linux/drivers/mtd/nand/raw/denali.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NAND Flash Controller Device Driver
   4 * Copyright © 2009-2010, Intel Corporation and its suppliers.
   5 *
   6 * Copyright (c) 2017-2019 Socionext Inc.
   7 *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
   8 */
   9
  10#include <linux/bitfield.h>
  11#include <linux/completion.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/module.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/rawnand.h>
  18#include <linux/slab.h>
  19#include <linux/spinlock.h>
  20
  21#include "denali.h"
  22
  23#define DENALI_NAND_NAME    "denali-nand"
  24
  25/* for Indexed Addressing */
  26#define DENALI_INDEXED_CTRL     0x00
  27#define DENALI_INDEXED_DATA     0x10
  28
  29#define DENALI_MAP00            (0 << 26)       /* direct access to buffer */
  30#define DENALI_MAP01            (1 << 26)       /* read/write pages in PIO */
  31#define DENALI_MAP10            (2 << 26)       /* high-level control plane */
  32#define DENALI_MAP11            (3 << 26)       /* direct controller access */
  33
  34/* MAP11 access cycle type */
  35#define DENALI_MAP11_CMD        ((DENALI_MAP11) | 0)    /* command cycle */
  36#define DENALI_MAP11_ADDR       ((DENALI_MAP11) | 1)    /* address cycle */
  37#define DENALI_MAP11_DATA       ((DENALI_MAP11) | 2)    /* data cycle */
  38
  39#define DENALI_BANK(denali)     ((denali)->active_bank << 24)
  40
  41#define DENALI_INVALID_BANK     -1
  42
  43static struct denali_chip *to_denali_chip(struct nand_chip *chip)
  44{
  45        return container_of(chip, struct denali_chip, chip);
  46}
  47
  48static struct denali_controller *to_denali_controller(struct nand_chip *chip)
  49{
  50        return container_of(chip->controller, struct denali_controller,
  51                            controller);
  52}
  53
  54/*
  55 * Direct Addressing - the slave address forms the control information (command
  56 * type, bank, block, and page address).  The slave data is the actual data to
  57 * be transferred.  This mode requires 28 bits of address region allocated.
  58 */
  59static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
  60{
  61        return ioread32(denali->host + addr);
  62}
  63
  64static void denali_direct_write(struct denali_controller *denali, u32 addr,
  65                                u32 data)
  66{
  67        iowrite32(data, denali->host + addr);
  68}
  69
  70/*
  71 * Indexed Addressing - address translation module intervenes in passing the
  72 * control information.  This mode reduces the required address range.  The
  73 * control information and transferred data are latched by the registers in
  74 * the translation module.
  75 */
  76static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
  77{
  78        iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
  79        return ioread32(denali->host + DENALI_INDEXED_DATA);
  80}
  81
  82static void denali_indexed_write(struct denali_controller *denali, u32 addr,
  83                                 u32 data)
  84{
  85        iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
  86        iowrite32(data, denali->host + DENALI_INDEXED_DATA);
  87}
  88
  89static void denali_enable_irq(struct denali_controller *denali)
  90{
  91        int i;
  92
  93        for (i = 0; i < denali->nbanks; i++)
  94                iowrite32(U32_MAX, denali->reg + INTR_EN(i));
  95        iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
  96}
  97
  98static void denali_disable_irq(struct denali_controller *denali)
  99{
 100        int i;
 101
 102        for (i = 0; i < denali->nbanks; i++)
 103                iowrite32(0, denali->reg + INTR_EN(i));
 104        iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
 105}
 106
 107static void denali_clear_irq(struct denali_controller *denali,
 108                             int bank, u32 irq_status)
 109{
 110        /* write one to clear bits */
 111        iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
 112}
 113
 114static void denali_clear_irq_all(struct denali_controller *denali)
 115{
 116        int i;
 117
 118        for (i = 0; i < denali->nbanks; i++)
 119                denali_clear_irq(denali, i, U32_MAX);
 120}
 121
 122static irqreturn_t denali_isr(int irq, void *dev_id)
 123{
 124        struct denali_controller *denali = dev_id;
 125        irqreturn_t ret = IRQ_NONE;
 126        u32 irq_status;
 127        int i;
 128
 129        spin_lock(&denali->irq_lock);
 130
 131        for (i = 0; i < denali->nbanks; i++) {
 132                irq_status = ioread32(denali->reg + INTR_STATUS(i));
 133                if (irq_status)
 134                        ret = IRQ_HANDLED;
 135
 136                denali_clear_irq(denali, i, irq_status);
 137
 138                if (i != denali->active_bank)
 139                        continue;
 140
 141                denali->irq_status |= irq_status;
 142
 143                if (denali->irq_status & denali->irq_mask)
 144                        complete(&denali->complete);
 145        }
 146
 147        spin_unlock(&denali->irq_lock);
 148
 149        return ret;
 150}
 151
 152static void denali_reset_irq(struct denali_controller *denali)
 153{
 154        unsigned long flags;
 155
 156        spin_lock_irqsave(&denali->irq_lock, flags);
 157        denali->irq_status = 0;
 158        denali->irq_mask = 0;
 159        spin_unlock_irqrestore(&denali->irq_lock, flags);
 160}
 161
 162static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
 163{
 164        unsigned long time_left, flags;
 165        u32 irq_status;
 166
 167        spin_lock_irqsave(&denali->irq_lock, flags);
 168
 169        irq_status = denali->irq_status;
 170
 171        if (irq_mask & irq_status) {
 172                /* return immediately if the IRQ has already happened. */
 173                spin_unlock_irqrestore(&denali->irq_lock, flags);
 174                return irq_status;
 175        }
 176
 177        denali->irq_mask = irq_mask;
 178        reinit_completion(&denali->complete);
 179        spin_unlock_irqrestore(&denali->irq_lock, flags);
 180
 181        time_left = wait_for_completion_timeout(&denali->complete,
 182                                                msecs_to_jiffies(1000));
 183        if (!time_left) {
 184                dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
 185                        irq_mask);
 186                return 0;
 187        }
 188
 189        return denali->irq_status;
 190}
 191
 192static void denali_select_target(struct nand_chip *chip, int cs)
 193{
 194        struct denali_controller *denali = to_denali_controller(chip);
 195        struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
 196        struct mtd_info *mtd = nand_to_mtd(chip);
 197
 198        denali->active_bank = sel->bank;
 199
 200        iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
 201                  denali->reg + PAGES_PER_BLOCK);
 202        iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
 203                  denali->reg + DEVICE_WIDTH);
 204        iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
 205        iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
 206        iowrite32(chip->options & NAND_ROW_ADDR_3 ?
