCMU_FW_PROJECT_U8500_C3:
2563                return "U8500 C3";
2564        case PRCMU_FW_PROJECT_U8500_C4:
2565                return "U8500 C4";
2566        case PRCMU_FW_PROJECT_U9500_MBL:
2567                return "U9500 MBL";
2568        case PRCMU_FW_PROJECT_U8500_SSG1:
2569                return "U8500 Samsung 1";
2570        case PRCMU_FW_PROJECT_U8500_MBL2:
2571                return "U8500 MBL2";
2572        case PRCMU_FW_PROJECT_U8520:
2573                return "U8520 MBL";
2574        case PRCMU_FW_PROJECT_U8420:
2575                return "U8420";
2576        case PRCMU_FW_PROJECT_U8500_SSG2:
2577                return "U8500 Samsung 2";
2578        case PRCMU_FW_PROJECT_U8420_SYSCLK:
2579                return "U8420-sysclk";
2580        case PRCMU_FW_PROJECT_U9540:
2581                return "U9540";
2582        case PRCMU_FW_PROJECT_A9420:
2583                return "A9420";
2584        case PRCMU_FW_PROJECT_L8540:
2585                return "L8540";
2586        case PRCMU_FW_PROJECT_L8580:
2587                return "L8580";
2588        default:
2589                return "Unknown";
2590        }
2591}
2592
2593static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2594                                irq_hw_number_t hwirq)
2595{
2596        irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2597                                handle_simple_irq);
2598
2599        return 0;
2600}
2601
2602static const struct irq_domain_ops db8500_irq_ops = {
2603        .map    = db8500_irq_map,
2604        .xlate  = irq_domain_xlate_twocell,
2605};
2606
2607static int db8500_irq_init(struct device_node *np)
2608{
2609        int i;
2610
2611        db8500_irq_domain = irq_domain_add_simple(
2612                np, NUM_PRCMU_WAKEUPS, 0,
2613                &db8500_irq_ops, NULL);
2614
2615        if (!db8500_irq_domain) {
2616                pr_err("Failed to create irqdomain\n");
2617                return -ENOSYS;
2618        }
2619
2620        /* All wakeups will be used, so create mappings for all */
2621        for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2622                irq_create_mapping(db8500_irq_domain, i);
2623
2624        return 0;
2625}
2626
2627static void dbx500_fw_version_init(struct device_node *np)
2628{
2629        void __iomem *tcpm_base;
2630        u32 version;
2631
2632        tcpm_base = of_iomap(np, 1);
2633        if (!tcpm_base) {
2634                pr_err("no prcmu tcpm mem region provided\n");
2635                return;
2636        }
2637
2638        version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2639        fw_info.version.project = (version & 0xFF);
2640        fw_info.version.api_version = (version >> 8) & 0xFF;
2641        fw_info.version.func_version = (version >> 16) & 0xFF;
2642        fw_info.version.errata = (version >> 24) & 0xFF;
2643        strncpy(fw_info.version.project_name,
2644                fw_project_name(fw_info.version.project),
2645                PRCMU_FW_PROJECT_NAME_LEN);
2646        fw_info.valid = true;
2647        pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2648                fw_info.version.project_name,
2649                fw_info.version.project,
2650                fw_info.version.api_version,
2651                fw_info.version.func_version,
2652                fw_info.version.errata);
2653        iounmap(tcpm_base);
2654}
2655
2656void __init db8500_prcmu_early_init(void)
2657{
2658        /*
2659         * This is a temporary remap to bring up the clocks. It is
2660         * subsequently replaces with a real remap. After the merge of
2661         * the mailbox subsystem all of this early code goes away, and the
2662         * clock driver can probe independently. An early initcall will
2663         * still be needed, but it can be diverted into drivers/clk/ux500.
