linux/drivers/misc/genwqe/card_utils.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IBM Accelerator Family 'GenWQE'
   4 *
   5 * (C) Copyright IBM Corp. 2013
   6 *
   7 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
   8 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
   9 * Author: Michael Jung <mijung@gmx.net>
  10 * Author: Michael Ruettger <michael@ibmra.de>
  11 */
  12
  13/*
  14 * Miscelanous functionality used in the other GenWQE driver parts.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/sched.h>
  19#include <linux/vmalloc.h>
  20#include <linux/page-flags.h>
  21#include <linux/scatterlist.h>
  22#include <linux/hugetlb.h>
  23#include <linux/iommu.h>
  24#include <linux/pci.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/ctype.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/delay.h>
  30#include <linux/pgtable.h>
  31
  32#include "genwqe_driver.h"
  33#include "card_base.h"
  34#include "card_ddcb.h"
  35
  36/**
  37 * __genwqe_writeq() - Write 64-bit register
  38 * @cd:         genwqe device descriptor
  39 * @byte_offs:  byte offset within BAR
  40 * @val:        64-bit value
  41 *
  42 * Return: 0 if success; < 0 if error
  43 */
  44int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  45{
  46        struct pci_dev *pci_dev = cd->pci_dev;
  47
  48        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  49                return -EIO;
  50
  51        if (cd->mmio == NULL)
  52                return -EIO;
  53
  54        if (pci_channel_offline(pci_dev))
  55                return -EIO;
  56
  57        __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  58        return 0;
  59}
  60
  61/**
  62 * __genwqe_readq() - Read 64-bit register
  63 * @cd:         genwqe device descriptor
  64 * @byte_offs:  offset within BAR
  65 *
  66 * Return: value from register
  67 */
  68u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  69{
  70        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  71                return 0xffffffffffffffffull;
  72
  73        if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  74            (byte_offs == IO_SLC_CFGREG_GFIR))
  75                return 0x000000000000ffffull;
  76
  77        if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  78            (byte_offs == IO_SLC_CFGREG_GFIR))
  79                return 0x00000000ffff0000ull;
  80
  81        if (cd->mmio == NULL)
  82                return 0xffffffffffffffffull;
  83
  84        return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  85}
  86
  87/**
  88 * __genwqe_writel() - Write 32-bit register
  89 * @cd:         genwqe device descriptor
  90 * @byte_offs:  byte offset within BAR
  91 * @val:        32-bit value
  92 *
  93 * Return: 0 if success; < 0 if error
  94 */
  95int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  96{
  97        struct pci_dev *pci_dev = cd->pci_dev;
  98
  99        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 100                return -EIO;
 101
 102        if (cd->mmio == NULL)
 103                return -EIO;
 104
 105        if (pci_channel_offline(pci_dev))
 106                return -EIO;
 107
 108        __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
 109        return 0;
 110}
 111
 112/**
 113 * __genwqe_readl() - Read 32-bit register
 114 * @cd:         genwqe device descriptor
 115 * @byte_offs:  offset within BAR
 116 *
 117 * Return: Value from register
 118 */
 119u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
 120{
 121        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 122                return 0xffffffff;
 123
 124        if (cd->mmio == NULL)
 125                return 0xffffffff;
 126
 127        return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
 128}
 129
 130/**
 131 * genwqe_read_app_id() - Extract app_id
 132 * @cd:         genwqe device descriptor
 133 * @app_name:   carrier used to pass-back name
 134 * @len:        length of data for name
 135 *
 136 * app_unitcfg need to be filled with valid data first
 137 */
 138int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
 139{
 140        int i, j;
 141        u32 app_id = (u32)cd->app_unitcfg;
 142
 143        memset(app_name, 0, len);
 144        for (i = 0, j = 0; j < min(len, 4); j++) {
 145                char ch = (char)((app_id >> (24 - j*8)) & 0xff);
 146
 147                if (ch == ' ')
 148                        continue;
 149                app_name[i++] = isprint(ch) ? ch : 'X';
 150        }
 151        return i;
 152}
 153
 154/**
 155 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
 156 *
 157 * Existing kernel functions seem to use a different polynom,
 158 * therefore we could not use them here.