 207                  0 : TWO_ROW_ADDR_CYCLES__FLAG,
 208                  denali->reg + TWO_ROW_ADDR_CYCLES);
 209        iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
 210                  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
 211                  denali->reg + ECC_CORRECTION);
 212        iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
 213        iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
 214        iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
 215
 216        if (chip->options & NAND_KEEP_TIMINGS)
 217                return;
 218
 219        /* update timing registers unless NAND_KEEP_TIMINGS is set */
 220        iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
 221        iowrite32(sel->tcwaw_and_addr_2_data,
 222                  denali->reg + TCWAW_AND_ADDR_2_DATA);
 223        iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
 224        iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
 225        iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
 226        iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
 227        iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
 228        iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
 229}
 230
 231static int denali_change_column(struct nand_chip *chip, unsigned int offset,
 232                                void *buf, unsigned int len, bool write)
 233{
 234        if (write)
 235                return nand_change_write_column_op(chip, offset, buf, len,
 236                                                   false);
 237        else
 238                return nand_change_read_column_op(chip, offset, buf, len,
 239                                                  false);
 240}
 241
 242static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
 243{
 244        struct denali_controller *denali = to_denali_controller(chip);
 245        struct mtd_info *mtd = nand_to_mtd(chip);
 246        struct nand_ecc_ctrl *ecc = &chip->ecc;
 247        int writesize = mtd->writesize;
 248        int oob_skip = denali->oob_skip_bytes;
 249        int ret, i, pos, len;
 250
 251        for (i = 0; i < ecc->steps; i++) {
 252                pos = i * (ecc->size + ecc->bytes);
 253                len = ecc->size;
 254
 255                if (pos >= writesize) {
 256                        pos += oob_skip;
 257                } else if (pos + len > writesize) {
 258                        /* This chunk overwraps the BBM area. Must be split */
 259                        ret = denali_change_column(chip, pos, buf,
 260                                                   writesize - pos, write);
 261                        if (ret)
 262                                return ret;
 263
 264                        buf += writesize - pos;
 265                        len -= writesize - pos;
 266                        pos = writesize + oob_skip;
 267                }
 268
 269                ret = denali_change_column(chip, pos, buf, len, write);
 270                if (ret)
 271                        return ret;
 272
 273                buf += len;
 274        }
 275
 276        return 0;
 277}
 278
 279static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
 280{
 281        struct denali_controller *denali = to_denali_controller(chip);
 282        struct mtd_info *mtd = nand_to_mtd(chip);
 283        struct nand_ecc_ctrl *ecc = &chip->ecc;
 284        int writesize = mtd->writesize;
 285        int oobsize = mtd->oobsize;
 286        int oob_skip = denali->oob_skip_bytes;
 287        int ret, i, pos, len;
 288
 289        /* BBM at the beginning of the OOB area */
 290        ret = denali_change_column(chip, writesize, buf, oob_skip, write);
 291        if (ret)
 292                return ret;
 293
 294        buf += oob_skip;
 295
 296        for (i = 0; i < ecc->steps; i++) {
 297                pos = ecc->size + i * (ecc->size + ecc->bytes);
 298
 299                if (i == ecc->steps - 1)
 300                        /* The last chunk includes OOB free */
 301                        len = writesize + oobsize - pos - oob_skip;
 302                else
 303                        len = ecc->bytes;
 304
 305                if (pos >= writesize) {
 306                        pos += oob_skip;
 307                } else if (pos + len > writesize) {
 308                        /* This chunk overwraps the BBM area. Must be split */
 309                        ret = denali_change_column(chip, pos, buf,
 310                                                   writesize - pos, write);
 311                        if (ret)
 312                                return ret;
 313
 314                        buf += writesize - pos;
 315                        len -= writesize - pos;
 316                        pos = writesize + oob_skip;
 317                }
 318
 319                ret = denali_change_column(chip, pos, buf, len, write);
 320                if (ret)
 321                        return ret;
 322
 323                buf += len;
 324        }
 325
 326        return 0;
 327}
 328
 329static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
 330                           int page)
 331{
 332        int ret;
 333
 334        if (!buf && !oob_buf)
 335                return -EINVAL;
 336
 337        ret = nand_read_page_op(chip, page, 0, NULL, 0);
 338        if (ret)
 339                return ret;
 340
 341        if (buf) {
 342                ret = denali_payload_xfer(chip, buf, false);
 343                if (ret)
 344                        return ret;
 345        }
 346
 347        if (oob_buf) {
 348                ret = denali_oob_xfer(chip, oob_buf, false);
 349                if (ret)
 350                        return ret;
 351        }
 352
 353        return 0;
 354}
 355
 356static int denali_write_raw(struct nand_chip *chip, const void *buf,
 357                            const void *oob_buf, int page)
 358{
 359        int ret;
 360
 361        if (!buf && !oob_buf)
 362                return -EINVAL;
 363
 364        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 365        if (ret)
 366                return ret;
 367
 368        if (buf) {
 369                ret = denali_payload_xfer(chip, (void *)buf, true);
 370                if (ret)
 371                        return ret;
 372        }
 373
 374        if (oob_buf) {
 375                ret = denali_oob_xfer(chip, (void *)oob_buf, true);
 376                if (ret)
 377                        return ret;
 378        }
 379
 380        return nand_prog_page_end_op(chip);
 381}
 382
 383static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
 384                                int oob_required, int page)
