linux/drivers/mtd/nand/raw/fsmc_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ST Microelectronics
   4 * Flexible Static Memory Controller (FSMC)
   5 * Driver for NAND portions
   6 *
   7 * Copyright © 2010 ST Microelectronics
   8 * Vipin Kumar <vipin.kumar@st.com>
   9 * Ashish Priyadarshi
  10 *
  11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
  12 *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
  13 *  Copyright © 2009 Alessandro Rubini
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/completion.h>
  18#include <linux/dmaengine.h>
  19#include <linux/dma-direction.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/err.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/resource.h>
  25#include <linux/sched.h>
  26#include <linux/types.h>
  27#include <linux/mtd/mtd.h>
  28#include <linux/mtd/nand-ecc-sw-hamming.h>
  29#include <linux/mtd/rawnand.h>
  30#include <linux/platform_device.h>
  31#include <linux/of.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/io.h>
  34#include <linux/slab.h>
  35#include <linux/amba/bus.h>
  36#include <mtd/mtd-abi.h>
  37
  38/* fsmc controller registers for NOR flash */
  39#define CTRL                    0x0
  40        /* ctrl register definitions */
  41        #define BANK_ENABLE             BIT(0)
  42        #define MUXED                   BIT(1)
  43        #define NOR_DEV                 (2 << 2)
  44        #define WIDTH_16                BIT(4)
  45        #define RSTPWRDWN               BIT(6)
  46        #define WPROT                   BIT(7)
  47        #define WRT_ENABLE              BIT(12)
  48        #define WAIT_ENB                BIT(13)
  49
  50#define CTRL_TIM                0x4
  51        /* ctrl_tim register definitions */
  52
  53#define FSMC_NOR_BANK_SZ        0x8
  54#define FSMC_NOR_REG_SIZE       0x40
  55
  56#define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
  57                                         (FSMC_NOR_BANK_SZ * (bank)) +  \
  58                                         (reg))
  59
  60/* fsmc controller registers for NAND flash */
  61#define FSMC_PC                 0x00
  62        /* pc register definitions */
  63        #define FSMC_RESET              BIT(0)
  64        #define FSMC_WAITON             BIT(1)
  65        #define FSMC_ENABLE             BIT(2)
  66        #define FSMC_DEVTYPE_NAND       BIT(3)
  67        #define FSMC_DEVWID_16          BIT(4)
  68        #define FSMC_ECCEN              BIT(6)
  69        #define FSMC_ECCPLEN_256        BIT(7)
  70        #define FSMC_TCLR_SHIFT         (9)
  71        #define FSMC_TCLR_MASK          (0xF)
  72        #define FSMC_TAR_SHIFT          (13)
  73        #define FSMC_TAR_MASK           (0xF)
  74#define STS                     0x04
  75        /* sts register definitions */
  76        #define FSMC_CODE_RDY           BIT(15)
  77#define COMM                    0x08
  78        /* comm register definitions */
  79        #define FSMC_TSET_SHIFT         0
  80        #define FSMC_TSET_MASK          0xFF
  81        #define FSMC_TWAIT_SHIFT        8
  82        #define FSMC_TWAIT_MASK         0xFF
  83        #define FSMC_THOLD_SHIFT        16
  84        #define FSMC_THOLD_MASK         0xFF
  85        #define FSMC_THIZ_SHIFT         24
  86        #define FSMC_THIZ_MASK          0xFF
  87#define ATTRIB                  0x0C
  88#define IOATA                   0x10
  89#define ECC1                    0x14
  90#define ECC2                    0x18
  91#define ECC3                    0x1C
  92#define FSMC_NAND_BANK_SZ       0x20
  93
  94#define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
  95
  96struct fsmc_nand_timings {
  97        u8 tclr;
  98        u8 tar;
  99        u8 thiz;
 100        u8 thold;
 101        u8 twait;
 102        u8 tset;
 103};
 104
 105enum access_mode {
 106        USE_DMA_ACCESS = 1,
 107        USE_WORD_ACCESS,
 108};
 109
 110/**
 111 * struct fsmc_nand_data - structure for FSMC NAND device state
 112 *
 113 * @base:               Inherit from the nand_controller struct
 114 * @pid:                Part ID on the AMBA PrimeCell format
 115 * @nand:               Chip related info for a NAND flash.
