linux/drivers/misc/habanalabs/common/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2016-2019 HabanaLabs, Ltd.
   5 * All Rights Reserved.
   6 */
   7
   8#include <uapi/misc/habanalabs.h>
   9#include "habanalabs.h"
  10#include "../include/hw_ip/mmu/mmu_general.h"
  11
  12#include <linux/uaccess.h>
  13#include <linux/slab.h>
  14
  15#define HL_MMU_DEBUG    0
  16
  17/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
  18#define DRAM_POOL_PAGE_SIZE SZ_8M
  19
  20/*
  21 * The va ranges in context object contain a list with the available chunks of
  22 * device virtual memory.
  23 * There is one range for host allocations and one for DRAM allocations.
  24 *
  25 * On initialization each range contains one chunk of all of its available
  26 * virtual range which is a half of the total device virtual range.
  27 *
  28 * On each mapping of physical pages, a suitable virtual range chunk (with a
  29 * minimum size) is selected from the list. If the chunk size equals the
  30 * requested size, the chunk is returned. Otherwise, the chunk is split into
  31 * two chunks - one to return as result and a remainder to stay in the list.
  32 *
  33 * On each Unmapping of a virtual address, the relevant virtual chunk is
  34 * returned to the list. The chunk is added to the list and if its edges match
  35 * the edges of the adjacent chunks (means a contiguous chunk can be created),
  36 * the chunks are merged.
  37 *
  38 * On finish, the list is checked to have only one chunk of all the relevant
  39 * virtual range (which is a half of the device total virtual range).
  40 * If not (means not all mappings were unmapped), a warning is printed.
  41 */
  42
  43/*
  44 * alloc_device_memory() - allocate device memory.
  45 * @ctx: pointer to the context structure.
  46 * @args: host parameters containing the requested size.
  47 * @ret_handle: result handle.
  48 *
  49 * This function does the following:
  50 * - Allocate the requested size rounded up to 'dram_page_size' pages.
  51 * - Return unique handle for later map/unmap/free.
  52 */
  53static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
  54                                u32 *ret_handle)
  55{
  56        struct hl_device *hdev = ctx->hdev;
  57        struct hl_vm *vm = &hdev->vm;
  58        struct hl_vm_phys_pg_pack *phys_pg_pack;
  59        u64 paddr = 0, total_size, num_pgs, i;
  60        u32 num_curr_pgs, page_size;
  61        int handle, rc;
  62        bool contiguous;
  63
  64        num_curr_pgs = 0;
  65        page_size = hdev->asic_prop.dram_page_size;
  66        num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
  67        total_size = num_pgs * page_size;
  68
  69        if (!total_size) {
  70                dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
  71                return -EINVAL;
  72        }
  73
  74        contiguous = args->flags & HL_MEM_CONTIGUOUS;
  75
  76        if (contiguous) {
  77                paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
  78                if (!paddr) {
  79                        dev_err(hdev->dev,
  80                                "failed to allocate %llu contiguous pages with total size of %llu\n",
  81                                num_pgs, total_size);
  82                        return -ENOMEM;
  83                }
  84        }
  85
  86        phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
  87        if (!phys_pg_pack) {
  88                rc = -ENOMEM;
  89                goto pages_pack_err;
  90        }
  91
  92        phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
  93        phys_pg_pack->asid = ctx->asid;
  94        phys_pg_pack->npages = num_pgs;
  95        phys_pg_pack->page_size = page_size;
  96        phys_pg_pack->total_size = total_size;
  97        phys_pg_pack->flags = args->flags;
  98        phys_pg_pack->contiguous = contiguous;
  99
 100        phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
 101        if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
 102                rc = -ENOMEM;
 103                goto pages_arr_err;
 104        }
 105
 106        if (phys_pg_pack->contiguous) {
 107                for (i = 0 ; i < num_pgs ; i++)
 108                        phys_pg_pack->pages[i] = paddr + i * page_size;
 109        } else {
 110                for (i = 0 ; i < num_pgs ; i++) {
 111                        phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
 112                                                        vm->dram_pg_pool,
 113                                                        page_size);
 114                        if (!phys_pg_pack->pages[i]) {
 115                                dev_err(hdev->dev,
 116                                        "Failed to allocate device memory (out of memory)\n");
 117                                rc = -ENOMEM;
 118                                goto page_err;
 119                        }
 120
 121                        num_curr_pgs++;
 122                }
 123        }
 124
 125        spin_lock(&vm->idr_lock);
 126        handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
 127                                GFP_ATOMIC);
 128        spin_unlock(&vm->idr_lock);
 129
 130        if (handle < 0) {
 131                dev_err(hdev->dev, "Failed to get handle for page\n");
 132                rc = -EFAULT;
 133                goto idr_err;
 134        }
 135
 136        for (i = 0 ; i < num_pgs ; i++)
 137                kref_get(&vm->dram_pg_pool_refcount);
 138
 139        phys_pg_pack->handle = handle;
 140
 141        atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
 142        atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
 143
 144        *ret_handle = handle;
 145
 146        return 0;
 147
 148idr_err:
 149page_err:
 150        if (!phys_pg_pack->contiguous)
 151                for (i = 0 ; i < num_curr_pgs ; i++)
 152                        gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
 153                                        page_size);
 154
 155        kvfree(phys_pg_pack->pages);
 156pages_arr_err:
 157        kfree(phys_pg_pack);
 158pages_pack_err:
 159        if (contiguous)
 160                gen_pool_free(vm->dram_pg_pool, paddr, total_size);
 161
 162        return rc;
 163}
 164
 165/**
 166 * dma_map_host_va() - DMA mapping of the given host virtual address.
 167 * @hdev: habanalabs device structure.
 168 * @addr: the host virtual address of the memory area.
 169 * @size: the size of the memory area.
 170 * @p_userptr: pointer to result userptr structure.
 171 *
 172 * This function does the following:
 173 * - Allocate userptr structure.
 174 * - Pin the given host memory using the userptr structure.
 175 * - Perform DMA mapping to have the DMA addresses of the pages.
 176 */
 177static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
 178                                struct hl_userptr **p_userptr)
 179{
 180        struct hl_userptr *userptr;
 181        int rc;
 182
 183        userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
 184        if (!userptr) {
 185                rc = -ENOMEM;
 186                goto userptr_err;
 187        }
 188
 189        rc = hl_pin_host_memory(hdev, addr, size, userptr);
 190        if (rc) {
 191                dev_err(hdev->dev, "Failed to pin host memory\n");
 192                goto pin_err;
 193        }
 194
 195        rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
 196                                        userptr->sgt->nents, DMA_BIDIRECTIONAL);
 197        if (rc) {
 198                dev_err(hdev->dev, "failed to map sgt with DMA region\n");
 199                goto dma_map_err;
 200        }
 201
 202        userptr->dma_mapped = true;
 203        userptr->dir = DMA_BIDIRECTIONAL;
 204        userptr->vm_type = VM_TYPE_USERPTR;
 205
 206        *p_userptr = userptr;
 207
 208        return 0;
 209
 210dma_map_err:
 211        hl_unpin_host_memory(hdev, userptr);
 212pin_err:
 213        kfree(userptr);
 214userptr_err:
 215
 216        return rc;
 217}
 218
 219/**
 220 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
 221 * @hdev: habanalabs device structure.
 222 * @userptr: userptr to free.
 223 *
 224 * This function does the following:
 225 * - Unpins the physical pages.
 226 * - Frees the userptr structure.
 227 */
 228static void dma_unmap_host_va(struct hl_device *hdev,
 229                                struct hl_userptr *userptr)
 230{
 231        hl_unpin_host_memory(hdev, userptr);
 232        kfree(userptr);
 233}
 234
 235/**
 236 * dram_pg_pool_do_release() - free DRAM pages pool
 237 * @ref: pointer to reference object.
 238 *
 239 * This function does the following:
 240 * - Frees the idr structure of physical pages handles.
 241 * - Frees the generic pool of DRAM physical pages.
 242 */
 243static void dram_pg_pool_do_release(struct kref *ref)
 244{
 245        struct hl_vm *vm = container_of(ref, struct hl_vm,
 246                        dram_pg_pool_refcount);
 247
 248        /*
 249         * free the idr here as only here we know for sure that there are no
 250         * allocated physical pages and hence there are no handles in use
 251         */
 252        idr_destroy(&vm->phys_pg_pack_handles);
 253        gen_pool_destroy(vm->dram_pg_pool);
 254}
 255
 256/**
 257 * free_phys_pg_pack() - free physical page pack.
 258 * @hdev: habanalabs device structure.
 259 * @phys_pg_pack: physical page pack to free.
 260 *
 261 * This function does the following:
 262 * - For DRAM memory only
 263 *   - iterate over the pack, scrub and free each physical block structure by
 264 *     returning it to the general pool.
 265 *     In case of error during scrubbing, initiate hard reset.
 266 *     Once hard reset is triggered, scrubbing is bypassed while freeing the
 267 *     memory continues.
 268 * - Free the hl_vm_phys_pg_pack structure.
