linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware VMCI Driver
   4 *
   5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   6 */
   7
   8#include <linux/vmw_vmci_defs.h>
   9#include <linux/vmw_vmci_api.h>
  10#include <linux/highmem.h>
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/pagemap.h>
  16#include <linux/pci.h>
  17#include <linux/sched.h>
  18#include <linux/slab.h>
  19#include <linux/uio.h>
  20#include <linux/wait.h>
  21#include <linux/vmalloc.h>
  22#include <linux/skbuff.h>
  23
  24#include "vmci_handle_array.h"
  25#include "vmci_queue_pair.h"
  26#include "vmci_datagram.h"
  27#include "vmci_resource.h"
  28#include "vmci_context.h"
  29#include "vmci_driver.h"
  30#include "vmci_event.h"
  31#include "vmci_route.h"
  32
  33/*
  34 * In the following, we will distinguish between two kinds of VMX processes -
  35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  36 * VMCI page files in the VMX and supporting VM to VM communication and the
  37 * newer ones that use the guest memory directly. We will in the following
  38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  39 * new-style VMX'en.
  40 *
  41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  42 * removed for readability) - see below for more details on the transtions:
  43 *
  44 *            --------------  NEW  -------------
  45 *            |                                |
  46 *           \_/                              \_/
  47 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  48 *            |    |                           |
  49 *            |    o-----------------------o   |
  50 *            |                            |   |
  51 *           \_/                          \_/ \_/
  52 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  53 *            |                            |   |
  54 *            |     o----------------------o   |
  55 *            |     |                          |
  56 *           \_/   \_/                        \_/
  57 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  58 *            |                                |
  59 *            |                                |
  60 *            -------------> gone <-------------
  61 *
  62 * In more detail. When a VMCI queue pair is first created, it will be in the
  63 * VMCIQPB_NEW state. It will then move into one of the following states:
  64 *
  65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  66 *
  67 *     - the created was performed by a host endpoint, in which case there is
  68 *       no backing memory yet.
  69 *
  70 *     - the create was initiated by an old-style VMX, that uses
  71 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  72 *       a later point in time. This state can be distinguished from the one
  73 *       above by the context ID of the creator. A host side is not allowed to
  74 *       attach until the page store has been set.
  75 *
  76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  77 *     is created by a VMX using the queue pair device backend that
  78 *     sets the UVAs of the queue pair immediately and stores the
  79 *     information for later attachers. At this point, it is ready for
  80 *     the host side to attach to it.
  81 *
  82 * Once the queue pair is in one of the created states (with the exception of
  83 * the case mentioned for older VMX'en above), it is possible to attach to the
  84 * queue pair. Again we have two new states possible:
  85 *
  86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  87 *   paths:
  88 *
  89 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  90 *       pair, and attaches to a queue pair previously created by the host side.
  91 *
  92 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
  93 *       already created by a guest.
  94 *
  95 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
  96 *       vmci_qp_broker_set_page_store (see below).
  97 *
  98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
  99 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 100 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 101 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 102 *     will be entered.
 103 *
 104 * From the attached queue pair, the queue pair can enter the shutdown states
 105 * when either side of the queue pair detaches. If the guest side detaches
 106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 107 * the content of the queue pair will no longer be available. If the host
 108 * side detaches first, the queue pair will either enter the
 109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 111 * (e.g., the host detaches while a guest is stunned).
 112 *
 113 * New-style VMX'en will also unmap guest memory, if the guest is
 114 * quiesced, e.g., during a snapshot operation. In that case, the guest
 115 * memory will no longer be available, and the queue pair will transition from
 116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 117 * in which case the queue pair will transition from the *_NO_MEM state at that
 118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 119 * since the peer may have either attached or detached in the meantime. The
 120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 121 * *_MEM state, and vice versa.
 122 */
 123
 124/* The Kernel specific component of the struct vmci_queue structure. */
 125struct vmci_queue_kern_if {
 126        struct mutex __mutex;   /* Protects the queue. */
 127        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 128        size_t num_pages;       /* Number of pages incl. header. */
 129        bool host;              /* Host or guest? */
 130        union {
 131                struct {
 132                        dma_addr_t *pas;
 133                        void **vas;
 134                } g;            /* Used by the guest. */
 135                struct {
 136                        struct page **page;
 137                        struct page **header_page;
 138                } h;            /* Used by the host. */
 139        } u;
 140};
 141
 142/*
 143 * This structure is opaque to the clients.
 144 */
 145struct vmci_qp {
 146        struct vmci_handle handle;
 147        struct vmci_queue *produce_q;
 148        struct vmci_queue *consume_q;
 149        u64 produce_q_size;
 150        u64 consume_q_size;
 151        u32 peer;
 152        u32 flags;
 153        u32 priv_flags;
 154        bool guest_endpoint;
 155        unsigned int blocked;
 156        unsigned int generation;
 157        wait_queue_head_t event;
 158};
 159
 160enum qp_broker_state {
 161        VMCIQPB_NEW,
 162        VMCIQPB_CREATED_NO_MEM,
 163        VMCIQPB_CREATED_MEM,
 164        VMCIQPB_ATTACHED_NO_MEM,
 165        VMCIQPB_ATTACHED_MEM,
 166        VMCIQPB_SHUTDOWN_NO_MEM,
 167        VMCIQPB_SHUTDOWN_MEM,
 168        VMCIQPB_GONE
 169};
 170
 171#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 172                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 173                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 174
 175/*
 176 * In the queue pair broker, we always use the guest point of view for
 177 * the produce and consume queue values and references, e.g., the
 178 * produce queue size stored is the guests produce queue size. The
 179 * host endpoint will need to swap these around. The only exception is
 180 * the local queue pairs on the host, in which case the host endpoint
 181 * that creates the queue pair will have the right orientation, and
 182 * the attaching host endpoint will need to swap.
 183 */
 184struct qp_entry {
 185        struct list_head list_item;
 186        struct vmci_handle handle;
 187        u32 peer;
 188        u32 flags;
 189        u64 produce_size;
 190        u64 consume_size;
 191        u32 ref_count;
 192};
 193
 194struct qp_broker_entry {
 195        struct vmci_resource resource;
 196        struct qp_entry qp;
 197        u32 create_id;
 198        u32 attach_id;
 199        enum qp_broker_state state;
 200        bool require_trusted_attach;
 201        bool created_by_trusted;
 202        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 203        struct vmci_queue *produce_q;
 204        struct vmci_queue *consume_q;
 205        struct vmci_queue_header saved_produce_q;
 206        struct vmci_queue_header saved_consume_q;
 207        vmci_event_release_cb wakeup_cb;
 208        void *client_data;
 209        void *local_mem;        /* Kernel memory for local queue pair */
 210};
 211
 212struct qp_guest_endpoint {
 213        struct vmci_resource resource;
 214        struct qp_entry qp;
 215        u64 num_ppns;
 216        void *produce_q;
 217        void *consume_q;
 218        struct ppn_set ppn_set;
 219};
 220
 221struct qp_list {
 222        struct list_head head;
 223        struct mutex mutex;     /* Protect queue list. */
 224};
 225
 226static struct qp_list qp_broker_list = {
 227        .head = LIST_HEAD_INIT(qp_broker_list.head),
 228        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 229};
 230
 231static struct qp_list qp_guest_endpoints = {
 232        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 233        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 234};
 235
 236#define INVALID_VMCI_GUEST_MEM_ID  0
 237#define QPE_NUM_PAGES(_QPE) ((u32) \
 238                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 239                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 240#define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \
 241        ((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \
 242         (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY)
 243
 244/*
 245 * Frees kernel VA space for a given queue and its queue header, and
 246 * frees physical data pages.
 247 */
 248static void qp_free_queue(void *q, u64 size)
 249{
 250        struct vmci_queue *queue = q;
 251
 252        if (queue) {
 253                u64 i;
 254
 255                /* Given size does not include header, so add in a page here. */
 256                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 257                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 258                                          queue->kernel_if->u.g.vas[i],
 259                                          queue->kernel_if->u.g.pas[i]);
 260                }
 261
 262                vfree(queue);
 263        }
 264}
 265
 266/*
 267 * Allocates kernel queue pages of specified size with IOMMU mappings,
 268 * plus space for the queue structure/kernel interface and the queue
 269 * header.
 270 */
 271static void *qp_alloc_queue(u64 size, u32 flags)
 272{
 273        u64 i;
 274        struct vmci_queue *queue;
 275        size_t pas_size;
 276        size_t vas_size;
 277        size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
 278        u64 num_pages;
 279
 280        if (size > SIZE_MAX - PAGE_SIZE)
 281                return NULL;
 282        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 283        if (num_pages >
 284                 (SIZE_MAX - queue_size) /
 285                 (sizeof(*queue->kernel_if->u.g.pas) +
 286                  sizeof(*queue->kernel_if->u.g.vas)))
 287                return NULL;
 288
 289        pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 290        vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 291        queue_size += pas_size + vas_size;
 292
 293        queue = vmalloc(queue_size);
 294        if (!queue)
 295                return NULL;
 296
 297        queue->q_header = NULL;
 298        queue->saved_header = NULL;
 299        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 300        queue->kernel_if->mutex = NULL;
 301        queue->kernel_if->num_pages = num_pages;
 302        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 303        queue->kernel_if->u.g.vas =
 304                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 305        queue->kernel_if->host = false;
 306
 307        for (i = 0; i < num_pages; i++) {
 308                queue->kernel_if->u.g.vas[i] =
 309                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 310                                           &queue->kernel_if->u.g.pas[i],
 311                                           GFP_KERNEL);
 312                if (!queue->kernel_if->u.g.vas[i]) {
 313                        /* Size excl. the header. */
 314                        qp_free_queue(queue, i * PAGE_SIZE);
 315                        return NULL;
 316                }
 317        }
 318
 319        /* Queue header is the first page. */
 320        queue->q_header = queue->kernel_if->u.g.vas[0];
 321
 322        return queue;
 323}
 324
 325/*
 326 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 327 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 328 * by traversing the offset -> page translation structure for the queue.
 329 * Assumes that offset + size does not wrap around in the queue.
 330 */
 331static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
 332                                  u64 queue_offset,
 333                                  struct iov_iter *from,
 334                                  size_t size)
 335{
 336        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 337        size_t bytes_copied = 0;
 338
 339        while (bytes_copied < size) {
 340                const u64 page_index =
 341                        (queue_offset + bytes_copied) / PAGE_SIZE;
 342                const size_t page_offset =
 343                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 344                void *va;
 345                size_t to_copy;
 346
 347                if (kernel_if->host)
 348                        va = kmap(kernel_if->u.h.page[page_index]);
 349                else
 350                        va = kernel_if->u.g.vas[page_index + 1];
 351                        /* Skip header. */
 352
 353                if (size - bytes_copied > PAGE_SIZE - page_offset)
 354                        /* Enough payload to fill up from this page. */
 355                        to_copy = PAGE_SIZE - page_offset;
 356                else
 357                        to_copy = size - bytes_copied;
 358
 359                if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
 360                                         from)) {
 361                        if (kernel_if->host)
 362                                kunmap(kernel_if->u.h.page[page_index]);
 363                        return VMCI_ERROR_INVALID_ARGS;
 364                }
 365                bytes_copied += to_copy;
 366                if (kernel_if->host)
 367                        kunmap(kernel_if->u.h.page[page_index]);
 368        }
 369
 370        return VMCI_SUCCESS;
 371}
 372
 373/*
 374 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 375 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 376 * by traversing the offset -> page translation structure for the queue.
 377 * Assumes that offset + size does not wrap around in the queue.
 378 */
 379static int qp_memcpy_from_queue_iter(struct iov_iter *to,
 380                                    const struct vmci_queue *queue,
 381                                    u64 queue_offset, size_t size)
 382{
 383        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 384        size_t bytes_copied = 0;
 385
 386        while (bytes_copied < size) {
 387                const u64 page_index =
 388                        (queue_offset + bytes_copied) / PAGE_SIZE;
 389                const size_t page_offset =
 390                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 391                void *va;
 392                size_t to_copy;
 393                int err;
 394
 395                if (kernel_if->host)
 396                        va = kmap(kernel_if->u.h.page[page_index]);
 397                else
 398                        va = kernel_if->u.g.vas[page_index + 1];
 399                        /* Skip header. */
 400
 401                if (size - bytes_copied > PAGE_SIZE - page_offset)
 402                        /* Enough payload to fill up this page. */
 403                        to_copy = PAGE_SIZE - page_offset;
 404                else
 405                        to_copy = size - bytes_copied;
 406
 407                err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
 408                if (err != to_copy) {
 409                        if (kernel_if->host)
 410                                kunmap(kernel_if->u.h.page[page_index]);
 411                        return VMCI_ERROR_INVALID_ARGS;
 412                }
 413                bytes_copied += to_copy;
 414                if (kernel_if->host)
 415                        kunmap(kernel_if->u.h.page[page_index]);
 416        }
 417
 418        return VMCI_SUCCESS;
 419}
 420
 421/*
 422 * Allocates two list of PPNs --- one for the pages in the produce queue,
 423 * and the other for the pages in the consume queue. Intializes the list
 424 * of PPNs with the page frame numbers of the KVA for the two queues (and
 425 * the queue headers).