 159 *
 160 * Genwqe's Polynomial = 0x20044009
 161 */
 162#define CRC32_POLYNOMIAL        0x20044009
 163static u32 crc32_tab[256];      /* crc32 lookup table */
 164
 165void genwqe_init_crc32(void)
 166{
 167        int i, j;
 168        u32 crc;
 169
 170        for (i = 0;  i < 256;  i++) {
 171                crc = i << 24;
 172                for (j = 0;  j < 8;  j++) {
 173                        if (crc & 0x80000000)
 174                                crc = (crc << 1) ^ CRC32_POLYNOMIAL;
 175                        else
 176                                crc = (crc << 1);
 177                }
 178                crc32_tab[i] = crc;
 179        }
 180}
 181
 182/**
 183 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
 184 * @buff:       pointer to data buffer
 185 * @len:        length of data for calculation
 186 * @init:       initial crc (0xffffffff at start)
 187 *
 188 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
 189 *
 190 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
 191 * result in a crc32 of 0xf33cb7d3.
 192 *
 193 * The existing kernel crc functions did not cover this polynom yet.
 194 *
 195 * Return: crc32 checksum.
 196 */
 197u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
 198{
 199        int i;
 200        u32 crc;
 201
 202        crc = init;
 203        while (len--) {
 204                i = ((crc >> 24) ^ *buff++) & 0xFF;
 205                crc = (crc << 8) ^ crc32_tab[i];
 206        }
 207        return crc;
 208}
 209
 210void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
 211                               dma_addr_t *dma_handle)
 212{
 213        if (get_order(size) >= MAX_ORDER)
 214                return NULL;
 215
 216        return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
 217                                  GFP_KERNEL);
 218}
 219
 220void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
 221                             void *vaddr, dma_addr_t dma_handle)
 222{
 223        if (vaddr == NULL)
 224                return;
 225
 226        dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
 227}
 228
 229static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
 230                              int num_pages)
 231{
 232        int i;
 233        struct pci_dev *pci_dev = cd->pci_dev;
 234
 235        for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
 236                pci_unmap_page(pci_dev, dma_list[i],
 237                               PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 238                dma_list[i] = 0x0;
 239        }
 240}
 241
 242static int genwqe_map_pages(struct genwqe_dev *cd,
 243                           struct page **page_list, int num_pages,
 244                           dma_addr_t *dma_list)
 245{
 246        int i;
 247        struct pci_dev *pci_dev = cd->pci_dev;
 248
 249        /* establish DMA mapping for requested pages */
 250        for (i = 0; i < num_pages; i++) {
 251                dma_addr_t daddr;
 252
 253                dma_list[i] = 0x0;
 254                daddr = pci_map_page(pci_dev, page_list[i],
 255                                     0,  /* map_offs */
 256                                     PAGE_SIZE,
 257                                     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
 258
 259                if (pci_dma_mapping_error(pci_dev, daddr)) {
 260                        dev_err(&pci_dev->dev,
 261                                "[%s] err: no dma addr daddr=%016llx!\n",
 262                                __func__, (long long)daddr);
 263                        goto err;
 264                }
 265
 266                dma_list[i] = daddr;
 267        }
 268        return 0;
 269
 270 err:
 271        genwqe_unmap_pages(cd, dma_list, num_pages);
 272        return -EIO;
 273}
 274
 275static int genwqe_sgl_size(int num_pages)
 276{
 277        int len, num_tlb = num_pages / 7;
 278
 279        len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
 280        return roundup(len, PAGE_SIZE);
 281}
 282
 283/*
 284 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
 285 *
 286 * Allocates memory for sgl and overlapping pages. Pages which might
 287 * overlap other user-space memory blocks are being cached for DMAs,
 288 * such that we do not run into syncronization issues. Data is copied
 289 * from user-space into the cached pages.