2664         */
2665        struct device_node *np;
2666
2667        np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2668        prcmu_base = of_iomap(np, 0);
2669        if (!prcmu_base) {
2670                of_node_put(np);
2671                pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2672                return;
2673        }
2674        dbx500_fw_version_init(np);
2675        of_node_put(np);
2676
2677        spin_lock_init(&mb0_transfer.lock);
2678        spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2679        mutex_init(&mb0_transfer.ac_wake_lock);
2680        init_completion(&mb0_transfer.ac_wake_work);
2681        mutex_init(&mb1_transfer.lock);
2682        init_completion(&mb1_transfer.work);
2683        mb1_transfer.ape_opp = APE_NO_CHANGE;
2684        mutex_init(&mb2_transfer.lock);
2685        init_completion(&mb2_transfer.work);
2686        spin_lock_init(&mb2_transfer.auto_pm_lock);
2687        spin_lock_init(&mb3_transfer.lock);
2688        mutex_init(&mb3_transfer.sysclk_lock);
2689        init_completion(&mb3_transfer.sysclk_work);
2690        mutex_init(&mb4_transfer.lock);
2691        init_completion(&mb4_transfer.work);
2692        mutex_init(&mb5_transfer.lock);
2693        init_completion(&mb5_transfer.work);
2694
2695        INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2696}
2697
2698static void init_prcm_registers(void)
2699{
2700        u32 val;
2701
2702        val = readl(PRCM_A9PL_FORCE_CLKEN);
2703        val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704                PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705        writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706}
2707
2708/*
2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710 */
2711static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712        REGULATOR_SUPPLY("v-ape", NULL),
2713        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718        /* "v-mmc" changed to "vcore" in the mainline kernel */
2719        REGULATOR_SUPPLY("vcore", "sdi0"),
2720        REGULATOR_SUPPLY("vcore", "sdi1"),
2721        REGULATOR_SUPPLY("vcore", "sdi2"),
2722        REGULATOR_SUPPLY("vcore", "sdi3"),
2723        REGULATOR_SUPPLY("vcore", "sdi4"),
2724        REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725        REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726        /* "v-uart" changed to "vcore" in the mainline kernel */
2727        REGULATOR_SUPPLY("vcore", "uart0"),
2728        REGULATOR_SUPPLY("vcore", "uart1"),
2729        REGULATOR_SUPPLY("vcore", "uart2"),
2730        REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731        REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732        REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733};
2734
2735static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736        REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737        /* AV8100 regulator */
2738        REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739};
2740
2741static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742        REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743        REGULATOR_SUPPLY("vsupply", "mcde"),
2744};
2745
2746/* SVA MMDSP regulator switch */
2747static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748        REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749};
2750
2751/* SVA pipe regulator switch */
2752static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753        REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754};
2755
2756/* SIA MMDSP regulator switch */
2757static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758        REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759};
2760
2761/* SIA pipe regulator switch */
2762static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763        REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764};
2765
2766static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767        REGULATOR_SUPPLY("v-mali", NULL),
2768};
2769
2770/* ESRAM1 and 2 regulator switch */
2771static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772        REGULATOR_SUPPLY("esram12", "cm_control"),
2773};
2774
2775/* ESRAM3 and 4 regulator switch */
2776static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777        REGULATOR_SUPPLY("v-esram34", "mcde"),
2778        REGULATOR_SUPPLY("esram34", "cm_control"),
2779        REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780};
2781
2782static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783        [DB8500_REGULATOR_VAPE] = {
2784                .constraints = {
2785                        .name = "db8500-vape",
2786                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787                        .always_on = true,
2788                },
2789                .consumer_supplies = db8500_vape_consumers,
2790                .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791        },
2792        [DB8500_REGULATOR_VARM] = {
2793                .constraints = {
2794                        .name = "db8500-varm",
2795                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796                },
2797        },
2798        [DB8500_REGULATOR_VMODEM] = {
2799                .constraints = {
2800                        .name = "db8500-vmodem",
2801                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802                },
2803        },
2804        [DB8500_REGULATOR_VPLL] = {
2805                .constraints = {
2806                        .name = "db8500-vpll",
2807                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808                },
2809        },
2810        [DB8500_REGULATOR_VSMPS1] = {
2811                .constraints = {
2812                        .name = "db8500-vsmps1",
2813                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814                },
2815        },
2816        [DB8500_REGULATOR_VSMPS2] = {
2817                .constraints = {
2818                        .name = "db8500-vsmps2",