 426 */
 427static int qp_alloc_ppn_set(void *prod_q,
 428                            u64 num_produce_pages,
 429                            void *cons_q,
 430                            u64 num_consume_pages, struct ppn_set *ppn_set)
 431{
 432        u64 *produce_ppns;
 433        u64 *consume_ppns;
 434        struct vmci_queue *produce_q = prod_q;
 435        struct vmci_queue *consume_q = cons_q;
 436        u64 i;
 437
 438        if (!produce_q || !num_produce_pages || !consume_q ||
 439            !num_consume_pages || !ppn_set)
 440                return VMCI_ERROR_INVALID_ARGS;
 441
 442        if (ppn_set->initialized)
 443                return VMCI_ERROR_ALREADY_EXISTS;
 444
 445        produce_ppns =
 446            kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
 447                          GFP_KERNEL);
 448        if (!produce_ppns)
 449                return VMCI_ERROR_NO_MEM;
 450
 451        consume_ppns =
 452            kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
 453                          GFP_KERNEL);
 454        if (!consume_ppns) {
 455                kfree(produce_ppns);
 456                return VMCI_ERROR_NO_MEM;
 457        }
 458
 459        for (i = 0; i < num_produce_pages; i++)
 460                produce_ppns[i] =
 461                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 462
 463        for (i = 0; i < num_consume_pages; i++)
 464                consume_ppns[i] =
 465                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 466
 467        ppn_set->num_produce_pages = num_produce_pages;
 468        ppn_set->num_consume_pages = num_consume_pages;
 469        ppn_set->produce_ppns = produce_ppns;
 470        ppn_set->consume_ppns = consume_ppns;
 471        ppn_set->initialized = true;
 472        return VMCI_SUCCESS;
 473}
 474
 475/*
 476 * Frees the two list of PPNs for a queue pair.
 477 */
 478static void qp_free_ppn_set(struct ppn_set *ppn_set)
 479{
 480        if (ppn_set->initialized) {
 481                /* Do not call these functions on NULL inputs. */
 482                kfree(ppn_set->produce_ppns);
 483                kfree(ppn_set->consume_ppns);
 484        }
 485        memset(ppn_set, 0, sizeof(*ppn_set));
 486}
 487
 488/*
 489 * Populates the list of PPNs in the hypercall structure with the PPNS
 490 * of the produce queue and the consume queue.
 491 */
 492static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 493{
 494        if (vmci_use_ppn64()) {
 495                memcpy(call_buf, ppn_set->produce_ppns,
 496                       ppn_set->num_produce_pages *
 497                       sizeof(*ppn_set->produce_ppns));
 498                memcpy(call_buf +
 499                       ppn_set->num_produce_pages *
 500                       sizeof(*ppn_set->produce_ppns),
 501                       ppn_set->consume_ppns,
 502                       ppn_set->num_consume_pages *
 503                       sizeof(*ppn_set->consume_ppns));
 504        } else {
 505                int i;
 506                u32 *ppns = (u32 *) call_buf;
 507
 508                for (i = 0; i < ppn_set->num_produce_pages; i++)
 509                        ppns[i] = (u32) ppn_set->produce_ppns[i];
 510
 511                ppns = &ppns[ppn_set->num_produce_pages];
 512
 513                for (i = 0; i < ppn_set->num_consume_pages; i++)
 514                        ppns[i] = (u32) ppn_set->consume_ppns[i];
 515        }
 516
 517        return VMCI_SUCCESS;
 518}
 519
 520/*
 521 * Allocates kernel VA space of specified size plus space for the queue
 522 * and kernel interface.  This is different from the guest queue allocator,
 523 * because we do not allocate our own queue header/data pages here but
 524 * share those of the guest.
 525 */
 526static struct vmci_queue *qp_host_alloc_queue(u64 size)
 527{
 528        struct vmci_queue *queue;
 529        size_t queue_page_size;
 530        u64 num_pages;
 531        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 532
 533        if (size > min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY, SIZE_MAX - PAGE_SIZE))
 534                return NULL;
 535        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 536        if (num_pages > (SIZE_MAX - queue_size) /
 537                 sizeof(*queue->kernel_if->u.h.page))
 538                return NULL;
 539
 540        queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
 541
 542        if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
 543                return NULL;
 544
 545        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 546        if (queue) {
 547                queue->q_header = NULL;
 548                queue->saved_header = NULL;
 549                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 550                queue->kernel_if->host = true;
 551                queue->kernel_if->mutex = NULL;
 552                queue->kernel_if->num_pages = num_pages;
 553                queue->kernel_if->u.h.header_page =
 554                    (struct page **)((u8 *)queue + queue_size);
 555                queue->kernel_if->u.h.page =
 556                        &queue->kernel_if->u.h.header_page[1];
 557        }
 558
 559        return queue;
 560}
 561
 562/*
 563 * Frees kernel memory for a given queue (header plus translation
 564 * structure).
 565 */
 566static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 567{
 568        kfree(queue);
 569}
 570
 571/*
 572 * Initialize the mutex for the pair of queues.  This mutex is used to
 573 * protect the q_header and the buffer from changing out from under any
 574 * users of either queue.  Of course, it's only any good if the mutexes
 575 * are actually acquired.  Queue structure must lie on non-paged memory
 576 * or we cannot guarantee access to the mutex.
 577 */
 578static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 579                                struct vmci_queue *consume_q)
 580{
 581        /*
 582         * Only the host queue has shared state - the guest queues do not
 583         * need to synchronize access using a queue mutex.
 584         */
 585
 586        if (produce_q->kernel_if->host) {
 587                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 588                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 589                mutex_init(produce_q->kernel_if->mutex);
 590        }
 591}
 592
 593/*
 594 * Cleans up the mutex for the pair of queues.
 595 */
 596static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 597                                   struct vmci_queue *consume_q)
 598{
 599        if (produce_q->kernel_if->host) {
 600                produce_q->kernel_if->mutex = NULL;
 601                consume_q->kernel_if->mutex = NULL;
 602        }
 603}
 604
 605/*
 606 * Acquire the mutex for the queue.  Note that the produce_q and
 607 * the consume_q share a mutex.  So, only one of the two need to
 608 * be passed in to this routine.  Either will work just fine.
 609 */
 610static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 611{
 612        if (queue->kernel_if->host)
 613                mutex_lock(queue->kernel_if->mutex);
 614}
 615
 616/*
 617 * Release the mutex for the queue.  Note that the produce_q and
 618 * the consume_q share a mutex.  So, only one of the two need to
 619 * be passed in to this routine.  Either will work just fine.
 620 */
 621static void qp_release_queue_mutex(struct vmci_queue *queue)
 622{
 623        if (queue->kernel_if->host)
 624                mutex_unlock(queue->kernel_if->mutex);
 625}
 626
 627/*
 628 * Helper function to release pages in the PageStoreAttachInfo
 629 * previously obtained using get_user_pages.
 630 */
 631static void qp_release_pages(struct page **pages,
 632                             u64 num_pages, bool dirty)
 633{
 634        int i;
 635
 636        for (i = 0; i < num_pages; i++) {
 637                if (dirty)
 638                        set_page_dirty_lock(pages[i]);
 639
 640                put_page(pages[i]);
 641                pages[i] = NULL;
 642        }
 643}
 644
 645/*
 646 * Lock the user pages referenced by the {produce,consume}Buffer
 647 * struct into memory and populate the {produce,consume}Pages
 648 * arrays in the attach structure with them.
 649 */
 650static int qp_host_get_user_memory(u64 produce_uva,
 651                                   u64 consume_uva,
 652                                   struct vmci_queue *produce_q,
 653                                   struct vmci_queue *consume_q)
 654{
 655        int retval;
 656        int err = VMCI_SUCCESS;
 657
 658        retval = get_user_pages_fast((uintptr_t) produce_uva,
 659                                     produce_q->kernel_if->num_pages,
 660                                     FOLL_WRITE,
 661                                     produce_q->kernel_if->u.h.header_page);
 662        if (retval < (int)produce_q->kernel_if->num_pages) {
 663                pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
 664                        retval);
 665                if (retval > 0)
 666                        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 667                                        retval, false);
 668                err = VMCI_ERROR_NO_MEM;
 669                goto out;
 670        }
 671
 672        retval = get_user_pages_fast((uintptr_t) consume_uva,
 673                                     consume_q->kernel_if->num_pages,
 674                                     FOLL_WRITE,
 675                                     consume_q->kernel_if->u.h.header_page);
 676        if (retval < (int)consume_q->kernel_if->num_pages) {
 677                pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
 678                        retval);
 679                if (retval > 0)
 680                        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 681                                        retval, false);
 682                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 683                                 produce_q->kernel_if->num_pages, false);
 684                err = VMCI_ERROR_NO_MEM;
 685        }
 686
 687 out:
 688        return err;
 689}
 690
 691/*
 692 * Registers the specification of the user pages used for backing a queue
 693 * pair. Enough information to map in pages is stored in the OS specific
 694 * part of the struct vmci_queue structure.
 695 */
 696static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 697                                        struct vmci_queue *produce_q,
 698                                        struct vmci_queue *consume_q)
 699{
 700        u64 produce_uva;
 701        u64 consume_uva;
 702
 703        /*
 704         * The new style and the old style mapping only differs in
 705         * that we either get a single or two UVAs, so we split the
 706         * single UVA range at the appropriate spot.
 707         */
 708        produce_uva = page_store->pages;
 709        consume_uva = page_store->pages +
 710            produce_q->kernel_if->num_pages * PAGE_SIZE;
 711        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 712                                       consume_q);
 713}
 714
 715/*
 716 * Releases and removes the references to user pages stored in the attach
 717 * struct.  Pages are released from the page cache and may become
 718 * swappable again.
 719 */
 720static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 721                                           struct vmci_queue *consume_q)
 722{
 723        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 724                         produce_q->kernel_if->num_pages, true);
 725        memset(produce_q->kernel_if->u.h.header_page, 0,
 726               sizeof(*produce_q->kernel_if->u.h.header_page) *
 727               produce_q->kernel_if->num_pages);
 728        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 729                         consume_q->kernel_if->num_pages, true);
 730        memset(consume_q->kernel_if->u.h.header_page, 0,
 731               sizeof(*consume_q->kernel_if->u.h.header_page) *
 732               consume_q->kernel_if->num_pages);
 733}
 734
 735/*
 736 * Once qp_host_register_user_memory has been performed on a
 737 * queue, the queue pair headers can be mapped into the
 738 * kernel. Once mapped, they must be unmapped with
 739 * qp_host_unmap_queues prior to calling
 740 * qp_host_unregister_user_memory.
 741 * Pages are pinned.
 742 */
 743static int qp_host_map_queues(struct vmci_queue *produce_q,
 744                              struct vmci_queue *consume_q)
 745{
 746        int result;
 747
 748        if (!produce_q->q_header || !consume_q->q_header) {
 749                struct page *headers[2];
 750
 751                if (produce_q->q_header != consume_q->q_header)
 752                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 753
 754                if (produce_q->kernel_if->u.h.header_page == NULL ||
 755                    *produce_q->kernel_if->u.h.header_page == NULL)
 756                        return VMCI_ERROR_UNAVAILABLE;
 757
 758                headers[0] = *produce_q->kernel_if->u.h.header_page;
 759                headers[1] = *consume_q->kernel_if->u.h.header_page;
 760
 761                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 762                if (produce_q->q_header != NULL) {
 763                        consume_q->q_header =
 764                            (struct vmci_queue_header *)((u8 *)
 765                                                         produce_q->q_header +
 766                                                         PAGE_SIZE);
 767                        result = VMCI_SUCCESS;
 768                } else {
 769                        pr_warn("vmap failed\n");
 770                        result = VMCI_ERROR_NO_MEM;
 771                }
 772        } else {
 773                result = VMCI_SUCCESS;
 774        }
 775
 776        return result;
 777}
 778
 779/*
 780 * Unmaps previously mapped queue pair headers from the kernel.
 781 * Pages are unpinned.
 782 */
 783static int qp_host_unmap_queues(u32 gid,
 784                                struct vmci_queue *produce_q,
 785                                struct vmci_queue *consume_q)
 786{
 787        if (produce_q->q_header) {
 788                if (produce_q->q_header < consume_q->q_header)
 789                        vunmap(produce_q->q_header);
 790                else
 791                        vunmap(consume_q->q_header);
 792
 793                produce_q->q_header = NULL;
 794                consume_q->q_header = NULL;
 795        }
 796
 797        return VMCI_SUCCESS;
 798}
 799
 800/*
 801 * Finds the entry in the list corresponding to a given handle. Assumes
 802 * that the list is locked.