 290 */
 291int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 292                          void __user *user_addr, size_t user_size, int write)
 293{
 294        int ret = -ENOMEM;
 295        struct pci_dev *pci_dev = cd->pci_dev;
 296
 297        sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
 298        sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
 299        sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
 300        sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
 301
 302        dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
 303                __func__, user_addr, user_size, sgl->nr_pages,
 304                sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
 305
 306        sgl->user_addr = user_addr;
 307        sgl->user_size = user_size;
 308        sgl->write = write;
 309        sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
 310
 311        if (get_order(sgl->sgl_size) > MAX_ORDER) {
 312                dev_err(&pci_dev->dev,
 313                        "[%s] err: too much memory requested!\n", __func__);
 314                return ret;
 315        }
 316
 317        sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
 318                                             &sgl->sgl_dma_addr);
 319        if (sgl->sgl == NULL) {
 320                dev_err(&pci_dev->dev,
 321                        "[%s] err: no memory available!\n", __func__);
 322                return ret;
 323        }
 324
 325        /* Only use buffering on incomplete pages */
 326        if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
 327                sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 328                                                       &sgl->fpage_dma_addr);
 329                if (sgl->fpage == NULL)
 330                        goto err_out;
 331
 332                /* Sync with user memory */
 333                if (copy_from_user(sgl->fpage + sgl->fpage_offs,
 334                                   user_addr, sgl->fpage_size)) {
 335                        ret = -EFAULT;
 336                        goto err_out;
 337                }
 338        }
 339        if (sgl->lpage_size != 0) {
 340                sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 341                                                       &sgl->lpage_dma_addr);
 342                if (sgl->lpage == NULL)
 343                        goto err_out1;
 344
 345                /* Sync with user memory */
 346                if (copy_from_user(sgl->lpage, user_addr + user_size -
 347                                   sgl->lpage_size, sgl->lpage_size)) {
 348                        ret = -EFAULT;
 349                        goto err_out2;
 350                }
 351        }
 352        return 0;
 353
 354 err_out2:
 355        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 356                                 sgl->lpage_dma_addr);
 357        sgl->lpage = NULL;
 358        sgl->lpage_dma_addr = 0;
 359 err_out1:
 360        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 361                                 sgl->fpage_dma_addr);
 362        sgl->fpage = NULL;
 363        sgl->fpage_dma_addr = 0;
 364 err_out:
 365        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 366                                 sgl->sgl_dma_addr);
 367        sgl->sgl = NULL;
 368        sgl->sgl_dma_addr = 0;
 369        sgl->sgl_size = 0;
 370
 371        return ret;
 372}
 373
 374int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 375                     dma_addr_t *dma_list)
 376{
 377        int i = 0, j = 0, p;
 378        unsigned long dma_offs, map_offs;
 379        dma_addr_t prev_daddr = 0;
 380        struct sg_entry *s, *last_s = NULL;
 381        size_t size = sgl->user_size;
 382
 383        dma_offs = 128;         /* next block if needed/dma_offset */
 384        map_offs = sgl->fpage_offs; /* offset in first page */
 385
 386        s = &sgl->sgl[0];       /* first set of 8 entries */
 387        p = 0;                  /* page */
 388        while (p < sgl->nr_pages) {
 389                dma_addr_t daddr;
 390                unsigned int size_to_map;
 391
 392                /* always write the chaining entry, cleanup is done later */
 393                j = 0;
 394                s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
 395                s[j].len         = cpu_to_be32(128);
 396                s[j].flags       = cpu_to_be32(SG_CHAINED);
 397                j++;
 398
 399                while (j < 8) {
 400                        /* DMA mapping for requested page, offs, size */
 401                        size_to_map = min(size, PAGE_SIZE - map_offs);
 402
 403                        if ((p == 0) && (sgl->fpage != NULL)) {
 404                                daddr = sgl->fpage_dma_addr + map_offs;
 405
 406                        } else if ((p == sgl->nr_pages - 1) &&
 407                                   (sgl->lpage != NULL)) {
 408                                daddr = sgl->lpage_dma_addr;
 409                        } else {
 410                                daddr = dma_list[p] + map_offs;
 411                        }
 412
 413                        size -= size_to_map;
