linux/drivers/mmc/host/sdhci-of-esdhc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale eSDHC controller driver.
   4 *
   5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
   6 * Copyright (c) 2009 MontaVista Software, Inc.
   7 * Copyright 2020 NXP
   8 *
   9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
  10 *          Anton Vorontsov <avorontsov@ru.mvista.com>
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/of.h>
  16#include <linux/of_address.h>
  17#include <linux/delay.h>
  18#include <linux/module.h>
  19#include <linux/sys_soc.h>
  20#include <linux/clk.h>
  21#include <linux/ktime.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/iopoll.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/mmc.h>
  26#include "sdhci-pltfm.h"
  27#include "sdhci-esdhc.h"
  28
  29#define VENDOR_V_22     0x12
  30#define VENDOR_V_23     0x13
  31
  32#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
  33
  34struct esdhc_clk_fixup {
  35        const unsigned int sd_dflt_max_clk;
  36        const unsigned int max_clk[MMC_TIMING_NUM];
  37};
  38
  39static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
  40        .sd_dflt_max_clk = 25000000,
  41        .max_clk[MMC_TIMING_MMC_HS] = 46500000,
  42        .max_clk[MMC_TIMING_SD_HS] = 46500000,
  43};
  44
  45static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
  46        .sd_dflt_max_clk = 25000000,
  47        .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
  48        .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
  49};
  50
  51static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
  52        .sd_dflt_max_clk = 25000000,
  53        .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
  54        .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
  55};
  56
  57static const struct esdhc_clk_fixup p1010_esdhc_clk = {
  58        .sd_dflt_max_clk = 20000000,
  59        .max_clk[MMC_TIMING_LEGACY] = 20000000,
  60        .max_clk[MMC_TIMING_MMC_HS] = 42000000,
  61        .max_clk[MMC_TIMING_SD_HS] = 40000000,
  62};
  63
  64static const struct of_device_id sdhci_esdhc_of_match[] = {
  65        { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
  66        { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
  67        { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
  68        { .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
  69        { .compatible = "fsl,mpc8379-esdhc" },
  70        { .compatible = "fsl,mpc8536-esdhc" },
  71        { .compatible = "fsl,esdhc" },
  72        { }
  73};
  74MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
  75
  76struct sdhci_esdhc {
  77        u8 vendor_ver;
  78        u8 spec_ver;
  79        bool quirk_incorrect_hostver;
  80        bool quirk_limited_clk_division;
  81        bool quirk_unreliable_pulse_detection;
  82        bool quirk_tuning_erratum_type1;
  83        bool quirk_tuning_erratum_type2;
  84        bool quirk_ignore_data_inhibit;
  85        bool quirk_delay_before_data_reset;
  86        bool quirk_trans_complete_erratum;
  87        bool in_sw_tuning;
  88        unsigned int peripheral_clock;
  89        const struct esdhc_clk_fixup *clk_fixup;
  90        u32 div_ratio;
  91};
  92
  93/**
  94 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
  95 *                     to make it compatible with SD spec.
  96 *
  97 * @host: pointer to sdhci_host
  98 * @spec_reg: SD spec register address
  99 * @value: 32bit eSDHC register value on spec_reg address
 100 *
 101 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 102 * registers are 32 bits. There are differences in register size, register
 103 * address, register function, bit position and function between eSDHC spec
 104 * and SD spec.
 105 *
 106 * Return a fixed up register value
 107 */
 108static u32 esdhc_readl_fixup(struct sdhci_host *host,
 109                                     int spec_reg, u32 value)
 110{
 111        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 112        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 113        u32 ret;
 114
 115        /*
 116         * The bit of ADMA flag in eSDHC is not compatible with standard
 117         * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
 118         * supported by eSDHC.
 119         * And for many FSL eSDHC controller, the reset value of field
 120         * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
 121         * only these vendor version is greater than 2.2/0x12 support ADMA.
 122         */
 123        if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
 124                if (esdhc->vendor_ver > VENDOR_V_22) {
 125                        ret = value | SDHCI_CAN_DO_ADMA2;
 126                        return ret;
 127                }
 128        }
 129        /*
 130         * The DAT[3:0] line signal levels and the CMD line signal level are
 131         * not compatible with standard SDHC register. The line signal levels
 132         * DAT[7:0] are at bits 31:24 and the command line signal level is at
 133         * bit 23. All other bits are the same as in the standard SDHC
 134         * register.
 135         */
 136        if (spec_reg == SDHCI_PRESENT_STATE) {
 137                ret = value & 0x000fffff;
 138                ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
 139                ret |= (value << 1) & SDHCI_CMD_LVL;
 140                return ret;
 141        }
 142
 143        /*
 144         * DTS properties of mmc host are used to enable each speed mode
 145         * according to soc and board capability. So clean up
 146         * SDR50/SDR104/DDR50 support bits here.
 147         */
 148        if (spec_reg == SDHCI_CAPABILITIES_1) {
 149                ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
 150                                SDHCI_SUPPORT_DDR50);
 151                return ret;
 152        }
 153
 154        /*
 155         * Some controllers have unreliable Data Line Active
 156         * bit for commands with busy signal. This affects
 157         * Command Inhibit (data) bit. Just ignore it since
 158         * MMC core driver has already polled card status
 159         * with CMD13 after any command with busy siganl.
 160         */
 161        if ((spec_reg == SDHCI_PRESENT_STATE) &&
 162        (esdhc->quirk_ignore_data_inhibit == true)) {
 163                ret = value & ~SDHCI_DATA_INHIBIT;
 164                return ret;
 165        }
 166
 167        ret = value;
 168        return ret;
 169}
 170
 171static u16 esdhc_readw_fixup(struct sdhci_host *host,
 172                                     int spec_reg, u32 value)
 173{
 174        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 175        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 176        u16 ret;
 177        int shift = (spec_reg & 0x2) * 8;
 178
 179        if (spec_reg == SDHCI_TRANSFER_MODE)
 180                return pltfm_host->xfer_mode_shadow;
 181
 182        if (spec_reg == SDHCI_HOST_VERSION)
 183                ret = value & 0xffff;
 184        else
 185                ret = (value >> shift) & 0xffff;
 186        /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
 187         * vendor version and spec version information.