2819                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820                },
2821                .consumer_supplies = db8500_vsmps2_consumers,
2822                .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823        },
2824        [DB8500_REGULATOR_VSMPS3] = {
2825                .constraints = {
2826                        .name = "db8500-vsmps3",
2827                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828                },
2829        },
2830        [DB8500_REGULATOR_VRF1] = {
2831                .constraints = {
2832                        .name = "db8500-vrf1",
2833                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834                },
2835        },
2836        [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837                /* dependency to u8500-vape is handled outside regulator framework */
2838                .constraints = {
2839                        .name = "db8500-sva-mmdsp",
2840                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841                },
2842                .consumer_supplies = db8500_svammdsp_consumers,
2843                .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844        },
2845        [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846                .constraints = {
2847                        /* "ret" means "retention" */
2848                        .name = "db8500-sva-mmdsp-ret",
2849                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850                },
2851        },
2852        [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853                /* dependency to u8500-vape is handled outside regulator framework */
2854                .constraints = {
2855                        .name = "db8500-sva-pipe",
2856                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857                },
2858                .consumer_supplies = db8500_svapipe_consumers,
2859                .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860        },
2861        [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862                /* dependency to u8500-vape is handled outside regulator framework */
2863                .constraints = {
2864                        .name = "db8500-sia-mmdsp",
2865                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866                },
2867                .consumer_supplies = db8500_siammdsp_consumers,
2868                .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869        },
2870        [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871                .constraints = {
2872                        .name = "db8500-sia-mmdsp-ret",
2873                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874                },
2875        },
2876        [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877                /* dependency to u8500-vape is handled outside regulator framework */
2878                .constraints = {
2879                        .name = "db8500-sia-pipe",
2880                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                },
2882                .consumer_supplies = db8500_siapipe_consumers,
2883                .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884        },
2885        [DB8500_REGULATOR_SWITCH_SGA] = {
2886                .supply_regulator = "db8500-vape",
2887                .constraints = {
2888                        .name = "db8500-sga",
2889                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890                },
2891                .consumer_supplies = db8500_sga_consumers,
2892                .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893
2894        },
2895        [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896                .supply_regulator = "db8500-vape",
2897                .constraints = {
2898                        .name = "db8500-b2r2-mcde",
2899                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900                },
2901                .consumer_supplies = db8500_b2r2_mcde_consumers,
2902                .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903        },
2904        [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905                /*
2906                 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907                 * no need to hold Vape
2908                 */
2909                .constraints = {
2910                        .name = "db8500-esram12",
2911                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912                },
2913                .consumer_supplies = db8500_esram12_consumers,
2914                .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915        },
2916        [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917                .constraints = {
2918                        .name = "db8500-esram12-ret",
2919                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920                },
2921        },
2922        [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923                /*
2924                 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925                 * no need to hold Vape
2926                 */
2927                .constraints = {
2928                        .name = "db8500-esram34",
2929                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930                },
2931                .consumer_supplies = db8500_esram34_consumers,
2932                .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933        },
2934        [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935                .constraints = {
2936                        .name = "db8500-esram34-ret",
2937                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938                },
2939        },
2940};
2941
2942static struct ux500_wdt_data db8500_wdt_pdata = {
2943        .timeout = 600, /* 10 minutes */
2944        .has_28_bits_resolution = true,
2945};
2946
2947static const struct mfd_cell common_prcmu_devs[] = {
