linux/drivers/mtd/devices/lart.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2
   3/*
   4 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
   5 *
   6 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
   7 *
   8 * Copyright (c) 2001, 2d3D, Inc.
   9 *
  10 * References:
  11 *
  12 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  13 *           - Order Number: 290644-005
  14 *           - January 2000
  15 *
  16 *    [2] MTD internal API documentation
  17 *           - http://www.linux-mtd.infradead.org/ 
  18 *
  19 * Limitations:
  20 *
  21 *    Even though this driver is written for 3 Volt Fast Boot
  22 *    Block Flash Memory, it is rather specific to LART. With
  23 *    Minor modifications, notably the without data/address line
  24 *    mangling and different bus settings, etc. it should be
  25 *    trivial to adapt to other platforms.
  26 *
  27 *    If somebody would sponsor me a different board, I'll
  28 *    adapt the driver (:
  29 */
  30
  31/* debugging */
  32//#define LART_DEBUG
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/types.h>
  37#include <linux/init.h>
  38#include <linux/errno.h>
  39#include <linux/string.h>
  40#include <linux/mtd/mtd.h>
  41#include <linux/mtd/partitions.h>
  42
  43#ifndef CONFIG_SA1100_LART
  44#error This is for LART architecture only
  45#endif
  46
  47static char module_name[] = "lart";
  48
  49/*
  50 * These values is specific to 28Fxxxx3 flash memory.
  51 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  52 */
  53#define FLASH_BLOCKSIZE_PARAM           (4096 * BUSWIDTH)
  54#define FLASH_NUMBLOCKS_16m_PARAM       8
  55#define FLASH_NUMBLOCKS_8m_PARAM        8
  56
  57/*
  58 * These values is specific to 28Fxxxx3 flash memory.
  59 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  60 */
  61#define FLASH_BLOCKSIZE_MAIN            (32768 * BUSWIDTH)
  62#define FLASH_NUMBLOCKS_16m_MAIN        31
  63#define FLASH_NUMBLOCKS_8m_MAIN         15
  64
  65/*
  66 * These values are specific to LART
  67 */
  68
  69/* general */
  70#define BUSWIDTH                        4                               /* don't change this - a lot of the code _will_ break if you change this */
  71#define FLASH_OFFSET            0xe8000000              /* see linux/arch/arm/mach-sa1100/lart.c */
  72
  73/* blob */
  74#define NUM_BLOB_BLOCKS         FLASH_NUMBLOCKS_16m_PARAM
  75#define PART_BLOB_START         0x00000000
  76#define PART_BLOB_LEN           (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
  77
  78/* kernel */
  79#define NUM_KERNEL_BLOCKS       7
  80#define PART_KERNEL_START       (PART_BLOB_START + PART_BLOB_LEN)
  81#define PART_KERNEL_LEN         (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  82
  83/* initial ramdisk */
  84#define NUM_INITRD_BLOCKS       24
  85#define PART_INITRD_START       (PART_KERNEL_START + PART_KERNEL_LEN)
  86#define PART_INITRD_LEN         (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  87
  88/*
  89 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  90 */
  91#define READ_ARRAY                      0x00FF00FF              /* Read Array/Reset */
  92#define READ_ID_CODES           0x00900090              /* Read Identifier Codes */
  93#define ERASE_SETUP                     0x00200020              /* Block Erase */
  94#define ERASE_CONFIRM           0x00D000D0              /* Block Erase and Program Resume */
  95#define PGM_SETUP                       0x00400040              /* Program */
  96#define STATUS_READ                     0x00700070              /* Read Status Register */
  97#define STATUS_CLEAR            0x00500050              /* Clear Status Register */
  98#define STATUS_BUSY                     0x00800080              /* Write State Machine Status (WSMS) */
  99#define STATUS_ERASE_ERR        0x00200020              /* Erase Status (ES) */
 100#define STATUS_PGM_ERR          0x00100010              /* Program Status (PS) */
 101
 102/*
 103 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 104 */
 105#define FLASH_MANUFACTURER                      0x00890089
 106#define FLASH_DEVICE_8mbit_TOP          0x88f188f1
 107#define FLASH_DEVICE_8mbit_BOTTOM       0x88f288f2
 108#define FLASH_DEVICE_16mbit_TOP         0x88f388f3
 109#define FLASH_DEVICE_16mbit_BOTTOM      0x88f488f4
 110
 111/***************************************************************************************************/
 112
 113/*
 114 * The data line mapping on LART is as follows:
 115 *
 116 *       U2  CPU |   U3  CPU
 117 *       -------------------
 118 *        0  20  |   0   12
 119 *        1  22  |   1   14
 120 *        2  19  |   2   11
 121 *        3  17  |   3   9
 122 *        4  24  |   4   0
 123 *        5  26  |   5   2
 124 *        6  31  |   6   7
 125 *        7  29  |   7   5