 414                        map_offs = 0;
 415
 416                        if (prev_daddr == daddr) {
 417                                u32 prev_len = be32_to_cpu(last_s->len);
 418
 419                                /* pr_info("daddr combining: "
 420                                        "%016llx/%08x -> %016llx\n",
 421                                        prev_daddr, prev_len, daddr); */
 422
 423                                last_s->len = cpu_to_be32(prev_len +
 424                                                          size_to_map);
 425
 426                                p++; /* process next page */
 427                                if (p == sgl->nr_pages)
 428                                        goto fixup;  /* nothing to do */
 429
 430                                prev_daddr = daddr + size_to_map;
 431                                continue;
 432                        }
 433
 434                        /* start new entry */
 435                        s[j].target_addr = cpu_to_be64(daddr);
 436                        s[j].len         = cpu_to_be32(size_to_map);
 437                        s[j].flags       = cpu_to_be32(SG_DATA);
 438                        prev_daddr = daddr + size_to_map;
 439                        last_s = &s[j];
 440                        j++;
 441
 442                        p++;    /* process next page */
 443                        if (p == sgl->nr_pages)
 444                                goto fixup;  /* nothing to do */
 445                }
 446                dma_offs += 128;
 447                s += 8;         /* continue 8 elements further */
 448        }
 449 fixup:
 450        if (j == 1) {           /* combining happened on last entry! */
 451                s -= 8;         /* full shift needed on previous sgl block */
 452                j =  7;         /* shift all elements */
 453        }
 454
 455        for (i = 0; i < j; i++) /* move elements 1 up */
 456                s[i] = s[i + 1];
 457
 458        s[i].target_addr = cpu_to_be64(0);
 459        s[i].len         = cpu_to_be32(0);
 460        s[i].flags       = cpu_to_be32(SG_END_LIST);
 461        return 0;
 462}
 463
 464/**
 465 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
 466 * @cd:         genwqe device descriptor
 467 * @sgl:        scatter gather list describing user-space memory
 468 *
 469 * After the DMA transfer has been completed we free the memory for
 470 * the sgl and the cached pages. Data is being transferred from cached
 471 * pages into user-space buffers.
 472 */
 473int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
 474{
 475        int rc = 0;
 476        size_t offset;
 477        unsigned long res;
 478        struct pci_dev *pci_dev = cd->pci_dev;
 479
 480        if (sgl->fpage) {
 481                if (sgl->write) {
 482                        res = copy_to_user(sgl->user_addr,
 483                                sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
 484                        if (res) {
 485                                dev_err(&pci_dev->dev,
 486                                        "[%s] err: copying fpage! (res=%lu)\n",
 487                                        __func__, res);
 488                                rc = -EFAULT;
 489                        }
 490                }
 491                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 492                                         sgl->fpage_dma_addr);
 493                sgl->fpage = NULL;
 494                sgl->fpage_dma_addr = 0;
 495        }
 496        if (sgl->lpage) {
 497                if (sgl->write) {
 498                        offset = sgl->user_size - sgl->lpage_size;
 499                        res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
 500                                           sgl->lpage_size);
 501                        if (res) {
 502                                dev_err(&pci_dev->dev,
 503                                        "[%s] err: copying lpage! (res=%lu)\n",
 504                                        __func__, res);
 505                                rc = -EFAULT;
 506                        }
 507                }
 508                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 509                                         sgl->lpage_dma_addr);
 510                sgl->lpage = NULL;
 511                sgl->lpage_dma_addr = 0;
 512        }
 513        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 514                                 sgl->sgl_dma_addr);
 515
 516        sgl->sgl = NULL;
 517        sgl->sgl_dma_addr = 0x0;
 518        sgl->sgl_size = 0;
 519        return rc;
 520}
 521
 522/**
 523 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
 524 * @cd:         pointer to genwqe device
 525 * @m:          mapping params
 526 * @uaddr:      user virtual address
 527 * @size:       size of memory to be mapped
 528 *
 529 * We need to think about how we could speed this up. Of course it is
 530 * not a good idea to do this over and over again, like we are
 531 * currently doing it. Nevertheless, I am curious where on the path
 532 * the performance is spend. Most probably within the memory
 533 * allocation functions, but maybe also in the DMA mapping code.