 803 */
 804static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 805                                     struct vmci_handle handle)
 806{
 807        struct qp_entry *entry;
 808
 809        if (vmci_handle_is_invalid(handle))
 810                return NULL;
 811
 812        list_for_each_entry(entry, &qp_list->head, list_item) {
 813                if (vmci_handle_is_equal(entry->handle, handle))
 814                        return entry;
 815        }
 816
 817        return NULL;
 818}
 819
 820/*
 821 * Finds the entry in the list corresponding to a given handle.
 822 */
 823static struct qp_guest_endpoint *
 824qp_guest_handle_to_entry(struct vmci_handle handle)
 825{
 826        struct qp_guest_endpoint *entry;
 827        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 828
 829        entry = qp ? container_of(
 830                qp, struct qp_guest_endpoint, qp) : NULL;
 831        return entry;
 832}
 833
 834/*
 835 * Finds the entry in the list corresponding to a given handle.
 836 */
 837static struct qp_broker_entry *
 838qp_broker_handle_to_entry(struct vmci_handle handle)
 839{
 840        struct qp_broker_entry *entry;
 841        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 842
 843        entry = qp ? container_of(
 844                qp, struct qp_broker_entry, qp) : NULL;
 845        return entry;
 846}
 847
 848/*
 849 * Dispatches a queue pair event message directly into the local event
 850 * queue.
 851 */
 852static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 853{
 854        u32 context_id = vmci_get_context_id();
 855        struct vmci_event_qp ev;
 856
 857        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 858        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 859                                          VMCI_CONTEXT_RESOURCE_ID);
 860        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 861        ev.msg.event_data.event =
 862            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 863        ev.payload.peer_id = context_id;
 864        ev.payload.handle = handle;
 865
 866        return vmci_event_dispatch(&ev.msg.hdr);
 867}
 868
 869/*
 870 * Allocates and initializes a qp_guest_endpoint structure.
 871 * Allocates a queue_pair rid (and handle) iff the given entry has
 872 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 873 * are reserved handles.  Assumes that the QP list mutex is held
 874 * by the caller.
 875 */
 876static struct qp_guest_endpoint *
 877qp_guest_endpoint_create(struct vmci_handle handle,
 878                         u32 peer,
 879                         u32 flags,
 880                         u64 produce_size,
 881                         u64 consume_size,
 882                         void *produce_q,
 883                         void *consume_q)
 884{
 885        int result;
 886        struct qp_guest_endpoint *entry;
 887        /* One page each for the queue headers. */
 888        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 889            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 890
 891        if (vmci_handle_is_invalid(handle)) {
 892                u32 context_id = vmci_get_context_id();
 893
 894                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 895        }
 896
 897        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 898        if (entry) {
 899                entry->qp.peer = peer;
 900                entry->qp.flags = flags;
 901                entry->qp.produce_size = produce_size;
 902                entry->qp.consume_size = consume_size;
 903                entry->qp.ref_count = 0;
 904                entry->num_ppns = num_ppns;
 905                entry->produce_q = produce_q;
 906                entry->consume_q = consume_q;
 907                INIT_LIST_HEAD(&entry->qp.list_item);
 908
 909                /* Add resource obj */
 910                result = vmci_resource_add(&entry->resource,
 911                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 912                                           handle);
 913                entry->qp.handle = vmci_resource_handle(&entry->resource);
 914                if ((result != VMCI_SUCCESS) ||
 915                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 916                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 917                                handle.context, handle.resource, result);
 918                        kfree(entry);
 919                        entry = NULL;
 920                }
 921        }
 922        return entry;
 923}
 924
 925/*
 926 * Frees a qp_guest_endpoint structure.
 927 */
 928static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
 929{
 930        qp_free_ppn_set(&entry->ppn_set);
 931        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
 932        qp_free_queue(entry->produce_q, entry->qp.produce_size);
 933        qp_free_queue(entry->consume_q, entry->qp.consume_size);
 934        /* Unlink from resource hash table and free callback */
 935        vmci_resource_remove(&entry->resource);
 936
 937        kfree(entry);
 938}
 939
 940/*
 941 * Helper to make a queue_pairAlloc hypercall when the driver is
 942 * supporting a guest device.
 943 */
 944static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
 945{
 946        struct vmci_qp_alloc_msg *alloc_msg;
 947        size_t msg_size;
 948        size_t ppn_size;
 949        int result;
 950
 951        if (!entry || entry->num_ppns <= 2)
 952                return VMCI_ERROR_INVALID_ARGS;
 953
 954        ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
 955        msg_size = sizeof(*alloc_msg) +
 956            (size_t) entry->num_ppns * ppn_size;
 957        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
 958        if (!alloc_msg)
 959                return VMCI_ERROR_NO_MEM;
 960
 961        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 962                                              VMCI_QUEUEPAIR_ALLOC);
 963        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
 964        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
 965        alloc_msg->handle = entry->qp.handle;
 966        alloc_msg->peer = entry->qp.peer;
 967        alloc_msg->flags = entry->qp.flags;
 968        alloc_msg->produce_size = entry->qp.produce_size;
 969        alloc_msg->consume_size = entry->qp.consume_size;
 970        alloc_msg->num_ppns = entry->num_ppns;
 971
 972        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
 973                                     &entry->ppn_set);
 974        if (result == VMCI_SUCCESS)
 975                result = vmci_send_datagram(&alloc_msg->hdr);
 976
 977        kfree(alloc_msg);
 978
 979        return result;
 980}
 981
 982/*
 983 * Helper to make a queue_pairDetach hypercall when the driver is
 984 * supporting a guest device.
 985 */
 986static int qp_detatch_hypercall(struct vmci_handle handle)
 987{
 988        struct vmci_qp_detach_msg detach_msg;
 989
 990        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 991                                              VMCI_QUEUEPAIR_DETACH);
 992        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
 993        detach_msg.hdr.payload_size = sizeof(handle);
 994        detach_msg.handle = handle;
 995
 996        return vmci_send_datagram(&detach_msg.hdr);
 997}
 998
 999/*
1000 * Adds the given entry to the list. Assumes that the list is locked.
1001 */
1002static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1003{
1004        if (entry)
1005                list_add(&entry->list_item, &qp_list->head);
1006}
1007
1008/*
1009 * Removes the given entry from the list. Assumes that the list is locked.
1010 */
1011static void qp_list_remove_entry(struct qp_list *qp_list,
1012                                 struct qp_entry *entry)
1013{
1014        if (entry)
1015                list_del(&entry->list_item);
1016}
1017
1018/*
1019 * Helper for VMCI queue_pair detach interface. Frees the physical
1020 * pages for the queue pair.
1021 */
1022static int qp_detatch_guest_work(struct vmci_handle handle)
1023{
1024        int result;
1025        struct qp_guest_endpoint *entry;
1026        u32 ref_count = ~0;     /* To avoid compiler warning below */
1027
1028        mutex_lock(&qp_guest_endpoints.mutex);
1029
1030        entry = qp_guest_handle_to_entry(handle);
1031        if (!entry) {
1032                mutex_unlock(&qp_guest_endpoints.mutex);
1033                return VMCI_ERROR_NOT_FOUND;
1034        }
1035
1036        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1037                result = VMCI_SUCCESS;
1038
1039                if (entry->qp.ref_count > 1) {
1040                        result = qp_notify_peer_local(false, handle);
1041                        /*
1042                         * We can fail to notify a local queuepair
1043                         * because we can't allocate.  We still want
1044                         * to release the entry if that happens, so
1045                         * don't bail out yet.
1046                         */
1047                }
1048        } else {
1049                result = qp_detatch_hypercall(handle);
1050                if (result < VMCI_SUCCESS) {
1051                        /*
1052                         * We failed to notify a non-local queuepair.
1053                         * That other queuepair might still be
1054                         * accessing the shared memory, so don't
1055                         * release the entry yet.  It will get cleaned
1056                         * up by VMCIqueue_pair_Exit() if necessary
1057                         * (assuming we are going away, otherwise why
1058                         * did this fail?).
1059                         */
1060
1061                        mutex_unlock(&qp_guest_endpoints.mutex);
1062                        return result;
1063                }
1064        }
1065
1066        /*
1067         * If we get here then we either failed to notify a local queuepair, or
1068         * we succeeded in all cases.  Release the entry if required.
1069         */
1070
1071        entry->qp.ref_count--;
1072        if (entry->qp.ref_count == 0)
1073                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1074
1075        /* If we didn't remove the entry, this could change once we unlock. */
1076        if (entry)
1077                ref_count = entry->qp.ref_count;
1078
1079        mutex_unlock(&qp_guest_endpoints.mutex);
1080
1081        if (ref_count == 0)
1082                qp_guest_endpoint_destroy(entry);
1083
1084        return result;
1085}
1086
1087/*
1088 * This functions handles the actual allocation of a VMCI queue
1089 * pair guest endpoint. Allocates physical pages for the queue
1090 * pair. It makes OS dependent calls through generic wrappers.
1091 */
1092static int qp_alloc_guest_work(struct vmci_handle *handle,
1093                               struct vmci_queue **produce_q,
1094                               u64 produce_size,
1095                               struct vmci_queue **consume_q,
1096                               u64 consume_size,
1097                               u32 peer,
1098                               u32 flags,
1099                               u32 priv_flags)
1100{
1101        const u64 num_produce_pages =
1102            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1103        const u64 num_consume_pages =
1104            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1105        void *my_produce_q = NULL;
1106        void *my_consume_q = NULL;
1107        int result;
1108        struct qp_guest_endpoint *queue_pair_entry = NULL;
1109
1110        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1111                return VMCI_ERROR_NO_ACCESS;
1112
1113        mutex_lock(&qp_guest_endpoints.mutex);
1114
1115        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1116        if (queue_pair_entry) {
1117                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1118                        /* Local attach case. */
1119                        if (queue_pair_entry->qp.ref_count > 1) {
1120                                pr_devel("Error attempting to attach more than once\n");
1121                                result = VMCI_ERROR_UNAVAILABLE;
1122                                goto error_keep_entry;
1123                        }
1124
1125                        if (queue_pair_entry->qp.produce_size != consume_size ||
1126                            queue_pair_entry->qp.consume_size !=
1127                            produce_size ||
1128                            queue_pair_entry->qp.flags !=
1129                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1130                                pr_devel("Error mismatched queue pair in local attach\n");
1131                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1132                                goto error_keep_entry;
1133                        }
1134
1135                        /*
1136                         * Do a local attach.  We swap the consume and
1137                         * produce queues for the attacher and deliver
1138                         * an attach event.
1139                         */
1140                        result = qp_notify_peer_local(true, *handle);
1141                        if (result < VMCI_SUCCESS)
1142                                goto error_keep_entry;
1143
1144                        my_produce_q = queue_pair_entry->consume_q;
1145                        my_consume_q = queue_pair_entry->produce_q;
1146                        goto out;
1147                }
1148
1149                result = VMCI_ERROR_ALREADY_EXISTS;
1150                goto error_keep_entry;
1151        }
1152
1153        my_produce_q = qp_alloc_queue(produce_size, flags);
1154        if (!my_produce_q) {
1155                pr_warn("Error allocating pages for produce queue\n");
1156                result = VMCI_ERROR_NO_MEM;
1157                goto error;
1158        }
1159
1160        my_consume_q = qp_alloc_queue(consume_size, flags);
1161        if (!my_consume_q) {
1162                pr_warn("Error allocating pages for consume queue\n");
1163                result = VMCI_ERROR_NO_MEM;
1164                goto error;
1165        }
1166
1167        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1168                                                    produce_size, consume_size,
1169                                                    my_produce_q, my_consume_q);
1170        if (!queue_pair_entry) {
1171                pr_warn("Error allocating memory in %s\n", __func__);
1172                result = VMCI_ERROR_NO_MEM;
1173                goto error;
1174        }
1175
1176        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1177                                  num_consume_pages,
1178                                  &queue_pair_entry->ppn_set);
1179        if (result < VMCI_SUCCESS) {
1180                pr_warn("qp_alloc_ppn_set failed\n");
1181                goto error;
1182        }
1183
1184        /*
1185         * It's only necessary to notify the host if this queue pair will be
1186         * attached to from another context.
1187         */
1188        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1189                /* Local create case. */
1190                u32 context_id = vmci_get_context_id();
1191
1192                /*
1193                 * Enforce similar checks on local queue pairs as we
1194                 * do for regular ones.  The handle's context must
1195                 * match the creator or attacher context id (here they
1196                 * are both the current context id) and the
1197                 * attach-only flag cannot exist during create.  We
1198                 * also ensure specified peer is this context or an
1199                 * invalid one.
1200                 */
1201                if (queue_pair_entry->qp.handle.context != context_id ||
1202                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1203                     queue_pair_entry->qp.peer != context_id)) {
1204                        result = VMCI_ERROR_NO_ACCESS;
1205                        goto error;
1206                }
1207
1208                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1209                        result = VMCI_ERROR_NOT_FOUND;
1210                        goto error;
1211                }
1212        } else {
1213                result = qp_alloc_hypercall(queue_pair_entry);
1214                if (result < VMCI_SUCCESS) {
1215                        pr_devel("qp_alloc_hypercall result = %d\n", result);
1216                        goto error;
1217                }
1218        }
1219
1220        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1221                            (struct vmci_queue *)my_consume_q);
1222
1223        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1224
1225 out:
1226        queue_pair_entry->qp.ref_count++;
1227        *handle = queue_pair_entry->qp.handle;
1228        *produce_q = (struct vmci_queue *)my_produce_q;
1229        *consume_q = (struct vmci_queue *)my_consume_q;
1230
1231        /*
1232         * We should initialize the queue pair header pages on a local
1233         * queue pair create.  For non-local queue pairs, the
1234         * hypervisor initializes the header pages in the create step.