 188         */
 189        if ((spec_reg == SDHCI_HOST_VERSION) &&
 190            (esdhc->quirk_incorrect_hostver))
 191                ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
 192        return ret;
 193}
 194
 195static u8 esdhc_readb_fixup(struct sdhci_host *host,
 196                                     int spec_reg, u32 value)
 197{
 198        u8 ret;
 199        u8 dma_bits;
 200        int shift = (spec_reg & 0x3) * 8;
 201
 202        ret = (value >> shift) & 0xff;
 203
 204        /*
 205         * "DMA select" locates at offset 0x28 in SD specification, but on
 206         * P5020 or P3041, it locates at 0x29.
 207         */
 208        if (spec_reg == SDHCI_HOST_CONTROL) {
 209                /* DMA select is 22,23 bits in Protocol Control Register */
 210                dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
 211                /* fixup the result */
 212                ret &= ~SDHCI_CTRL_DMA_MASK;
 213                ret |= dma_bits;
 214        }
 215        return ret;
 216}
 217
 218/**
 219 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
 220 *                      written into eSDHC register.
 221 *
 222 * @host: pointer to sdhci_host
 223 * @spec_reg: SD spec register address
 224 * @value: 8/16/32bit SD spec register value that would be written
 225 * @old_value: 32bit eSDHC register value on spec_reg address
 226 *
 227 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 228 * registers are 32 bits. There are differences in register size, register
 229 * address, register function, bit position and function between eSDHC spec
 230 * and SD spec.
 231 *
 232 * Return a fixed up register value
 233 */
 234static u32 esdhc_writel_fixup(struct sdhci_host *host,
 235                                     int spec_reg, u32 value, u32 old_value)
 236{
 237        u32 ret;
 238
 239        /*
 240         * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
 241         * when SYSCTL[RSTD] is set for some special operations.
 242         * No any impact on other operation.
 243         */
 244        if (spec_reg == SDHCI_INT_ENABLE)
 245                ret = value | SDHCI_INT_BLK_GAP;
 246        else
 247                ret = value;
 248
 249        return ret;
 250}
 251
 252static u32 esdhc_writew_fixup(struct sdhci_host *host,
 253                                     int spec_reg, u16 value, u32 old_value)
 254{
 255        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 256        int shift = (spec_reg & 0x2) * 8;
 257        u32 ret;
 258
 259        switch (spec_reg) {
 260        case SDHCI_TRANSFER_MODE:
 261                /*
 262                 * Postpone this write, we must do it together with a
 263                 * command write that is down below. Return old value.
 264                 */
 265                pltfm_host->xfer_mode_shadow = value;
 266                return old_value;
 267        case SDHCI_COMMAND:
 268                ret = (value << 16) | pltfm_host->xfer_mode_shadow;
 269                return ret;
 270        }
 271
 272        ret = old_value & (~(0xffff << shift));
 273        ret |= (value << shift);
 274
 275        if (spec_reg == SDHCI_BLOCK_SIZE) {
 276                /*
 277                 * Two last DMA bits are reserved, and first one is used for
 278                 * non-standard blksz of 4096 bytes that we don't support
 279                 * yet. So clear the DMA boundary bits.
 280                 */
 281                ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
 282        }
 283        return ret;
 284}
 285
 286static u32 esdhc_writeb_fixup(struct sdhci_host *host,
 287                                     int spec_reg, u8 value, u32 old_value)
 288{
 289        u32 ret;
 290        u32 dma_bits;
 291        u8 tmp;
 292        int shift = (spec_reg & 0x3) * 8;
 293
 294        /*
 295         * eSDHC doesn't have a standard power control register, so we do
 296         * nothing here to avoid incorrect operation.
 297         */
 298        if (spec_reg == SDHCI_POWER_CONTROL)
 299                return old_value;
 300        /*
 301         * "DMA select" location is offset 0x28 in SD specification, but on
 302         * P5020 or P3041, it's located at 0x29.
 303         */
 304        if (spec_reg == SDHCI_HOST_CONTROL) {
 305                /*
 306                 * If host control register is not standard, exit
 307                 * this function
 308                 */
 309                if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
 310                        return old_value;
 311
 312                /* DMA select is 22,23 bits in Protocol Control Register */
 313                dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
 314                ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
 315                tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
 316                      (old_value & SDHCI_CTRL_DMA_MASK);
 317                ret = (ret & (~0xff)) | tmp;
 318
 319                /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
 320                ret &= ~ESDHC_HOST_CONTROL_RES;
 321                return ret;
 322        }
 323
 324        ret = (old_value & (~(0xff << shift))) | (value << shift);
 325        return ret;
 326}
 327
 328static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
 329{
 330        u32 ret;
 331        u32 value;
 332
 333        if (reg == SDHCI_CAPABILITIES_1)
 334                value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
 335        else
 336                value = ioread32be(host->ioaddr + reg);
 337
 338        ret = esdhc_readl_fixup(host, reg, value);
 339
 340        return ret;
 341}
 342
 343static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
 344{
 345        u32 ret;
 346        u32 value;
 347
 348        if (reg == SDHCI_CAPABILITIES_1)
 349                value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
 350        else
 351                value = ioread32(host->ioaddr + reg);
 352
 353        ret = esdhc_readl_fixup(host, reg, value);
 354
 355        return ret;
 356}
 357
 358static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
 359{
 360        u16 ret;
 361        u32 value;
 362        int base = reg & ~0x3;
 363
 364        value = ioread32be(host->ioaddr + base);
 365        ret = esdhc_readw_fixup(host, reg, value);
 366        return ret;
 367}
 368
 369static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
 370{
 371        u16 ret;
 372        u32 value;
 373        int base = reg & ~0x3;
 374
 375        value = ioread32(host->ioaddr + base);
 376        ret = esdhc_readw_fixup(host, reg, value);
 377        return ret;
 378}
 379
 380static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
 381{
 382        u8 ret;
 383        u32 value;
 384        int base = reg & ~0x3;
 385
 386        value = ioread32be(host->ioaddr + base);
 387        ret = esdhc_readb_fixup(host, reg, value);
 388        return ret;
 389}
 390
 391static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
 392{
 393        u8 ret;
 394        u32 value;
 395        int base = reg & ~0x3;
 396
 397        value = ioread32(host->ioaddr + base);
 398        ret = esdhc_readb_fixup(host, reg, value);
 399        return ret;
 400}
 401
 402static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
 403{
 404        u32 value;
 405
 406        value = esdhc_writel_fixup(host, reg, val, 0);
 407        iowrite32be(value, host->ioaddr + reg);
 408}
 409
 410static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
 411{
 412        u32 value;
 413
 414        value = esdhc_writel_fixup(host, reg, val, 0);
 415        iowrite32(value, host->ioaddr + reg);
 416}
 417
 418static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
 419{
 420        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 421        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 422        int base = reg & ~0x3;
 423        u32 value;
 424        u32 ret;
 425
 426        value = ioread32be(host->ioaddr + base);
 427        ret = esdhc_writew_fixup(host, reg, val, value);
 428        if (reg != SDHCI_TRANSFER_MODE)
 429                iowrite32be(ret, host->ioaddr + base);
 430
 431        /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
 432         * 1us later after ESDHC_EXTN is set.