 126 *        8  21  |   8   13
 127 *        9  23  |   9   15
 128 *        10 18  |   10  10
 129 *        11 16  |   11  8
 130 *        12 25  |   12  1
 131 *        13 27  |   13  3
 132 *        14 30  |   14  6
 133 *        15 28  |   15  4
 134 */
 135
 136/* Mangle data (x) */
 137#define DATA_TO_FLASH(x)                                \
 138        (                                                                       \
 139                (((x) & 0x08009000) >> 11)      +       \
 140                (((x) & 0x00002000) >> 10)      +       \
 141                (((x) & 0x04004000) >> 8)       +       \
 142                (((x) & 0x00000010) >> 4)       +       \
 143                (((x) & 0x91000820) >> 3)       +       \
 144                (((x) & 0x22080080) >> 2)       +       \
 145                ((x) & 0x40000400)                      +       \
 146                (((x) & 0x00040040) << 1)       +       \
 147                (((x) & 0x00110000) << 4)       +       \
 148                (((x) & 0x00220100) << 5)       +       \
 149                (((x) & 0x00800208) << 6)       +       \
 150                (((x) & 0x00400004) << 9)       +       \
 151                (((x) & 0x00000001) << 12)      +       \
 152                (((x) & 0x00000002) << 13)              \
 153        )
 154
 155/* Unmangle data (x) */
 156#define FLASH_TO_DATA(x)                                \
 157        (                                                                       \
 158                (((x) & 0x00010012) << 11)      +       \
 159                (((x) & 0x00000008) << 10)      +       \
 160                (((x) & 0x00040040) << 8)       +       \
 161                (((x) & 0x00000001) << 4)       +       \
 162                (((x) & 0x12200104) << 3)       +       \
 163                (((x) & 0x08820020) << 2)       +       \
 164                ((x) & 0x40000400)                      +       \
 165                (((x) & 0x00080080) >> 1)       +       \
 166                (((x) & 0x01100000) >> 4)       +       \
 167                (((x) & 0x04402000) >> 5)       +       \
 168                (((x) & 0x20008200) >> 6)       +       \
 169                (((x) & 0x80000800) >> 9)       +       \
 170                (((x) & 0x00001000) >> 12)      +       \
 171                (((x) & 0x00004000) >> 13)              \
 172        )
 173
 174/*
 175 * The address line mapping on LART is as follows:
 176 *
 177 *       U3  CPU |   U2  CPU
 178 *       -------------------
 179 *        0  2   |   0   2
 180 *        1  3   |   1   3
 181 *        2  9   |   2   9
 182 *        3  13  |   3   8
 183 *        4  8   |   4   7
 184 *        5  12  |   5   6
 185 *        6  11  |   6   5
 186 *        7  10  |   7   4
 187 *        8  4   |   8   10
 188 *        9  5   |   9   11
 189 *       10  6   |   10  12
 190 *       11  7   |   11  13
 191 *
 192 *       BOOT BLOCK BOUNDARY
 193 *
 194 *       12  15  |   12  15
 195 *       13  14  |   13  14
 196 *       14  16  |   14  16
 197 *
 198 *       MAIN BLOCK BOUNDARY
 199 *
 200 *       15  17  |   15  18
 201 *       16  18  |   16  17
 202 *       17  20  |   17  20
 203 *       18  19  |   18  19
 204 *       19  21  |   19  21
 205 *
 206 * As we can see from above, the addresses aren't mangled across
 207 * block boundaries, so we don't need to worry about address
 208 * translations except for sending/reading commands during
 209 * initialization
 210 */
 211
 212/* Mangle address (x) on chip U2 */
 213#define ADDR_TO_FLASH_U2(x)                             \
 214        (                                                                       \
 215                (((x) & 0x00000f00) >> 4)       +       \
 216                (((x) & 0x00042000) << 1)       +       \
 217                (((x) & 0x0009c003) << 2)       +       \
 218                (((x) & 0x00021080) << 3)       +       \
 219                (((x) & 0x00000010) << 4)       +       \
 220                (((x) & 0x00000040) << 5)       +       \
 221                (((x) & 0x00000024) << 7)       +       \
 222                (((x) & 0x00000008) << 10)              \
 223        )
 224
 225/* Unmangle address (x) on chip U2 */
 226#define FLASH_U2_TO_ADDR(x)                             \
 227        (                                                                       \
 228                (((x) << 4) & 0x00000f00)       +       \
 229                (((x) >> 1) & 0x00042000)       +       \
 230                (((x) >> 2) & 0x0009c003)       +       \
 231                (((x) >> 3) & 0x00021080)       +       \
 232                (((x) >> 4) & 0x00000010)       +       \
 233                (((x) >> 5) & 0x00000040)       +       \
 234                (((x) >> 7) & 0x00000024)       +       \