 116 *
 117 * @bank:               Bank number for probed device.
 118 * @dev:                Parent device
 119 * @mode:               Access mode
 120 * @clk:                Clock structure for FSMC.
 121 *
 122 * @read_dma_chan:      DMA channel for read access
 123 * @write_dma_chan:     DMA channel for write access to NAND
 124 * @dma_access_complete: Completion structure
 125 *
 126 * @dev_timings:        NAND timings
 127 *
 128 * @data_pa:            NAND Physical port for Data.
 129 * @data_va:            NAND port for Data.
 130 * @cmd_va:             NAND port for Command.
 131 * @addr_va:            NAND port for Address.
 132 * @regs_va:            Registers base address for a given bank.
 133 */
 134struct fsmc_nand_data {
 135        struct nand_controller  base;
 136        u32                     pid;
 137        struct nand_chip        nand;
 138
 139        unsigned int            bank;
 140        struct device           *dev;
 141        enum access_mode        mode;
 142        struct clk              *clk;
 143
 144        /* DMA related objects */
 145        struct dma_chan         *read_dma_chan;
 146        struct dma_chan         *write_dma_chan;
 147        struct completion       dma_access_complete;
 148
 149        struct fsmc_nand_timings *dev_timings;
 150
 151        dma_addr_t              data_pa;
 152        void __iomem            *data_va;
 153        void __iomem            *cmd_va;
 154        void __iomem            *addr_va;
 155        void __iomem            *regs_va;
 156};
 157
 158static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
 159                                   struct mtd_oob_region *oobregion)
 160{
 161        struct nand_chip *chip = mtd_to_nand(mtd);
 162
 163        if (section >= chip->ecc.steps)
 164                return -ERANGE;
 165
 166        oobregion->offset = (section * 16) + 2;
 167        oobregion->length = 3;
 168
 169        return 0;
 170}
 171
 172static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
 173                                    struct mtd_oob_region *oobregion)
 174{
 175        struct nand_chip *chip = mtd_to_nand(mtd);
 176
 177        if (section >= chip->ecc.steps)
 178                return -ERANGE;
 179
 180        oobregion->offset = (section * 16) + 8;
 181
 182        if (section < chip->ecc.steps - 1)
 183                oobregion->length = 8;
 184        else
 185                oobregion->length = mtd->oobsize - oobregion->offset;
 186
 187        return 0;
 188}
 189
 190static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
 191        .ecc = fsmc_ecc1_ooblayout_ecc,
 192        .free = fsmc_ecc1_ooblayout_free,
 193};
 194
 195/*
 196 * ECC placement definitions in oobfree type format.
 197 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 198 * consecutively and immediately after the 512 byte data block for hardware to
 199 * generate the error bit offsets in 512 byte data.