 385{
 386        return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
 387                               page);
 388}
 389
 390static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
 391                                 int oob_required, int page)
 392{
 393        return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
 394                                page);
 395}
 396
 397static int denali_read_oob(struct nand_chip *chip, int page)
 398{
 399        return denali_read_raw(chip, NULL, chip->oob_poi, page);
 400}
 401
 402static int denali_write_oob(struct nand_chip *chip, int page)
 403{
 404        return denali_write_raw(chip, NULL, chip->oob_poi, page);
 405}
 406
 407static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
 408                                    unsigned long uncor_ecc_flags,
 409                                    unsigned int max_bitflips)
 410{
 411        struct denali_controller *denali = to_denali_controller(chip);
 412        struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 413        struct nand_ecc_ctrl *ecc = &chip->ecc;
 414        u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
 415        int i, stat;
 416
 417        for (i = 0; i < ecc->steps; i++) {
 418                if (!(uncor_ecc_flags & BIT(i)))
 419                        continue;
 420
 421                stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
 422                                                   ecc->bytes, NULL, 0,
 423                                                   ecc->strength);
 424                if (stat < 0) {
 425                        ecc_stats->failed++;
 426                } else {
 427                        ecc_stats->corrected += stat;
 428                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 429                }
 430
 431                buf += ecc->size;
 432                ecc_code += ecc->bytes;
 433        }
 434
 435        return max_bitflips;
 436}
 437
 438static int denali_hw_ecc_fixup(struct nand_chip *chip,
 439                               unsigned long *uncor_ecc_flags)
 440{
 441        struct denali_controller *denali = to_denali_controller(chip);
 442        struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 443        int bank = denali->active_bank;
 444        u32 ecc_cor;
 445        unsigned int max_bitflips;
 446
 447        ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
 448        ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
 449
 450        if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
 451                /*
 452                 * This flag is set when uncorrectable error occurs at least in
 453                 * one ECC sector.  We can not know "how many sectors", or
 454                 * "which sector(s)".  We need erase-page check for all sectors.
 455                 */
 456                *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
 457                return 0;
 458        }
 459
 460        max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
 461
 462        /*
 463         * The register holds the maximum of per-sector corrected bitflips.
 464         * This is suitable for the return value of the ->read_page() callback.
 465         * Unfortunately, we can not know the total number of corrected bits in
 466         * the page.  Increase the stats by max_bitflips. (compromised solution)
 467         */
 468        ecc_stats->corrected += max_bitflips;
 469
 470        return max_bitflips;
 471}
 472
 473static int denali_sw_ecc_fixup(struct nand_chip *chip,
 474                               unsigned long *uncor_ecc_flags, u8 *buf)
 475{
 476        struct denali_controller *denali = to_denali_controller(chip);
 477        struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 478        unsigned int ecc_size = chip->ecc.size;
 479        unsigned int bitflips = 0;
 480        unsigned int max_bitflips = 0;
 481        u32 err_addr, err_cor_info;
 482        unsigned int err_byte, err_sector, err_device;
 483        u8 err_cor_value;
 484        unsigned int prev_sector = 0;
 485        u32 irq_status;
 486
 487        denali_reset_irq(denali);
 488
 489        do {
 490                err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
 491                err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
 492                err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
 493
 494                err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
 495                err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
 496                                          err_cor_info);
 497                err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
 498                                       err_cor_info);
 499
 500                /* reset the bitflip counter when crossing ECC sector */
 501                if (err_sector != prev_sector)
 502                        bitflips = 0;
 503
 504                if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
 505                        /*
 506                         * Check later if this is a real ECC error, or
 507                         * an erased sector.
 508                         */
 509                        *uncor_ecc_flags |= BIT(err_sector);
 510                } else if (err_byte < ecc_size) {
 511                        /*
 512                         * If err_byte is larger than ecc_size, means error
 513                         * happened in OOB, so we ignore it. It's no need for
 514                         * us to correct it err_device is represented the NAND
 515                         * error bits are happened in if there are more than
 516                         * one NAND connected.
 517                         */
 518                        int offset;
 519                        unsigned int flips_in_byte;
 520
 521                        offset = (err_sector * ecc_size + err_byte) *
 522                                        denali->devs_per_cs + err_device;
 523
 524                        /* correct the ECC error */
 525                        flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
 526                        buf[offset] ^= err_cor_value;
 527                        ecc_stats->corrected += flips_in_byte;
 528                        bitflips += flips_in_byte;
 529
 530                        max_bitflips = max(max_bitflips, bitflips);
 531                }
 532
 533                prev_sector = err_sector;
 534        } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
 535
 536        /*
 537         * Once handle all ECC errors, controller will trigger an
 538         * ECC_TRANSACTION_DONE interrupt.