1235         */
1236        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1237            queue_pair_entry->qp.ref_count == 1) {
1238                vmci_q_header_init((*produce_q)->q_header, *handle);
1239                vmci_q_header_init((*consume_q)->q_header, *handle);
1240        }
1241
1242        mutex_unlock(&qp_guest_endpoints.mutex);
1243
1244        return VMCI_SUCCESS;
1245
1246 error:
1247        mutex_unlock(&qp_guest_endpoints.mutex);
1248        if (queue_pair_entry) {
1249                /* The queues will be freed inside the destroy routine. */
1250                qp_guest_endpoint_destroy(queue_pair_entry);
1251        } else {
1252                qp_free_queue(my_produce_q, produce_size);
1253                qp_free_queue(my_consume_q, consume_size);
1254        }
1255        return result;
1256
1257 error_keep_entry:
1258        /* This path should only be used when an existing entry was found. */
1259        mutex_unlock(&qp_guest_endpoints.mutex);
1260        return result;
1261}
1262
1263/*
1264 * The first endpoint issuing a queue pair allocation will create the state
1265 * of the queue pair in the queue pair broker.
1266 *
1267 * If the creator is a guest, it will associate a VMX virtual address range
1268 * with the queue pair as specified by the page_store. For compatibility with
1269 * older VMX'en, that would use a separate step to set the VMX virtual
1270 * address range, the virtual address range can be registered later using
1271 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1272 * used.
1273 *
1274 * If the creator is the host, a page_store of NULL should be used as well,
1275 * since the host is not able to supply a page store for the queue pair.
1276 *
1277 * For older VMX and host callers, the queue pair will be created in the
1278 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1279 * created in VMCOQPB_CREATED_MEM state.
1280 */
1281static int qp_broker_create(struct vmci_handle handle,
1282                            u32 peer,
1283                            u32 flags,
1284                            u32 priv_flags,
1285                            u64 produce_size,
1286                            u64 consume_size,
1287                            struct vmci_qp_page_store *page_store,
1288                            struct vmci_ctx *context,
1289                            vmci_event_release_cb wakeup_cb,
1290                            void *client_data, struct qp_broker_entry **ent)
1291{
1292        struct qp_broker_entry *entry = NULL;
1293        const u32 context_id = vmci_ctx_get_id(context);
1294        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1295        int result;
1296        u64 guest_produce_size;
1297        u64 guest_consume_size;
1298
1299        /* Do not create if the caller asked not to. */
1300        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1301                return VMCI_ERROR_NOT_FOUND;
1302
1303        /*
1304         * Creator's context ID should match handle's context ID or the creator
1305         * must allow the context in handle's context ID as the "peer".
1306         */
1307        if (handle.context != context_id && handle.context != peer)
1308                return VMCI_ERROR_NO_ACCESS;
1309
1310        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1311                return VMCI_ERROR_DST_UNREACHABLE;
1312
1313        /*
1314         * Creator's context ID for local queue pairs should match the
1315         * peer, if a peer is specified.
1316         */
1317        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1318                return VMCI_ERROR_NO_ACCESS;
1319
1320        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1321        if (!entry)
1322                return VMCI_ERROR_NO_MEM;
1323
1324        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1325                /*
1326                 * The queue pair broker entry stores values from the guest
1327                 * point of view, so a creating host side endpoint should swap
1328                 * produce and consume values -- unless it is a local queue
1329                 * pair, in which case no swapping is necessary, since the local
1330                 * attacher will swap queues.
1331                 */
1332
1333                guest_produce_size = consume_size;
1334                guest_consume_size = produce_size;
1335        } else {
1336                guest_produce_size = produce_size;
1337                guest_consume_size = consume_size;
1338        }
1339
1340        entry->qp.handle = handle;
1341        entry->qp.peer = peer;
1342        entry->qp.flags = flags;
1343        entry->qp.produce_size = guest_produce_size;
1344        entry->qp.consume_size = guest_consume_size;
1345        entry->qp.ref_count = 1;
1346        entry->create_id = context_id;
1347        entry->attach_id = VMCI_INVALID_ID;
1348        entry->state = VMCIQPB_NEW;
1349        entry->require_trusted_attach =
1350            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1351        entry->created_by_trusted =
1352            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1353        entry->vmci_page_files = false;
1354        entry->wakeup_cb = wakeup_cb;
1355        entry->client_data = client_data;
1356        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1357        if (entry->produce_q == NULL) {
1358                result = VMCI_ERROR_NO_MEM;
1359                goto error;
1360        }
1361        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1362        if (entry->consume_q == NULL) {
1363                result = VMCI_ERROR_NO_MEM;
1364                goto error;
1365        }
1366
1367        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1368
1369        INIT_LIST_HEAD(&entry->qp.list_item);
1370
1371        if (is_local) {
1372                u8 *tmp;
1373
1374                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1375                                           PAGE_SIZE, GFP_KERNEL);
1376                if (entry->local_mem == NULL) {
1377                        result = VMCI_ERROR_NO_MEM;
1378                        goto error;
1379                }
1380                entry->state = VMCIQPB_CREATED_MEM;
1381                entry->produce_q->q_header = entry->local_mem;
1382                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1383                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1384                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1385        } else if (page_store) {
1386                /*
1387                 * The VMX already initialized the queue pair headers, so no
1388                 * need for the kernel side to do that.
1389                 */
1390                result = qp_host_register_user_memory(page_store,
1391                                                      entry->produce_q,
1392                                                      entry->consume_q);
1393                if (result < VMCI_SUCCESS)
1394                        goto error;
1395
1396                entry->state = VMCIQPB_CREATED_MEM;
1397        } else {
1398                /*
1399                 * A create without a page_store may be either a host
1400                 * side create (in which case we are waiting for the
1401                 * guest side to supply the memory) or an old style
1402                 * queue pair create (in which case we will expect a
1403                 * set page store call as the next step).
1404                 */
1405                entry->state = VMCIQPB_CREATED_NO_MEM;
1406        }
1407
1408        qp_list_add_entry(&qp_broker_list, &entry->qp);
1409        if (ent != NULL)
1410                *ent = entry;
1411
1412        /* Add to resource obj */
1413        result = vmci_resource_add(&entry->resource,
1414                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1415                                   handle);
1416        if (result != VMCI_SUCCESS) {
1417                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1418                        handle.context, handle.resource, result);
1419                goto error;
1420        }
1421
1422        entry->qp.handle = vmci_resource_handle(&entry->resource);
1423        if (is_local) {
1424                vmci_q_header_init(entry->produce_q->q_header,
1425                                   entry->qp.handle);
1426                vmci_q_header_init(entry->consume_q->q_header,
1427                                   entry->qp.handle);
1428        }
1429
1430        vmci_ctx_qp_create(context, entry->qp.handle);
1431
1432        return VMCI_SUCCESS;
1433
1434 error:
1435        if (entry != NULL) {
1436                qp_host_free_queue(entry->produce_q, guest_produce_size);
1437                qp_host_free_queue(entry->consume_q, guest_consume_size);
1438                kfree(entry);
1439        }
1440
1441        return result;
1442}
1443
1444/*
1445 * Enqueues an event datagram to notify the peer VM attached to
1446 * the given queue pair handle about attach/detach event by the
1447 * given VM.  Returns Payload size of datagram enqueued on
1448 * success, error code otherwise.
1449 */
1450static int qp_notify_peer(bool attach,
1451                          struct vmci_handle handle,
1452                          u32 my_id,
1453                          u32 peer_id)
1454{
1455        int rv;
1456        struct vmci_event_qp ev;
1457
1458        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1459            peer_id == VMCI_INVALID_ID)
1460                return VMCI_ERROR_INVALID_ARGS;
1461
1462        /*
1463         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1464         * number of pending events from the hypervisor to a given VM
1465         * otherwise a rogue VM could do an arbitrary number of attach
1466         * and detach operations causing memory pressure in the host
1467         * kernel.
1468         */
1469
1470        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1471        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1472                                          VMCI_CONTEXT_RESOURCE_ID);
1473        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1474        ev.msg.event_data.event = attach ?
1475            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1476        ev.payload.handle = handle;
1477        ev.payload.peer_id = my_id;
1478
1479        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1480                                    &ev.msg.hdr, false);
1481        if (rv < VMCI_SUCCESS)
1482                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1483                        attach ? "ATTACH" : "DETACH", peer_id);
1484
1485        return rv;
1486}
1487
1488/*
1489 * The second endpoint issuing a queue pair allocation will attach to
1490 * the queue pair registered with the queue pair broker.
1491 *
1492 * If the attacher is a guest, it will associate a VMX virtual address
1493 * range with the queue pair as specified by the page_store. At this
1494 * point, the already attach host endpoint may start using the queue
1495 * pair, and an attach event is sent to it. For compatibility with
1496 * older VMX'en, that used a separate step to set the VMX virtual
1497 * address range, the virtual address range can be registered later
1498 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1499 * NULL should be used, and the attach event will be generated once
1500 * the actual page store has been set.
1501 *
1502 * If the attacher is the host, a page_store of NULL should be used as
1503 * well, since the page store information is already set by the guest.
1504 *
1505 * For new VMX and host callers, the queue pair will be moved to the
1506 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1507 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1508 */
1509static int qp_broker_attach(struct qp_broker_entry *entry,
1510                            u32 peer,
1511                            u32 flags,
1512                            u32 priv_flags,
1513                            u64 produce_size,
1514                            u64 consume_size,
1515                            struct vmci_qp_page_store *page_store,
1516                            struct vmci_ctx *context,
1517                            vmci_event_release_cb wakeup_cb,
1518                            void *client_data,
1519                            struct qp_broker_entry **ent)
1520{
1521        const u32 context_id = vmci_ctx_get_id(context);
1522        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1523        int result;
1524
1525        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1526            entry->state != VMCIQPB_CREATED_MEM)
1527                return VMCI_ERROR_UNAVAILABLE;
1528
1529        if (is_local) {
1530                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1531                    context_id != entry->create_id) {
1532                        return VMCI_ERROR_INVALID_ARGS;
1533                }
1534        } else if (context_id == entry->create_id ||
1535                   context_id == entry->attach_id) {
1536                return VMCI_ERROR_ALREADY_EXISTS;
1537        }
1538
1539        if (VMCI_CONTEXT_IS_VM(context_id) &&
1540            VMCI_CONTEXT_IS_VM(entry->create_id))
1541                return VMCI_ERROR_DST_UNREACHABLE;
1542
1543        /*
1544         * If we are attaching from a restricted context then the queuepair
1545         * must have been created by a trusted endpoint.
1546         */
1547        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1548            !entry->created_by_trusted)
1549                return VMCI_ERROR_NO_ACCESS;
1550
1551        /*
1552         * If we are attaching to a queuepair that was created by a restricted
1553         * context then we must be trusted.
1554         */
1555        if (entry->require_trusted_attach &&
1556            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1557                return VMCI_ERROR_NO_ACCESS;
1558
1559        /*
1560         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1561         * control check is not performed.
1562         */
1563        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1564                return VMCI_ERROR_NO_ACCESS;
1565
1566        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1567                /*
1568                 * Do not attach if the caller doesn't support Host Queue Pairs
1569                 * and a host created this queue pair.
1570                 */
1571
1572                if (!vmci_ctx_supports_host_qp(context))
1573                        return VMCI_ERROR_INVALID_RESOURCE;
1574
1575        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1576                struct vmci_ctx *create_context;
1577                bool supports_host_qp;
1578
1579                /*
1580                 * Do not attach a host to a user created queue pair if that
1581                 * user doesn't support host queue pair end points.
1582                 */
1583
1584                create_context = vmci_ctx_get(entry->create_id);
1585                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1586                vmci_ctx_put(create_context);
1587
1588                if (!supports_host_qp)
1589                        return VMCI_ERROR_INVALID_RESOURCE;
1590        }
1591
1592        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1593                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1594
1595        if (context_id != VMCI_HOST_CONTEXT_ID) {
1596                /*
1597                 * The queue pair broker entry stores values from the guest
1598                 * point of view, so an attaching guest should match the values
1599                 * stored in the entry.