 534 *
 535 * Restrictions: The maximum size of the possible mapping currently depends
 536 *               on the amount of memory we can get using kzalloc() for the
 537 *               page_list and pci_alloc_consistent for the sg_list.
 538 *               The sg_list is currently itself not scattered, which could
 539 *               be fixed with some effort. The page_list must be split into
 540 *               PAGE_SIZE chunks too. All that will make the complicated
 541 *               code more complicated.
 542 *
 543 * Return: 0 if success
 544 */
 545int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
 546                     unsigned long size)
 547{
 548        int rc = -EINVAL;
 549        unsigned long data, offs;
 550        struct pci_dev *pci_dev = cd->pci_dev;
 551
 552        if ((uaddr == NULL) || (size == 0)) {
 553                m->size = 0;    /* mark unused and not added */
 554                return -EINVAL;
 555        }
 556        m->u_vaddr = uaddr;
 557        m->size    = size;
 558
 559        /* determine space needed for page_list. */
 560        data = (unsigned long)uaddr;
 561        offs = offset_in_page(data);
 562        if (size > ULONG_MAX - PAGE_SIZE - offs) {
 563                m->size = 0;    /* mark unused and not added */
 564                return -EINVAL;
 565        }
 566        m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
 567
 568        m->page_list = kcalloc(m->nr_pages,
 569                               sizeof(struct page *) + sizeof(dma_addr_t),
 570                               GFP_KERNEL);
 571        if (!m->page_list) {
 572                dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
 573                m->nr_pages = 0;
 574                m->u_vaddr = NULL;
 575                m->size = 0;    /* mark unused and not added */
 576                return -ENOMEM;
 577        }
 578        m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
 579
 580        /* pin user pages in memory */
 581        rc = pin_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
 582                                 m->nr_pages,
 583                                 m->write ? FOLL_WRITE : 0,     /* readable/writable */
 584                                 m->page_list); /* ptrs to pages */
 585        if (rc < 0)
 586                goto fail_pin_user_pages;
 587
 588        /* assumption: pin_user_pages can be killed by signals. */
 589        if (rc < m->nr_pages) {
 590                unpin_user_pages_dirty_lock(m->page_list, rc, m->write);
 591                rc = -EFAULT;
 592                goto fail_pin_user_pages;
 593        }
 594
 595        rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
 596        if (rc != 0)
 597                goto fail_free_user_pages;
 598
 599        return 0;
 600
 601 fail_free_user_pages:
 602        unpin_user_pages_dirty_lock(m->page_list, m->nr_pages, m->write);
 603
 604 fail_pin_user_pages:
 605        kfree(m->page_list);
 606        m->page_list = NULL;
 607        m->dma_list = NULL;
 608        m->nr_pages = 0;
 609        m->u_vaddr = NULL;
 610        m->size = 0;            /* mark unused and not added */
 611        return rc;
 612}
 613
 614/**
 615 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
 616 *                        memory
 617 * @cd:         pointer to genwqe device
 618 * @m:          mapping params
 619 */
 620int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
 621{
 622        struct pci_dev *pci_dev = cd->pci_dev;
 623
 624        if (!dma_mapping_used(m)) {
 625                dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
 626                        __func__, m);
 627                return -EINVAL;
 628        }
 629
 630        if (m->dma_list)
 631                genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
 632
 633        if (m->page_list) {
 634                unpin_user_pages_dirty_lock(m->page_list, m->nr_pages,
 635                                            m->write);
 636                kfree(m->page_list);
 637                m->page_list = NULL;
 638                m->dma_list = NULL;
 639                m->nr_pages = 0;
 640        }
 641
 642        m->u_vaddr = NULL;
 643        m->size = 0;            /* mark as unused and not added */
 644        return 0;
 645}
 646
 647/**
 648 * genwqe_card_type() - Get chip type SLU Configuration Register
 649 * @cd:         pointer to the genwqe device descriptor
 650 * Return: 0: Altera Stratix-IV 230
 651 *         1: Altera Stratix-IV 530
 652 *         2: Altera Stratix-V A4
 653 *         3: Altera Stratix-V A7
 654 */
 655u8 genwqe_card_type(struct genwqe_dev *cd)
 656{
 657        u64 card_type = cd->slu_unitcfg;
 658
 659        return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
 660}
 661
 662/**
 663 * genwqe_card_reset() - Reset the card
 664 * @cd:         pointer to the genwqe device descriptor
 665 */
 666int genwqe_card_reset(struct genwqe_dev *cd)
 667{
 668        u64 softrst;
 669        struct pci_dev *pci_dev = cd->pci_dev;
 670
 671        if (!genwqe_is_privileged(cd))
 672                return -ENODEV;
 673
 674        /* new SL */
 675        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
 676        msleep(1000);
 677        __genwqe_readq(cd, IO_HSU_FIR_CLR);
 678        __genwqe_readq(cd, IO_APP_FIR_CLR);
 679        __genwqe_readq(cd, IO_SLU_FIR_CLR);
 680
 681        /*
 682         * Read-modify-write to preserve the stealth bits
 683         *
 684         * For SL >= 039, Stealth WE bit allows removing
 685         * the read-modify-wrote.