 539         */
 540        irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
 541        if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
 542                return -EIO;
 543
 544        return max_bitflips;
 545}
 546
 547static void denali_setup_dma64(struct denali_controller *denali,
 548                               dma_addr_t dma_addr, int page, bool write)
 549{
 550        u32 mode;
 551        const int page_count = 1;
 552
 553        mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
 554
 555        /* DMA is a three step process */
 556
 557        /*
 558         * 1. setup transfer type, interrupt when complete,
 559         *    burst len = 64 bytes, the number of pages
 560         */
 561        denali->host_write(denali, mode,
 562                           0x01002000 | (64 << 16) |
 563                           (write ? BIT(8) : 0) | page_count);
 564
 565        /* 2. set memory low address */
 566        denali->host_write(denali, mode, lower_32_bits(dma_addr));
 567
 568        /* 3. set memory high address */
 569        denali->host_write(denali, mode, upper_32_bits(dma_addr));
 570}
 571
 572static void denali_setup_dma32(struct denali_controller *denali,
 573                               dma_addr_t dma_addr, int page, bool write)
 574{
 575        u32 mode;
 576        const int page_count = 1;
 577
 578        mode = DENALI_MAP10 | DENALI_BANK(denali);
 579
 580        /* DMA is a four step process */
 581
 582        /* 1. setup transfer type and # of pages */
 583        denali->host_write(denali, mode | page,
 584                           0x2000 | (write ? BIT(8) : 0) | page_count);
 585
 586        /* 2. set memory high address bits 23:8 */
 587        denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
 588
 589        /* 3. set memory low address bits 23:8 */
 590        denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
 591
 592        /* 4. interrupt when complete, burst len = 64 bytes */
 593        denali->host_write(denali, mode | 0x14000, 0x2400);
 594}
 595
 596static int denali_pio_read(struct denali_controller *denali, u32 *buf,
 597                           size_t size, int page)
 598{
 599        u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 600        u32 irq_status, ecc_err_mask;
 601        int i;
 602
 603        if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 604                ecc_err_mask = INTR__ECC_UNCOR_ERR;
 605        else
 606                ecc_err_mask = INTR__ECC_ERR;
 607
 608        denali_reset_irq(denali);
 609
 610        for (i = 0; i < size / 4; i++)
 611                buf[i] = denali->host_read(denali, addr);
 612
 613        irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
 614        if (!(irq_status & INTR__PAGE_XFER_INC))
 615                return -EIO;
 616
 617        if (irq_status & INTR__ERASED_PAGE)
 618                memset(buf, 0xff, size);
 619
 620        return irq_status & ecc_err_mask ? -EBADMSG : 0;
 621}
 622
 623static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
 624                            size_t size, int page)
 625{
 626        u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 627        u32 irq_status;
 628        int i;
 629
 630        denali_reset_irq(denali);
 631
 632        for (i = 0; i < size / 4; i++)
 633                denali->host_write(denali, addr, buf[i]);
 634
 635        irq_status = denali_wait_for_irq(denali,
 636                                         INTR__PROGRAM_COMP |
 637                                         INTR__PROGRAM_FAIL);
 638        if (!(irq_status & INTR__PROGRAM_COMP))
 639                return -EIO;
 640
 641        return 0;
 642}
 643
 644static int denali_pio_xfer(struct denali_controller *denali, void *buf,
 645                           size_t size, int page, bool write)
 646{
 647        if (write)
 648                return denali_pio_write(denali, buf, size, page);
 649        else
 650                return denali_pio_read(denali, buf, size, page);
 651}
 652
 653static int denali_dma_xfer(struct denali_controller *denali, void *buf,
 654                           size_t size, int page, bool write)
 655{
 656        dma_addr_t dma_addr;
 657        u32 irq_mask, irq_status, ecc_err_mask;
 658        enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 659        int ret = 0;
 660
 661        dma_addr = dma_map_single(denali->dev, buf, size, dir);
 662        if (dma_mapping_error(denali->dev, dma_addr)) {
 663                dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
 664                return denali_pio_xfer(denali, buf, size, page, write);
 665        }
 666
 667        if (write) {
 668                /*
 669                 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
 670                 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
 671                 * when the page program is completed.
 672                 */
 673                irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
 674                ecc_err_mask = 0;
 675        } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
 676                irq_mask = INTR__DMA_CMD_COMP;
 677                ecc_err_mask = INTR__ECC_UNCOR_ERR;
 678        } else {
 679                irq_mask = INTR__DMA_CMD_COMP;
 680                ecc_err_mask = INTR__ECC_ERR;
 681        }
 682
 683        iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
 684        /*
 685         * The ->setup_dma() hook kicks DMA by using the data/command
 686         * interface, which belongs to a different AXI port from the
 687         * register interface.  Read back the register to avoid a race.