1600                 */
1601
1602                if (entry->qp.produce_size != produce_size ||
1603                    entry->qp.consume_size != consume_size) {
1604                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605                }
1606        } else if (entry->qp.produce_size != consume_size ||
1607                   entry->qp.consume_size != produce_size) {
1608                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1609        }
1610
1611        if (context_id != VMCI_HOST_CONTEXT_ID) {
1612                /*
1613                 * If a guest attached to a queue pair, it will supply
1614                 * the backing memory.  If this is a pre NOVMVM vmx,
1615                 * the backing memory will be supplied by calling
1616                 * vmci_qp_broker_set_page_store() following the
1617                 * return of the vmci_qp_broker_alloc() call. If it is
1618                 * a vmx of version NOVMVM or later, the page store
1619                 * must be supplied as part of the
1620                 * vmci_qp_broker_alloc call.  Under all circumstances
1621                 * must the initially created queue pair not have any
1622                 * memory associated with it already.
1623                 */
1624
1625                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1626                        return VMCI_ERROR_INVALID_ARGS;
1627
1628                if (page_store != NULL) {
1629                        /*
1630                         * Patch up host state to point to guest
1631                         * supplied memory. The VMX already
1632                         * initialized the queue pair headers, so no
1633                         * need for the kernel side to do that.
1634                         */
1635
1636                        result = qp_host_register_user_memory(page_store,
1637                                                              entry->produce_q,
1638                                                              entry->consume_q);
1639                        if (result < VMCI_SUCCESS)
1640                                return result;
1641
1642                        entry->state = VMCIQPB_ATTACHED_MEM;
1643                } else {
1644                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1645                }
1646        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1647                /*
1648                 * The host side is attempting to attach to a queue
1649                 * pair that doesn't have any memory associated with
1650                 * it. This must be a pre NOVMVM vmx that hasn't set
1651                 * the page store information yet, or a quiesced VM.
1652                 */
1653
1654                return VMCI_ERROR_UNAVAILABLE;
1655        } else {
1656                /* The host side has successfully attached to a queue pair. */
1657                entry->state = VMCIQPB_ATTACHED_MEM;
1658        }
1659
1660        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1661                result =
1662                    qp_notify_peer(true, entry->qp.handle, context_id,
1663                                   entry->create_id);
1664                if (result < VMCI_SUCCESS)
1665                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1666                                entry->create_id, entry->qp.handle.context,
1667                                entry->qp.handle.resource);
1668        }
1669
1670        entry->attach_id = context_id;
1671        entry->qp.ref_count++;
1672        if (wakeup_cb) {
1673                entry->wakeup_cb = wakeup_cb;
1674                entry->client_data = client_data;
1675        }
1676
1677        /*
1678         * When attaching to local queue pairs, the context already has
1679         * an entry tracking the queue pair, so don't add another one.
1680         */
1681        if (!is_local)
1682                vmci_ctx_qp_create(context, entry->qp.handle);
1683
1684        if (ent != NULL)
1685                *ent = entry;
1686
1687        return VMCI_SUCCESS;
1688}
1689
1690/*
1691 * queue_pair_Alloc for use when setting up queue pair endpoints
1692 * on the host.
1693 */
1694static int qp_broker_alloc(struct vmci_handle handle,
1695                           u32 peer,
1696                           u32 flags,
1697                           u32 priv_flags,
1698                           u64 produce_size,
1699                           u64 consume_size,
1700                           struct vmci_qp_page_store *page_store,
1701                           struct vmci_ctx *context,
1702                           vmci_event_release_cb wakeup_cb,
1703                           void *client_data,
1704                           struct qp_broker_entry **ent,
1705                           bool *swap)
1706{
1707        const u32 context_id = vmci_ctx_get_id(context);
1708        bool create;
1709        struct qp_broker_entry *entry = NULL;
1710        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1711        int result;
1712
1713        if (vmci_handle_is_invalid(handle) ||
1714            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1715            !(produce_size || consume_size) ||
1716            !context || context_id == VMCI_INVALID_ID ||
1717            handle.context == VMCI_INVALID_ID) {
1718                return VMCI_ERROR_INVALID_ARGS;
1719        }
1720
1721        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1722                return VMCI_ERROR_INVALID_ARGS;
1723
1724        /*
1725         * In the initial argument check, we ensure that non-vmkernel hosts
1726         * are not allowed to create local queue pairs.
1727         */
1728
1729        mutex_lock(&qp_broker_list.mutex);
1730
1731        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1732                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1733                         context_id, handle.context, handle.resource);
1734                mutex_unlock(&qp_broker_list.mutex);
1735                return VMCI_ERROR_ALREADY_EXISTS;
1736        }
1737
1738        if (handle.resource != VMCI_INVALID_ID)
1739                entry = qp_broker_handle_to_entry(handle);
1740
1741        if (!entry) {
1742                create = true;
1743                result =
1744                    qp_broker_create(handle, peer, flags, priv_flags,
1745                                     produce_size, consume_size, page_store,
1746                                     context, wakeup_cb, client_data, ent);
1747        } else {
1748                create = false;
1749                result =
1750                    qp_broker_attach(entry, peer, flags, priv_flags,
1751                                     produce_size, consume_size, page_store,
1752                                     context, wakeup_cb, client_data, ent);
1753        }
1754
1755        mutex_unlock(&qp_broker_list.mutex);
1756
1757        if (swap)
1758                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1759                    !(create && is_local);
1760
1761        return result;
1762}
1763
1764/*
1765 * This function implements the kernel API for allocating a queue
1766 * pair.
1767 */
1768static int qp_alloc_host_work(struct vmci_handle *handle,
1769                              struct vmci_queue **produce_q,
1770                              u64 produce_size,
1771                              struct vmci_queue **consume_q,
1772                              u64 consume_size,
1773                              u32 peer,
1774                              u32 flags,
1775                              u32 priv_flags,
1776                              vmci_event_release_cb wakeup_cb,
1777                              void *client_data)
1778{
1779        struct vmci_handle new_handle;
1780        struct vmci_ctx *context;
1781        struct qp_broker_entry *entry;
1782        int result;
1783        bool swap;
1784
1785        if (vmci_handle_is_invalid(*handle)) {
1786                new_handle = vmci_make_handle(
1787                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1788        } else
1789                new_handle = *handle;
1790
1791        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1792        entry = NULL;
1793        result =
1794            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1795                            produce_size, consume_size, NULL, context,
1796                            wakeup_cb, client_data, &entry, &swap);
1797        if (result == VMCI_SUCCESS) {
1798                if (swap) {
1799                        /*
1800                         * If this is a local queue pair, the attacher
1801                         * will swap around produce and consume
1802                         * queues.
1803                         */
1804
1805                        *produce_q = entry->consume_q;
1806                        *consume_q = entry->produce_q;
1807                } else {
1808                        *produce_q = entry->produce_q;
1809                        *consume_q = entry->consume_q;
1810                }
1811
1812                *handle = vmci_resource_handle(&entry->resource);
1813        } else {
1814                *handle = VMCI_INVALID_HANDLE;
1815                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1816                         result);
1817        }
1818        vmci_ctx_put(context);
1819        return result;
1820}
1821
1822/*
1823 * Allocates a VMCI queue_pair. Only checks validity of input
1824 * arguments. The real work is done in the host or guest
1825 * specific function.
1826 */
1827int vmci_qp_alloc(struct vmci_handle *handle,
1828                  struct vmci_queue **produce_q,
1829                  u64 produce_size,
1830                  struct vmci_queue **consume_q,
1831                  u64 consume_size,
1832                  u32 peer,
1833                  u32 flags,
1834                  u32 priv_flags,
1835                  bool guest_endpoint,
1836                  vmci_event_release_cb wakeup_cb,
1837                  void *client_data)
1838{
1839        if (!handle || !produce_q || !consume_q ||
1840            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1841                return VMCI_ERROR_INVALID_ARGS;
1842
1843        if (guest_endpoint) {
1844                return qp_alloc_guest_work(handle, produce_q,
1845                                           produce_size, consume_q,
1846                                           consume_size, peer,
1847                                           flags, priv_flags);
1848        } else {
1849                return qp_alloc_host_work(handle, produce_q,
1850                                          produce_size, consume_q,
1851                                          consume_size, peer, flags,
1852                                          priv_flags, wakeup_cb, client_data);
1853        }
1854}
1855
1856/*
1857 * This function implements the host kernel API for detaching from
1858 * a queue pair.
1859 */
1860static int qp_detatch_host_work(struct vmci_handle handle)
1861{
1862        int result;
1863        struct vmci_ctx *context;
1864
1865        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1866
1867        result = vmci_qp_broker_detach(handle, context);
1868
1869        vmci_ctx_put(context);
1870        return result;
1871}
1872
1873/*
1874 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1875 * Real work is done in the host or guest specific function.
1876 */
1877static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1878{
1879        if (vmci_handle_is_invalid(handle))
1880                return VMCI_ERROR_INVALID_ARGS;
1881
1882        if (guest_endpoint)
1883                return qp_detatch_guest_work(handle);
1884        else
1885                return qp_detatch_host_work(handle);
1886}
1887
1888/*
1889 * Returns the entry from the head of the list. Assumes that the list is
1890 * locked.
1891 */
1892static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1893{
1894        if (!list_empty(&qp_list->head)) {
1895                struct qp_entry *entry =
1896                    list_first_entry(&qp_list->head, struct qp_entry,
1897                                     list_item);
1898                return entry;
1899        }
1900
1901        return NULL;
1902}
1903
1904void vmci_qp_broker_exit(void)
1905{
1906        struct qp_entry *entry;
1907        struct qp_broker_entry *be;
1908
1909        mutex_lock(&qp_broker_list.mutex);
1910
1911        while ((entry = qp_list_get_head(&qp_broker_list))) {
1912                be = (struct qp_broker_entry *)entry;
1913
1914                qp_list_remove_entry(&qp_broker_list, entry);
1915                kfree(be);
1916        }
1917
1918        mutex_unlock(&qp_broker_list.mutex);
1919}
1920
1921/*
1922 * Requests that a queue pair be allocated with the VMCI queue
1923 * pair broker. Allocates a queue pair entry if one does not
1924 * exist. Attaches to one if it exists, and retrieves the page
1925 * files backing that queue_pair.  Assumes that the queue pair
1926 * broker lock is held.
1927 */
1928int vmci_qp_broker_alloc(struct vmci_handle handle,
1929                         u32 peer,
1930                         u32 flags,
1931                         u32 priv_flags,
1932                         u64 produce_size,
1933                         u64 consume_size,
1934                         struct vmci_qp_page_store *page_store,
1935                         struct vmci_ctx *context)
1936{
1937        if (!QP_SIZES_ARE_VALID(produce_size, consume_size))
1938                return VMCI_ERROR_NO_RESOURCES;
1939
1940        return qp_broker_alloc(handle, peer, flags, priv_flags,
1941                               produce_size, consume_size,
1942                               page_store, context, NULL, NULL, NULL, NULL);
1943}
1944
1945/*
1946 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1947 * step to add the UVAs of the VMX mapping of the queue pair. This function
1948 * provides backwards compatibility with such VMX'en, and takes care of
1949 * registering the page store for a queue pair previously allocated by the
1950 * VMX during create or attach. This function will move the queue pair state
1951 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1952 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1953 * attached state with memory, the queue pair is ready to be used by the
1954 * host peer, and an attached event will be generated.
1955 *
1956 * Assumes that the queue pair broker lock is held.
1957 *
1958 * This function is only used by the hosted platform, since there is no
1959 * issue with backwards compatibility for vmkernel.
1960 */
1961int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1962                                  u64 produce_uva,
1963                                  u64 consume_uva,
1964                                  struct vmci_ctx *context)
1965{
1966        struct qp_broker_entry *entry;
1967        int result;
1968        const u32 context_id = vmci_ctx_get_id(context);
1969
1970        if (vmci_handle_is_invalid(handle) || !context ||
1971            context_id == VMCI_INVALID_ID)
1972                return VMCI_ERROR_INVALID_ARGS;
1973
1974        /*
1975         * We only support guest to host queue pairs, so the VMX must
1976         * supply UVAs for the mapped page files.
1977         */
1978
1979        if (produce_uva == 0 || consume_uva == 0)
1980                return VMCI_ERROR_INVALID_ARGS;
1981
1982        mutex_lock(&qp_broker_list.mutex);
1983
1984        if (!vmci_ctx_qp_exists(context, handle)) {
1985                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1986                        context_id, handle.context, handle.resource);
1987                result = VMCI_ERROR_NOT_FOUND;
1988                goto out;
1989        }
1990
1991        entry = qp_broker_handle_to_entry(handle);
1992        if (!entry) {
1993                result = VMCI_ERROR_NOT_FOUND;
1994                goto out;
1995        }
1996
1997        /*
1998         * If I'm the owner then I can set the page store.
1999         *
2000         * Or, if a host created the queue_pair and I'm the attached peer
2001         * then I can set the page store.