 235                (((x) >> 10) & 0x00000008)              \
 236        )
 237
 238/* Mangle address (x) on chip U3 */
 239#define ADDR_TO_FLASH_U3(x)                             \
 240        (                                                                       \
 241                (((x) & 0x00000080) >> 3)       +       \
 242                (((x) & 0x00000040) >> 1)       +       \
 243                (((x) & 0x00052020) << 1)       +       \
 244                (((x) & 0x00084f03) << 2)       +       \
 245                (((x) & 0x00029010) << 3)       +       \
 246                (((x) & 0x00000008) << 5)       +       \
 247                (((x) & 0x00000004) << 7)               \
 248        )
 249
 250/* Unmangle address (x) on chip U3 */
 251#define FLASH_U3_TO_ADDR(x)                             \
 252        (                                                                       \
 253                (((x) << 3) & 0x00000080)       +       \
 254                (((x) << 1) & 0x00000040)       +       \
 255                (((x) >> 1) & 0x00052020)       +       \
 256                (((x) >> 2) & 0x00084f03)       +       \
 257                (((x) >> 3) & 0x00029010)       +       \
 258                (((x) >> 5) & 0x00000008)       +       \
 259                (((x) >> 7) & 0x00000004)               \
 260        )
 261
 262/***************************************************************************************************/
 263
 264static __u8 read8 (__u32 offset)
 265{
 266   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
 267#ifdef LART_DEBUG
 268   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
 269#endif
 270   return (*data);
 271}
 272
 273static __u32 read32 (__u32 offset)
 274{
 275   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 276#ifdef LART_DEBUG
 277   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
 278#endif
 279   return (*data);
 280}
 281
 282static void write32 (__u32 x,__u32 offset)
 283{
 284   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 285   *data = x;
 286#ifdef LART_DEBUG
 287   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
 288#endif
 289}
 290
 291/***************************************************************************************************/
 292
 293/*
 294 * Probe for 16mbit flash memory on a LART board without doing
 295 * too much damage. Since we need to write 1 dword to memory,
 296 * we're f**cked if this happens to be DRAM since we can't
 297 * restore the memory (otherwise we might exit Read Array mode).
 298 *
 299 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
 300 */
 301static int flash_probe (void)
 302{
 303   __u32 manufacturer,devtype;
 304
 305   /* setup "Read Identifier Codes" mode */
 306   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
 307
 308   /* probe U2. U2/U3 returns the same data since the first 3
 309        * address lines is mangled in the same way */
 310   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
 311   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
 312
 313   /* put the flash back into command mode */
 314   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
 315
 316   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
 317}
 318
 319/*
 320 * Erase one block of flash memory at offset ``offset'' which is any
 321 * address within the block which should be erased.
 322 *
 323 * Returns 1 if successful, 0 otherwise.
 324 */
 325static inline int erase_block (__u32 offset)
 326{
 327   __u32 status;
 328
 329#ifdef LART_DEBUG
 330   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
 331#endif
 332
 333   /* erase and confirm */
 334   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
 335   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
 336
 337   /* wait for block erase to finish */
 338   do
 339         {
 340                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 341                status = FLASH_TO_DATA (read32 (offset));
 342         }
 343   while ((~status & STATUS_BUSY) != 0);
 344
 345   /* put the flash back into command mode */
 346   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 347
 348   /* was the erase successful? */
 349   if ((status & STATUS_ERASE_ERR))
 350         {
 351                printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
 352                return (0);
 353         }
 354
 355   return (1);
 356}
 357
 358static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
 359{
 360   __u32 addr,len;
 361   int i,first;
 362
 363#ifdef LART_DEBUG
 364   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
 365#endif
 366
 367   /*
 368        * check that both start and end of the requested erase are
 369        * aligned with the erasesize at the appropriate addresses.