 433         */
 434        if (base == ESDHC_SYSTEM_CONTROL_2) {
 435                if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
 436                    esdhc->in_sw_tuning) {
 437                        udelay(1);
 438                        ret |= ESDHC_SMPCLKSEL;
 439                        iowrite32be(ret, host->ioaddr + base);
 440                }
 441        }
 442}
 443
 444static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
 445{
 446        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 447        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 448        int base = reg & ~0x3;
 449        u32 value;
 450        u32 ret;
 451
 452        value = ioread32(host->ioaddr + base);
 453        ret = esdhc_writew_fixup(host, reg, val, value);
 454        if (reg != SDHCI_TRANSFER_MODE)
 455                iowrite32(ret, host->ioaddr + base);
 456
 457        /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
 458         * 1us later after ESDHC_EXTN is set.
 459         */
 460        if (base == ESDHC_SYSTEM_CONTROL_2) {
 461                if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
 462                    esdhc->in_sw_tuning) {
 463                        udelay(1);
 464                        ret |= ESDHC_SMPCLKSEL;
 465                        iowrite32(ret, host->ioaddr + base);
 466                }
 467        }
 468}
 469
 470static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
 471{
 472        int base = reg & ~0x3;
 473        u32 value;
 474        u32 ret;
 475
 476        value = ioread32be(host->ioaddr + base);
 477        ret = esdhc_writeb_fixup(host, reg, val, value);
 478        iowrite32be(ret, host->ioaddr + base);
 479}
 480
 481static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
 482{
 483        int base = reg & ~0x3;
 484        u32 value;
 485        u32 ret;
 486
 487        value = ioread32(host->ioaddr + base);
 488        ret = esdhc_writeb_fixup(host, reg, val, value);
 489        iowrite32(ret, host->ioaddr + base);
 490}
 491
 492/*
 493 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
 494 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
 495 * and Block Gap Event(IRQSTAT[BGE]) are also set.
 496 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
 497 * and re-issue the entire read transaction from beginning.
 498 */
 499static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
 500{
 501        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 502        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 503        bool applicable;
 504        dma_addr_t dmastart;
 505        dma_addr_t dmanow;
 506
 507        applicable = (intmask & SDHCI_INT_DATA_END) &&
 508                     (intmask & SDHCI_INT_BLK_GAP) &&
 509                     (esdhc->vendor_ver == VENDOR_V_23);
 510        if (!applicable)
 511                return;
 512
 513        host->data->error = 0;
 514        dmastart = sg_dma_address(host->data->sg);
 515        dmanow = dmastart + host->data->bytes_xfered;
 516        /*
 517         * Force update to the next DMA block boundary.
 518         */
 519        dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
 520                SDHCI_DEFAULT_BOUNDARY_SIZE;
 521        host->data->bytes_xfered = dmanow - dmastart;
 522        sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
 523}
 524
 525static int esdhc_of_enable_dma(struct sdhci_host *host)
 526{
 527        u32 value;
 528        struct device *dev = mmc_dev(host->mmc);
 529
 530        if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
 531            of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
 532                dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
 533
 534        value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 535
 536        if (of_dma_is_coherent(dev->of_node))
 537                value |= ESDHC_DMA_SNOOP;
 538        else
 539                value &= ~ESDHC_DMA_SNOOP;
 540
 541        sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
 542        return 0;
 543}
 544
 545static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
 546{
 547        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 548        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 549
 550        if (esdhc->peripheral_clock)
 551                return esdhc->peripheral_clock;
 552        else
 553                return pltfm_host->clock;
 554}
 555
 556static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
 557{
 558        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 559        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 560        unsigned int clock;
 561
 562        if (esdhc->peripheral_clock)
 563                clock = esdhc->peripheral_clock;
 564        else
 565                clock = pltfm_host->clock;
 566        return clock / 256 / 16;
 567}
 568
 569static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
 570{
 571        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 572        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 573        ktime_t timeout;
 574        u32 val, clk_en;
 575
 576        clk_en = ESDHC_CLOCK_SDCLKEN;
 577
 578        /*
 579         * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
 580         * is 2.2 or lower.
 581         */
 582        if (esdhc->vendor_ver <= VENDOR_V_22)
 583                clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
 584                           ESDHC_CLOCK_PEREN);
 585
 586        val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 587
 588        if (enable)
 589                val |= clk_en;
 590        else
 591                val &= ~clk_en;
 592
 593        sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
 594
 595        /*
 596         * Wait max 20 ms. If vendor version is 2.2 or lower, do not
 597         * wait clock stable bit which does not exist.