2002         */
2003        if (entry->create_id != context_id &&
2004            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2005             entry->attach_id != context_id)) {
2006                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2007                goto out;
2008        }
2009
2010        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2011            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2012                result = VMCI_ERROR_UNAVAILABLE;
2013                goto out;
2014        }
2015
2016        result = qp_host_get_user_memory(produce_uva, consume_uva,
2017                                         entry->produce_q, entry->consume_q);
2018        if (result < VMCI_SUCCESS)
2019                goto out;
2020
2021        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2022        if (result < VMCI_SUCCESS) {
2023                qp_host_unregister_user_memory(entry->produce_q,
2024                                               entry->consume_q);
2025                goto out;
2026        }
2027
2028        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2029                entry->state = VMCIQPB_CREATED_MEM;
2030        else
2031                entry->state = VMCIQPB_ATTACHED_MEM;
2032
2033        entry->vmci_page_files = true;
2034
2035        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2036                result =
2037                    qp_notify_peer(true, handle, context_id, entry->create_id);
2038                if (result < VMCI_SUCCESS) {
2039                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2040                                entry->create_id, entry->qp.handle.context,
2041                                entry->qp.handle.resource);
2042                }
2043        }
2044
2045        result = VMCI_SUCCESS;
2046 out:
2047        mutex_unlock(&qp_broker_list.mutex);
2048        return result;
2049}
2050
2051/*
2052 * Resets saved queue headers for the given QP broker
2053 * entry. Should be used when guest memory becomes available
2054 * again, or the guest detaches.
2055 */
2056static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2057{
2058        entry->produce_q->saved_header = NULL;
2059        entry->consume_q->saved_header = NULL;
2060}
2061
2062/*
2063 * The main entry point for detaching from a queue pair registered with the
2064 * queue pair broker. If more than one endpoint is attached to the queue
2065 * pair, the first endpoint will mainly decrement a reference count and
2066 * generate a notification to its peer. The last endpoint will clean up
2067 * the queue pair state registered with the broker.
2068 *
2069 * When a guest endpoint detaches, it will unmap and unregister the guest
2070 * memory backing the queue pair. If the host is still attached, it will
2071 * no longer be able to access the queue pair content.
2072 *
2073 * If the queue pair is already in a state where there is no memory
2074 * registered for the queue pair (any *_NO_MEM state), it will transition to
2075 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2076 * endpoint is the first of two endpoints to detach. If the host endpoint is
2077 * the first out of two to detach, the queue pair will move to the
2078 * VMCIQPB_SHUTDOWN_MEM state.
2079 */
2080int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2081{
2082        struct qp_broker_entry *entry;
2083        const u32 context_id = vmci_ctx_get_id(context);
2084        u32 peer_id;
2085        bool is_local = false;
2086        int result;
2087
2088        if (vmci_handle_is_invalid(handle) || !context ||
2089            context_id == VMCI_INVALID_ID) {
2090                return VMCI_ERROR_INVALID_ARGS;
2091        }
2092
2093        mutex_lock(&qp_broker_list.mutex);
2094
2095        if (!vmci_ctx_qp_exists(context, handle)) {
2096                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2097                         context_id, handle.context, handle.resource);
2098                result = VMCI_ERROR_NOT_FOUND;
2099                goto out;
2100        }
2101
2102        entry = qp_broker_handle_to_entry(handle);
2103        if (!entry) {
2104                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2105                         context_id, handle.context, handle.resource);
2106                result = VMCI_ERROR_NOT_FOUND;
2107                goto out;
2108        }
2109
2110        if (context_id != entry->create_id && context_id != entry->attach_id) {
2111                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2112                goto out;
2113        }
2114
2115        if (context_id == entry->create_id) {
2116                peer_id = entry->attach_id;
2117                entry->create_id = VMCI_INVALID_ID;
2118        } else {
2119                peer_id = entry->create_id;
2120                entry->attach_id = VMCI_INVALID_ID;
2121        }
2122        entry->qp.ref_count--;
2123
2124        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2125
2126        if (context_id != VMCI_HOST_CONTEXT_ID) {
2127                bool headers_mapped;
2128
2129                /*
2130                 * Pre NOVMVM vmx'en may detach from a queue pair
2131                 * before setting the page store, and in that case
2132                 * there is no user memory to detach from. Also, more
2133                 * recent VMX'en may detach from a queue pair in the
2134                 * quiesced state.
2135                 */
2136
2137                qp_acquire_queue_mutex(entry->produce_q);
2138                headers_mapped = entry->produce_q->q_header ||
2139                    entry->consume_q->q_header;
2140                if (QPBROKERSTATE_HAS_MEM(entry)) {
2141                        result =
2142                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2143                                                 entry->produce_q,
2144                                                 entry->consume_q);
2145                        if (result < VMCI_SUCCESS)
2146                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2147                                        handle.context, handle.resource,
2148                                        result);
2149
2150                        qp_host_unregister_user_memory(entry->produce_q,
2151                                                       entry->consume_q);
2152
2153                }
2154
2155                if (!headers_mapped)
2156                        qp_reset_saved_headers(entry);
2157
2158                qp_release_queue_mutex(entry->produce_q);
2159
2160                if (!headers_mapped && entry->wakeup_cb)
2161                        entry->wakeup_cb(entry->client_data);
2162
2163        } else {
2164                if (entry->wakeup_cb) {
2165                        entry->wakeup_cb = NULL;
2166                        entry->client_data = NULL;
2167                }
2168        }
2169
2170        if (entry->qp.ref_count == 0) {
2171                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2172
2173                if (is_local)
2174                        kfree(entry->local_mem);
2175
2176                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2177                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2178                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2179                /* Unlink from resource hash table and free callback */
2180                vmci_resource_remove(&entry->resource);
2181
2182                kfree(entry);
2183
2184                vmci_ctx_qp_destroy(context, handle);
2185        } else {
2186                qp_notify_peer(false, handle, context_id, peer_id);
2187                if (context_id == VMCI_HOST_CONTEXT_ID &&
2188                    QPBROKERSTATE_HAS_MEM(entry)) {
2189                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2190                } else {
2191                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2192                }
2193
2194                if (!is_local)
2195                        vmci_ctx_qp_destroy(context, handle);
2196
2197        }
2198        result = VMCI_SUCCESS;
2199 out:
2200        mutex_unlock(&qp_broker_list.mutex);
2201        return result;
2202}
2203
2204/*
2205 * Establishes the necessary mappings for a queue pair given a
2206 * reference to the queue pair guest memory. This is usually
2207 * called when a guest is unquiesced and the VMX is allowed to
2208 * map guest memory once again.
2209 */
2210int vmci_qp_broker_map(struct vmci_handle handle,
2211                       struct vmci_ctx *context,
2212                       u64 guest_mem)
2213{
2214        struct qp_broker_entry *entry;
2215        const u32 context_id = vmci_ctx_get_id(context);
2216        int result;
2217
2218        if (vmci_handle_is_invalid(handle) || !context ||
2219            context_id == VMCI_INVALID_ID)
2220                return VMCI_ERROR_INVALID_ARGS;
2221
2222        mutex_lock(&qp_broker_list.mutex);
2223
2224        if (!vmci_ctx_qp_exists(context, handle)) {
2225                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226                         context_id, handle.context, handle.resource);
2227                result = VMCI_ERROR_NOT_FOUND;
2228                goto out;
2229        }
2230
2231        entry = qp_broker_handle_to_entry(handle);
2232        if (!entry) {
2233                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234                         context_id, handle.context, handle.resource);
2235                result = VMCI_ERROR_NOT_FOUND;
2236                goto out;
2237        }
2238
2239        if (context_id != entry->create_id && context_id != entry->attach_id) {
2240                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241                goto out;
2242        }
2243
2244        result = VMCI_SUCCESS;
2245
2246        if (context_id != VMCI_HOST_CONTEXT_ID &&
2247            !QPBROKERSTATE_HAS_MEM(entry)) {
2248                struct vmci_qp_page_store page_store;
2249
2250                page_store.pages = guest_mem;
2251                page_store.len = QPE_NUM_PAGES(entry->qp);
2252
2253                qp_acquire_queue_mutex(entry->produce_q);
2254                qp_reset_saved_headers(entry);
2255                result =
2256                    qp_host_register_user_memory(&page_store,
2257                                                 entry->produce_q,
2258                                                 entry->consume_q);
2259                qp_release_queue_mutex(entry->produce_q);
2260                if (result == VMCI_SUCCESS) {
2261                        /* Move state from *_NO_MEM to *_MEM */
2262
2263                        entry->state++;
2264
2265                        if (entry->wakeup_cb)
2266                                entry->wakeup_cb(entry->client_data);
2267                }
2268        }
2269
2270 out:
2271        mutex_unlock(&qp_broker_list.mutex);
2272        return result;
2273}
2274
2275/*
2276 * Saves a snapshot of the queue headers for the given QP broker
2277 * entry. Should be used when guest memory is unmapped.
2278 * Results:
2279 * VMCI_SUCCESS on success, appropriate error code if guest memory
2280 * can't be accessed..
2281 */
2282static int qp_save_headers(struct qp_broker_entry *entry)
2283{
2284        int result;
2285
2286        if (entry->produce_q->saved_header != NULL &&
2287            entry->consume_q->saved_header != NULL) {
2288                /*
2289                 *  If the headers have already been saved, we don't need to do
2290                 *  it again, and we don't want to map in the headers
2291                 *  unnecessarily.
2292                 */
2293
2294                return VMCI_SUCCESS;
2295        }
2296
2297        if (NULL == entry->produce_q->q_header ||
2298            NULL == entry->consume_q->q_header) {
2299                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300                if (result < VMCI_SUCCESS)
2301                        return result;
2302        }
2303
2304        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305               sizeof(entry->saved_produce_q));
2306        entry->produce_q->saved_header = &entry->saved_produce_q;
2307        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308               sizeof(entry->saved_consume_q));
2309        entry->consume_q->saved_header = &entry->saved_consume_q;
2310
2311        return VMCI_SUCCESS;
2312}
2313
2314/*
2315 * Removes all references to the guest memory of a given queue pair, and
2316 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317 * called when a VM is being quiesced where access to guest memory should
2318 * avoided.
2319 */
2320int vmci_qp_broker_unmap(struct vmci_handle handle,
2321                         struct vmci_ctx *context,
2322                         u32 gid)
2323{
2324        struct qp_broker_entry *entry;
2325        const u32 context_id = vmci_ctx_get_id(context);
2326        int result;
2327
2328        if (vmci_handle_is_invalid(handle) || !context ||
2329            context_id == VMCI_INVALID_ID)
2330                return VMCI_ERROR_INVALID_ARGS;
2331
2332        mutex_lock(&qp_broker_list.mutex);
2333
2334        if (!vmci_ctx_qp_exists(context, handle)) {
2335                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2336                         context_id, handle.context, handle.resource);
2337                result = VMCI_ERROR_NOT_FOUND;
2338                goto out;
2339        }
2340
2341        entry = qp_broker_handle_to_entry(handle);
2342        if (!entry) {
2343                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2344                         context_id, handle.context, handle.resource);
2345                result = VMCI_ERROR_NOT_FOUND;
2346                goto out;
2347        }
2348
2349        if (context_id != entry->create_id && context_id != entry->attach_id) {
2350                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2351                goto out;
2352        }
2353
2354        if (context_id != VMCI_HOST_CONTEXT_ID &&
2355            QPBROKERSTATE_HAS_MEM(entry)) {
2356                qp_acquire_queue_mutex(entry->produce_q);
2357                result = qp_save_headers(entry);
2358                if (result < VMCI_SUCCESS)
2359                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2360                                handle.context, handle.resource, result);
2361
2362                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2363
2364                /*
2365                 * On hosted, when we unmap queue pairs, the VMX will also
2366                 * unmap the guest memory, so we invalidate the previously
2367                 * registered memory. If the queue pair is mapped again at a
2368                 * later point in time, we will need to reregister the user
2369                 * memory with a possibly new user VA.
2370                 */
2371                qp_host_unregister_user_memory(entry->produce_q,
2372                                               entry->consume_q);
2373
2374                /*
2375                 * Move state from *_MEM to *_NO_MEM.
2376                 */
2377                entry->state--;
2378
2379                qp_release_queue_mutex(entry->produce_q);
2380        }
2381
2382        result = VMCI_SUCCESS;
2383
2384 out:
2385        mutex_unlock(&qp_broker_list.mutex);
2386        return result;
2387}
2388
2389/*
2390 * Destroys all guest queue pair endpoints. If active guest queue
2391 * pairs still exist, hypercalls to attempt detach from these
2392 * queue pairs will be made. Any failure to detach is silently
2393 * ignored.
2394 */
2395void vmci_qp_guest_endpoints_exit(void)
2396{
2397        struct qp_entry *entry;
2398        struct qp_guest_endpoint *ep;
2399
2400        mutex_lock(&qp_guest_endpoints.mutex);
2401
2402        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2403                ep = (struct qp_guest_endpoint *)entry;
2404
2405                /* Don't make a hypercall for local queue_pairs. */
2406                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2407                        qp_detatch_hypercall(entry->handle);
2408
2409                /* We cannot fail the exit, so let's reset ref_count. */
2410                entry->ref_count = 0;
2411                qp_list_remove_entry(&qp_guest_endpoints, entry);
2412
2413                qp_guest_endpoint_destroy(ep);
2414        }
2415
2416        mutex_unlock(&qp_guest_endpoints.mutex);
2417}
2418
2419/*
2420 * Helper routine that will lock the queue pair before subsequent
2421 * operations.