 370        *
 371        * skip all erase regions which are ended before the start of
 372        * the requested erase. Actually, to save on the calculations,
 373        * we skip to the first erase region which starts after the
 374        * start of the requested erase, and then go back one.
 375        */
 376   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
 377   i--;
 378
 379   /*
 380        * ok, now i is pointing at the erase region in which this
 381        * erase request starts. Check the start of the requested
 382        * erase range is aligned with the erase size which is in
 383        * effect here.
 384        */
 385   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
 386      return -EINVAL;
 387
 388   /* Remember the erase region we start on */
 389   first = i;
 390
 391   /*
 392        * next, check that the end of the requested erase is aligned
 393        * with the erase region at that address.
 394        *
 395        * as before, drop back one to point at the region in which
 396        * the address actually falls
 397        */
 398   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
 399   i--;
 400
 401   /* is the end aligned on a block boundary? */
 402   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
 403      return -EINVAL;
 404
 405   addr = instr->addr;
 406   len = instr->len;
 407
 408   i = first;
 409
 410   /* now erase those blocks */
 411   while (len)
 412         {
 413                if (!erase_block (addr))
 414                         return (-EIO);
 415
 416                addr += mtd->eraseregions[i].erasesize;
 417                len -= mtd->eraseregions[i].erasesize;
 418
 419                if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
 420         }
 421
 422   return (0);
 423}
 424
 425static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
 426{
 427#ifdef LART_DEBUG
 428   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
 429#endif
 430
 431   /* we always read len bytes */
 432   *retlen = len;
 433
 434   /* first, we read bytes until we reach a dword boundary */
 435   if (from & (BUSWIDTH - 1))
 436         {
 437                int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
 438
 439                while (len && gap--) {
 440                        *buf++ = read8 (from++);
 441                        len--;
 442                }
 443         }
 444
 445   /* now we read dwords until we reach a non-dword boundary */
 446   while (len >= BUSWIDTH)
 447         {
 448                *((__u32 *) buf) = read32 (from);
 449
 450                buf += BUSWIDTH;
 451                from += BUSWIDTH;
 452                len -= BUSWIDTH;
 453         }
 454
 455   /* top up the last unaligned bytes */
 456   if (len & (BUSWIDTH - 1))
 457         while (len--) *buf++ = read8 (from++);
 458
 459   return (0);
 460}
 461
 462/*
 463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
 464 * must be 32 bits, i.e. it must be on a dword boundary.
 465 *
 466 * Returns 1 if successful, 0 otherwise.
 467 */
 468static inline int write_dword (__u32 offset,__u32 x)
 469{
 470   __u32 status;
 471
 472#ifdef LART_DEBUG
 473   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
 474#endif
 475
 476   /* setup writing */
 477   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
 478
 479   /* write the data */
 480   write32 (x,offset);
 481
 482   /* wait for the write to finish */
 483   do
 484         {
 485                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 486                status = FLASH_TO_DATA (read32 (offset));
 487         }
 488   while ((~status & STATUS_BUSY) != 0);
 489
 490   /* put the flash back into command mode */
 491   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 492
 493   /* was the write successful? */
 494   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
 495         {
 496                printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
 497                return (0);
 498         }
 499
 500   return (1);
 501}
 502
 503static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
 504{
 505   __u8 tmp[4];
 506   int i,n;
 507
 508#ifdef LART_DEBUG
 509   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
 510#endif
 511
 512   /* sanity checks */
 513   if (!len) return (0);
 514
 515   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
 516   if (to & (BUSWIDTH - 1))
 517         {
 518                __u32 aligned = to & ~(BUSWIDTH - 1);
 519                int gap = to - aligned;
 520
 521                i = n = 0;
 522
 523                while (gap--) tmp[i++] = 0xFF;
 524                while (len && i < BUSWIDTH) {
 525                        tmp[i++] = buf[n++];
 526                        len--;
 527                }
 528                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 529
 530                if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
 531
 532                to += n;
 533                buf += n;
 534                *retlen += n;
 535         }
 536
 537   /* now we write dwords until we reach a non-dword boundary */
 538   while (len >= BUSWIDTH)
 539         {
 540                if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
 541
 542                to += BUSWIDTH;