 598         */
 599        timeout = ktime_add_ms(ktime_get(), 20);
 600        while (esdhc->vendor_ver > VENDOR_V_22) {
 601                bool timedout = ktime_after(ktime_get(), timeout);
 602
 603                if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 604                        break;
 605                if (timedout) {
 606                        pr_err("%s: Internal clock never stabilised.\n",
 607                                mmc_hostname(host->mmc));
 608                        break;
 609                }
 610                usleep_range(10, 20);
 611        }
 612}
 613
 614static void esdhc_flush_async_fifo(struct sdhci_host *host)
 615{
 616        ktime_t timeout;
 617        u32 val;
 618
 619        val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 620        val |= ESDHC_FLUSH_ASYNC_FIFO;
 621        sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
 622
 623        /* Wait max 20 ms */
 624        timeout = ktime_add_ms(ktime_get(), 20);
 625        while (1) {
 626                bool timedout = ktime_after(ktime_get(), timeout);
 627
 628                if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
 629                      ESDHC_FLUSH_ASYNC_FIFO))
 630                        break;
 631                if (timedout) {
 632                        pr_err("%s: flushing asynchronous FIFO timeout.\n",
 633                                mmc_hostname(host->mmc));
 634                        break;
 635                }
 636                usleep_range(10, 20);
 637        }
 638}
 639
 640static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
 641{
 642        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 643        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 644        unsigned int pre_div = 1, div = 1;
 645        unsigned int clock_fixup = 0;
 646        ktime_t timeout;
 647        u32 temp;
 648
 649        if (clock == 0) {
 650                host->mmc->actual_clock = 0;
 651                esdhc_clock_enable(host, false);
 652                return;
 653        }
 654
 655        /* Start pre_div at 2 for vendor version < 2.3. */
 656        if (esdhc->vendor_ver < VENDOR_V_23)
 657                pre_div = 2;
 658
 659        /* Fix clock value. */
 660        if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
 661            esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
 662                clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
 663        else if (esdhc->clk_fixup)
 664                clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
 665
 666        if (clock_fixup == 0 || clock < clock_fixup)
 667                clock_fixup = clock;
 668
 669        /* Calculate pre_div and div. */
 670        while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
 671                pre_div *= 2;
 672
 673        while (host->max_clk / pre_div / div > clock_fixup && div < 16)
 674                div++;
 675
 676        esdhc->div_ratio = pre_div * div;
 677
 678        /* Limit clock division for HS400 200MHz clock for quirk. */
 679        if (esdhc->quirk_limited_clk_division &&
 680            clock == MMC_HS200_MAX_DTR &&
 681            (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
 682             host->flags & SDHCI_HS400_TUNING)) {
 683                if (esdhc->div_ratio <= 4) {
 684                        pre_div = 4;
 685                        div = 1;
 686                } else if (esdhc->div_ratio <= 8) {
 687                        pre_div = 4;
 688                        div = 2;
 689                } else if (esdhc->div_ratio <= 12) {
 690                        pre_div = 4;
 691                        div = 3;
 692                } else {
 693                        pr_warn("%s: using unsupported clock division.\n",
 694                                mmc_hostname(host->mmc));
 695                }
 696                esdhc->div_ratio = pre_div * div;
 697        }
 698
 699        host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
 700
 701        dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
 702                clock, host->mmc->actual_clock);
 703
 704        /* Set clock division into register. */
 705        pre_div >>= 1;
 706        div--;
 707
 708        esdhc_clock_enable(host, false);
 709
 710        temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 711        temp &= ~ESDHC_CLOCK_MASK;
 712        temp |= ((div << ESDHC_DIVIDER_SHIFT) |
 713                (pre_div << ESDHC_PREDIV_SHIFT));
 714        sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 715
 716        /*
 717         * Wait max 20 ms. If vendor version is 2.2 or lower, do not
 718         * wait clock stable bit which does not exist.
 719         */
 720        timeout = ktime_add_ms(ktime_get(), 20);
 721        while (esdhc->vendor_ver > VENDOR_V_22) {
 722                bool timedout = ktime_after(ktime_get(), timeout);
 723
 724                if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 725                        break;
 726                if (timedout) {
 727                        pr_err("%s: Internal clock never stabilised.\n",
 728                                mmc_hostname(host->mmc));
 729                        break;
 730                }
 731                usleep_range(10, 20);
 732        }
 733
 734        /* Additional setting for HS400. */
 735        if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
 736            clock == MMC_HS200_MAX_DTR) {
 737                temp = sdhci_readl(host, ESDHC_TBCTL);
 738                sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
 739                temp = sdhci_readl(host, ESDHC_SDCLKCTL);
 740                sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
 741                esdhc_clock_enable(host, true);
 742
 743                temp = sdhci_readl(host, ESDHC_DLLCFG0);
 744                temp |= ESDHC_DLL_ENABLE;
 745                if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
 746                        temp |= ESDHC_DLL_FREQ_SEL;
 747                sdhci_writel(host, temp, ESDHC_DLLCFG0);
 748
 749                temp |= ESDHC_DLL_RESET;
 750                sdhci_writel(host, temp, ESDHC_DLLCFG0);
 751                udelay(1);
 752                temp &= ~ESDHC_DLL_RESET;
 753                sdhci_writel(host, temp, ESDHC_DLLCFG0);
 754
 755                /* Wait max 20 ms */
 756                if (read_poll_timeout(sdhci_readl, temp,
 757                                      temp & ESDHC_DLL_STS_SLV_LOCK,
 758                                      10, 20000, false,
 759                                      host, ESDHC_DLLSTAT0))
 760                        pr_err("%s: timeout for delay chain lock.\n",
 761                               mmc_hostname(host->mmc));
 762
 763                temp = sdhci_readl(host, ESDHC_TBCTL);
 764                sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
 765
 766                esdhc_clock_enable(host, false);
 767                esdhc_flush_async_fifo(host);
 768        }
 769        esdhc_clock_enable(host, true);
 770}
 771
 772static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
 773{
 774        u32 ctrl;
 775
 776        ctrl = sdhci_readl(host, ESDHC_PROCTL);
 777        ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
 778        switch (width) {
 779        case MMC_BUS_WIDTH_8:
 780                ctrl |= ESDHC_CTRL_8BITBUS;
 781                break;
 782
 783        case MMC_BUS_WIDTH_4:
 784                ctrl |= ESDHC_CTRL_4BITBUS;
 785                break;
 786
 787        default:
 788                break;
 789        }
 790
 791        sdhci_writel(host, ctrl, ESDHC_PROCTL);
 792}
 793
 794static void esdhc_reset(struct sdhci_host *host, u8 mask)
 795{
 796        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 797        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 798        u32 val, bus_width = 0;
 799
 800        /*
 801         * Add delay to make sure all the DMA transfers are finished
 802         * for quirk.
 803         */
 804        if (esdhc->quirk_delay_before_data_reset &&
 805            (mask & SDHCI_RESET_DATA) &&
 806            (host->flags & SDHCI_REQ_USE_DMA))
 807                mdelay(5);
 808
 809        /*
 810         * Save bus-width for eSDHC whose vendor version is 2.2
 811         * or lower for data reset.