2422 * Note: Non-blocking on the host side is currently only implemented in ESX.
2423 * Since non-blocking isn't yet implemented on the host personality we
2424 * have no reason to acquire a spin lock.  So to avoid the use of an
2425 * unnecessary lock only acquire the mutex if we can block.
2426 */
2427static void qp_lock(const struct vmci_qp *qpair)
2428{
2429        qp_acquire_queue_mutex(qpair->produce_q);
2430}
2431
2432/*
2433 * Helper routine that unlocks the queue pair after calling
2434 * qp_lock.
2435 */
2436static void qp_unlock(const struct vmci_qp *qpair)
2437{
2438        qp_release_queue_mutex(qpair->produce_q);
2439}
2440
2441/*
2442 * The queue headers may not be mapped at all times. If a queue is
2443 * currently not mapped, it will be attempted to do so.
2444 */
2445static int qp_map_queue_headers(struct vmci_queue *produce_q,
2446                                struct vmci_queue *consume_q)
2447{
2448        int result;
2449
2450        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2451                result = qp_host_map_queues(produce_q, consume_q);
2452                if (result < VMCI_SUCCESS)
2453                        return (produce_q->saved_header &&
2454                                consume_q->saved_header) ?
2455                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2456                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2457        }
2458
2459        return VMCI_SUCCESS;
2460}
2461
2462/*
2463 * Helper routine that will retrieve the produce and consume
2464 * headers of a given queue pair. If the guest memory of the
2465 * queue pair is currently not available, the saved queue headers
2466 * will be returned, if these are available.
2467 */
2468static int qp_get_queue_headers(const struct vmci_qp *qpair,
2469                                struct vmci_queue_header **produce_q_header,
2470                                struct vmci_queue_header **consume_q_header)
2471{
2472        int result;
2473
2474        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2475        if (result == VMCI_SUCCESS) {
2476                *produce_q_header = qpair->produce_q->q_header;
2477                *consume_q_header = qpair->consume_q->q_header;
2478        } else if (qpair->produce_q->saved_header &&
2479                   qpair->consume_q->saved_header) {
2480                *produce_q_header = qpair->produce_q->saved_header;
2481                *consume_q_header = qpair->consume_q->saved_header;
2482                result = VMCI_SUCCESS;
2483        }
2484
2485        return result;
2486}
2487
2488/*
2489 * Callback from VMCI queue pair broker indicating that a queue
2490 * pair that was previously not ready, now either is ready or
2491 * gone forever.
2492 */
2493static int qp_wakeup_cb(void *client_data)
2494{
2495        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2496
2497        qp_lock(qpair);
2498        while (qpair->blocked > 0) {
2499                qpair->blocked--;
2500                qpair->generation++;
2501                wake_up(&qpair->event);
2502        }
2503        qp_unlock(qpair);
2504
2505        return VMCI_SUCCESS;
2506}
2507
2508/*
2509 * Makes the calling thread wait for the queue pair to become
2510 * ready for host side access.  Returns true when thread is
2511 * woken up after queue pair state change, false otherwise.
2512 */
2513static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2514{
2515        unsigned int generation;
2516
2517        qpair->blocked++;
2518        generation = qpair->generation;
2519        qp_unlock(qpair);
2520        wait_event(qpair->event, generation != qpair->generation);
2521        qp_lock(qpair);
2522
2523        return true;
2524}
2525
2526/*
2527 * Enqueues a given buffer to the produce queue using the provided
2528 * function. As many bytes as possible (space available in the queue)
2529 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2530 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2531 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2532 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2533 * an error occured when accessing the buffer,
2534 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2535 * available.  Otherwise, the number of bytes written to the queue is
2536 * returned.  Updates the tail pointer of the produce queue.
2537 */
2538static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2539                                 struct vmci_queue *consume_q,
2540                                 const u64 produce_q_size,
2541                                 struct iov_iter *from)
2542{
2543        s64 free_space;
2544        u64 tail;
2545        size_t buf_size = iov_iter_count(from);
2546        size_t written;
2547        ssize_t result;
2548
2549        result = qp_map_queue_headers(produce_q, consume_q);
2550        if (unlikely(result != VMCI_SUCCESS))
2551                return result;
2552
2553        free_space = vmci_q_header_free_space(produce_q->q_header,
2554                                              consume_q->q_header,
2555                                              produce_q_size);
2556        if (free_space == 0)
2557                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2558
2559        if (free_space < VMCI_SUCCESS)
2560                return (ssize_t) free_space;
2561
2562        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2563        tail = vmci_q_header_producer_tail(produce_q->q_header);
2564        if (likely(tail + written < produce_q_size)) {
2565                result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2566        } else {
2567                /* Tail pointer wraps around. */
2568
2569                const size_t tmp = (size_t) (produce_q_size - tail);
2570
2571                result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2572                if (result >= VMCI_SUCCESS)
2573                        result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2574                                                 written - tmp);
2575        }
2576
2577        if (result < VMCI_SUCCESS)
2578                return result;
2579
2580        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2581                                        produce_q_size);
2582        return written;
2583}
2584
2585/*
2586 * Dequeues data (if available) from the given consume queue. Writes data
2587 * to the user provided buffer using the provided function.
2588 * Assumes the queue->mutex has been acquired.
2589 * Results:
2590 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2591 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2592 * (as defined by the queue size).
2593 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2594 * Otherwise the number of bytes dequeued is returned.
2595 * Side effects:
2596 * Updates the head pointer of the consume queue.
2597 */
2598static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2599                                 struct vmci_queue *consume_q,
2600                                 const u64 consume_q_size,
2601                                 struct iov_iter *to,
2602                                 bool update_consumer)
2603{
2604        size_t buf_size = iov_iter_count(to);
2605        s64 buf_ready;
2606        u64 head;
2607        size_t read;
2608        ssize_t result;
2609
2610        result = qp_map_queue_headers(produce_q, consume_q);
2611        if (unlikely(result != VMCI_SUCCESS))
2612                return result;
2613
2614        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2615                                            produce_q->q_header,
2616                                            consume_q_size);
2617        if (buf_ready == 0)
2618                return VMCI_ERROR_QUEUEPAIR_NODATA;
2619
2620        if (buf_ready < VMCI_SUCCESS)
2621                return (ssize_t) buf_ready;
2622
2623        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2624        head = vmci_q_header_consumer_head(produce_q->q_header);
2625        if (likely(head + read < consume_q_size)) {
2626                result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2627        } else {
2628                /* Head pointer wraps around. */
2629
2630                const size_t tmp = (size_t) (consume_q_size - head);
2631
2632                result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2633                if (result >= VMCI_SUCCESS)
2634                        result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2635                                                   read - tmp);
2636
2637        }
2638
2639        if (result < VMCI_SUCCESS)
2640                return result;
2641
2642        if (update_consumer)
2643                vmci_q_header_add_consumer_head(produce_q->q_header,
2644                                                read, consume_q_size);
2645
2646        return read;
2647}
2648
2649/*
2650 * vmci_qpair_alloc() - Allocates a queue pair.
2651 * @qpair:      Pointer for the new vmci_qp struct.
2652 * @handle:     Handle to track the resource.
2653 * @produce_qsize:      Desired size of the producer queue.
2654 * @consume_qsize:      Desired size of the consumer queue.
2655 * @peer:       ContextID of the peer.
2656 * @flags:      VMCI flags.
2657 * @priv_flags: VMCI priviledge flags.
2658 *
2659 * This is the client interface for allocating the memory for a
2660 * vmci_qp structure and then attaching to the underlying
2661 * queue.  If an error occurs allocating the memory for the
2662 * vmci_qp structure no attempt is made to attach.  If an
2663 * error occurs attaching, then the structure is freed.
2664 */
2665int vmci_qpair_alloc(struct vmci_qp **qpair,
2666                     struct vmci_handle *handle,
2667                     u64 produce_qsize,
2668                     u64 consume_qsize,
2669                     u32 peer,
2670                     u32 flags,
2671                     u32 priv_flags)
2672{
2673        struct vmci_qp *my_qpair;
2674        int retval;
2675        struct vmci_handle src = VMCI_INVALID_HANDLE;
2676        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2677        enum vmci_route route;
2678        vmci_event_release_cb wakeup_cb;
2679        void *client_data;
2680
2681        /*
2682         * Restrict the size of a queuepair.  The device already
2683         * enforces a limit on the total amount of memory that can be
2684         * allocated to queuepairs for a guest.  However, we try to
2685         * allocate this memory before we make the queuepair
2686         * allocation hypercall.  On Linux, we allocate each page
2687         * separately, which means rather than fail, the guest will
2688         * thrash while it tries to allocate, and will become
2689         * increasingly unresponsive to the point where it appears to
2690         * be hung.  So we place a limit on the size of an individual
2691         * queuepair here, and leave the device to enforce the
2692         * restriction on total queuepair memory.  (Note that this
2693         * doesn't prevent all cases; a user with only this much
2694         * physical memory could still get into trouble.)  The error
2695         * used by the device is NO_RESOURCES, so use that here too.
2696         */
2697
2698        if (!QP_SIZES_ARE_VALID(produce_qsize, consume_qsize))
2699                return VMCI_ERROR_NO_RESOURCES;
2700
2701        retval = vmci_route(&src, &dst, false, &route);
2702        if (retval < VMCI_SUCCESS)
2703                route = vmci_guest_code_active() ?
2704                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2705
2706        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2707                pr_devel("NONBLOCK OR PINNED set");
2708                return VMCI_ERROR_INVALID_ARGS;
2709        }
2710
2711        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2712        if (!my_qpair)
2713                return VMCI_ERROR_NO_MEM;
2714
2715        my_qpair->produce_q_size = produce_qsize;
2716        my_qpair->consume_q_size = consume_qsize;
2717        my_qpair->peer = peer;
2718        my_qpair->flags = flags;
2719        my_qpair->priv_flags = priv_flags;
2720
2721        wakeup_cb = NULL;
2722        client_data = NULL;
2723
2724        if (VMCI_ROUTE_AS_HOST == route) {
2725                my_qpair->guest_endpoint = false;
2726                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2727                        my_qpair->blocked = 0;
2728                        my_qpair->generation = 0;
2729                        init_waitqueue_head(&my_qpair->event);
2730                        wakeup_cb = qp_wakeup_cb;
2731                        client_data = (void *)my_qpair;
2732                }
2733        } else {
2734                my_qpair->guest_endpoint = true;
2735        }
2736
2737        retval = vmci_qp_alloc(handle,
2738                               &my_qpair->produce_q,
2739                               my_qpair->produce_q_size,
2740                               &my_qpair->consume_q,
2741                               my_qpair->consume_q_size,
2742                               my_qpair->peer,
2743                               my_qpair->flags,
2744                               my_qpair->priv_flags,
2745                               my_qpair->guest_endpoint,
2746                               wakeup_cb, client_data);
2747
2748        if (retval < VMCI_SUCCESS) {
2749                kfree(my_qpair);
2750                return retval;
2751        }
2752
2753        *qpair = my_qpair;
2754        my_qpair->handle = *handle;
2755
2756        return retval;
2757}
2758EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2759
2760/*
2761 * vmci_qpair_detach() - Detatches the client from a queue pair.
2762 * @qpair:      Reference of a pointer to the qpair struct.
2763 *
2764 * This is the client interface for detaching from a VMCIQPair.
2765 * Note that this routine will free the memory allocated for the
2766 * vmci_qp structure too.
2767 */
2768int vmci_qpair_detach(struct vmci_qp **qpair)
2769{
2770        int result;
2771        struct vmci_qp *old_qpair;
2772
2773        if (!qpair || !(*qpair))
2774                return VMCI_ERROR_INVALID_ARGS;
2775
2776        old_qpair = *qpair;
2777        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2778
2779        /*
2780         * The guest can fail to detach for a number of reasons, and
2781         * if it does so, it will cleanup the entry (if there is one).
2782         * The host can fail too, but it won't cleanup the entry
2783         * immediately, it will do that later when the context is
2784         * freed.  Either way, we need to release the qpair struct
2785         * here; there isn't much the caller can do, and we don't want
2786         * to leak.
2787         */
2788
2789        memset(old_qpair, 0, sizeof(*old_qpair));
2790        old_qpair->handle = VMCI_INVALID_HANDLE;
2791        old_qpair->peer = VMCI_INVALID_ID;
2792        kfree(old_qpair);
2793        *qpair = NULL;
2794
2795        return result;
2796}
2797EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2798
2799/*
2800 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2801 * @qpair:      Pointer to the queue pair struct.
2802 * @producer_tail:      Reference used for storing producer tail index.
2803 * @consumer_head:      Reference used for storing the consumer head index.
2804 *
2805 * This is the client interface for getting the current indexes of the
2806 * QPair from the point of the view of the caller as the producer.