 200 */
 201static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
 202                                   struct mtd_oob_region *oobregion)
 203{
 204        struct nand_chip *chip = mtd_to_nand(mtd);
 205
 206        if (section >= chip->ecc.steps)
 207                return -ERANGE;
 208
 209        oobregion->length = chip->ecc.bytes;
 210
 211        if (!section && mtd->writesize <= 512)
 212                oobregion->offset = 0;
 213        else
 214                oobregion->offset = (section * 16) + 2;
 215
 216        return 0;
 217}
 218
 219static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 220                                    struct mtd_oob_region *oobregion)
 221{
 222        struct nand_chip *chip = mtd_to_nand(mtd);
 223
 224        if (section >= chip->ecc.steps)
 225                return -ERANGE;
 226
 227        oobregion->offset = (section * 16) + 15;
 228
 229        if (section < chip->ecc.steps - 1)
 230                oobregion->length = 3;
 231        else
 232                oobregion->length = mtd->oobsize - oobregion->offset;
 233
 234        return 0;
 235}
 236
 237static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 238        .ecc = fsmc_ecc4_ooblayout_ecc,
 239        .free = fsmc_ecc4_ooblayout_free,
 240};
 241
 242static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
 243{
 244        return container_of(chip, struct fsmc_nand_data, nand);
 245}
 246
 247/*
 248 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 249 *
 250 * This routine initializes timing parameters related to NAND memory access in
 251 * FSMC registers
 252 */
 253static void fsmc_nand_setup(struct fsmc_nand_data *host,
 254                            struct fsmc_nand_timings *tims)
 255{
 256        u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 257        u32 tclr, tar, thiz, thold, twait, tset;
 258
 259        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 260        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 261        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 262        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 263        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 264        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 265
 266        if (host->nand.options & NAND_BUSWIDTH_16)
 267                value |= FSMC_DEVWID_16;
 268
 269        writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
 270        writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
 271        writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 272}
 273
 274static int fsmc_calc_timings(struct fsmc_nand_data *host,
 275                             const struct nand_sdr_timings *sdrt,
 276                             struct fsmc_nand_timings *tims)
 277{
 278        unsigned long hclk = clk_get_rate(host->clk);
 279        unsigned long hclkn = NSEC_PER_SEC / hclk;
 280        u32 thiz, thold, twait, tset;
 281
 282        if (sdrt->tRC_min < 30000)
 283                return -EOPNOTSUPP;
 284
 285        tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
 286        if (tims->tar > FSMC_TAR_MASK)
 287                tims->tar = FSMC_TAR_MASK;
 288        tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
 289        if (tims->tclr > FSMC_TCLR_MASK)
 290                tims->tclr = FSMC_TCLR_MASK;
 291
 292        thiz = sdrt->tCS_min - sdrt->tWP_min;
 293        tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
 294
 295        thold = sdrt->tDH_min;
 296        if (thold < sdrt->tCH_min)
 297                thold = sdrt->tCH_min;
 298        if (thold < sdrt->tCLH_min)
 299                thold = sdrt->tCLH_min;
 300        if (thold < sdrt->tWH_min)
 301                thold = sdrt->tWH_min;
 302        if (thold < sdrt->tALH_min)
 303                thold = sdrt->tALH_min;
 304        if (thold < sdrt->tREH_min)
 305                thold = sdrt->tREH_min;
 306        tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
 307        if (tims->thold == 0)
 308                tims->thold = 1;
 309        else if (tims->thold > FSMC_THOLD_MASK)
 310                tims->thold = FSMC_THOLD_MASK;
 311
 312        twait = max(sdrt->tRP_min, sdrt->tWP_min);
 313        tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
 314        if (tims->twait == 0)
 315                tims->twait = 1;
 316        else if (tims->twait > FSMC_TWAIT_MASK)
 317                tims->twait = FSMC_TWAIT_MASK;
 318
 319        tset = max(sdrt->tCS_min - sdrt->tWP_min,
 320                   sdrt->tCEA_max - sdrt->tREA_max);
 321        tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
 322        if (tims->tset == 0)