 686         * r-m-w may require a mask 0x3C to avoid hitting hard
 687         * reset again for error reset (should be 0, chicken).
 688         */
 689        softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
 690        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
 691
 692        /* give ERRORRESET some time to finish */
 693        msleep(50);
 694
 695        if (genwqe_need_err_masking(cd)) {
 696                dev_info(&pci_dev->dev,
 697                         "[%s] masking errors for old bitstreams\n", __func__);
 698                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
 699        }
 700        return 0;
 701}
 702
 703int genwqe_read_softreset(struct genwqe_dev *cd)
 704{
 705        u64 bitstream;
 706
 707        if (!genwqe_is_privileged(cd))
 708                return -ENODEV;
 709
 710        bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
 711        cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
 712        return 0;
 713}
 714
 715/**
 716 * genwqe_set_interrupt_capability() - Configure MSI capability structure
 717 * @cd:         pointer to the device
 718 * @count:      number of vectors to allocate
 719 * Return: 0 if no error
 720 */
 721int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
 722{
 723        int rc;
 724
 725        rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
 726        if (rc < 0)
 727                return rc;
 728        return 0;
 729}
 730
 731/**
 732 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
 733 * @cd:         pointer to the device
 734 */
 735void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
 736{
 737        pci_free_irq_vectors(cd->pci_dev);
 738}
 739
 740/**
 741 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
 742 * @cd:         card device
 743 * @r:          debug register array
 744 * @i:          index to desired entry
 745 * @m:          maximum possible entries
 746 * @addr:       addr which is read
 747 * @idx:        index in debug array
 748 * @val:        read value
 749 */
 750static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
 751                       unsigned int *i, unsigned int m, u32 addr, u32 idx,
 752                       u64 val)
 753{
 754        if (WARN_ON_ONCE(*i >= m))
 755                return -EFAULT;
 756
 757        r[*i].addr = addr;
 758        r[*i].idx = idx;
 759        r[*i].val = val;
 760        ++*i;
 761        return 0;
 762}
 763
 764static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
 765                   unsigned int *i, unsigned int m, u32 addr, u64 val)
 766{
 767        return set_reg_idx(cd, r, i, m, addr, 0, val);
 768}
 769
 770int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
 771                         unsigned int max_regs, int all)
 772{
 773        unsigned int i, j, idx = 0;
 774        u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
 775        u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
 776
 777        /* Global FIR */
 778        gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
 779        set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
 780
 781        /* UnitCfg for SLU */
 782        sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
 783        set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
 784
 785        /* UnitCfg for APP */
 786        appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
 787        set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
 788
 789        /* Check all chip Units */
 790        for (i = 0; i < GENWQE_MAX_UNITS; i++) {
 791
 792                /* Unit FIR */
 793                ufir_addr = (i << 24) | 0x008;
 794                ufir = __genwqe_readq(cd, ufir_addr);
 795                set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
 796
 797                /* Unit FEC */
 798                ufec_addr = (i << 24) | 0x018;
 799                ufec = __genwqe_readq(cd, ufec_addr);
 800                set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
 801
 802                for (j = 0; j < 64; j++) {
 803                        /* wherever there is a primary 1, read the 2ndary */
 804                        if (!all && (!(ufir & (1ull << j))))
 805                                continue;
 806
 807                        sfir_addr = (i << 24) | (0x100 + 8 * j);
 808                        sfir = __genwqe_readq(cd, sfir_addr);
 809                        set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
 810
 811                        sfec_addr = (i << 24) | (0x300 + 8 * j);
 812                        sfec = __genwqe_readq(cd, sfec_addr);
 813                        set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