 269 */
 270static int free_phys_pg_pack(struct hl_device *hdev,
 271                                struct hl_vm_phys_pg_pack *phys_pg_pack)
 272{
 273        struct hl_vm *vm = &hdev->vm;
 274        u64 i;
 275        int rc = 0;
 276
 277        if (phys_pg_pack->created_from_userptr)
 278                goto end;
 279
 280        if (phys_pg_pack->contiguous) {
 281                if (hdev->memory_scrub && !hdev->disabled) {
 282                        rc = hdev->asic_funcs->scrub_device_mem(hdev,
 283                                        phys_pg_pack->pages[0],
 284                                        phys_pg_pack->total_size);
 285                        if (rc)
 286                                dev_err(hdev->dev,
 287                                        "Failed to scrub contiguous device memory\n");
 288                }
 289
 290                gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
 291                        phys_pg_pack->total_size);
 292
 293                for (i = 0; i < phys_pg_pack->npages ; i++)
 294                        kref_put(&vm->dram_pg_pool_refcount,
 295                                dram_pg_pool_do_release);
 296        } else {
 297                for (i = 0 ; i < phys_pg_pack->npages ; i++) {
 298                        if (hdev->memory_scrub && !hdev->disabled && rc == 0) {
 299                                rc = hdev->asic_funcs->scrub_device_mem(
 300                                                hdev,
 301                                                phys_pg_pack->pages[i],
 302                                                phys_pg_pack->page_size);
 303                                if (rc)
 304                                        dev_err(hdev->dev,
 305                                                "Failed to scrub device memory\n");
 306                        }
 307                        gen_pool_free(vm->dram_pg_pool,
 308                                phys_pg_pack->pages[i],
 309                                phys_pg_pack->page_size);
 310                        kref_put(&vm->dram_pg_pool_refcount,
 311                                dram_pg_pool_do_release);
 312                }
 313        }
 314
 315        if (rc && !hdev->disabled)
 316                hl_device_reset(hdev, HL_RESET_HARD);
 317
 318end:
 319        kvfree(phys_pg_pack->pages);
 320        kfree(phys_pg_pack);
 321
 322        return rc;
 323}
 324
 325/**
 326 * free_device_memory() - free device memory.
 327 * @ctx: pointer to the context structure.
 328 * @args: host parameters containing the requested size.
 329 *
 330 * This function does the following:
 331 * - Free the device memory related to the given handle.
 332 */
 333static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
 334{
 335        struct hl_device *hdev = ctx->hdev;
 336        struct hl_vm *vm = &hdev->vm;
 337        struct hl_vm_phys_pg_pack *phys_pg_pack;
 338        u32 handle = args->free.handle;
 339
 340        spin_lock(&vm->idr_lock);
 341        phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
 342        if (phys_pg_pack) {
 343                if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
 344                        dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
 345                                handle);
 346                        spin_unlock(&vm->idr_lock);
 347                        return -EINVAL;
 348                }
 349
 350                /*
 351                 * must remove from idr before the freeing of the physical
 352                 * pages as the refcount of the pool is also the trigger of the
 353                 * idr destroy
 354                 */
 355                idr_remove(&vm->phys_pg_pack_handles, handle);
 356                spin_unlock(&vm->idr_lock);
 357
 358                atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
 359                atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
 360
 361                return free_phys_pg_pack(hdev, phys_pg_pack);
 362        } else {
 363                spin_unlock(&vm->idr_lock);
 364                dev_err(hdev->dev,
 365                        "free device memory failed, no match for handle %u\n",
 366                        handle);
 367                return -EINVAL;
 368        }
 369
 370        return 0;
 371}
 372
 373/**
 374 * clear_va_list_locked() - free virtual addresses list.
 375 * @hdev: habanalabs device structure.
 376 * @va_list: list of virtual addresses to free.
 377 *
 378 * This function does the following:
 379 * - Iterate over the list and free each virtual addresses block.
 380 *
 381 * This function should be called only when va_list lock is taken.
 382 */
 383static void clear_va_list_locked(struct hl_device *hdev,
 384                struct list_head *va_list)
 385{
 386        struct hl_vm_va_block *va_block, *tmp;
 387
 388        list_for_each_entry_safe(va_block, tmp, va_list, node) {
 389                list_del(&va_block->node);
 390                kfree(va_block);
 391        }
 392}
 393
 394/**
 395 * print_va_list_locked() - print virtual addresses list.
 396 * @hdev: habanalabs device structure.
 397 * @va_list: list of virtual addresses to print.
 398 *
 399 * This function does the following:
 400 * - Iterate over the list and print each virtual addresses block.
 401 *
 402 * This function should be called only when va_list lock is taken.
 403 */
 404static void print_va_list_locked(struct hl_device *hdev,
 405                struct list_head *va_list)
 406{
 407#if HL_MMU_DEBUG
 408        struct hl_vm_va_block *va_block;
 409
 410        dev_dbg(hdev->dev, "print va list:\n");
 411
 412        list_for_each_entry(va_block, va_list, node)
 413                dev_dbg(hdev->dev,
 414                        "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
 415                        va_block->start, va_block->end, va_block->size);
 416#endif
 417}
 418
 419/**
 420 * merge_va_blocks_locked() - merge a virtual block if possible.
 421 * @hdev: pointer to the habanalabs device structure.
 422 * @va_list: pointer to the virtual addresses block list.
 423 * @va_block: virtual block to merge with adjacent blocks.
 424 *
 425 * This function does the following:
 426 * - Merge the given blocks with the adjacent blocks if their virtual ranges
 427 *   create a contiguous virtual range.
 428 *
 429 * This Function should be called only when va_list lock is taken.
 430 */
 431static void merge_va_blocks_locked(struct hl_device *hdev,
 432                struct list_head *va_list, struct hl_vm_va_block *va_block)
 433{
 434        struct hl_vm_va_block *prev, *next;
 435
 436        prev = list_prev_entry(va_block, node);
 437        if (&prev->node != va_list && prev->end + 1 == va_block->start) {
 438                prev->end = va_block->end;
 439                prev->size = prev->end - prev->start;
 440                list_del(&va_block->node);
 441                kfree(va_block);
 442                va_block = prev;
 443        }
 444
 445        next = list_next_entry(va_block, node);
 446        if (&next->node != va_list && va_block->end + 1 == next->start) {
 447                next->start = va_block->start;
 448                next->size = next->end - next->start;
 449                list_del(&va_block->node);
 450                kfree(va_block);
 451        }
 452}
 453
 454/**
 455 * add_va_block_locked() - add a virtual block to the virtual addresses list.
 456 * @hdev: pointer to the habanalabs device structure.
 457 * @va_list: pointer to the virtual addresses block list.
 458 * @start: start virtual address.
 459 * @end: end virtual address.
 460 *
 461 * This function does the following:
 462 * - Add the given block to the virtual blocks list and merge with other blocks
 463 *   if a contiguous virtual block can be created.
 464 *
 465 * This Function should be called only when va_list lock is taken.
 466 */
 467static int add_va_block_locked(struct hl_device *hdev,
 468                struct list_head *va_list, u64 start, u64 end)
 469{
 470        struct hl_vm_va_block *va_block, *res = NULL;
 471        u64 size = end - start;
 472
 473        print_va_list_locked(hdev, va_list);
 474
 475        list_for_each_entry(va_block, va_list, node) {
 476                /* TODO: remove upon matureness */
 477                if (hl_mem_area_crosses_range(start, size, va_block->start,
 478                                va_block->end)) {
 479                        dev_err(hdev->dev,
 480                                "block crossing ranges at start 0x%llx, end 0x%llx\n",
 481                                va_block->start, va_block->end);
 482                        return -EINVAL;
 483                }
 484
 485                if (va_block->end < start)
 486                        res = va_block;
 487        }
 488
 489        va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
 490        if (!va_block)
 491                return -ENOMEM;
 492
 493        va_block->start = start;
 494        va_block->end = end;
 495        va_block->size = size;
 496
 497        if (!res)
 498                list_add(&va_block->node, va_list);
 499        else
 500                list_add(&va_block->node, &res->node);
 501
 502        merge_va_blocks_locked(hdev, va_list, va_block);
 503
 504        print_va_list_locked(hdev, va_list);
 505
 506        return 0;
 507}
 508
 509/**
 510 * add_va_block() - wrapper for add_va_block_locked.
 511 * @hdev: pointer to the habanalabs device structure.
 512 * @va_list: pointer to the virtual addresses block list.
 513 * @start: start virtual address.
 514 * @end: end virtual address.
 515 *
 516 * This function does the following:
 517 * - Takes the list lock and calls add_va_block_locked.
 518 */
 519static inline int add_va_block(struct hl_device *hdev,
 520                struct hl_va_range *va_range, u64 start, u64 end)
 521{
 522        int rc;
 523
 524        mutex_lock(&va_range->lock);
 525        rc = add_va_block_locked(hdev, &va_range->list, start, end);
 526        mutex_unlock(&va_range->lock);
 527
 528        return rc;
 529}
 530
 531/**
 532 * is_hint_crossing_range() - check if hint address crossing specified reserved
 533 * range.
 534 */
 535static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
 536                u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
 537        bool range_cross;
 538
 539        if (range_type == HL_VA_RANGE_TYPE_DRAM)
 540                range_cross =
 541                        hl_mem_area_crosses_range(start_addr, size,
 542                        prop->hints_dram_reserved_va_range.start_addr,
 543                        prop->hints_dram_reserved_va_range.end_addr);
 544        else if (range_type == HL_VA_RANGE_TYPE_HOST)
 545                range_cross =
 546                        hl_mem_area_crosses_range(start_addr,   size,
 547                        prop->hints_host_reserved_va_range.start_addr,
 548                        prop->hints_host_reserved_va_range.end_addr);
 549        else
 550                range_cross =
 551                        hl_mem_area_crosses_range(start_addr, size,
 552                        prop->hints_host_hpage_reserved_va_range.start_addr,
 553                        prop->hints_host_hpage_reserved_va_range.end_addr);
 554
 555        return range_cross;
 556}
 557
 558/**
 559 * get_va_block() - get a virtual block for the given size and alignment.