 323                tims->tset = 1;
 324        else if (tims->tset > FSMC_TSET_MASK)
 325                tims->tset = FSMC_TSET_MASK;
 326
 327        return 0;
 328}
 329
 330static int fsmc_setup_interface(struct nand_chip *nand, int csline,
 331                                const struct nand_interface_config *conf)
 332{
 333        struct fsmc_nand_data *host = nand_to_fsmc(nand);
 334        struct fsmc_nand_timings tims;
 335        const struct nand_sdr_timings *sdrt;
 336        int ret;
 337
 338        sdrt = nand_get_sdr_timings(conf);
 339        if (IS_ERR(sdrt))
 340                return PTR_ERR(sdrt);
 341
 342        ret = fsmc_calc_timings(host, sdrt, &tims);
 343        if (ret)
 344                return ret;
 345
 346        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 347                return 0;
 348
 349        fsmc_nand_setup(host, &tims);
 350
 351        return 0;
 352}
 353
 354/*
 355 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 356 */
 357static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
 358{
 359        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 360
 361        writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
 362                       host->regs_va + FSMC_PC);
 363        writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
 364                       host->regs_va + FSMC_PC);
 365        writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
 366                       host->regs_va + FSMC_PC);
 367}
 368
 369/*
 370 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 371 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 372 * max of 8-bits)
 373 */
 374static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
 375                                u8 *ecc)
 376{
 377        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 378        u32 ecc_tmp;
 379        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 380
 381        do {
 382                if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 383                        break;
 384
 385                cond_resched();
 386        } while (!time_after_eq(jiffies, deadline));
 387
 388        if (time_after_eq(jiffies, deadline)) {
 389                dev_err(host->dev, "calculate ecc timed out\n");
 390                return -ETIMEDOUT;
 391        }
 392
 393        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 394        ecc[0] = ecc_tmp;
 395        ecc[1] = ecc_tmp >> 8;
 396        ecc[2] = ecc_tmp >> 16;
 397        ecc[3] = ecc_tmp >> 24;
 398
 399        ecc_tmp = readl_relaxed(host->regs_va + ECC2);
 400        ecc[4] = ecc_tmp;
 401        ecc[5] = ecc_tmp >> 8;
 402        ecc[6] = ecc_tmp >> 16;
 403        ecc[7] = ecc_tmp >> 24;
 404
 405        ecc_tmp = readl_relaxed(host->regs_va + ECC3);
 406        ecc[8] = ecc_tmp;
 407        ecc[9] = ecc_tmp >> 8;
 408        ecc[10] = ecc_tmp >> 16;
 409        ecc[11] = ecc_tmp >> 24;
 410
 411        ecc_tmp = readl_relaxed(host->regs_va + STS);
 412        ecc[12] = ecc_tmp >> 16;
 413
 414        return 0;
 415}
 416
 417/*
 418 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 419 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 420 * max of 1-bit)
 421 */
 422static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
 423                                u8 *ecc)
 424{
 425        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 426        u32 ecc_tmp;
 427
 428        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 429        ecc[0] = ecc_tmp;
 430        ecc[1] = ecc_tmp >> 8;
 431        ecc[2] = ecc_tmp >> 16;
 432
 433        return 0;
 434}
 435
 436static int fsmc_correct_ecc1(struct nand_chip *chip,
 437                             unsigned char *buf,
 438                             unsigned char *read_ecc,
 439                             unsigned char *calc_ecc)
 440{
 441        return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc,
 442                                      chip->ecc.size, false);
 443}
 444
 445/* Count the number of 0's in buff upto a max of max_bits */
 446static int count_written_bits(u8 *buff, int size, int max_bits)
 447{
 448        int k, written_bits = 0;
 449
 450        for (k = 0; k < size; k++) {
 451                written_bits += hweight8(~buff[k]);
 452                if (written_bits > max_bits)
 453                        break;
 454        }
 455
 456        return written_bits;
 457}
 458
 459static void dma_complete(void *param)
 460{
 461        struct fsmc_nand_data *host = param;
 462
 463        complete(&host->dma_access_complete);
 464}
 465
 466static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 467                    enum dma_data_direction direction)