 812         */
 813        if ((mask & SDHCI_RESET_DATA) &&
 814            (esdhc->vendor_ver <= VENDOR_V_22)) {
 815                val = sdhci_readl(host, ESDHC_PROCTL);
 816                bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
 817        }
 818
 819        sdhci_reset(host, mask);
 820
 821        /*
 822         * Restore bus-width setting and interrupt registers for eSDHC
 823         * whose vendor version is 2.2 or lower for data reset.
 824         */
 825        if ((mask & SDHCI_RESET_DATA) &&
 826            (esdhc->vendor_ver <= VENDOR_V_22)) {
 827                val = sdhci_readl(host, ESDHC_PROCTL);
 828                val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
 829                val |= bus_width;
 830                sdhci_writel(host, val, ESDHC_PROCTL);
 831
 832                sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
 833                sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
 834        }
 835
 836        /*
 837         * Some bits have to be cleaned manually for eSDHC whose spec
 838         * version is higher than 3.0 for all reset.
 839         */
 840        if ((mask & SDHCI_RESET_ALL) &&
 841            (esdhc->spec_ver >= SDHCI_SPEC_300)) {
 842                val = sdhci_readl(host, ESDHC_TBCTL);
 843                val &= ~ESDHC_TB_EN;
 844                sdhci_writel(host, val, ESDHC_TBCTL);
 845
 846                /*
 847                 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
 848                 * 0 for quirk.
 849                 */
 850                if (esdhc->quirk_unreliable_pulse_detection) {
 851                        val = sdhci_readl(host, ESDHC_DLLCFG1);
 852                        val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
 853                        sdhci_writel(host, val, ESDHC_DLLCFG1);
 854                }
 855        }
 856}
 857
 858/* The SCFG, Supplemental Configuration Unit, provides SoC specific
 859 * configuration and status registers for the device. There is a
 860 * SDHC IO VSEL control register on SCFG for some platforms. It's
 861 * used to support SDHC IO voltage switching.
 862 */
 863static const struct of_device_id scfg_device_ids[] = {
 864        { .compatible = "fsl,t1040-scfg", },
 865        { .compatible = "fsl,ls1012a-scfg", },
 866        { .compatible = "fsl,ls1046a-scfg", },
 867        {}
 868};
 869
 870/* SDHC IO VSEL control register definition */
 871#define SCFG_SDHCIOVSELCR       0x408
 872#define SDHCIOVSELCR_TGLEN      0x80000000
 873#define SDHCIOVSELCR_VSELVAL    0x60000000
 874#define SDHCIOVSELCR_SDHC_VS    0x00000001
 875
 876static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
 877                                       struct mmc_ios *ios)
 878{
 879        struct sdhci_host *host = mmc_priv(mmc);
 880        struct device_node *scfg_node;
 881        void __iomem *scfg_base = NULL;
 882        u32 sdhciovselcr;
 883        u32 val;
 884
 885        /*
 886         * Signal Voltage Switching is only applicable for Host Controllers
 887         * v3.00 and above.
 888         */
 889        if (host->version < SDHCI_SPEC_300)
 890                return 0;
 891
 892        val = sdhci_readl(host, ESDHC_PROCTL);
 893
 894        switch (ios->signal_voltage) {
 895        case MMC_SIGNAL_VOLTAGE_330:
 896                val &= ~ESDHC_VOLT_SEL;
 897                sdhci_writel(host, val, ESDHC_PROCTL);
 898                return 0;
 899        case MMC_SIGNAL_VOLTAGE_180:
 900                scfg_node = of_find_matching_node(NULL, scfg_device_ids);
 901                if (scfg_node)
 902                        scfg_base = of_iomap(scfg_node, 0);
 903                if (scfg_base) {
 904                        sdhciovselcr = SDHCIOVSELCR_TGLEN |
 905                                       SDHCIOVSELCR_VSELVAL;
 906                        iowrite32be(sdhciovselcr,
 907                                scfg_base + SCFG_SDHCIOVSELCR);
 908
 909                        val |= ESDHC_VOLT_SEL;
 910                        sdhci_writel(host, val, ESDHC_PROCTL);
 911                        mdelay(5);
 912
 913                        sdhciovselcr = SDHCIOVSELCR_TGLEN |
 914                                       SDHCIOVSELCR_SDHC_VS;
 915                        iowrite32be(sdhciovselcr,
 916                                scfg_base + SCFG_SDHCIOVSELCR);
 917                        iounmap(scfg_base);
 918                } else {
 919                        val |= ESDHC_VOLT_SEL;
 920                        sdhci_writel(host, val, ESDHC_PROCTL);
 921                }
 922                return 0;
 923        default:
 924                return 0;
 925        }
 926}
 927
 928static struct soc_device_attribute soc_tuning_erratum_type1[] = {
 929        { .family = "QorIQ T1023", },
 930        { .family = "QorIQ T1040", },
 931        { .family = "QorIQ T2080", },
 932        { .family = "QorIQ LS1021A", },
 933        { },
 934};
 935
 936static struct soc_device_attribute soc_tuning_erratum_type2[] = {
 937        { .family = "QorIQ LS1012A", },
 938        { .family = "QorIQ LS1043A", },
 939        { .family = "QorIQ LS1046A", },
 940        { .family = "QorIQ LS1080A", },
 941        { .family = "QorIQ LS2080A", },
 942        { .family = "QorIQ LA1575A", },
 943        { },
 944};
 945
 946static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
 947{
 948        u32 val;
 949
 950        esdhc_clock_enable(host, false);
 951        esdhc_flush_async_fifo(host);
 952
 953        val = sdhci_readl(host, ESDHC_TBCTL);
 954        if (enable)
 955                val |= ESDHC_TB_EN;
 956        else
 957                val &= ~ESDHC_TB_EN;
 958        sdhci_writel(host, val, ESDHC_TBCTL);
 959
 960        esdhc_clock_enable(host, true);
 961}
 962
 963static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
 964                                    u8 *window_end)
 965{
 966        u32 val;
 967
 968        /* Write TBCTL[11:8]=4'h8 */
 969        val = sdhci_readl(host, ESDHC_TBCTL);
 970        val &= ~(0xf << 8);
 971        val |= 8 << 8;
 972        sdhci_writel(host, val, ESDHC_TBCTL);
 973
 974        mdelay(1);
 975
 976        /* Read TBCTL[31:0] register and rewrite again */
 977        val = sdhci_readl(host, ESDHC_TBCTL);
 978        sdhci_writel(host, val, ESDHC_TBCTL);
 979
 980        mdelay(1);
 981
 982        /* Read the TBSTAT[31:0] register twice */
 983        val = sdhci_readl(host, ESDHC_TBSTAT);
 984        val = sdhci_readl(host, ESDHC_TBSTAT);
 985
 986        *window_end = val & 0xff;
 987        *window_start = (val >> 8) & 0xff;
 988}
 989
 990static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
 991                                    u8 *window_end)
 992{
 993        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 994        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 995        u8 start_ptr, end_ptr;
 996
 997        if (esdhc->quirk_tuning_erratum_type1) {
 998                *window_start = 5 * esdhc->div_ratio;
 999                *window_end = 3 * esdhc->div_ratio;
1000                return;
1001        }
1002
1003        esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
1004