 688         */
 689        ioread32(denali->reg + DMA_ENABLE);
 690
 691        denali_reset_irq(denali);
 692        denali->setup_dma(denali, dma_addr, page, write);
 693
 694        irq_status = denali_wait_for_irq(denali, irq_mask);
 695        if (!(irq_status & INTR__DMA_CMD_COMP))
 696                ret = -EIO;
 697        else if (irq_status & ecc_err_mask)
 698                ret = -EBADMSG;
 699
 700        iowrite32(0, denali->reg + DMA_ENABLE);
 701
 702        dma_unmap_single(denali->dev, dma_addr, size, dir);
 703
 704        if (irq_status & INTR__ERASED_PAGE)
 705                memset(buf, 0xff, size);
 706
 707        return ret;
 708}
 709
 710static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
 711                            int page, bool write)
 712{
 713        struct denali_controller *denali = to_denali_controller(chip);
 714
 715        denali_select_target(chip, chip->cur_cs);
 716
 717        if (denali->dma_avail)
 718                return denali_dma_xfer(denali, buf, size, page, write);
 719        else
 720                return denali_pio_xfer(denali, buf, size, page, write);
 721}
 722
 723static int denali_read_page(struct nand_chip *chip, u8 *buf,
 724                            int oob_required, int page)
 725{
 726        struct denali_controller *denali = to_denali_controller(chip);
 727        struct mtd_info *mtd = nand_to_mtd(chip);
 728        unsigned long uncor_ecc_flags = 0;
 729        int stat = 0;
 730        int ret;
 731
 732        ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
 733        if (ret && ret != -EBADMSG)
 734                return ret;
 735
 736        if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 737                stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
 738        else if (ret == -EBADMSG)
 739                stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
 740
 741        if (stat < 0)
 742                return stat;
 743
 744        if (uncor_ecc_flags) {
 745                ret = denali_read_oob(chip, page);
 746                if (ret)
 747                        return ret;
 748
 749                stat = denali_check_erased_page(chip, buf,
 750                                                uncor_ecc_flags, stat);
 751        }
 752
 753        return stat;
 754}
 755
 756static int denali_write_page(struct nand_chip *chip, const u8 *buf,
 757                             int oob_required, int page)
 758{
 759        struct mtd_info *mtd = nand_to_mtd(chip);
 760
 761        return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
 762}
 763
 764static int denali_setup_interface(struct nand_chip *chip, int chipnr,
 765                                  const struct nand_interface_config *conf)
 766{
 767        static const unsigned int data_setup_on_host = 10000;
 768        struct denali_controller *denali = to_denali_controller(chip);
 769        struct denali_chip_sel *sel;
 770        const struct nand_sdr_timings *timings;
 771        unsigned long t_x, mult_x;
 772        int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
 773        int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
 774        int addr_2_data_mask;
 775        u32 tmp;
 776
 777        timings = nand_get_sdr_timings(conf);
 778        if (IS_ERR(timings))
 779                return PTR_ERR(timings);
 780
 781        /* clk_x period in picoseconds */
 782        t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
 783        if (!t_x)
 784                return -EINVAL;
 785
 786        /*
 787         * The bus interface clock, clk_x, is phase aligned with the core clock.
 788         * The clk_x is an integral multiple N of the core clk.  The value N is
 789         * configured at IP delivery time, and its available value is 4, 5, 6.
 790         */
 791        mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
 792        if (mult_x < 4 || mult_x > 6)
 793                return -EINVAL;
 794
 795        if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
 796                return 0;
 797
 798        sel = &to_denali_chip(chip)->sels[chipnr];
 799
 800        /* tRWH -> RE_2_WE */
 801        re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
 802        re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
 803
 804        tmp = ioread32(denali->reg + RE_2_WE);
 805        tmp &= ~RE_2_WE__VALUE;
 806        tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
 807        sel->re_2_we = tmp;
 808
 809        /* tRHZ -> RE_2_RE */
 810        re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
 811        re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
 812
 813        tmp = ioread32(denali->reg + RE_2_RE);
 814        tmp &= ~RE_2_RE__VALUE;
 815        tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
 816        sel->re_2_re = tmp;
 817
 818        /*
 819         * tCCS, tWHR -> WE_2_RE
 820         *
 821         * With WE_2_RE properly set, the Denali controller automatically takes
 822         * care of the delay; the driver need not set NAND_WAIT_TCCS.
 823         */
 824        we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
 825        we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
 826
 827        tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
 828        tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
 829        tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
 830        sel->hwhr2_and_we_2_re = tmp;
 831
 832        /* tADL -> ADDR_2_DATA */
 833
 834        /* for older versions, ADDR_2_DATA is only 6 bit wide */
 835        addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
 836        if (denali->revision < 0x0501)
 837                addr_2_data_mask >>= 1;
 838
 839        addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
 840        addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
 841
 842        tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
 843        tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
 844        tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
 845        sel->tcwaw_and_addr_2_data = tmp;
 846
 847        /* tREH, tWH -> RDWR_EN_HI_CNT */
 848        rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
 849                                  t_x);
 850        rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
 851
 852        tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
 853        tmp &= ~RDWR_EN_HI_CNT__VALUE;
 854        tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
 855        sel->rdwr_en_hi_cnt = tmp;
 856
 857        /*
 858         * tREA -> ACC_CLKS
 859         * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT
 860         */
 861
 862        /*
 863         * Determine the minimum of acc_clks to meet the setup timing when
 864         * capturing the incoming data.
 865         *
 866         * The delay on the chip side is well-defined as tREA, but we need to
 867         * take additional delay into account. This includes a certain degree
 868         * of unknowledge, such as signal propagation delays on the PCB and
 869         * in the SoC, load capacity of the I/O pins, etc.