 814                }
 815        }
 816
 817        /* fill with invalid data until end */
 818        for (i = idx; i < max_regs; i++) {
 819                regs[i].addr = 0xffffffff;
 820                regs[i].val = 0xffffffffffffffffull;
 821        }
 822        return idx;
 823}
 824
 825/**
 826 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
 827 * @cd:         genwqe device descriptor
 828 * @uid:        unit ID
 829 */
 830int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
 831{
 832        int entries = 0, ring, traps, traces, trace_entries;
 833        u32 eevptr_addr, l_addr, d_len, d_type;
 834        u64 eevptr, val, addr;
 835
 836        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 837        eevptr = __genwqe_readq(cd, eevptr_addr);
 838
 839        if ((eevptr != 0x0) && (eevptr != -1ull)) {
 840                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 841
 842                while (1) {
 843                        val = __genwqe_readq(cd, l_addr);
 844
 845                        if ((val == 0x0) || (val == -1ull))
 846                                break;
 847
 848                        /* 38:24 */
 849                        d_len  = (val & 0x0000007fff000000ull) >> 24;
 850
 851                        /* 39 */
 852                        d_type = (val & 0x0000008000000000ull) >> 36;
 853
 854                        if (d_type) {   /* repeat */
 855                                entries += d_len;
 856                        } else {        /* size in bytes! */
 857                                entries += d_len >> 3;
 858                        }
 859
 860                        l_addr += 8;
 861                }
 862        }
 863
 864        for (ring = 0; ring < 8; ring++) {
 865                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 866                val = __genwqe_readq(cd, addr);
 867
 868                if ((val == 0x0ull) || (val == -1ull))
 869                        continue;
 870
 871                traps = (val >> 24) & 0xff;
 872                traces = (val >> 16) & 0xff;
 873                trace_entries = val & 0xffff;
 874
 875                entries += traps + (traces * trace_entries);
 876        }
 877        return entries;
 878}
 879
 880/**
 881 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
 882 * @cd:         genwqe device descriptor
 883 * @uid:        unit ID
 884 * @regs:       register information
 885 * @max_regs:   number of register entries
 886 */
 887int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
 888                          struct genwqe_reg *regs, unsigned int max_regs)
 889{
 890        int i, traps, traces, trace, trace_entries, trace_entry, ring;
 891        unsigned int idx = 0;
 892        u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
 893        u64 eevptr, e, val, addr;
 894
 895        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 896        eevptr = __genwqe_readq(cd, eevptr_addr);
 897
 898        if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
 899                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 900                while (1) {
 901                        e = __genwqe_readq(cd, l_addr);
 902                        if ((e == 0x0) || (e == 0xffffffffffffffffull))
 903                                break;
 904
 905                        d_addr = (e & 0x0000000000ffffffull);       /* 23:0 */
 906                        d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
 907                        d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
 908                        d_addr |= GENWQE_UID_OFFS(uid);
 909
 910                        if (d_type) {
 911                                for (i = 0; i < (int)d_len; i++) {
 912                                        val = __genwqe_readq(cd, d_addr);
 913                                        set_reg_idx(cd, regs, &idx, max_regs,
 914                                                    d_addr, i, val);
 915                                }
 916                        } else {
 917                                d_len >>= 3; /* Size in bytes! */
 918                                for (i = 0; i < (int)d_len; i++, d_addr += 8) {
 919                                        val = __genwqe_readq(cd, d_addr);
 920                                        set_reg_idx(cd, regs, &idx, max_regs,
 921                                                    d_addr, 0, val);
 922                                }
 923                        }
 924                        l_addr += 8;
 925                }
 926        }
 927
 928        /*
 929         * To save time, there are only 6 traces poplulated on Uid=2,
 930         * Ring=1. each with iters=512.