 468{
 469        struct dma_chan *chan;
 470        struct dma_device *dma_dev;
 471        struct dma_async_tx_descriptor *tx;
 472        dma_addr_t dma_dst, dma_src, dma_addr;
 473        dma_cookie_t cookie;
 474        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 475        int ret;
 476        unsigned long time_left;
 477
 478        if (direction == DMA_TO_DEVICE)
 479                chan = host->write_dma_chan;
 480        else if (direction == DMA_FROM_DEVICE)
 481                chan = host->read_dma_chan;
 482        else
 483                return -EINVAL;
 484
 485        dma_dev = chan->device;
 486        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 487
 488        if (direction == DMA_TO_DEVICE) {
 489                dma_src = dma_addr;
 490                dma_dst = host->data_pa;
 491        } else {
 492                dma_src = host->data_pa;
 493                dma_dst = dma_addr;
 494        }
 495
 496        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 497                        len, flags);
 498        if (!tx) {
 499                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 500                ret = -EIO;
 501                goto unmap_dma;
 502        }
 503
 504        tx->callback = dma_complete;
 505        tx->callback_param = host;
 506        cookie = tx->tx_submit(tx);
 507
 508        ret = dma_submit_error(cookie);
 509        if (ret) {
 510                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 511                goto unmap_dma;
 512        }
 513
 514        dma_async_issue_pending(chan);
 515
 516        time_left =
 517        wait_for_completion_timeout(&host->dma_access_complete,
 518                                    msecs_to_jiffies(3000));
 519        if (time_left == 0) {
 520                dmaengine_terminate_all(chan);
 521                dev_err(host->dev, "wait_for_completion_timeout\n");
 522                ret = -ETIMEDOUT;
 523                goto unmap_dma;
 524        }
 525
 526        ret = 0;
 527
 528unmap_dma:
 529        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 530
 531        return ret;
 532}
 533
 534/*
 535 * fsmc_write_buf - write buffer to chip
 536 * @host:       FSMC NAND controller
 537 * @buf:        data buffer
 538 * @len:        number of bytes to write
 539 */
 540static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
 541                           int len)
 542{
 543        int i;
 544
 545        if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 546            IS_ALIGNED(len, sizeof(u32))) {
 547                u32 *p = (u32 *)buf;
 548
 549                len = len >> 2;
 550                for (i = 0; i < len; i++)
 551                        writel_relaxed(p[i], host->data_va);
 552        } else {
 553                for (i = 0; i < len; i++)
 554                        writeb_relaxed(buf[i], host->data_va);
 555        }
 556}
 557
 558/*
 559 * fsmc_read_buf - read chip data into buffer
 560 * @host:       FSMC NAND controller
 561 * @buf:        buffer to store date
 562 * @len:        number of bytes to read
 563 */
 564static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
 565{
 566        int i;
 567
 568        if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 569            IS_ALIGNED(len, sizeof(u32))) {
 570                u32 *p = (u32 *)buf;
 571
 572                len = len >> 2;
 573                for (i = 0; i < len; i++)
 574                        p[i] = readl_relaxed(host->data_va);
 575        } else {
 576                for (i = 0; i < len; i++)
 577                        buf[i] = readb_relaxed(host->data_va);
 578        }
 579}
 580
 581/*
 582 * fsmc_read_buf_dma - read chip data into buffer
 583 * @host:       FSMC NAND controller
 584 * @buf:        buffer to store date
 585 * @len:        number of bytes to read
 586 */
 587static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
 588                              int len)
 589{
 590        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 591}
 592
 593/*
 594 * fsmc_write_buf_dma - write buffer to chip
 595 * @host:       FSMC NAND controller
 596 * @buf:        data buffer
 597 * @len:        number of bytes to write
 598 */
 599static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
 600                               int len)
 601{
 602        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 603}
 604
 605/*
 606 * fsmc_exec_op - hook called by the core to execute NAND operations
 607 *
 608 * This controller is simple enough and thus does not need to use the parser
 609 * provided by the core, instead, handle every situation here.