 560 *
 561 * @hdev: pointer to the habanalabs device structure.
 562 * @va_range: pointer to the virtual addresses range.
 563 * @size: requested block size.
 564 * @hint_addr: hint for requested address by the user.
 565 * @va_block_align: required alignment of the virtual block start address.
 566 * @range_type: va range type (host, dram)
 567 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
 568 *
 569 * This function does the following:
 570 * - Iterate on the virtual block list to find a suitable virtual block for the
 571 *   given size, hint address and alignment.
 572 * - Reserve the requested block and update the list.
 573 * - Return the start address of the virtual block.
 574 */
 575static u64 get_va_block(struct hl_device *hdev,
 576                                struct hl_va_range *va_range,
 577                                u64 size, u64 hint_addr, u32 va_block_align,
 578                                enum hl_va_range_type range_type,
 579                                u32 flags)
 580{
 581        struct hl_vm_va_block *va_block, *new_va_block = NULL;
 582        struct asic_fixed_properties *prop = &hdev->asic_prop;
 583        u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
 584                align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
 585                dram_hint_mask = prop->dram_hints_align_mask;
 586        bool add_prev = false;
 587        bool is_align_pow_2  = is_power_of_2(va_range->page_size);
 588        bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
 589        bool force_hint = flags & HL_MEM_FORCE_HINT;
 590
 591        if (is_align_pow_2)
 592                align_mask = ~((u64)va_block_align - 1);
 593        else
 594                /*
 595                 * with non-power-of-2 range we work only with page granularity
 596                 * and the start address is page aligned,
 597                 * so no need for alignment checking.
 598                 */
 599                size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
 600                                                        va_range->page_size;
 601
 602        tmp_hint_addr = hint_addr & ~dram_hint_mask;
 603
 604        /* Check if we need to ignore hint address */
 605        if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
 606                (!is_align_pow_2 && is_hint_dram_addr &&
 607                        do_div(tmp_hint_addr, va_range->page_size))) {
 608
 609                if (force_hint) {
 610                        /* Hint must be respected, so here we just fail */
 611                        dev_err(hdev->dev,
 612                                "Hint address 0x%llx is not page aligned - cannot be respected\n",
 613                                hint_addr);
 614                        return 0;
 615                }
 616
 617                dev_dbg(hdev->dev,
 618                        "Hint address 0x%llx will be ignored because it is not aligned\n",
 619                        hint_addr);
 620                hint_addr = 0;
 621        }
 622
 623        mutex_lock(&va_range->lock);
 624
 625        print_va_list_locked(hdev, &va_range->list);
 626
 627        list_for_each_entry(va_block, &va_range->list, node) {
 628                /* Calc the first possible aligned addr */
 629                valid_start = va_block->start;
 630
 631                if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
 632                        valid_start &= align_mask;
 633                        valid_start += va_block_align;
 634                        if (valid_start > va_block->end)
 635                                continue;
 636                }
 637
 638                valid_size = va_block->end - valid_start;
 639                if (valid_size < size)
 640                        continue;
 641
 642                /*
 643                 * In case hint address is 0, and arc_hints_range_reservation
 644                 * property enabled, then avoid allocating va blocks from the
 645                 * range reserved for hint addresses
 646                 */
 647                if (prop->hints_range_reservation && !hint_addr)
 648                        if (is_hint_crossing_range(range_type, valid_start,
 649                                        size, prop))
 650                                continue;
 651
 652                /* Pick the minimal length block which has the required size */
 653                if (!new_va_block || (valid_size < reserved_valid_size)) {
 654                        new_va_block = va_block;
 655                        reserved_valid_start = valid_start;
 656                        reserved_valid_size = valid_size;
 657                }
 658
 659                if (hint_addr && hint_addr >= valid_start &&
 660                                        (hint_addr + size) <= va_block->end) {
 661                        new_va_block = va_block;
 662                        reserved_valid_start = hint_addr;
 663                        reserved_valid_size = valid_size;
 664                        break;
 665                }
 666        }
 667
 668        if (!new_va_block) {
 669                dev_err(hdev->dev, "no available va block for size %llu\n",
 670                                                                size);
 671                goto out;
 672        }
 673
 674        if (force_hint && reserved_valid_start != hint_addr) {
 675                /* Hint address must be respected. If we are here - this means
 676                 * we could not respect it.
 677                 */
 678                dev_err(hdev->dev,
 679                        "Hint address 0x%llx could not be respected\n",
 680                        hint_addr);
 681                reserved_valid_start = 0;
 682                goto out;
 683        }
 684
 685        /*
 686         * Check if there is some leftover range due to reserving the new
 687         * va block, then return it to the main virtual addresses list.
 688         */
 689        if (reserved_valid_start > new_va_block->start) {
 690                prev_start = new_va_block->start;
 691                prev_end = reserved_valid_start - 1;
 692
 693                new_va_block->start = reserved_valid_start;
 694                new_va_block->size = reserved_valid_size;
 695
 696                add_prev = true;
 697        }
 698
 699        if (new_va_block->size > size) {
 700                new_va_block->start += size;
 701                new_va_block->size = new_va_block->end - new_va_block->start;
 702        } else {
 703                list_del(&new_va_block->node);
 704                kfree(new_va_block);
 705        }
 706
 707        if (add_prev)
 708                add_va_block_locked(hdev, &va_range->list, prev_start,
 709                                prev_end);
 710
 711        print_va_list_locked(hdev, &va_range->list);
 712out:
 713        mutex_unlock(&va_range->lock);
 714
 715        return reserved_valid_start;
 716}
 717
 718/*
 719 * hl_reserve_va_block() - reserve a virtual block of a given size.
 720 * @hdev: pointer to the habanalabs device structure.
 721 * @ctx: current context
 722 * @type: virtual addresses range type.
 723 * @size: requested block size.
 724 * @alignment: required alignment in bytes of the virtual block start address,
 725 *             0 means no alignment.
 726 *
 727 * This function does the following:
 728 * - Iterate on the virtual block list to find a suitable virtual block for the
 729 *   given size and alignment.
 730 * - Reserve the requested block and update the list.
 731 * - Return the start address of the virtual block.
 732 */
 733u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
 734                enum hl_va_range_type type, u32 size, u32 alignment)
 735{
 736        return get_va_block(hdev, ctx->va_range[type], size, 0,
 737                        max(alignment, ctx->va_range[type]->page_size),
 738                        type, 0);
 739}
 740
 741/**
 742 * hl_get_va_range_type() - get va_range type for the given address and size.
 743 * @address: the start address of the area we want to validate.
 744 * @size: the size in bytes of the area we want to validate.
 745 * @type: returned va_range type.
 746 *
 747 * Return: true if the area is inside a valid range, false otherwise.
 748 */
 749static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
 750                        enum hl_va_range_type *type)
 751{
 752        int i;
 753
 754        for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
 755                if (hl_mem_area_inside_range(address, size,
 756                                ctx->va_range[i]->start_addr,
 757                                ctx->va_range[i]->end_addr)) {
 758                        *type = i;
 759                        return 0;
 760                }
 761        }
 762
 763        return -EINVAL;
 764}
 765
 766/**
 767 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
 768 * @hdev: pointer to the habanalabs device structure
 769 * @ctx: pointer to the context structure.
 770 * @start: start virtual address.
 771 * @end: end virtual address.
 772 *
 773 * This function does the following:
 774 * - Takes the list lock and calls add_va_block_locked.
 775 */
 776int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
 777                u64 start_addr, u64 size)
 778{
 779        enum hl_va_range_type type;
 780        int rc;
 781
 782        rc = hl_get_va_range_type(ctx, start_addr, size, &type);
 783        if (rc) {
 784                dev_err(hdev->dev,
 785                        "cannot find va_range for va %#llx size %llu",
 786                        start_addr, size);
 787                return rc;
 788        }
 789
 790        rc = add_va_block(hdev, ctx->va_range[type], start_addr,
 791                                                start_addr + size - 1);
 792        if (rc)
 793                dev_warn(hdev->dev,
 794                        "add va block failed for vaddr: 0x%llx\n", start_addr);
 795
 796        return rc;
 797}
 798
 799/**
 800 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
 801 *                                    memory
 802 * @ctx: pointer to the context structure.
 803 * @userptr: userptr to initialize from.
 804 * @pphys_pg_pack: result pointer.
 805 * @force_regular_page: tell the function to ignore huge page optimization,
 806 *                      even if possible. Needed for cases where the device VA
 807 *                      is allocated before we know the composition of the
 808 *                      physical pages
 809 *
 810 * This function does the following:
 811 * - Pin the physical pages related to the given virtual block.
 812 * - Create a physical page pack from the physical pages related to the given
 813 *   virtual block.