 870         */
 871        acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x);
 872
 873        /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */
 874        rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
 875
 876        /* Extend rdwr_en_lo to meet the data hold timing */
 877        rdwr_en_lo = max_t(int, rdwr_en_lo,
 878                           acc_clks - timings->tRHOH_min / t_x);
 879
 880        /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */
 881        rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
 882                                     t_x);
 883        rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
 884        rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
 885
 886        /* Center the data latch timing for extra safety */
 887        acc_clks = (acc_clks + rdwr_en_lo +
 888                    DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2;
 889        acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
 890
 891        tmp = ioread32(denali->reg + ACC_CLKS);
 892        tmp &= ~ACC_CLKS__VALUE;
 893        tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
 894        sel->acc_clks = tmp;
 895
 896        tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
 897        tmp &= ~RDWR_EN_LO_CNT__VALUE;
 898        tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
 899        sel->rdwr_en_lo_cnt = tmp;
 900
 901        /* tCS, tCEA -> CS_SETUP_CNT */
 902        cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
 903                        (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
 904                        0);
 905        cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
 906
 907        tmp = ioread32(denali->reg + CS_SETUP_CNT);
 908        tmp &= ~CS_SETUP_CNT__VALUE;
 909        tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
 910        sel->cs_setup_cnt = tmp;
 911
 912        return 0;
 913}
 914
 915int denali_calc_ecc_bytes(int step_size, int strength)
 916{
 917        /* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
 918        return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
 919}
 920EXPORT_SYMBOL(denali_calc_ecc_bytes);
 921
 922static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 923                                struct mtd_oob_region *oobregion)
 924{
 925        struct nand_chip *chip = mtd_to_nand(mtd);
 926        struct denali_controller *denali = to_denali_controller(chip);
 927
 928        if (section > 0)
 929                return -ERANGE;
 930
 931        oobregion->offset = denali->oob_skip_bytes;
 932        oobregion->length = chip->ecc.total;
 933
 934        return 0;
 935}
 936
 937static int denali_ooblayout_free(struct mtd_info *mtd, int section,
 938                                 struct mtd_oob_region *oobregion)
 939{
 940        struct nand_chip *chip = mtd_to_nand(mtd);
 941        struct denali_controller *denali = to_denali_controller(chip);
 942
 943        if (section > 0)
 944                return -ERANGE;
 945
 946        oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
 947        oobregion->length = mtd->oobsize - oobregion->offset;
 948
 949        return 0;
 950}
 951
 952static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
 953        .ecc = denali_ooblayout_ecc,
 954        .free = denali_ooblayout_free,
 955};
 956
 957static int denali_multidev_fixup(struct nand_chip *chip)
 958{
 959        struct denali_controller *denali = to_denali_controller(chip);
 960        struct mtd_info *mtd = nand_to_mtd(chip);
 961        struct nand_memory_organization *memorg;
 962
 963        memorg = nanddev_get_memorg(&chip->base);
 964
 965        /*
 966         * Support for multi device:
 967         * When the IP configuration is x16 capable and two x8 chips are
 968         * connected in parallel, DEVICES_CONNECTED should be set to 2.
 969         * In this case, the core framework knows nothing about this fact,
 970         * so we should tell it the _logical_ pagesize and anything necessary.
 971         */
 972        denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
 973
 974        /*
 975         * On some SoCs, DEVICES_CONNECTED is not auto-detected.
 976         * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
 977         */
 978        if (denali->devs_per_cs == 0) {
 979                denali->devs_per_cs = 1;
 980                iowrite32(1, denali->reg + DEVICES_CONNECTED);
 981        }
 982
 983        if (denali->devs_per_cs == 1)
 984                return 0;
 985
 986        if (denali->devs_per_cs != 2) {
 987                dev_err(denali->dev, "unsupported number of devices %d\n",
 988                        denali->devs_per_cs);
 989                return -EINVAL;
 990        }
 991
 992        /* 2 chips in parallel */
 993        memorg->pagesize <<= 1;
 994        memorg->oobsize <<= 1;
 995        mtd->size <<= 1;
 996        mtd->erasesize <<= 1;
 997        mtd->writesize <<= 1;
 998        mtd->oobsize <<= 1;
 999        chip->page_shift += 1;
1000        chip->phys_erase_shift += 1;
1001        chip->bbt_erase_shift += 1;
1002        chip->chip_shift += 1;
1003        chip->pagemask <<= 1;
1004        chip->ecc.size <<= 1;
1005        chip->ecc.bytes <<= 1;
1006        chip->ecc.strength <<= 1;
1007        denali->oob_skip_bytes <<= 1;
1008
1009        return 0;
1010}
1011
1012static int denali_attach_chip(struct nand_chip *chip)
1013{
1014        struct denali_controller *denali = to_denali_controller(chip);
1015        struct mtd_info *mtd = nand_to_mtd(chip);
1016        int ret;
1017
1018        ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
1019                                   mtd->oobsize - denali->oob_skip_bytes);
1020        if (ret) {
1021                dev_err(denali->dev, "Failed to setup ECC settings.\n");
1022                return ret;
1023        }
1024
1025        dev_dbg(denali->dev,
1026                "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1027                chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1028
1029        ret = denali_multidev_fixup(chip);
1030        if (ret)
1031                return ret;
1032
1033        return 0;
1034}
1035
1036static void denali_exec_in8(struct denali_controller *denali, u32 type,
1037                            u8 *buf, unsigned int len)
1038{
1039        int i;
1040
1041        for (i = 0; i < len; i++)
1042                buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
1043}
1044
1045static void denali_exec_in16(struct denali_controller *denali, u32 type,
1046                             u8 *buf, unsigned int len)
1047{