 610 */
 611static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 612                        bool check_only)
 613{
 614        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 615        const struct nand_op_instr *instr = NULL;
 616        int ret = 0;
 617        unsigned int op_id;
 618        int i;
 619
 620        if (check_only)
 621                return 0;
 622
 623        pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
 624
 625        for (op_id = 0; op_id < op->ninstrs; op_id++) {
 626                instr = &op->instrs[op_id];
 627
 628                nand_op_trace("  ", instr);
 629
 630                switch (instr->type) {
 631                case NAND_OP_CMD_INSTR:
 632                        writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
 633                        break;
 634
 635                case NAND_OP_ADDR_INSTR:
 636                        for (i = 0; i < instr->ctx.addr.naddrs; i++)
 637                                writeb_relaxed(instr->ctx.addr.addrs[i],
 638                                               host->addr_va);
 639                        break;
 640
 641                case NAND_OP_DATA_IN_INSTR:
 642                        if (host->mode == USE_DMA_ACCESS)
 643                                fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
 644                                                  instr->ctx.data.len);
 645                        else
 646                                fsmc_read_buf(host, instr->ctx.data.buf.in,
 647                                              instr->ctx.data.len);
 648                        break;
 649
 650                case NAND_OP_DATA_OUT_INSTR:
 651                        if (host->mode == USE_DMA_ACCESS)
 652                                fsmc_write_buf_dma(host,
 653                                                   instr->ctx.data.buf.out,
 654                                                   instr->ctx.data.len);
 655                        else
 656                                fsmc_write_buf(host, instr->ctx.data.buf.out,
 657                                               instr->ctx.data.len);
 658                        break;
 659
 660                case NAND_OP_WAITRDY_INSTR:
 661                        ret = nand_soft_waitrdy(chip,
 662                                                instr->ctx.waitrdy.timeout_ms);
 663                        break;
 664                }
 665        }
 666
 667        return ret;
 668}
 669
 670/*
 671 * fsmc_read_page_hwecc
 672 * @chip:       nand chip info structure
 673 * @buf:        buffer to store read data
 674 * @oob_required:       caller expects OOB data read to chip->oob_poi
 675 * @page:       page number to read
 676 *
 677 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 678 * performed in a strict sequence as follows:
 679 * data(512 byte) -> ecc(13 byte)
 680 * After this read, fsmc hardware generates and reports error data bits(up to a
 681 * max of 8 bits)
 682 */
 683static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
 684                                int oob_required, int page)
 685{
 686        struct mtd_info *mtd = nand_to_mtd(chip);
 687        int i, j, s, stat, eccsize = chip->ecc.size;
 688        int eccbytes = chip->ecc.bytes;
 689        int eccsteps = chip->ecc.steps;
 690        u8 *p = buf;
 691        u8 *ecc_calc = chip->ecc.calc_buf;
 692        u8 *ecc_code = chip->ecc.code_buf;
 693        int off, len, ret, group = 0;
 694        /*
 695         * ecc_oob is intentionally taken as u16. In 16bit devices, we
 696         * end up reading 14 bytes (7 words) from oob. The local array is
 697         * to maintain word alignment
 698         */
 699        u16 ecc_oob[7];
 700        u8 *oob = (u8 *)&ecc_oob[0];
 701        unsigned int max_bitflips = 0;
 702
 703        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 704                nand_read_page_op(chip, page, s * eccsize, NULL, 0);
 705                chip->ecc.hwctl(chip, NAND_ECC_READ);
 706                ret = nand_read_data_op(chip, p, eccsize, false, false);
 707                if (ret)
 708                        return ret;
 709
 710                for (j = 0; j < eccbytes;) {
 711                        struct mtd_oob_region oobregion;
 712
 713                        ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 714                        if (ret)
 715                                return ret;
 716
 717                        off = oobregion.offset;
 718                        len = oobregion.length;
 719
 720                        /*
 721                         * length is intentionally kept a higher multiple of 2
 722                         * to read at least 13 bytes even in case of 16 bit NAND
 723                         * devices
 724                         */
 725                        if (chip->options & NAND_BUSWIDTH_16)
 726                                len = roundup(len, 2);
 727
 728                        nand_read_oob_op(chip, page, off, oob + j, len);
 729                        j += len;
 730                }
 731
 732                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 733                chip->ecc.calculate(chip, p, &ecc_calc[i]);
 734
 735                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 736                if (stat < 0) {
 737                        mtd->ecc_stats.failed++;
 738                } else {
 739                        mtd->ecc_stats.corrected += stat;
 740                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 741                }
 742        }
 743
 744        return max_bitflips;
 745}
 746
 747/*
 748 * fsmc_bch8_correct_data
 749 * @mtd:        mtd info structure
 750 * @dat:        buffer of read data
 751 * @read_ecc:   ecc read from device spare area
 752 * @calc_ecc:   ecc calculated from read data
 753 *
 754 * calc_ecc is a 104 bit information containing maximum of 8 error
 755 * offset information of 13 bits each in 512 bytes of read data.