 814 */
 815static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
 816                                struct hl_userptr *userptr,
 817                                struct hl_vm_phys_pg_pack **pphys_pg_pack,
 818                                bool force_regular_page)
 819{
 820        u32 npages, page_size = PAGE_SIZE,
 821                huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
 822        u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
 823        struct hl_vm_phys_pg_pack *phys_pg_pack;
 824        bool first = true, is_huge_page_opt;
 825        u64 page_mask, total_npages;
 826        struct scatterlist *sg;
 827        dma_addr_t dma_addr;
 828        int rc, i, j;
 829
 830        phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
 831        if (!phys_pg_pack)
 832                return -ENOMEM;
 833
 834        phys_pg_pack->vm_type = userptr->vm_type;
 835        phys_pg_pack->created_from_userptr = true;
 836        phys_pg_pack->asid = ctx->asid;
 837        atomic_set(&phys_pg_pack->mapping_cnt, 1);
 838
 839        is_huge_page_opt = (force_regular_page ? false : true);
 840
 841        /* Only if all dma_addrs are aligned to 2MB and their
 842         * sizes is at least 2MB, we can use huge page mapping.
 843         * We limit the 2MB optimization to this condition,
 844         * since later on we acquire the related VA range as one
 845         * consecutive block.
 846         */
 847        total_npages = 0;
 848        for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
 849                npages = hl_get_sg_info(sg, &dma_addr);
 850
 851                total_npages += npages;
 852
 853                if ((npages % pgs_in_huge_page) ||
 854                                        (dma_addr & (huge_page_size - 1)))
 855                        is_huge_page_opt = false;
 856        }
 857
 858        if (is_huge_page_opt) {
 859                page_size = huge_page_size;
 860                do_div(total_npages, pgs_in_huge_page);
 861        }
 862
 863        page_mask = ~(((u64) page_size) - 1);
 864
 865        phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
 866                                                GFP_KERNEL);
 867        if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
 868                rc = -ENOMEM;
 869                goto page_pack_arr_mem_err;
 870        }
 871
 872        phys_pg_pack->npages = total_npages;
 873        phys_pg_pack->page_size = page_size;
 874        phys_pg_pack->total_size = total_npages * page_size;
 875
 876        j = 0;
 877        for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
 878                npages = hl_get_sg_info(sg, &dma_addr);
 879
 880                /* align down to physical page size and save the offset */
 881                if (first) {
 882                        first = false;
 883                        phys_pg_pack->offset = dma_addr & (page_size - 1);
 884                        dma_addr &= page_mask;
 885                }
 886
 887                while (npages) {
 888                        phys_pg_pack->pages[j++] = dma_addr;
 889                        dma_addr += page_size;
 890
 891                        if (is_huge_page_opt)
 892                                npages -= pgs_in_huge_page;
 893                        else
 894                                npages--;
 895                }
 896        }
 897
 898        *pphys_pg_pack = phys_pg_pack;
 899
 900        return 0;
 901
 902page_pack_arr_mem_err:
 903        kfree(phys_pg_pack);
 904
 905        return rc;
 906}
 907
 908/**
 909 * map_phys_pg_pack() - maps the physical page pack..
 910 * @ctx: pointer to the context structure.
 911 * @vaddr: start address of the virtual area to map from.
 912 * @phys_pg_pack: the pack of physical pages to map to.
 913 *
 914 * This function does the following:
 915 * - Maps each chunk of virtual memory to matching physical chunk.
 916 * - Stores number of successful mappings in the given argument.
 917 * - Returns 0 on success, error code otherwise.
 918 */
 919static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
 920                                struct hl_vm_phys_pg_pack *phys_pg_pack)
 921{
 922        struct hl_device *hdev = ctx->hdev;
 923        u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
 924        u32 page_size = phys_pg_pack->page_size;
 925        int rc = 0;
 926        bool is_host_addr;
 927
 928        for (i = 0 ; i < phys_pg_pack->npages ; i++) {
 929                paddr = phys_pg_pack->pages[i];
 930
 931                rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
 932                                (i + 1) == phys_pg_pack->npages);
 933                if (rc) {
 934                        dev_err(hdev->dev,
 935                                "map failed for handle %u, npages: %llu, mapped: %llu",
 936                                phys_pg_pack->handle, phys_pg_pack->npages,
 937                                mapped_pg_cnt);
 938                        goto err;
 939                }
 940
 941                mapped_pg_cnt++;
 942                next_vaddr += page_size;
 943        }
 944
 945        return 0;
 946
 947err:
 948        is_host_addr = !hl_is_dram_va(hdev, vaddr);
 949
 950        next_vaddr = vaddr;
 951        for (i = 0 ; i < mapped_pg_cnt ; i++) {
 952                if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
 953                                        (i + 1) == mapped_pg_cnt))
 954                        dev_warn_ratelimited(hdev->dev,
 955                                "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
 956                                        phys_pg_pack->handle, next_vaddr,
 957                                        phys_pg_pack->pages[i], page_size);
 958
 959                next_vaddr += page_size;
 960
 961                /*
 962                 * unmapping on Palladium can be really long, so avoid a CPU
 963                 * soft lockup bug by sleeping a little between unmapping pages
 964                 *
 965                 * In addition, on host num of pages could be huge,
 966                 * because page size could be 4KB, so when unmapping host
 967                 * pages sleep every 32K pages to avoid soft lockup
 968                 */
 969                if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
 970                        usleep_range(50, 200);
 971        }
 972
 973        return rc;
 974}
 975
 976/**
 977 * unmap_phys_pg_pack() - unmaps the physical page pack.
 978 * @ctx: pointer to the context structure.
 979 * @vaddr: start address of the virtual area to unmap.
 980 * @phys_pg_pack: the pack of physical pages to unmap.
 981 */
 982static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
 983                                struct hl_vm_phys_pg_pack *phys_pg_pack)
 984{
 985        struct hl_device *hdev = ctx->hdev;
 986        u64 next_vaddr, i;
 987        bool is_host_addr;
 988        u32 page_size;
 989
 990        is_host_addr = !hl_is_dram_va(hdev, vaddr);
 991        page_size = phys_pg_pack->page_size;
 992        next_vaddr = vaddr;
 993
 994        for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
 995                if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
 996                                       (i + 1) == phys_pg_pack->npages))
 997                        dev_warn_ratelimited(hdev->dev,
 998                        "unmap failed for vaddr: 0x%llx\n", next_vaddr);
 999
1000                /*
1001                 * unmapping on Palladium can be really long, so avoid a CPU
1002                 * soft lockup bug by sleeping a little between unmapping pages
1003                 *
1004                 * In addition, on host num of pages could be huge,
1005                 * because page size could be 4KB, so when unmapping host
1006                 * pages sleep every 32K pages to avoid soft lockup
1007                 */
1008                if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1009                        usleep_range(50, 200);
1010        }
1011}
1012
1013static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1014                                        u64 *paddr)
1015{
1016        struct hl_device *hdev = ctx->hdev;
1017        struct hl_vm *vm = &hdev->vm;
1018        struct hl_vm_phys_pg_pack *phys_pg_pack;
1019        u32 handle;
1020
1021        handle = lower_32_bits(args->map_device.handle);
1022        spin_lock(&vm->idr_lock);
1023        phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1024        if (!phys_pg_pack) {
1025                spin_unlock(&vm->idr_lock);
1026                dev_err(hdev->dev, "no match for handle %u\n", handle);
1027                return -EINVAL;
1028        }
1029
1030        *paddr = phys_pg_pack->pages[0];
1031
1032        spin_unlock(&vm->idr_lock);
1033
1034        return 0;
1035}
1036
1037/**
1038 * map_device_va() - map the given memory.
1039 * @ctx: pointer to the context structure.
1040 * @args: host parameters with handle/host virtual address.
1041 * @device_addr: pointer to result device virtual address.
1042 *
1043 * This function does the following:
1044 * - If given a physical device memory handle, map to a device virtual block
1045 *   and return the start address of this block.
1046 * - If given a host virtual address and size, find the related physical pages,
1047 *   map a device virtual block to this pages and return the start address of
1048 *   this block.