 543                buf += BUSWIDTH;
 544                *retlen += BUSWIDTH;
 545                len -= BUSWIDTH;
 546         }
 547
 548   /* top up the last unaligned bytes, padded with 0xFF.... */
 549   if (len & (BUSWIDTH - 1))
 550         {
 551                i = n = 0;
 552
 553                while (len--) tmp[i++] = buf[n++];
 554                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 555
 556                if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
 557
 558                *retlen += n;
 559         }
 560
 561   return (0);
 562}
 563
 564/***************************************************************************************************/
 565
 566static struct mtd_info mtd;
 567
 568static struct mtd_erase_region_info erase_regions[] = {
 569        /* parameter blocks */
 570        {
 571                .offset         = 0x00000000,
 572                .erasesize      = FLASH_BLOCKSIZE_PARAM,
 573                .numblocks      = FLASH_NUMBLOCKS_16m_PARAM,
 574        },
 575        /* main blocks */
 576        {
 577                .offset  = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
 578                .erasesize      = FLASH_BLOCKSIZE_MAIN,
 579                .numblocks      = FLASH_NUMBLOCKS_16m_MAIN,
 580        }
 581};
 582
 583static const struct mtd_partition lart_partitions[] = {
 584        /* blob */
 585        {
 586                .name   = "blob",
 587                .offset = PART_BLOB_START,
 588                .size   = PART_BLOB_LEN,
 589        },
 590        /* kernel */
 591        {
 592                .name   = "kernel",
 593                .offset = PART_KERNEL_START,    /* MTDPART_OFS_APPEND */
 594                .size   = PART_KERNEL_LEN,
 595        },
 596        /* initial ramdisk / file system */
 597        {
 598                .name   = "file system",
 599                .offset = PART_INITRD_START,    /* MTDPART_OFS_APPEND */
 600                .size   = PART_INITRD_LEN,      /* MTDPART_SIZ_FULL */
 601        }
 602};
 603#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
 604
 605static int __init lart_flash_init (void)
 606{
 607   int result;
 608   memset (&mtd,0,sizeof (mtd));
 609   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
 610   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
 611   if (!flash_probe ())
 612         {
 613                printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
 614                return (-ENXIO);
 615         }
 616   printk ("%s: This looks like a LART board to me.\n",module_name);
 617   mtd.name = module_name;
 618   mtd.type = MTD_NORFLASH;
 619   mtd.writesize = 1;
 620   mtd.writebufsize = 4;
 621   mtd.flags = MTD_CAP_NORFLASH;
 622   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
 623   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
 624   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
 625   mtd.eraseregions = erase_regions;
 626   mtd._erase = flash_erase;
 627   mtd._read = flash_read;
 628   mtd._write = flash_write;
 629   mtd.owner = THIS_MODULE;
 630
 631#ifdef LART_DEBUG
 632   printk (KERN_DEBUG
 633                   "mtd.name = %s\n"
 634                   "mtd.size = 0x%.8x (%uM)\n"
 635                   "mtd.erasesize = 0x%.8x (%uK)\n"
 636                   "mtd.numeraseregions = %d\n",
 637                   mtd.name,
 638                   mtd.size,mtd.size / (1024*1024),
 639                   mtd.erasesize,mtd.erasesize / 1024,
 640                   mtd.numeraseregions);
 641
 642   if (mtd.numeraseregions)
 643         for (result = 0; result < mtd.numeraseregions; result++)
 644           printk (KERN_DEBUG
 645                           "\n\n"
 646                           "mtd.eraseregions[%d].offset = 0x%.8x\n"
 647                           "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
 648                           "mtd.eraseregions[%d].numblocks = %d\n",
 649                           result,mtd.eraseregions[result].offset,
 650                           result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
 651                           result,mtd.eraseregions[result].numblocks);
 652
 653   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
 654
 655   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
 656         printk (KERN_DEBUG
 657                         "\n\n"
 658                         "lart_partitions[%d].name = %s\n"
 659                         "lart_partitions[%d].offset = 0x%.8x\n"
 660                         "lart_partitions[%d].size = 0x%.8x (%uK)\n",
 661                         result,lart_partitions[result].name,
 662                         result,lart_partitions[result].offset,
 663                         result,lart_partitions[result].size,lart_partitions[result].size / 1024);
 664#endif
 665
 666   result = mtd_device_register(&mtd, lart_partitions,
 667                                ARRAY_SIZE(lart_partitions));
 668
 669   return (result);
 670}
 671
 672static void __exit lart_flash_exit (void)
 673{
 674   mtd_device_unregister(&mtd);
 675}
 676
 677module_init (lart_flash_init);
 678module_exit (lart_flash_exit);
 679
 680MODULE_LICENSE("GPL");
 681MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
 682MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
 683