1048        u32 data;
1049        int i;
1050
1051        for (i = 0; i < len; i += 2) {
1052                data = denali->host_read(denali, type | DENALI_BANK(denali));
1053                /* bit 31:24 and 15:8 are used for DDR */
1054                buf[i] = data;
1055                buf[i + 1] = data >> 16;
1056        }
1057}
1058
1059static void denali_exec_in(struct denali_controller *denali, u32 type,
1060                           u8 *buf, unsigned int len, bool width16)
1061{
1062        if (width16)
1063                denali_exec_in16(denali, type, buf, len);
1064        else
1065                denali_exec_in8(denali, type, buf, len);
1066}
1067
1068static void denali_exec_out8(struct denali_controller *denali, u32 type,
1069                             const u8 *buf, unsigned int len)
1070{
1071        int i;
1072
1073        for (i = 0; i < len; i++)
1074                denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
1075}
1076
1077static void denali_exec_out16(struct denali_controller *denali, u32 type,
1078                              const u8 *buf, unsigned int len)
1079{
1080        int i;
1081
1082        for (i = 0; i < len; i += 2)
1083                denali->host_write(denali, type | DENALI_BANK(denali),
1084                                   buf[i + 1] << 16 | buf[i]);
1085}
1086
1087static void denali_exec_out(struct denali_controller *denali, u32 type,
1088                            const u8 *buf, unsigned int len, bool width16)
1089{
1090        if (width16)
1091                denali_exec_out16(denali, type, buf, len);
1092        else
1093                denali_exec_out8(denali, type, buf, len);
1094}
1095
1096static int denali_exec_waitrdy(struct denali_controller *denali)
1097{
1098        u32 irq_stat;
1099
1100        /* R/B# pin transitioned from low to high? */
1101        irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
1102
1103        /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1104        denali_reset_irq(denali);
1105
1106        return irq_stat & INTR__INT_ACT ? 0 : -EIO;
1107}
1108
1109static int denali_exec_instr(struct nand_chip *chip,
1110                             const struct nand_op_instr *instr)
1111{
1112        struct denali_controller *denali = to_denali_controller(chip);
1113
1114        switch (instr->type) {
1115        case NAND_OP_CMD_INSTR:
1116                denali_exec_out8(denali, DENALI_MAP11_CMD,
1117                                 &instr->ctx.cmd.opcode, 1);
1118                return 0;
1119        case NAND_OP_ADDR_INSTR:
1120                denali_exec_out8(denali, DENALI_MAP11_ADDR,
1121                                 instr->ctx.addr.addrs,
1122                                 instr->ctx.addr.naddrs);
1123                return 0;
1124        case NAND_OP_DATA_IN_INSTR:
1125                denali_exec_in(denali, DENALI_MAP11_DATA,
1126                               instr->ctx.data.buf.in,
1127                               instr->ctx.data.len,
1128                               !instr->ctx.data.force_8bit &&
1129                               chip->options & NAND_BUSWIDTH_16);
1130                return 0;
1131        case NAND_OP_DATA_OUT_INSTR:
1132                denali_exec_out(denali, DENALI_MAP11_DATA,
1133                                instr->ctx.data.buf.out,
1134                                instr->ctx.data.len,
1135                                !instr->ctx.data.force_8bit &&
1136                                chip->options & NAND_BUSWIDTH_16);
1137                return 0;
1138        case NAND_OP_WAITRDY_INSTR:
1139                return denali_exec_waitrdy(denali);
1140        default:
1141                WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1142                          instr->type);
1143
1144                return -EINVAL;
1145        }
1146}
1147
1148static int denali_exec_op(struct nand_chip *chip,
1149                          const struct nand_operation *op, bool check_only)
1150{
1151        int i, ret;
1152
1153        if (check_only)
1154                return 0;
1155
1156        denali_select_target(chip, op->cs);
1157
1158        /*
1159         * Some commands contain NAND_OP_WAITRDY_INSTR.
1160         * irq must be cleared here to catch the R/B# interrupt there.
1161         */
1162        denali_reset_irq(to_denali_controller(chip));
1163
1164        for (i = 0; i < op->ninstrs; i++) {
1165                ret = denali_exec_instr(chip, &op->instrs[i]);
1166                if (ret)
1167                        return ret;
1168        }
1169
1170        return 0;
1171}
1172
1173static const struct nand_controller_ops denali_controller_ops = {
1174        .attach_chip = denali_attach_chip,
1175        .exec_op = denali_exec_op,
1176        .setup_interface = denali_setup_interface,
1177};
1178
1179int denali_chip_init(struct denali_controller *denali,
1180                     struct denali_chip *dchip)
1181{
1182        struct nand_chip *chip = &dchip->chip;
1183        struct mtd_info *mtd = nand_to_mtd(chip);
1184        struct denali_chip *dchip2;
1185        int i, j, ret;
1186
1187        chip->controller = &denali->controller;
1188
1189        /* sanity checks for bank numbers */
1190        for (i = 0; i < dchip->nsels; i++) {
1191                unsigned int bank = dchip->sels[i].bank;
1192
1193                if (bank >= denali->nbanks) {
1194                        dev_err(denali->dev, "unsupported bank %d\n", bank);
1195                        return -EINVAL;
1196                }
1197
1198                for (j = 0; j < i; j++) {
1199                        if (bank == dchip->sels[j].bank) {
1200                                dev_err(denali->dev,
1201                                        "bank %d is assigned twice in the same chip\n",
1202                                        bank);
1203                                return -EINVAL;
1204                        }
1205                }
1206
1207                list_for_each_entry(dchip2, &denali->chips, node) {
1208                        for (j = 0; j < dchip2->nsels; j++) {
1209                                if (bank == dchip2->sels[j].bank) {
1210                                        dev_err(denali->dev,
1211                                                "bank %d is already used\n",
1212                                                bank);
1213                                        return -EINVAL;
1214                                }
1215                        }
1216                }
1217        }
1218
1219        mtd->dev.parent = denali->dev;
1220
1221        /*
1222         * Fallback to the default name if DT did not give "label" property.