1049 */
1050static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1051                u64 *device_addr)
1052{
1053        struct hl_device *hdev = ctx->hdev;
1054        struct hl_vm *vm = &hdev->vm;
1055        struct hl_vm_phys_pg_pack *phys_pg_pack;
1056        struct hl_userptr *userptr = NULL;
1057        struct hl_vm_hash_node *hnode;
1058        struct hl_va_range *va_range;
1059        enum vm_type *vm_type;
1060        u64 ret_vaddr, hint_addr;
1061        u32 handle = 0, va_block_align;
1062        int rc;
1063        bool is_userptr = args->flags & HL_MEM_USERPTR;
1064        enum hl_va_range_type va_range_type = 0;
1065
1066        /* Assume failure */
1067        *device_addr = 0;
1068
1069        if (is_userptr) {
1070                u64 addr = args->map_host.host_virt_addr,
1071                        size = args->map_host.mem_size;
1072                u32 page_size = hdev->asic_prop.pmmu.page_size,
1073                        huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1074
1075                rc = dma_map_host_va(hdev, addr, size, &userptr);
1076                if (rc) {
1077                        dev_err(hdev->dev, "failed to get userptr from va\n");
1078                        return rc;
1079                }
1080
1081                rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082                                &phys_pg_pack, false);
1083                if (rc) {
1084                        dev_err(hdev->dev,
1085                                "unable to init page pack for vaddr 0x%llx\n",
1086                                addr);
1087                        goto init_page_pack_err;
1088                }
1089
1090                vm_type = (enum vm_type *) userptr;
1091                hint_addr = args->map_host.hint_addr;
1092                handle = phys_pg_pack->handle;
1093
1094                /* get required alignment */
1095                if (phys_pg_pack->page_size == page_size) {
1096                        va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097                        va_range_type = HL_VA_RANGE_TYPE_HOST;
1098                        /*
1099                         * huge page alignment may be needed in case of regular
1100                         * page mapping, depending on the host VA alignment
1101                         */
1102                        if (addr & (huge_page_size - 1))
1103                                va_block_align = page_size;
1104                        else
1105                                va_block_align = huge_page_size;
1106                } else {
1107                        /*
1108                         * huge page alignment is needed in case of huge page
1109                         * mapping
1110                         */
1111                        va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112                        va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113                        va_block_align = huge_page_size;
1114                }
1115        } else {
1116                handle = lower_32_bits(args->map_device.handle);
1117
1118                spin_lock(&vm->idr_lock);
1119                phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1120                if (!phys_pg_pack) {
1121                        spin_unlock(&vm->idr_lock);
1122                        dev_err(hdev->dev,
1123                                "no match for handle %u\n", handle);
1124                        return -EINVAL;
1125                }
1126
1127                /* increment now to avoid freeing device memory while mapping */
1128                atomic_inc(&phys_pg_pack->mapping_cnt);
1129
1130                spin_unlock(&vm->idr_lock);
1131
1132                vm_type = (enum vm_type *) phys_pg_pack;
1133
1134                hint_addr = args->map_device.hint_addr;
1135
1136                /* DRAM VA alignment is the same as the MMU page size */
1137                va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138                va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139                va_block_align = hdev->asic_prop.dmmu.page_size;
1140        }
1141
1142        /*
1143         * relevant for mapping device physical memory only, as host memory is
1144         * implicitly shared
1145         */
1146        if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147                        phys_pg_pack->asid != ctx->asid) {
1148                dev_err(hdev->dev,
1149                        "Failed to map memory, handle %u is not shared\n",
1150                        handle);
1151                rc = -EPERM;
1152                goto shared_err;
1153        }
1154
1155        hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1156        if (!hnode) {
1157                rc = -ENOMEM;
1158                goto hnode_err;
1159        }
1160
1161        if (hint_addr && phys_pg_pack->offset) {
1162                if (args->flags & HL_MEM_FORCE_HINT) {
1163                        /* Fail if hint must be respected but it can't be */
1164                        dev_err(hdev->dev,
1165                                "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166                                hint_addr, phys_pg_pack->offset);
1167                        rc = -EINVAL;
1168                        goto va_block_err;
1169                }
1170                dev_dbg(hdev->dev,
1171                        "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172                        hint_addr, phys_pg_pack->offset);
1173        }
1174
1175        ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1176                                        hint_addr, va_block_align,
1177                                        va_range_type, args->flags);
1178        if (!ret_vaddr) {
1179                dev_err(hdev->dev, "no available va block for handle %u\n",
1180                                handle);
1181                rc = -ENOMEM;
1182                goto va_block_err;
1183        }
1184
1185        mutex_lock(&ctx->mmu_lock);
1186
1187        rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1188        if (rc) {
1189                mutex_unlock(&ctx->mmu_lock);
1190                dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
1191                                handle);
1192                goto map_err;
1193        }
1194
1195        rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, false,
1196                *vm_type, ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197
1198        mutex_unlock(&ctx->mmu_lock);
1199
1200        if (rc) {
1201                dev_err(hdev->dev,
1202                        "mapping handle %u failed due to MMU cache invalidation\n",
1203                        handle);
1204                goto map_err;
1205        }
1206
1207        ret_vaddr += phys_pg_pack->offset;
1208
1209        hnode->ptr = vm_type;
1210        hnode->vaddr = ret_vaddr;
1211
1212        mutex_lock(&ctx->mem_hash_lock);
1213        hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1214        mutex_unlock(&ctx->mem_hash_lock);
1215
1216        *device_addr = ret_vaddr;
1217
1218        if (is_userptr)
1219                rc = free_phys_pg_pack(hdev, phys_pg_pack);
1220
1221        return rc;
1222
1223map_err:
1224        if (add_va_block(hdev, va_range, ret_vaddr,
1225                                ret_vaddr + phys_pg_pack->total_size - 1))
1226                dev_warn(hdev->dev,
1227                        "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1228                                handle, ret_vaddr);
1229
1230va_block_err:
1231        kfree(hnode);
1232hnode_err:
1233shared_err:
1234        atomic_dec(&phys_pg_pack->mapping_cnt);
1235        if (is_userptr)
1236                free_phys_pg_pack(hdev, phys_pg_pack);
1237init_page_pack_err:
1238        if (is_userptr)
1239                dma_unmap_host_va(hdev, userptr);
1240
1241        return rc;
1242}
1243
1244/**
1245 * unmap_device_va() - unmap the given device virtual address.
1246 * @ctx: pointer to the context structure.
1247 * @args: host parameters with device virtual address to unmap.
1248 * @ctx_free: true if in context free flow, false otherwise.
1249 *
1250 * This function does the following:
1251 * - unmap the physical pages related to the given virtual address.
1252 * - return the device virtual block to the virtual block list.
1253 */
1254static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1255                                bool ctx_free)
1256{
1257        struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1258        u64 vaddr = args->unmap.device_virt_addr;
1259        struct hl_vm_hash_node *hnode = NULL;
1260        struct asic_fixed_properties *prop;
1261        struct hl_device *hdev = ctx->hdev;
1262        struct hl_userptr *userptr = NULL;
1263        struct hl_va_range *va_range;
1264        enum vm_type *vm_type;
1265        bool is_userptr;
1266        int rc = 0;
1267
1268        prop = &hdev->asic_prop;
1269
1270        /* protect from double entrance */
1271        mutex_lock(&ctx->mem_hash_lock);
1272        hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1273                if (vaddr == hnode->vaddr)
1274                        break;
1275
1276        if (!hnode) {
1277                mutex_unlock(&ctx->mem_hash_lock);
1278                dev_err(hdev->dev,
1279                        "unmap failed, no mem hnode for vaddr 0x%llx\n",
1280                        vaddr);
1281                return -EINVAL;
1282        }
1283
1284        hash_del(&hnode->node);
1285        mutex_unlock(&ctx->mem_hash_lock);
1286
1287        vm_type = hnode->ptr;
1288
1289        if (*vm_type == VM_TYPE_USERPTR) {
1290                is_userptr = true;
1291                userptr = hnode->ptr;
1292
1293                rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1294                                                        false);
1295                if (rc) {
1296                        dev_err(hdev->dev,
1297                                "unable to init page pack for vaddr 0x%llx\n",
1298                                vaddr);
1299                        goto vm_type_err;
1300                }
1301
1302                if (phys_pg_pack->page_size ==
1303                                        hdev->asic_prop.pmmu.page_size)
1304                        va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1305                else
1306                        va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1307        } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1308                is_userptr = false;
1309                va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1310                phys_pg_pack = hnode->ptr;
1311        } else {
1312                dev_warn(hdev->dev,
1313                        "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1314                                vaddr);
1315                rc = -EFAULT;
1316                goto vm_type_err;
1317        }
1318
1319        if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1320                dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1321                rc = -EINVAL;
1322                goto mapping_cnt_err;
1323        }
1324
1325        if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1326                vaddr = prop->dram_base_address +
1327                        DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1328                                                phys_pg_pack->page_size) *
1329                                                        phys_pg_pack->page_size;
1330        else
1331                vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1332
1333        mutex_lock(&ctx->mmu_lock);
1334
1335        unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1336
1337        /*
1338         * During context free this function is called in a loop to clean all
1339         * the context mappings. Hence the cache invalidation can be called once
1340         * at the loop end rather than for each iteration
1341         */
1342        if (!ctx_free)
1343                rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, true,
1344                                *vm_type, ctx->asid, vaddr,
1345                                phys_pg_pack->total_size);
1346
1347        mutex_unlock(&ctx->mmu_lock);
1348
1349        /*
1350         * If the context is closing we don't need to check for the MMU cache
1351         * invalidation return code and update the VA free list as in this flow
1352         * we invalidate the MMU cache outside of this unmap function and the VA
1353         * free list will be freed anyway.
1354         */
1355        if (!ctx_free) {
1356                int tmp_rc;
1357
1358                if (rc)
1359                        dev_err(hdev->dev,
1360                                "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1361                                vaddr);
1362
1363                tmp_rc = add_va_block(hdev, va_range, vaddr,
1364                                        vaddr + phys_pg_pack->total_size - 1);
1365                if (tmp_rc) {
1366                        dev_warn(hdev->dev,
1367                                        "add va block failed for vaddr: 0x%llx\n",
1368                                        vaddr);
1369                        if (!rc)
1370                                rc = tmp_rc;
1371                }
1372        }
1373
1374        atomic_dec(&phys_pg_pack->mapping_cnt);
1375        kfree(hnode);
1376
1377        if (is_userptr) {
1378                free_phys_pg_pack(hdev, phys_pg_pack);
1379                dma_unmap_host_va(hdev, userptr);
1380        }
1381
1382        return rc;
1383
1384mapping_cnt_err:
1385        if (is_userptr)
1386                free_phys_pg_pack(hdev, phys_pg_pack);
1387vm_type_err:
1388        mutex_lock(&ctx->mem_hash_lock);
1389        hash_add(ctx->mem_hash, &hnode->node, vaddr);
1390        mutex_unlock(&ctx->mem_hash_lock);
1391
1392        return rc;
1393}
1394
1395static int map_block(struct hl_device *hdev, u64 address, u64 *handle,
1396                        u32 *size)
1397{
1398        u32 block_id = 0;
1399        int rc;
1400
1401        rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1402
1403        *handle = block_id | HL_MMAP_TYPE_BLOCK;
1404        *handle <<= PAGE_SHIFT;
1405
1406        return rc;
1407}
1408
1409static void hw_block_vm_close(struct vm_area_struct *vma)
1410{
1411        struct hl_vm_hw_block_list_node *lnode =
1412                (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1413        struct hl_ctx *ctx = lnode->ctx;
1414
1415        mutex_lock(&ctx->hw_block_list_lock);
1416        list_del(&lnode->node);
1417        mutex_unlock(&ctx->hw_block_list_lock);
1418        hl_ctx_put(ctx);
1419        kfree(lnode);
1420        vma->vm_private_data = NULL;
1421}
1422
1423static const struct vm_operations_struct hw_block_vm_ops = {
1424        .close = hw_block_vm_close
1425};
1426
1427/**
1428 * hl_hw_block_mmap() - mmap a hw block to user.