 756 */
 757static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
 758                                  u8 *read_ecc, u8 *calc_ecc)
 759{
 760        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 761        u32 err_idx[8];
 762        u32 num_err, i;
 763        u32 ecc1, ecc2, ecc3, ecc4;
 764
 765        num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 766
 767        /* no bit flipping */
 768        if (likely(num_err == 0))
 769                return 0;
 770
 771        /* too many errors */
 772        if (unlikely(num_err > 8)) {
 773                /*
 774                 * This is a temporary erase check. A newly erased page read
 775                 * would result in an ecc error because the oob data is also
 776                 * erased to FF and the calculated ecc for an FF data is not
 777                 * FF..FF.
 778                 * This is a workaround to skip performing correction in case
 779                 * data is FF..FF
 780                 *
 781                 * Logic:
 782                 * For every page, each bit written as 0 is counted until these
 783                 * number of bits are greater than 8 (the maximum correction
 784                 * capability of FSMC for each 512 + 13 bytes)
 785                 */
 786
 787                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 788                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 789
 790                if ((bits_ecc + bits_data) <= 8) {
 791                        if (bits_data)
 792                                memset(dat, 0xff, chip->ecc.size);
 793                        return bits_data;
 794                }
 795
 796                return -EBADMSG;
 797        }
 798
 799        /*
 800         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 801         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 802         *
 803         * calc_ecc is a 104 bit information containing maximum of 8 error
 804         * offset information of 13 bits each. calc_ecc is copied into a
 805         * u64 array and error offset indexes are populated in err_idx
 806         * array
 807         */
 808        ecc1 = readl_relaxed(host->regs_va + ECC1);
 809        ecc2 = readl_relaxed(host->regs_va + ECC2);
 810        ecc3 = readl_relaxed(host->regs_va + ECC3);
 811        ecc4 = readl_relaxed(host->regs_va + STS);
 812
 813        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 814        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 815        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 816        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 817        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 818        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 819        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 820        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 821
 822        i = 0;
 823        while (num_err--) {
 824                err_idx[i] ^= 3;
 825
 826                if (err_idx[i] < chip->ecc.size * 8) {
 827                        int err = err_idx[i];
 828
 829                        dat[err >> 3] ^= BIT(err & 7);
 830                        i++;
 831                }
 832        }
 833        return i;
 834}
 835
 836static bool filter(struct dma_chan *chan, void *slave)
 837{
 838        chan->private = slave;
 839        return true;
 840}
 841
 842static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 843                                     struct fsmc_nand_data *host,
 844                                     struct nand_chip *nand)
 845{
 846        struct device_node *np = pdev->dev.of_node;
 847        u32 val;
 848        int ret;
 849
 850        nand->options = 0;
 851
 852        if (!of_property_read_u32(np, "bank-width", &val)) {
 853                if (val == 2) {
 854                        nand->options |= NAND_BUSWIDTH_16;
 855                } else if (val != 1) {
 856                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 857                        return -EINVAL;
 858                }
 859        }
 860
 861        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 862                nand->options |= NAND_SKIP_BBTSCAN;
 863
 864        host->dev_timings = devm_kzalloc(&pdev->dev,
 865                                         sizeof(*host->dev_timings),
 866                                         GFP_KERNEL);
 867        if (!host->dev_timings)
 868                return -ENOMEM;
 869