1223         * Use "label" property if multiple chips are connected.
1224         */
1225        if (!mtd->name && list_empty(&denali->chips))
1226                mtd->name = "denali-nand";
1227
1228        if (denali->dma_avail) {
1229                chip->options |= NAND_USES_DMA;
1230                chip->buf_align = 16;
1231        }
1232
1233        /* clk rate info is needed for setup_interface */
1234        if (!denali->clk_rate || !denali->clk_x_rate)
1235                chip->options |= NAND_KEEP_TIMINGS;
1236
1237        chip->bbt_options |= NAND_BBT_USE_FLASH;
1238        chip->bbt_options |= NAND_BBT_NO_OOB;
1239        chip->options |= NAND_NO_SUBPAGE_WRITE;
1240        chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1241        chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
1242        chip->ecc.read_page = denali_read_page;
1243        chip->ecc.write_page = denali_write_page;
1244        chip->ecc.read_page_raw = denali_read_page_raw;
1245        chip->ecc.write_page_raw = denali_write_page_raw;
1246        chip->ecc.read_oob = denali_read_oob;
1247        chip->ecc.write_oob = denali_write_oob;
1248
1249        mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1250
1251        ret = nand_scan(chip, dchip->nsels);
1252        if (ret)
1253                return ret;
1254
1255        ret = mtd_device_register(mtd, NULL, 0);
1256        if (ret) {
1257                dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1258                goto cleanup_nand;
1259        }
1260
1261        list_add_tail(&dchip->node, &denali->chips);
1262
1263        return 0;
1264
1265cleanup_nand:
1266        nand_cleanup(chip);
1267
1268        return ret;
1269}
1270EXPORT_SYMBOL_GPL(denali_chip_init);
1271
1272int denali_init(struct denali_controller *denali)
1273{
1274        u32 features = ioread32(denali->reg + FEATURES);
1275        int ret;
1276
1277        nand_controller_init(&denali->controller);
1278        denali->controller.ops = &denali_controller_ops;
1279        init_completion(&denali->complete);
1280        spin_lock_init(&denali->irq_lock);
1281        INIT_LIST_HEAD(&denali->chips);
1282        denali->active_bank = DENALI_INVALID_BANK;
1283
1284        /*
1285         * The REVISION register may not be reliable. Platforms are allowed to
1286         * override it.
1287         */
1288        if (!denali->revision)
1289                denali->revision = swab16(ioread32(denali->reg + REVISION));
1290
1291        denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
1292
1293        /* the encoding changed from rev 5.0 to 5.1 */
1294        if (denali->revision < 0x0501)
1295                denali->nbanks <<= 1;
1296
1297        if (features & FEATURES__DMA)
1298                denali->dma_avail = true;
1299
1300        if (denali->dma_avail) {
1301                int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1302
1303                ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1304                if (ret) {
1305                        dev_info(denali->dev,
1306                                 "Failed to set DMA mask. Disabling DMA.\n");
1307                        denali->dma_avail = false;
1308                }
1309        }
1310
1311        if (denali->dma_avail) {
1312                if (denali->caps & DENALI_CAP_DMA_64BIT)
1313                        denali->setup_dma = denali_setup_dma64;
1314                else
1315                        denali->setup_dma = denali_setup_dma32;
1316        }
1317
1318        if (features & FEATURES__INDEX_ADDR) {
1319                denali->host_read = denali_indexed_read;
1320                denali->host_write = denali_indexed_write;
1321        } else {
1322                denali->host_read = denali_direct_read;
1323                denali->host_write = denali_direct_write;
1324        }
1325
1326        /*
1327         * Set how many bytes should be skipped before writing data in OOB.
1328         * If a platform requests a non-zero value, set it to the register.
1329         * Otherwise, read the value out, expecting it has already been set up
1330         * by firmware.
1331         */
1332        if (denali->oob_skip_bytes)
1333                iowrite32(denali->oob_skip_bytes,
1334                          denali->reg + SPARE_AREA_SKIP_BYTES);
1335        else
1336                denali->oob_skip_bytes = ioread32(denali->reg +
1337                                                  SPARE_AREA_SKIP_BYTES);
1338
1339        iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
1340        iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
1341        iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1342        iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
1343        iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1344        iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
1345
1346        denali_clear_irq_all(denali);
1347
1348        ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1349                               IRQF_SHARED, DENALI_NAND_NAME, denali);
1350        if (ret) {
1351                dev_err(denali->dev, "Unable to request IRQ\n");
1352                return ret;
1353        }
1354
1355        denali_enable_irq(denali);
1356
1357        return 0;
1358}
1359EXPORT_SYMBOL(denali_init);
1360
1361void denali_remove(struct denali_controller *denali)
1362{
1363        struct denali_chip *dchip, *tmp;
1364        struct nand_chip *chip;
1365        int ret;
1366
1367        list_for_each_entry_safe(dchip, tmp, &denali->chips, node) {
1368                chip = &dchip->chip;
1369                ret = mtd_device_unregister(nand_to_mtd(chip));
1370                WARN_ON(ret);
1371                nand_cleanup(chip);
1372                list_del(&dchip->node);
1373        }
1374
1375        denali_disable_irq(denali);
1376}
1377EXPORT_SYMBOL(denali_remove);
1378
1379MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1380MODULE_AUTHOR("Intel Corporation and its suppliers");
1381MODULE_LICENSE("GPL v2");
1382