1429 * @hpriv: pointer to the private data of the fd
1430 * @vma: pointer to vm_area_struct of the process
1431 *
1432 * Driver increments context reference for every HW block mapped in order
1433 * to prevent user from closing FD without unmapping first
1434 */
1435int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1436{
1437        struct hl_vm_hw_block_list_node *lnode;
1438        struct hl_device *hdev = hpriv->hdev;
1439        struct hl_ctx *ctx = hpriv->ctx;
1440        u32 block_id, block_size;
1441        int rc;
1442
1443        /* We use the page offset to hold the block id and thus we need to clear
1444         * it before doing the mmap itself
1445         */
1446        block_id = vma->vm_pgoff;
1447        vma->vm_pgoff = 0;
1448
1449        /* Driver only allows mapping of a complete HW block */
1450        block_size = vma->vm_end - vma->vm_start;
1451
1452        if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1453                dev_err(hdev->dev,
1454                        "user pointer is invalid - 0x%lx\n",
1455                        vma->vm_start);
1456
1457                return -EINVAL;
1458        }
1459
1460        lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1461        if (!lnode)
1462                return -ENOMEM;
1463
1464        vma->vm_ops = &hw_block_vm_ops;
1465        vma->vm_private_data = lnode;
1466
1467        hl_ctx_get(hdev, ctx);
1468
1469        rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1470        if (rc) {
1471                hl_ctx_put(ctx);
1472                kfree(lnode);
1473                return rc;
1474        }
1475
1476        lnode->ctx = ctx;
1477        lnode->vaddr = vma->vm_start;
1478        lnode->size = block_size;
1479        lnode->id = block_id;
1480
1481        mutex_lock(&ctx->hw_block_list_lock);
1482        list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1483        mutex_unlock(&ctx->hw_block_list_lock);
1484
1485        vma->vm_pgoff = block_id;
1486
1487        return 0;
1488}
1489
1490static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1491{
1492        struct hl_device *hdev = hpriv->hdev;
1493        struct hl_ctx *ctx = hpriv->ctx;
1494        u64 block_handle, device_addr = 0;
1495        u32 handle = 0, block_size;
1496        int rc;
1497
1498        switch (args->in.op) {
1499        case HL_MEM_OP_ALLOC:
1500                if (args->in.alloc.mem_size == 0) {
1501                        dev_err(hdev->dev,
1502                                "alloc size must be larger than 0\n");
1503                        rc = -EINVAL;
1504                        goto out;
1505                }
1506
1507                /* Force contiguous as there are no real MMU
1508                 * translations to overcome physical memory gaps
1509                 */
1510                args->in.flags |= HL_MEM_CONTIGUOUS;
1511                rc = alloc_device_memory(ctx, &args->in, &handle);
1512
1513                memset(args, 0, sizeof(*args));
1514                args->out.handle = (__u64) handle;
1515                break;
1516
1517        case HL_MEM_OP_FREE:
1518                rc = free_device_memory(ctx, &args->in);
1519                break;
1520
1521        case HL_MEM_OP_MAP:
1522                if (args->in.flags & HL_MEM_USERPTR) {
1523                        device_addr = args->in.map_host.host_virt_addr;
1524                        rc = 0;
1525                } else {
1526                        rc = get_paddr_from_handle(ctx, &args->in,
1527                                                        &device_addr);
1528                }
1529
1530                memset(args, 0, sizeof(*args));
1531                args->out.device_virt_addr = device_addr;
1532                break;
1533
1534        case HL_MEM_OP_UNMAP:
1535                rc = 0;
1536                break;
1537
1538        case HL_MEM_OP_MAP_BLOCK:
1539                rc = map_block(hdev, args->in.map_block.block_addr,
1540                                &block_handle, &block_size);
1541                args->out.block_handle = block_handle;
1542                args->out.block_size = block_size;
1543                break;
1544
1545        default:
1546                dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1547                rc = -ENOTTY;
1548                break;
1549        }
1550
1551out:
1552        return rc;
1553}
1554
1555int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1556{
1557        enum hl_device_status status;
1558        union hl_mem_args *args = data;
1559        struct hl_device *hdev = hpriv->hdev;
1560        struct hl_ctx *ctx = hpriv->ctx;
1561        u64 block_handle, device_addr = 0;
1562        u32 handle = 0, block_size;
1563        int rc;
1564
1565        if (!hl_device_operational(hdev, &status)) {
1566                dev_warn_ratelimited(hdev->dev,
1567                        "Device is %s. Can't execute MEMORY IOCTL\n",
1568                        hdev->status[status]);
1569                return -EBUSY;
1570        }
1571
1572        if (!hdev->mmu_enable)
1573                return mem_ioctl_no_mmu(hpriv, args);
1574
1575        switch (args->in.op) {
1576        case HL_MEM_OP_ALLOC:
1577                if (args->in.alloc.mem_size == 0) {
1578                        dev_err(hdev->dev,
1579                                "alloc size must be larger than 0\n");
1580                        rc = -EINVAL;
1581                        goto out;
1582                }
1583
1584                /* If DRAM does not support virtual memory the driver won't
1585                 * handle the allocation/freeing of that memory. However, for
1586                 * system administration/monitoring purposes, the driver will
1587                 * keep track of the amount of DRAM memory that is allocated
1588                 * and freed by the user. Because this code totally relies on
1589                 * the user's input, the driver can't ensure the validity
1590                 * of this accounting.
1591                 */
1592                if (!hdev->asic_prop.dram_supports_virtual_memory) {
1593                        atomic64_add(args->in.alloc.mem_size,
1594                                        &ctx->dram_phys_mem);
1595                        atomic64_add(args->in.alloc.mem_size,
1596                                        &hdev->dram_used_mem);
1597
1598                        dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1599                        rc = 0;
1600
1601                        memset(args, 0, sizeof(*args));
1602                        args->out.handle = 0;
1603                        goto out;
1604                }
1605
1606                rc = alloc_device_memory(ctx, &args->in, &handle);
1607
1608                memset(args, 0, sizeof(*args));
1609                args->out.handle = (__u64) handle;
1610                break;
1611
1612        case HL_MEM_OP_FREE:
1613                /* If DRAM does not support virtual memory the driver won't
1614                 * handle the allocation/freeing of that memory. However, for
1615                 * system administration/monitoring purposes, the driver will
1616                 * keep track of the amount of DRAM memory that is allocated
1617                 * and freed by the user. Because this code totally relies on
1618                 * the user's input, the driver can't ensure the validity
1619                 * of this accounting.
1620                 */
1621                if (!hdev->asic_prop.dram_supports_virtual_memory) {
1622                        atomic64_sub(args->in.alloc.mem_size,
1623                                        &ctx->dram_phys_mem);
1624                        atomic64_sub(args->in.alloc.mem_size,
1625                                        &hdev->dram_used_mem);
1626
1627                        dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1628                        rc = 0;
1629
1630                        goto out;
1631                }
1632
1633                rc = free_device_memory(ctx, &args->in);
1634                break;
1635
1636        case HL_MEM_OP_MAP:
1637                rc = map_device_va(ctx, &args->in, &device_addr);
1638
1639                memset(args, 0, sizeof(*args));
1640                args->out.device_virt_addr = device_addr;
1641                break;
1642
1643        case HL_MEM_OP_UNMAP:
1644                rc = unmap_device_va(ctx, &args->in, false);
1645                break;
1646
1647        case HL_MEM_OP_MAP_BLOCK:
1648                rc = map_block(hdev, args->in.map_block.block_addr,
1649                                &block_handle, &block_size);
1650                args->out.block_handle = block_handle;
1651                args->out.block_size = block_size;
1652                break;
1653
1654        default:
1655                dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1656                rc = -ENOTTY;
1657                break;
1658        }
1659
1660out:
1661        return rc;
1662}
1663
1664static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1665                                u32 npages, u64 start, u32 offset,
1666                                struct hl_userptr *userptr)
1667{
1668        int rc;
1669
1670        if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1671                dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1672                return -EFAULT;
1673        }
1674
1675        userptr->pages = kvmalloc_array(npages, sizeof(*userptr->pages),
1676                                        GFP_KERNEL);
1677        if (!userptr->pages)
1678                return -ENOMEM;
1679
1680        rc = pin_user_pages_fast(start, npages,
1681                                 FOLL_FORCE | FOLL_WRITE | FOLL_LONGTERM,
1682                                 userptr->pages);
1683
1684        if (rc != npages) {
1685                dev_err(hdev->dev,
1686                        "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
1687                        rc, addr, size, npages);
1688                if (rc < 0)
1689                        goto destroy_pages;
1690                npages = rc;
1691                rc = -EFAULT;
1692                goto put_pages;
1693        }
1694        userptr->npages = npages;
1695
1696        rc = sg_alloc_table_from_pages(userptr->sgt,
1697                                       userptr->pages,
1698                                       npages, offset, size, GFP_KERNEL);
1699        if (rc < 0) {
1700                dev_err(hdev->dev, "failed to create SG table from pages\n");
1701                goto put_pages;
1702        }
1703
1704        return 0;
1705
1706put_pages:
1707        unpin_user_pages(userptr->pages, npages);
1708destroy_pages:
1709        kvfree(userptr->pages);
1710        return rc;
1711}
1712
1713/**
1714 * hl_pin_host_memory() - pins a chunk of host memory.