2807 */
2808int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2809                                   u64 *producer_tail,
2810                                   u64 *consumer_head)
2811{
2812        struct vmci_queue_header *produce_q_header;
2813        struct vmci_queue_header *consume_q_header;
2814        int result;
2815
2816        if (!qpair)
2817                return VMCI_ERROR_INVALID_ARGS;
2818
2819        qp_lock(qpair);
2820        result =
2821            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2822        if (result == VMCI_SUCCESS)
2823                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2824                                           producer_tail, consumer_head);
2825        qp_unlock(qpair);
2826
2827        if (result == VMCI_SUCCESS &&
2828            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2829             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2830                return VMCI_ERROR_INVALID_SIZE;
2831
2832        return result;
2833}
2834EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2835
2836/*
2837 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2838 * @qpair:      Pointer to the queue pair struct.
2839 * @consumer_tail:      Reference used for storing consumer tail index.
2840 * @producer_head:      Reference used for storing the producer head index.
2841 *
2842 * This is the client interface for getting the current indexes of the
2843 * QPair from the point of the view of the caller as the consumer.
2844 */
2845int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2846                                   u64 *consumer_tail,
2847                                   u64 *producer_head)
2848{
2849        struct vmci_queue_header *produce_q_header;
2850        struct vmci_queue_header *consume_q_header;
2851        int result;
2852
2853        if (!qpair)
2854                return VMCI_ERROR_INVALID_ARGS;
2855
2856        qp_lock(qpair);
2857        result =
2858            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2859        if (result == VMCI_SUCCESS)
2860                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2861                                           consumer_tail, producer_head);
2862        qp_unlock(qpair);
2863
2864        if (result == VMCI_SUCCESS &&
2865            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2866             (producer_head && *producer_head >= qpair->consume_q_size)))
2867                return VMCI_ERROR_INVALID_SIZE;
2868
2869        return result;
2870}
2871EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2872
2873/*
2874 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2875 * @qpair:      Pointer to the queue pair struct.
2876 *
2877 * This is the client interface for getting the amount of free
2878 * space in the QPair from the point of the view of the caller as
2879 * the producer which is the common case.  Returns < 0 if err, else
2880 * available bytes into which data can be enqueued if > 0.
2881 */
2882s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2883{
2884        struct vmci_queue_header *produce_q_header;
2885        struct vmci_queue_header *consume_q_header;
2886        s64 result;
2887
2888        if (!qpair)
2889                return VMCI_ERROR_INVALID_ARGS;
2890
2891        qp_lock(qpair);
2892        result =
2893            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2894        if (result == VMCI_SUCCESS)
2895                result = vmci_q_header_free_space(produce_q_header,
2896                                                  consume_q_header,
2897                                                  qpair->produce_q_size);
2898        else
2899                result = 0;
2900
2901        qp_unlock(qpair);
2902
2903        return result;
2904}
2905EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2906
2907/*
2908 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2909 * @qpair:      Pointer to the queue pair struct.
2910 *
2911 * This is the client interface for getting the amount of free
2912 * space in the QPair from the point of the view of the caller as
2913 * the consumer which is not the common case.  Returns < 0 if err, else
2914 * available bytes into which data can be enqueued if > 0.
2915 */
2916s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2917{
2918        struct vmci_queue_header *produce_q_header;
2919        struct vmci_queue_header *consume_q_header;
2920        s64 result;
2921
2922        if (!qpair)
2923                return VMCI_ERROR_INVALID_ARGS;
2924
2925        qp_lock(qpair);
2926        result =
2927            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2928        if (result == VMCI_SUCCESS)
2929                result = vmci_q_header_free_space(consume_q_header,
2930                                                  produce_q_header,
2931                                                  qpair->consume_q_size);
2932        else
2933                result = 0;
2934
2935        qp_unlock(qpair);
2936
2937        return result;
2938}
2939EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2940
2941/*
2942 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2943 * producer queue.
2944 * @qpair:      Pointer to the queue pair struct.
2945 *
2946 * This is the client interface for getting the amount of
2947 * enqueued data in the QPair from the point of the view of the
2948 * caller as the producer which is not the common case.  Returns < 0 if err,
2949 * else available bytes that may be read.
2950 */
2951s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2952{
2953        struct vmci_queue_header *produce_q_header;
2954        struct vmci_queue_header *consume_q_header;
2955        s64 result;
2956
2957        if (!qpair)
2958                return VMCI_ERROR_INVALID_ARGS;
2959
2960        qp_lock(qpair);
2961        result =
2962            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2963        if (result == VMCI_SUCCESS)
2964                result = vmci_q_header_buf_ready(produce_q_header,
2965                                                 consume_q_header,
2966                                                 qpair->produce_q_size);
2967        else
2968                result = 0;
2969
2970        qp_unlock(qpair);
2971
2972        return result;
2973}
2974EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2975
2976/*
2977 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2978 * consumer queue.
2979 * @qpair:      Pointer to the queue pair struct.
2980 *
2981 * This is the client interface for getting the amount of
2982 * enqueued data in the QPair from the point of the view of the
2983 * caller as the consumer which is the normal case.  Returns < 0 if err,
2984 * else available bytes that may be read.
2985 */
2986s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2987{
2988        struct vmci_queue_header *produce_q_header;
2989        struct vmci_queue_header *consume_q_header;
2990        s64 result;
2991
2992        if (!qpair)
2993                return VMCI_ERROR_INVALID_ARGS;
2994
2995        qp_lock(qpair);
2996        result =
2997            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2998        if (result == VMCI_SUCCESS)
2999                result = vmci_q_header_buf_ready(consume_q_header,
3000                                                 produce_q_header,
3001                                                 qpair->consume_q_size);
3002        else
3003                result = 0;
3004
3005        qp_unlock(qpair);
3006
3007        return result;
3008}
3009EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3010
3011/*
3012 * vmci_qpair_enqueue() - Throw data on the queue.
3013 * @qpair:      Pointer to the queue pair struct.
3014 * @buf:        Pointer to buffer containing data
3015 * @buf_size:   Length of buffer.
3016 * @buf_type:   Buffer type (Unused).
3017 *
3018 * This is the client interface for enqueueing data into the queue.
3019 * Returns number of bytes enqueued or < 0 on error.
3020 */
3021ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3022                           const void *buf,
3023                           size_t buf_size,
3024                           int buf_type)
3025{
3026        ssize_t result;
3027        struct iov_iter from;
3028        struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3029
3030        if (!qpair || !buf)
3031                return VMCI_ERROR_INVALID_ARGS;
3032
3033        iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3034
3035        qp_lock(qpair);
3036
3037        do {
3038                result = qp_enqueue_locked(qpair->produce_q,
3039                                           qpair->consume_q,
3040                                           qpair->produce_q_size,
3041                                           &from);
3042
3043                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3044                    !qp_wait_for_ready_queue(qpair))
3045                        result = VMCI_ERROR_WOULD_BLOCK;
3046
3047        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3048
3049        qp_unlock(qpair);
3050
3051        return result;
3052}
3053EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3054
3055/*
3056 * vmci_qpair_dequeue() - Get data from the queue.
3057 * @qpair:      Pointer to the queue pair struct.
3058 * @buf:        Pointer to buffer for the data
3059 * @buf_size:   Length of buffer.
3060 * @buf_type:   Buffer type (Unused).
3061 *
3062 * This is the client interface for dequeueing data from the queue.
3063 * Returns number of bytes dequeued or < 0 on error.
3064 */
3065ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3066                           void *buf,
3067                           size_t buf_size,
3068                           int buf_type)
3069{
3070        ssize_t result;
3071        struct iov_iter to;
3072        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3073
3074        if (!qpair || !buf)
3075                return VMCI_ERROR_INVALID_ARGS;
3076
3077        iov_iter_kvec(&to, READ, &v, 1, buf_size);
3078
3079        qp_lock(qpair);
3080
3081        do {
3082                result = qp_dequeue_locked(qpair->produce_q,
3083                                           qpair->consume_q,
3084                                           qpair->consume_q_size,
3085                                           &to, true);
3086
3087                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3088                    !qp_wait_for_ready_queue(qpair))
3089                        result = VMCI_ERROR_WOULD_BLOCK;
3090
3091        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3092
3093        qp_unlock(qpair);
3094
3095        return result;
3096}
3097EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3098
3099/*
3100 * vmci_qpair_peek() - Peek at the data in the queue.
3101 * @qpair:      Pointer to the queue pair struct.
3102 * @buf:        Pointer to buffer for the data
3103 * @buf_size:   Length of buffer.
3104 * @buf_type:   Buffer type (Unused on Linux).
3105 *
3106 * This is the client interface for peeking into a queue.  (I.e.,
3107 * copy data from the queue without updating the head pointer.)
3108 * Returns number of bytes dequeued or < 0 on error.
3109 */
3110ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3111                        void *buf,
3112                        size_t buf_size,
3113                        int buf_type)
3114{
3115        struct iov_iter to;
3116        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3117        ssize_t result;
3118
3119        if (!qpair || !buf)
3120                return VMCI_ERROR_INVALID_ARGS;
3121
3122        iov_iter_kvec(&to, READ, &v, 1, buf_size);
3123
3124        qp_lock(qpair);
3125
3126        do {
3127                result = qp_dequeue_locked(qpair->produce_q,
3128                                           qpair->consume_q,
3129                                           qpair->consume_q_size,
3130                                           &to, false);
3131
3132                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3133                    !qp_wait_for_ready_queue(qpair))
3134                        result = VMCI_ERROR_WOULD_BLOCK;
3135
3136        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3137
3138        qp_unlock(qpair);
3139
3140        return result;
3141}
3142EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3143
3144/*
3145 * vmci_qpair_enquev() - Throw data on the queue using iov.
3146 * @qpair:      Pointer to the queue pair struct.
3147 * @iov:        Pointer to buffer containing data
3148 * @iov_size:   Length of buffer.
3149 * @buf_type:   Buffer type (Unused).
3150 *
3151 * This is the client interface for enqueueing data into the queue.
3152 * This function uses IO vectors to handle the work. Returns number
3153 * of bytes enqueued or < 0 on error.
3154 */
3155ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3156                          struct msghdr *msg,
3157                          size_t iov_size,
3158                          int buf_type)
3159{
3160        ssize_t result;
3161
3162        if (!qpair)
3163                return VMCI_ERROR_INVALID_ARGS;
3164
3165        qp_lock(qpair);
3166
3167        do {
3168                result = qp_enqueue_locked(qpair->produce_q,
3169                                           qpair->consume_q,
3170                                           qpair->produce_q_size,
3171                                           &msg->msg_iter);
3172
3173                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3174                    !qp_wait_for_ready_queue(qpair))
3175                        result = VMCI_ERROR_WOULD_BLOCK;
3176
3177        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3178
3179        qp_unlock(qpair);
3180
3181        return result;
3182}
3183EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3184
3185/*
3186 * vmci_qpair_dequev() - Get data from the queue using iov.
3187 * @qpair:      Pointer to the queue pair struct.
3188 * @iov:        Pointer to buffer for the data
3189 * @iov_size:   Length of buffer.
3190 * @buf_type:   Buffer type (Unused).
3191 *
3192 * This is the client interface for dequeueing data from the queue.
3193 * This function uses IO vectors to handle the work. Returns number
3194 * of bytes dequeued or < 0 on error.
3195 */
3196ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3197                          struct msghdr *msg,
3198                          size_t iov_size,
3199                          int buf_type)
3200{
3201        ssize_t result;
3202
3203        if (!qpair)
3204                return VMCI_ERROR_INVALID_ARGS;
3205
3206        qp_lock(qpair);
3207
3208        do {
3209                result = qp_dequeue_locked(qpair->produce_q,
3210                                           qpair->consume_q,
3211                                           qpair->consume_q_size,
3212                                           &msg->msg_iter, true);
3213
3214                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3215                    !qp_wait_for_ready_queue(qpair))
3216                        result = VMCI_ERROR_WOULD_BLOCK;
3217
3218        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3219
3220        qp_unlock(qpair);
3221
3222        return result;
3223}
3224EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3225
3226/*
3227 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3228 * @qpair:      Pointer to the queue pair struct.
3229 * @iov:        Pointer to buffer for the data
3230 * @iov_size:   Length of buffer.
3231 * @buf_type:   Buffer type (Unused on Linux).
3232 *
3233 * This is the client interface for peeking into a queue.  (I.e.,
3234 * copy data from the queue without updating the head pointer.)
3235 * This function uses IO vectors to handle the work. Returns number
3236 * of bytes peeked or < 0 on error.
3237 */
3238ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3239                         struct msghdr *msg,
3240                         size_t iov_size,
3241                         int buf_type)
3242{
3243        ssize_t result;
3244
3245        if (!qpair)
3246                return VMCI_ERROR_INVALID_ARGS;
3247
3248        qp_lock(qpair);
3249
3250        do {
3251                result = qp_dequeue_locked(qpair->produce_q,
3252                                           qpair->consume_q,
3253                                           qpair->consume_q_size,
3254                                           &msg->msg_iter, false);
3255
3256                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3257                    !qp_wait_for_ready_queue(qpair))
3258                        result = VMCI_ERROR_WOULD_BLOCK;
3259
3260        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3261
3262        qp_unlock(qpair);
3263        return result;
3264}
3265EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3266