2948        {
2949                .name = "ux500_wdt",
2950                .platform_data = &db8500_wdt_pdata,
2951                .pdata_size = sizeof(db8500_wdt_pdata),
2952                .id = -1,
2953        },
2954        MFD_CELL_NAME("db8500-cpuidle"),
2955};
2956
2957static const struct mfd_cell db8500_prcmu_devs[] = {
2958        MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2959                    &db8500_regulators, sizeof(db8500_regulators), 0,
2960                    "stericsson,db8500-prcmu-regulator"),
2961        MFD_CELL_OF("db8500-thermal",
2962                    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2963};
2964
2965static int db8500_prcmu_register_ab8500(struct device *parent)
2966{
2967        struct device_node *np;
2968        struct resource ab850x_resource;
2969        const struct mfd_cell ab8500_cell = {
2970                .name = "ab8500-core",
2971                .of_compatible = "stericsson,ab8500",
2972                .id = AB8500_VERSION_AB8500,
2973                .resources = &ab850x_resource,
2974                .num_resources = 1,
2975        };
2976        const struct mfd_cell ab8505_cell = {
2977                .name = "ab8505-core",
2978                .of_compatible = "stericsson,ab8505",
2979                .id = AB8500_VERSION_AB8505,
2980                .resources = &ab850x_resource,
2981                .num_resources = 1,
2982        };
2983        const struct mfd_cell *ab850x_cell;
2984
2985        if (!parent->of_node)
2986                return -ENODEV;
2987
2988        /* Look up the device node, sneak the IRQ out of it */
2989        for_each_child_of_node(parent->of_node, np) {
2990                if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2991                        ab850x_cell = &ab8500_cell;
2992                        break;
2993                }
2994                if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2995                        ab850x_cell = &ab8505_cell;
2996                        break;
2997                }
2998        }
2999        if (!np) {
3000                dev_info(parent, "could not find AB850X node in the device tree\n");
3001                return -ENODEV;
3002        }
3003        of_irq_to_resource_table(np, &ab850x_resource, 1);
3004
3005        return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3006}
3007
3008static int db8500_prcmu_probe(struct platform_device *pdev)
3009{
3010        struct device_node *np = pdev->dev.of_node;
3011        int irq = 0, err = 0;
3012        struct resource *res;
3013
3014        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3015        if (!res) {
3016                dev_err(&pdev->dev, "no prcmu memory region provided\n");
3017                return -EINVAL;
3018        }
3019        prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3020        if (!prcmu_base) {
3021                dev_err(&pdev->dev,
3022                        "failed to ioremap prcmu register memory\n");
3023                return -ENOMEM;
3024        }
3025        init_prcm_registers();
3026        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3027        if (!res) {
3028                dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3029                return -EINVAL;
3030        }
3031        tcdm_base = devm_ioremap(&pdev->dev, res->start,
3032                        resource_size(res));
3033        if (!tcdm_base) {
3034                dev_err(&pdev->dev,
3035                        "failed to ioremap prcmu-tcdm register memory\n");
3036                return -ENOMEM;
3037        }
3038
3039        /* Clean up the mailbox interrupts after pre-kernel code. */
3040        writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3041
3042        irq = platform_get_irq(pdev, 0);
3043        if (irq <= 0)
3044                return irq;
3045
3046        err = request_threaded_irq(irq, prcmu_irq_handler,
3047                prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3048        if (err < 0) {
3049                pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3050                return err;
3051        }
3052
3053        db8500_irq_init(np);
3054
3055        prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3056
3057        err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3058                              ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3059        if (err) {
3060                pr_err("prcmu: Failed to add subdevices\n");
3061                return err;
3062        }
3063
3064        /* TODO: Remove restriction when clk definitions are available. */
3065        if (!of_machine_is_compatible("st-ericsson,u8540")) {
3066                err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3067                                      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3068                                      db8500_irq_domain);
3069                if (err) {
3070                        mfd_remove_devices(&pdev->dev);
3071                        pr_err("prcmu: Failed to add subdevices\n");
3072                        return err;
3073                }
3074        }
3075
3076        err = db8500_prcmu_register_ab8500(&pdev->dev);
3077        if (err) {
3078                mfd_remove_devices(&pdev->dev);
3079                pr_err("prcmu: Failed to add ab8500 subdevice\n");
3080                return err;
3081        }
3082
3083        pr_info("DB8500 PRCMU initialized\n");
3084        return err;
3085}
3086static const struct of_device_id db8500_prcmu_match[] = {
3087        { .compatible = "stericsson,db8500-prcmu"},
3088        { },
3089};
3090
3091static struct platform_driver db8500_prcmu_driver = {
3092        .driver = {
3093                .name = "db8500-prcmu",
3094                .of_match_table = db8500_prcmu_match,
3095        },
3096        .probe = db8500_prcmu_probe,
3097};
3098
3099static int __init db8500_prcmu_init(void)
3100{
3101        return platform_driver_register(&db8500_prcmu_driver);
3102}
3103core_initcall(db8500_prcmu_init);
3104