1005        /* Reset data lines by setting ESDHCCTL[RSTD] */
1006        sdhci_reset(host, SDHCI_RESET_DATA);
1007        /* Write 32'hFFFF_FFFF to IRQSTAT register */
1008        sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
1009
1010        /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1011         * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1012         * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1013         * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1014         */
1015
1016        if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1017                *window_start = 8 * esdhc->div_ratio;
1018                *window_end = 4 * esdhc->div_ratio;
1019        } else {
1020                *window_start = 5 * esdhc->div_ratio;
1021                *window_end = 3 * esdhc->div_ratio;
1022        }
1023}
1024
1025static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1026                                   u8 window_start, u8 window_end)
1027{
1028        struct sdhci_host *host = mmc_priv(mmc);
1029        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1030        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1031        u32 val;
1032        int ret;
1033
1034        /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1035        val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1036              ESDHC_WNDW_STRT_PTR_MASK;
1037        val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1038        sdhci_writel(host, val, ESDHC_TBPTR);
1039
1040        /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1041        val = sdhci_readl(host, ESDHC_TBCTL);
1042        val &= ~ESDHC_TB_MODE_MASK;
1043        val |= ESDHC_TB_MODE_SW;
1044        sdhci_writel(host, val, ESDHC_TBCTL);
1045
1046        esdhc->in_sw_tuning = true;
1047        ret = sdhci_execute_tuning(mmc, opcode);
1048        esdhc->in_sw_tuning = false;
1049        return ret;
1050}
1051
1052static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1053{
1054        struct sdhci_host *host = mmc_priv(mmc);
1055        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1056        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1057        u8 window_start, window_end;
1058        int ret, retries = 1;
1059        bool hs400_tuning;
1060        unsigned int clk;
1061        u32 val;
1062
1063        /* For tuning mode, the sd clock divisor value
1064         * must be larger than 3 according to reference manual.
1065         */
1066        clk = esdhc->peripheral_clock / 3;
1067        if (host->clock > clk)
1068                esdhc_of_set_clock(host, clk);
1069
1070        esdhc_tuning_block_enable(host, true);
1071
1072        /*
1073         * The eSDHC controller takes the data timeout value into account
1074         * during tuning. If the SD card is too slow sending the response, the
1075         * timer will expire and a "Buffer Read Ready" interrupt without data
1076         * is triggered. This leads to tuning errors.
1077         *
1078         * Just set the timeout to the maximum value because the core will
1079         * already take care of it in sdhci_send_tuning().
1080         */
1081        sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
1082
1083        hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1084
1085        do {
1086                if (esdhc->quirk_limited_clk_division &&
1087                    hs400_tuning)
1088                        esdhc_of_set_clock(host, host->clock);
1089
1090                /* Do HW tuning */
1091                val = sdhci_readl(host, ESDHC_TBCTL);
1092                val &= ~ESDHC_TB_MODE_MASK;
1093                val |= ESDHC_TB_MODE_3;
1094                sdhci_writel(host, val, ESDHC_TBCTL);
1095
1096                ret = sdhci_execute_tuning(mmc, opcode);
1097                if (ret)
1098                        break;
1099
1100                /* For type2 affected platforms of the tuning erratum,
1101                 * tuning may succeed although eSDHC might not have
1102                 * tuned properly. Need to check tuning window.
1103                 */
1104                if (esdhc->quirk_tuning_erratum_type2 &&
1105                    !host->tuning_err) {
1106                        esdhc_tuning_window_ptr(host, &window_start,
1107                                                &window_end);
1108                        if (abs(window_start - window_end) >
1109                            (4 * esdhc->div_ratio + 2))
1110                                host->tuning_err = -EAGAIN;
1111                }
1112
1113                /* If HW tuning fails and triggers erratum,
1114                 * try workaround.
1115                 */
1116                ret = host->tuning_err;
1117                if (ret == -EAGAIN &&
1118                    (esdhc->quirk_tuning_erratum_type1 ||
1119                     esdhc->quirk_tuning_erratum_type2)) {
1120                        /* Recover HS400 tuning flag */
1121                        if (hs400_tuning)
1122                                host->flags |= SDHCI_HS400_TUNING;
1123                        pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1124                                mmc_hostname(mmc));
1125                        /* Do SW tuning */
1126                        esdhc_prepare_sw_tuning(host, &window_start,
1127                                                &window_end);
1128                        ret = esdhc_execute_sw_tuning(mmc, opcode,
1129                                                      window_start,
1130                                                      window_end);
1131                        if (ret)
1132                                break;
1133
1134                        /* Retry both HW/SW tuning with reduced clock. */
1135                        ret = host->tuning_err;
1136                        if (ret == -EAGAIN && retries) {
1137                                /* Recover HS400 tuning flag */
1138                                if (hs400_tuning)
1139                                        host->flags |= SDHCI_HS400_TUNING;
1140
1141                                clk = host->max_clk / (esdhc->div_ratio + 1);
1142                                esdhc_of_set_clock(host, clk);
1143                                pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1144                                        mmc_hostname(mmc));
1145                        } else {
1146                                break;
1147                        }
1148                } else {
1149                        break;
1150                }
1151        } while (retries--);
1152
1153        if (ret) {
1154                esdhc_tuning_block_enable(host, false);
1155        } else if (hs400_tuning) {
1156                val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1157                val |= ESDHC_FLW_CTL_BG;
1158                sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1159        }
1160
1161        return ret;
1162}
1163
1164static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1165                                   unsigned int timing)
1166{
1167        u32 val;
1168
1169        /*
1170         * There are specific registers setting for HS400 mode.