 931         */
 932        for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
 933                                              2...7 are ASI rings */
 934                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 935                val = __genwqe_readq(cd, addr);
 936
 937                if ((val == 0x0ull) || (val == -1ull))
 938                        continue;
 939
 940                traps = (val >> 24) & 0xff;     /* Number of Traps      */
 941                traces = (val >> 16) & 0xff;    /* Number of Traces     */
 942                trace_entries = val & 0xffff;   /* Entries per trace    */
 943
 944                /* Note: This is a combined loop that dumps both the traps */
 945                /* (for the trace == 0 case) as well as the traces 1 to    */
 946                /* 'traces'.                                               */
 947                for (trace = 0; trace <= traces; trace++) {
 948                        u32 diag_sel =
 949                                GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
 950
 951                        addr = (GENWQE_UID_OFFS(uid) |
 952                                IO_EXTENDED_DIAG_SELECTOR);
 953                        __genwqe_writeq(cd, addr, diag_sel);
 954
 955                        for (trace_entry = 0;
 956                             trace_entry < (trace ? trace_entries : traps);
 957                             trace_entry++) {
 958                                addr = (GENWQE_UID_OFFS(uid) |
 959                                        IO_EXTENDED_DIAG_READ_MBX);
 960                                val = __genwqe_readq(cd, addr);
 961                                set_reg_idx(cd, regs, &idx, max_regs, addr,
 962                                            (diag_sel<<16) | trace_entry, val);
 963                        }
 964                }
 965        }
 966        return 0;
 967}
 968
 969/**
 970 * genwqe_write_vreg() - Write register in virtual window
 971 * @cd:         genwqe device descriptor
 972 * @reg:        register (byte) offset within BAR
 973 * @val:        value to write
 974 * @func:       PCI virtual function
 975 *
 976 * Note, these registers are only accessible to the PF through the
 977 * VF-window. It is not intended for the VF to access.
 978 */
 979int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
 980{
 981        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
 982        __genwqe_writeq(cd, reg, val);
 983        return 0;
 984}
 985
 986/**
 987 * genwqe_read_vreg() - Read register in virtual window
 988 * @cd:         genwqe device descriptor
 989 * @reg:        register (byte) offset within BAR
 990 * @func:       PCI virtual function
 991 *
 992 * Note, these registers are only accessible to the PF through the
 993 * VF-window. It is not intended for the VF to access.
 994 */
 995u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
 996{
 997        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
 998        return __genwqe_readq(cd, reg);
 999}
1000
1001/**
1002 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1003 * @cd:         genwqe device descriptor
1004 *
1005 * Note: From a design perspective it turned out to be a bad idea to
1006 * use codes here to specifiy the frequency/speed values. An old
1007 * driver cannot understand new codes and is therefore always a
1008 * problem. Better is to measure out the value or put the
1009 * speed/frequency directly into a register which is always a valid
1010 * value for old as well as for new software.
1011 *
1012 * Return: Card clock in MHz
1013 */
1014int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1015{
1016        u16 speed;              /*         MHz  MHz  MHz  MHz */
1017        static const int speed_grade[] = { 250, 200, 166, 175 };
1018
1019        speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1020        if (speed >= ARRAY_SIZE(speed_grade))
1021                return 0;       /* illegal value */
1022
1023        return speed_grade[speed];
1024}
1025
1026/**
1027 * genwqe_stop_traps() - Stop traps
1028 * @cd:         genwqe device descriptor
1029 *
1030 * Before reading out the analysis data, we need to stop the traps.
1031 */
1032void genwqe_stop_traps(struct genwqe_dev *cd)
1033{
1034        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1035}
1036
1037/**
1038 * genwqe_start_traps() - Start traps
1039 * @cd:         genwqe device descriptor
1040 *
1041 * After having read the data, we can/must enable the traps again.
1042 */
1043void genwqe_start_traps(struct genwqe_dev *cd)
1044{
1045        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1046
1047        if (genwqe_need_err_masking(cd))
1048                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1049}
1050