1715 * @hdev: pointer to the habanalabs device structure.
1716 * @addr: the host virtual address of the memory area.
1717 * @size: the size of the memory area.
1718 * @userptr: pointer to hl_userptr structure.
1719 *
1720 * This function does the following:
1721 * - Pins the physical pages.
1722 * - Create an SG list from those pages.
1723 */
1724int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1725                                        struct hl_userptr *userptr)
1726{
1727        u64 start, end;
1728        u32 npages, offset;
1729        int rc;
1730
1731        if (!size) {
1732                dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1733                return -EINVAL;
1734        }
1735
1736        /*
1737         * If the combination of the address and size requested for this memory
1738         * region causes an integer overflow, return error.
1739         */
1740        if (((addr + size) < addr) ||
1741                        PAGE_ALIGN(addr + size) < (addr + size)) {
1742                dev_err(hdev->dev,
1743                        "user pointer 0x%llx + %llu causes integer overflow\n",
1744                        addr, size);
1745                return -EINVAL;
1746        }
1747
1748        userptr->pid = current->pid;
1749        userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
1750        if (!userptr->sgt)
1751                return -ENOMEM;
1752
1753        start = addr & PAGE_MASK;
1754        offset = addr & ~PAGE_MASK;
1755        end = PAGE_ALIGN(addr + size);
1756        npages = (end - start) >> PAGE_SHIFT;
1757
1758        userptr->size = size;
1759        userptr->addr = addr;
1760        userptr->dma_mapped = false;
1761        INIT_LIST_HEAD(&userptr->job_node);
1762
1763        rc = get_user_memory(hdev, addr, size, npages, start, offset,
1764                                userptr);
1765        if (rc) {
1766                dev_err(hdev->dev,
1767                        "failed to get user memory for address 0x%llx\n",
1768                        addr);
1769                goto free_sgt;
1770        }
1771
1772        hl_debugfs_add_userptr(hdev, userptr);
1773
1774        return 0;
1775
1776free_sgt:
1777        kfree(userptr->sgt);
1778        return rc;
1779}
1780
1781/*
1782 * hl_unpin_host_memory - unpins a chunk of host memory.
1783 * @hdev: pointer to the habanalabs device structure
1784 * @userptr: pointer to hl_userptr structure
1785 *
1786 * This function does the following:
1787 * - Unpins the physical pages related to the host memory
1788 * - Free the SG list
1789 */
1790void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1791{
1792        hl_debugfs_remove_userptr(hdev, userptr);
1793
1794        if (userptr->dma_mapped)
1795                hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1796                                                        userptr->sgt->nents,
1797                                                        userptr->dir);
1798
1799        unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
1800        kvfree(userptr->pages);
1801
1802        list_del(&userptr->job_node);
1803
1804        sg_free_table(userptr->sgt);
1805        kfree(userptr->sgt);
1806}
1807
1808/**
1809 * hl_userptr_delete_list() - clear userptr list.
1810 * @hdev: pointer to the habanalabs device structure.
1811 * @userptr_list: pointer to the list to clear.
1812 *
1813 * This function does the following:
1814 * - Iterates over the list and unpins the host memory and frees the userptr
1815 *   structure.
1816 */
1817void hl_userptr_delete_list(struct hl_device *hdev,
1818                                struct list_head *userptr_list)
1819{
1820        struct hl_userptr *userptr, *tmp;
1821
1822        list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1823                hl_unpin_host_memory(hdev, userptr);
1824                kfree(userptr);
1825        }
1826
1827        INIT_LIST_HEAD(userptr_list);
1828}
1829
1830/**
1831 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
1832 * @hdev: pointer to the habanalabs device structure.
1833 * @userptr_list: pointer to the list to clear.
1834 * @userptr: pointer to userptr to check.
1835 *
1836 * This function does the following:
1837 * - Iterates over the list and checks if the given userptr is in it, means is
1838 *   pinned. If so, returns true, otherwise returns false.
1839 */
1840bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1841                                u32 size, struct list_head *userptr_list,
1842                                struct hl_userptr **userptr)
1843{
1844        list_for_each_entry((*userptr), userptr_list, job_node) {
1845                if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1846                        return true;
1847        }
1848
1849        return false;
1850}
1851
1852/**
1853 * va_range_init() - initialize virtual addresses range.
1854 * @hdev: pointer to the habanalabs device structure.
1855 * @va_range: pointer to the range to initialize.
1856 * @start: range start address.
1857 * @end: range end address.
1858 *
1859 * This function does the following:
1860 * - Initializes the virtual addresses list of the given range with the given
1861 *   addresses.
1862 */
1863static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1864                                u64 start, u64 end, u32 page_size)
1865{
1866        int rc;
1867
1868        INIT_LIST_HEAD(&va_range->list);
1869
1870        /*
1871         * PAGE_SIZE alignment
1872         * it is the callers responsibility to align the addresses if the
1873         * page size is not a power of 2
1874         */
1875
1876        if (is_power_of_2(page_size)) {
1877                if (start & (PAGE_SIZE - 1)) {
1878                        start &= PAGE_MASK;
1879                        start += PAGE_SIZE;
1880                }
1881
1882                if (end & (PAGE_SIZE - 1))
1883                        end &= PAGE_MASK;
1884        }
1885
1886        if (start >= end) {
1887                dev_err(hdev->dev, "too small vm range for va list\n");
1888                return -EFAULT;
1889        }
1890
1891        rc = add_va_block(hdev, va_range, start, end);
1892
1893        if (rc) {
1894                dev_err(hdev->dev, "Failed to init host va list\n");
1895                return rc;
1896        }
1897
1898        va_range->start_addr = start;
1899        va_range->end_addr = end;
1900        va_range->page_size = page_size;
1901
1902        return 0;
1903}
1904
1905/**
1906 * va_range_fini() - clear a virtual addresses range.
1907 * @hdev: pointer to the habanalabs structure.
1908 * va_range: pointer to virtual addresses rang.e
1909 *
1910 * This function does the following:
1911 * - Frees the virtual addresses block list and its lock.
1912 */
1913static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
1914{
1915        mutex_lock(&va_range->lock);
1916        clear_va_list_locked(hdev, &va_range->list);
1917        mutex_unlock(&va_range->lock);
1918
1919        mutex_destroy(&va_range->lock);
1920        kfree(va_range);
1921}
1922
1923/**
1924 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
1925 * @ctx: pointer to the habanalabs context structure.
1926 * @host_range_start: host virtual addresses range start.
1927 * @host_range_end: host virtual addresses range end.
1928 * @host_huge_range_start: host virtual addresses range start for memory
1929 *                         allocated with huge pages.
1930 * @host_huge_range_end: host virtual addresses range end for memory allocated
1931 *                        with huge pages.
1932 * @dram_range_start: dram virtual addresses range start.
1933 * @dram_range_end: dram virtual addresses range end.
1934 *
1935 * This function initializes the following:
1936 * - MMU for context.
1937 * - Virtual address to area descriptor hashtable.
1938 * - Virtual block list of available virtual memory.
1939 */
1940static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1941                                        u64 host_range_start,
1942                                        u64 host_range_end,
1943                                        u32 host_page_size,
1944                                        u64 host_huge_range_start,
1945                                        u64 host_huge_range_end,
1946                                        u32 host_huge_page_size,
1947                                        u64 dram_range_start,
1948                                        u64 dram_range_end,
1949                                        u32 dram_page_size)
1950{
1951        struct hl_device *hdev = ctx->hdev;
1952        int i, rc;
1953
1954        for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
1955                ctx->va_range[i] =
1956                        kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
1957                if (!ctx->va_range[i]) {
1958                        rc = -ENOMEM;
1959                        goto free_va_range;
1960                }
1961        }
1962
1963        rc = hl_mmu_ctx_init(ctx);
1964        if (rc) {
1965                dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1966                goto free_va_range;
1967        }
1968
1969        mutex_init(&ctx->mem_hash_lock);
1970        hash_init(ctx->mem_hash);
1971
1972        mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1973
1974        rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST],
1975                        host_range_start, host_range_end, host_page_size);
1976        if (rc) {
1977                dev_err(hdev->dev, "failed to init host vm range\n");
1978                goto mmu_ctx_fini;
1979        }
1980
1981        if (hdev->pmmu_huge_range) {
1982                mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1983
1984                rc = va_range_init(hdev,
1985                        ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE],
1986                        host_huge_range_start, host_huge_range_end,
1987                        host_huge_page_size);
1988                if (rc) {
1989                        dev_err(hdev->dev,
1990                                "failed to init host huge vm range\n");
1991                        goto clear_host_va_range;
1992                }
1993        } else {
1994                kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
1995                ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
1996                                ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1997        }
1998
1999        mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2000
2001        rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM],
2002                        dram_range_start, dram_range_end, dram_page_size);
2003        if (rc) {
2004                dev_err(hdev->dev, "failed to init dram vm range\n");
2005                goto clear_host_huge_va_range;
2006        }
2007
2008        hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2009
2010        return 0;
2011
2012clear_host_huge_va_range:
2013        mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2014
2015        if (hdev->pmmu_huge_range) {
2016                mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2017                clear_va_list_locked(hdev,
2018                        &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2019                mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2020        }
2021clear_host_va_range:
2022        if (hdev->pmmu_huge_range)
2023                mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2024        mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2025        clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2026        mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2027mmu_ctx_fini:
2028        mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2029        mutex_destroy(&ctx->mem_hash_lock);
2030        hl_mmu_ctx_fini(ctx);
2031free_va_range:
2032        for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2033                kfree(ctx->va_range[i]);
2034
2035        return rc;
2036}
2037
2038int hl_vm_ctx_init(struct hl_ctx *ctx)
2039{
2040        struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2041        u64 host_range_start, host_range_end, host_huge_range_start,
2042                host_huge_range_end, dram_range_start, dram_range_end;
2043        u32 host_page_size, host_huge_page_size, dram_page_size;
2044
2045        atomic64_set(&ctx->dram_phys_mem, 0);
2046
2047        /*
2048         * - If MMU is enabled, init the ranges as usual.