1171         * Clean all of them if controller is in HS400 mode to
1172         * exit HS400 mode before re-setting any speed mode.
1173         */
1174        val = sdhci_readl(host, ESDHC_TBCTL);
1175        if (val & ESDHC_HS400_MODE) {
1176                val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1177                val &= ~ESDHC_FLW_CTL_BG;
1178                sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1179
1180                val = sdhci_readl(host, ESDHC_SDCLKCTL);
1181                val &= ~ESDHC_CMD_CLK_CTL;
1182                sdhci_writel(host, val, ESDHC_SDCLKCTL);
1183
1184                esdhc_clock_enable(host, false);
1185                val = sdhci_readl(host, ESDHC_TBCTL);
1186                val &= ~ESDHC_HS400_MODE;
1187                sdhci_writel(host, val, ESDHC_TBCTL);
1188                esdhc_clock_enable(host, true);
1189
1190                val = sdhci_readl(host, ESDHC_DLLCFG0);
1191                val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1192                sdhci_writel(host, val, ESDHC_DLLCFG0);
1193
1194                val = sdhci_readl(host, ESDHC_TBCTL);
1195                val &= ~ESDHC_HS400_WNDW_ADJUST;
1196                sdhci_writel(host, val, ESDHC_TBCTL);
1197
1198                esdhc_tuning_block_enable(host, false);
1199        }
1200
1201        if (timing == MMC_TIMING_MMC_HS400)
1202                esdhc_tuning_block_enable(host, true);
1203        else
1204                sdhci_set_uhs_signaling(host, timing);
1205}
1206
1207static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1208{
1209        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1210        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1211        u32 command;
1212
1213        if (esdhc->quirk_trans_complete_erratum) {
1214                command = SDHCI_GET_CMD(sdhci_readw(host,
1215                                        SDHCI_COMMAND));
1216                if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1217                                sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1218                                intmask & SDHCI_INT_DATA_END) {
1219                        intmask &= ~SDHCI_INT_DATA_END;
1220                        sdhci_writel(host, SDHCI_INT_DATA_END,
1221                                        SDHCI_INT_STATUS);
1222                }
1223        }
1224        return intmask;
1225}
1226
1227#ifdef CONFIG_PM_SLEEP
1228static u32 esdhc_proctl;
1229static int esdhc_of_suspend(struct device *dev)
1230{
1231        struct sdhci_host *host = dev_get_drvdata(dev);
1232
1233        esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1234
1235        if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1236                mmc_retune_needed(host->mmc);
1237
1238        return sdhci_suspend_host(host);
1239}
1240
1241static int esdhc_of_resume(struct device *dev)
1242{
1243        struct sdhci_host *host = dev_get_drvdata(dev);
1244        int ret = sdhci_resume_host(host);
1245
1246        if (ret == 0) {
1247                /* Isn't this already done by sdhci_resume_host() ? --rmk */
1248                esdhc_of_enable_dma(host);
1249                sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1250        }
1251        return ret;
1252}
1253#endif
1254
1255static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1256                        esdhc_of_suspend,
1257                        esdhc_of_resume);
1258
1259static const struct sdhci_ops sdhci_esdhc_be_ops = {
1260        .read_l = esdhc_be_readl,
1261        .read_w = esdhc_be_readw,
1262        .read_b = esdhc_be_readb,
1263        .write_l = esdhc_be_writel,
1264        .write_w = esdhc_be_writew,
1265        .write_b = esdhc_be_writeb,
1266        .set_clock = esdhc_of_set_clock,
1267        .enable_dma = esdhc_of_enable_dma,
1268        .get_max_clock = esdhc_of_get_max_clock,
1269        .get_min_clock = esdhc_of_get_min_clock,
1270        .adma_workaround = esdhc_of_adma_workaround,
1271        .set_bus_width = esdhc_pltfm_set_bus_width,
1272        .reset = esdhc_reset,
1273        .set_uhs_signaling = esdhc_set_uhs_signaling,
1274        .irq = esdhc_irq,
1275};
1276
1277static const struct sdhci_ops sdhci_esdhc_le_ops = {
1278        .read_l = esdhc_le_readl,
1279        .read_w = esdhc_le_readw,
1280        .read_b = esdhc_le_readb,
1281        .write_l = esdhc_le_writel,
1282        .write_w = esdhc_le_writew,
1283        .write_b = esdhc_le_writeb,
1284        .set_clock = esdhc_of_set_clock,
1285        .enable_dma = esdhc_of_enable_dma,
1286        .get_max_clock = esdhc_of_get_max_clock,
1287        .get_min_clock = esdhc_of_get_min_clock,
1288        .adma_workaround = esdhc_of_adma_workaround,
1289        .set_bus_width = esdhc_pltfm_set_bus_width,
1290        .reset = esdhc_reset,
1291        .set_uhs_signaling = esdhc_set_uhs_signaling,
1292        .irq = esdhc_irq,
1293};
1294
1295static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1296        .quirks = ESDHC_DEFAULT_QUIRKS |
1297#ifdef CONFIG_PPC
1298                  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1299#endif
1300                  SDHCI_QUIRK_NO_CARD_NO_RESET |
1301                  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1302        .ops = &sdhci_esdhc_be_ops,
1303};
1304
1305static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1306        .quirks = ESDHC_DEFAULT_QUIRKS |
1307                  SDHCI_QUIRK_NO_CARD_NO_RESET |
1308                  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1309        .ops = &sdhci_esdhc_le_ops,
1310};
1311
1312static struct soc_device_attribute soc_incorrect_hostver[] = {
1313        { .family = "QorIQ T4240", .revision = "1.0", },
1314        { .family = "QorIQ T4240", .revision = "2.0", },
1315        { },
1316};
1317
1318static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1319        { .family = "QorIQ LX2160A", .revision = "1.0", },
1320        { .family = "QorIQ LX2160A", .revision = "2.0", },
1321        { .family = "QorIQ LS1028A", .revision = "1.0", },
1322        { },
1323};
1324
1325static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1326        { .family = "QorIQ LX2160A", .revision = "1.0", },
1327        { .family = "QorIQ LX2160A", .revision = "2.0", },
1328        { .family = "QorIQ LS1028A", .revision = "1.0", },
1329        { },
1330};
1331
1332static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1333{
1334        const struct of_device_id *match;
1335        struct sdhci_pltfm_host *pltfm_host;
1336        struct sdhci_esdhc *esdhc;
1337        struct device_node *np;
1338        struct clk *clk;
1339        u32 val;
1340        u16 host_ver;
1341
1342        pltfm_host = sdhci_priv(host);
1343        esdhc = sdhci_pltfm_priv(pltfm_host);
1344
1345        host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1346        esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1347                             SDHCI_VENDOR_VER_SHIFT;