2049         * - If MMU is disabled, in case of host mapping, the returned address
2050         *   is the given one.
2051         *   In case of DRAM mapping, the returned address is the physical
2052         *   address of the memory related to the given handle.
2053         */
2054        if (!ctx->hdev->mmu_enable)
2055                return 0;
2056
2057        dram_range_start = prop->dmmu.start_addr;
2058        dram_range_end = prop->dmmu.end_addr;
2059        dram_page_size = prop->dram_page_size ?
2060                                prop->dram_page_size : prop->dmmu.page_size;
2061        host_range_start = prop->pmmu.start_addr;
2062        host_range_end = prop->pmmu.end_addr;
2063        host_page_size = prop->pmmu.page_size;
2064        host_huge_range_start = prop->pmmu_huge.start_addr;
2065        host_huge_range_end = prop->pmmu_huge.end_addr;
2066        host_huge_page_size = prop->pmmu_huge.page_size;
2067
2068        return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2069                        host_page_size, host_huge_range_start,
2070                        host_huge_range_end, host_huge_page_size,
2071                        dram_range_start, dram_range_end, dram_page_size);
2072}
2073
2074/**
2075 * hl_vm_ctx_fini() - virtual memory teardown of context.
2076 * @ctx: pointer to the habanalabs context structure.
2077 *
2078 * This function perform teardown the following:
2079 * - Virtual block list of available virtual memory.
2080 * - Virtual address to area descriptor hashtable.
2081 * - MMU for context.
2082 *
2083 * In addition this function does the following:
2084 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2085 *   hashtable should be empty as no valid mappings should exist at this
2086 *   point.
2087 * - Frees any existing physical page list from the idr which relates to the
2088 *   current context asid.
2089 * - This function checks the virtual block list for correctness. At this point
2090 *   the list should contain one element which describes the whole virtual
2091 *   memory range of the context. Otherwise, a warning is printed.
2092 */
2093void hl_vm_ctx_fini(struct hl_ctx *ctx)
2094{
2095        struct hl_device *hdev = ctx->hdev;
2096        struct hl_vm *vm = &hdev->vm;
2097        struct hl_vm_phys_pg_pack *phys_pg_list;
2098        struct hl_vm_hash_node *hnode;
2099        struct hlist_node *tmp_node;
2100        struct hl_mem_in args;
2101        int i;
2102
2103        if (!hdev->mmu_enable)
2104                return;
2105
2106        hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2107
2108        /*
2109         * Clearly something went wrong on hard reset so no point in printing
2110         * another side effect error
2111         */
2112        if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
2113                dev_dbg(hdev->dev,
2114                        "user released device without removing its memory mappings\n");
2115
2116        hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2117                dev_dbg(hdev->dev,
2118                        "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2119                        hnode->vaddr, ctx->asid);
2120                args.unmap.device_virt_addr = hnode->vaddr;
2121                unmap_device_va(ctx, &args, true);
2122        }
2123
2124        mutex_lock(&ctx->mmu_lock);
2125
2126        /* invalidate the cache once after the unmapping loop */
2127        hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
2128        hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
2129
2130        mutex_unlock(&ctx->mmu_lock);
2131
2132        spin_lock(&vm->idr_lock);
2133        idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2134                if (phys_pg_list->asid == ctx->asid) {
2135                        dev_dbg(hdev->dev,
2136                                "page list 0x%px of asid %d is still alive\n",
2137                                phys_pg_list, ctx->asid);
2138                        atomic64_sub(phys_pg_list->total_size,
2139                                        &hdev->dram_used_mem);
2140                        free_phys_pg_pack(hdev, phys_pg_list);
2141                        idr_remove(&vm->phys_pg_pack_handles, i);
2142                }
2143        spin_unlock(&vm->idr_lock);
2144
2145        va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2146        va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2147
2148        if (hdev->pmmu_huge_range)
2149                va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2150
2151        mutex_destroy(&ctx->mem_hash_lock);
2152        hl_mmu_ctx_fini(ctx);
2153
2154        /* In this case we need to clear the global accounting of DRAM usage
2155         * because the user notifies us on allocations. If the user is no more,
2156         * all DRAM is available
2157         */
2158        if (ctx->asid != HL_KERNEL_ASID_ID &&
2159                        !hdev->asic_prop.dram_supports_virtual_memory)
2160                atomic64_set(&hdev->dram_used_mem, 0);
2161}
2162
2163/**
2164 * hl_vm_init() - initialize virtual memory module.
2165 * @hdev: pointer to the habanalabs device structure.
2166 *
2167 * This function initializes the following:
2168 * - MMU module.
2169 * - DRAM physical pages pool of 2MB.
2170 * - Idr for device memory allocation handles.
2171 */
2172int hl_vm_init(struct hl_device *hdev)
2173{
2174        struct asic_fixed_properties *prop = &hdev->asic_prop;
2175        struct hl_vm *vm = &hdev->vm;
2176        int rc;
2177
2178        if (is_power_of_2(prop->dram_page_size))
2179                vm->dram_pg_pool =
2180                        gen_pool_create(__ffs(prop->dram_page_size), -1);
2181        else
2182                vm->dram_pg_pool =
2183                        gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2184
2185        if (!vm->dram_pg_pool) {
2186                dev_err(hdev->dev, "Failed to create dram page pool\n");
2187                return -ENOMEM;
2188        }
2189
2190        kref_init(&vm->dram_pg_pool_refcount);
2191
2192        rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2193                        prop->dram_end_address - prop->dram_user_base_address,
2194                        -1);
2195
2196        if (rc) {
2197                dev_err(hdev->dev,
2198                        "Failed to add memory to dram page pool %d\n", rc);
2199                goto pool_add_err;
2200        }
2201
2202        spin_lock_init(&vm->idr_lock);
2203        idr_init(&vm->phys_pg_pack_handles);
2204
2205        atomic64_set(&hdev->dram_used_mem, 0);
2206
2207        vm->init_done = true;
2208
2209        return 0;
2210
2211pool_add_err:
2212        gen_pool_destroy(vm->dram_pg_pool);
2213
2214        return rc;
2215}
2216
2217/**
2218 * hl_vm_fini() - virtual memory module teardown.
2219 * @hdev: pointer to the habanalabs device structure.
2220 *
2221 * This function perform teardown to the following:
2222 * - Idr for device memory allocation handles.
2223 * - DRAM physical pages pool of 2MB.
2224 * - MMU module.
2225 */
2226void hl_vm_fini(struct hl_device *hdev)
2227{
2228        struct hl_vm *vm = &hdev->vm;
2229
2230        if (!vm->init_done)
2231                return;
2232
2233        /*
2234         * At this point all the contexts should be freed and hence no DRAM
2235         * memory should be in use. Hence the DRAM pool should be freed here.
2236         */
2237        if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2238                dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2239                                __func__);
2240
2241        vm->init_done = false;
2242}
2243
2244/**
2245 * hl_hw_block_mem_init() - HW block memory initialization.
2246 * @ctx: pointer to the habanalabs context structure.
2247 *
2248 * This function initializes the HW block virtual mapped addresses list and
2249 * it's lock.
2250 */
2251void hl_hw_block_mem_init(struct hl_ctx *ctx)
2252{
2253        mutex_init(&ctx->hw_block_list_lock);
2254        INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2255}
2256
2257/**
2258 * hl_hw_block_mem_fini() - HW block memory teardown.
2259 * @ctx: pointer to the habanalabs context structure.
2260 *
2261 * This function clears the HW block virtual mapped addresses list and destroys
2262 * it's lock.
2263 */
2264void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2265{
2266        struct hl_vm_hw_block_list_node *lnode, *tmp;
2267
2268        if (!list_empty(&ctx->hw_block_mem_list))
2269                dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2270
2271        list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2272                list_del(&lnode->node);
2273                kfree(lnode);
2274        }
2275
2276        mutex_destroy(&ctx->hw_block_list_lock);
2277}
2278