1348        esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1349        if (soc_device_match(soc_incorrect_hostver))
1350                esdhc->quirk_incorrect_hostver = true;
1351        else
1352                esdhc->quirk_incorrect_hostver = false;
1353
1354        if (soc_device_match(soc_fixup_sdhc_clkdivs))
1355                esdhc->quirk_limited_clk_division = true;
1356        else
1357                esdhc->quirk_limited_clk_division = false;
1358
1359        if (soc_device_match(soc_unreliable_pulse_detection))
1360                esdhc->quirk_unreliable_pulse_detection = true;
1361        else
1362                esdhc->quirk_unreliable_pulse_detection = false;
1363
1364        match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1365        if (match)
1366                esdhc->clk_fixup = match->data;
1367        np = pdev->dev.of_node;
1368
1369        if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1370                esdhc->quirk_delay_before_data_reset = true;
1371                esdhc->quirk_trans_complete_erratum = true;
1372        }
1373
1374        clk = of_clk_get(np, 0);
1375        if (!IS_ERR(clk)) {
1376                /*
1377                 * esdhc->peripheral_clock would be assigned with a value
1378                 * which is eSDHC base clock when use periperal clock.
1379                 * For some platforms, the clock value got by common clk
1380                 * API is peripheral clock while the eSDHC base clock is
1381                 * 1/2 peripheral clock.
1382                 */
1383                if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1384                    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1385                    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1386                        esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1387                else
1388                        esdhc->peripheral_clock = clk_get_rate(clk);
1389
1390                clk_put(clk);
1391        }
1392
1393        esdhc_clock_enable(host, false);
1394        val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1395        /*
1396         * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1397         * initialize it as 1 or 0 once, to override the different value
1398         * which may be configured in bootloader.
1399         */
1400        if (esdhc->peripheral_clock)
1401                val |= ESDHC_PERIPHERAL_CLK_SEL;
1402        else
1403                val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1404        sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1405        esdhc_clock_enable(host, true);
1406}
1407
1408static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1409{
1410        esdhc_tuning_block_enable(mmc_priv(mmc), false);
1411        return 0;
1412}
1413
1414static int sdhci_esdhc_probe(struct platform_device *pdev)
1415{
1416        struct sdhci_host *host;
1417        struct device_node *np;
1418        struct sdhci_pltfm_host *pltfm_host;
1419        struct sdhci_esdhc *esdhc;
1420        int ret;
1421
1422        np = pdev->dev.of_node;
1423
1424        if (of_property_read_bool(np, "little-endian"))
1425                host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1426                                        sizeof(struct sdhci_esdhc));
1427        else
1428                host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1429                                        sizeof(struct sdhci_esdhc));
1430
1431        if (IS_ERR(host))
1432                return PTR_ERR(host);
1433
1434        host->mmc_host_ops.start_signal_voltage_switch =
1435                esdhc_signal_voltage_switch;
1436        host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1437        host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1438        host->tuning_delay = 1;
1439
1440        esdhc_init(pdev, host);
1441
1442        sdhci_get_of_property(pdev);
1443
1444        pltfm_host = sdhci_priv(host);
1445        esdhc = sdhci_pltfm_priv(pltfm_host);
1446        if (soc_device_match(soc_tuning_erratum_type1))
1447                esdhc->quirk_tuning_erratum_type1 = true;
1448        else
1449                esdhc->quirk_tuning_erratum_type1 = false;
1450
1451        if (soc_device_match(soc_tuning_erratum_type2))
1452                esdhc->quirk_tuning_erratum_type2 = true;
1453        else
1454                esdhc->quirk_tuning_erratum_type2 = false;
1455
1456        if (esdhc->vendor_ver == VENDOR_V_22)
1457                host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1458
1459        if (esdhc->vendor_ver > VENDOR_V_22)
1460                host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1461
1462        if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1463                host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1464                host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1465        }
1466
1467        if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1468            of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1469            of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1470            of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1471            of_device_is_compatible(np, "fsl,t1040-esdhc"))
1472                host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1473
1474        if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1475                host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1476
1477        esdhc->quirk_ignore_data_inhibit = false;
1478        if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1479                /*
1480                 * Freescale messed up with P2020 as it has a non-standard
1481                 * host control register
1482                 */
1483                host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1484                esdhc->quirk_ignore_data_inhibit = true;
1485        }
1486
1487        /* call to generic mmc_of_parse to support additional capabilities */
1488        ret = mmc_of_parse(host->mmc);
1489        if (ret)
1490                goto err;
1491
1492        mmc_of_parse_voltage(host->mmc, &host->ocr_mask);
1493
1494        ret = sdhci_add_host(host);
1495        if (ret)
1496                goto err;
1497
1498        return 0;
1499 err:
1500        sdhci_pltfm_free(pdev);
1501        return ret;
1502}
1503
1504static struct platform_driver sdhci_esdhc_driver = {
1505        .driver = {
1506                .name = "sdhci-esdhc",
1507                .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1508                .of_match_table = sdhci_esdhc_of_match,
1509                .pm = &esdhc_of_dev_pm_ops,
1510        },
1511        .probe = sdhci_esdhc_probe,
1512        .remove = sdhci_pltfm_unregister,
1513};
1514
1515module_platform_driver(sdhci_esdhc_driver);
1516
1517MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1518MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1519              "Anton Vorontsov <avorontsov@ru.mvista.com>");
1520MODULE_LICENSE("GPL v2");
1521