 870        ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 871                                        sizeof(*host->dev_timings));
 872        if (ret)
 873                host->dev_timings = NULL;
 874
 875        /* Set default NAND bank to 0 */
 876        host->bank = 0;
 877        if (!of_property_read_u32(np, "bank", &val)) {
 878                if (val > 3) {
 879                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 880                        return -EINVAL;
 881                }
 882                host->bank = val;
 883        }
 884        return 0;
 885}
 886
 887static int fsmc_nand_attach_chip(struct nand_chip *nand)
 888{
 889        struct mtd_info *mtd = nand_to_mtd(nand);
 890        struct fsmc_nand_data *host = nand_to_fsmc(nand);
 891
 892        if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
 893                nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
 894
 895        if (!nand->ecc.size)
 896                nand->ecc.size = 512;
 897
 898        if (AMBA_REV_BITS(host->pid) >= 8) {
 899                nand->ecc.read_page = fsmc_read_page_hwecc;
 900                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
 901                nand->ecc.correct = fsmc_bch8_correct_data;
 902                nand->ecc.bytes = 13;
 903                nand->ecc.strength = 8;
 904        }
 905
 906        if (AMBA_REV_BITS(host->pid) >= 8) {
 907                switch (mtd->oobsize) {
 908                case 16:
 909                case 64:
 910                case 128:
 911                case 224:
 912                case 256:
 913                        break;
 914                default:
 915                        dev_warn(host->dev,
 916                                 "No oob scheme defined for oobsize %d\n",
 917                                 mtd->oobsize);
 918                        return -EINVAL;
 919                }
 920
 921                mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
 922
 923                return 0;
 924        }
 925
 926        switch (nand->ecc.engine_type) {
 927        case NAND_ECC_ENGINE_TYPE_ON_HOST:
 928                dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
 929                nand->ecc.calculate = fsmc_read_hwecc_ecc1;
 930                nand->ecc.correct = fsmc_correct_ecc1;
 931                nand->ecc.hwctl = fsmc_enable_hwecc;
 932                nand->ecc.bytes = 3;
 933                nand->ecc.strength = 1;
 934                nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
 935                break;
 936
 937        case NAND_ECC_ENGINE_TYPE_SOFT:
 938                if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
 939                        dev_info(host->dev,
 940                                 "Using 4-bit SW BCH ECC scheme\n");
 941                        break;
 942                }
 943                break;
 944
 945        case NAND_ECC_ENGINE_TYPE_ON_DIE:
 946                break;
 947
 948        default:
 949                dev_err(host->dev, "Unsupported ECC mode!\n");
 950                return -ENOTSUPP;
 951        }
 952
 953        /*
 954         * Don't set layout for BCH4 SW ECC. This will be
 955         * generated later during BCH initialization.
 956         */
 957        if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
 958                switch (mtd->oobsize) {
 959                case 16:
 960                case 64:
 961                case 128:
 962                        mtd_set_ooblayout(mtd,
 963                                          &fsmc_ecc1_ooblayout_ops);
 964                        break;
 965                default:
 966                        dev_warn(host->dev,
 967                                 "No oob scheme defined for oobsize %d\n",
 968                                 mtd->oobsize);
 969                        return -EINVAL;
 970                }
 971        }
 972
 973        return 0;
 974}
 975
 976static const struct nand_controller_ops fsmc_nand_controller_ops = {
 977        .attach_chip = fsmc_nand_attach_chip,
 978        .exec_op = fsmc_exec_op,
 979        .setup_interface = fsmc_setup_interface,
 980};
 981
 982/**
 983 * fsmc_nand_disable() - Disables the NAND bank
 984 * @host: The instance to disable
 985 */
 986static void fsmc_nand_disable(struct fsmc_nand_data *host)
 987{
 988        u32 val;
 989
 990        val = readl(host->regs_va + FSMC_PC);
 991        val &= ~FSMC_ENABLE;
 992        writel(val, host->regs_va + FSMC_PC);
 993}
 994
 995/*
 996 * fsmc_nand_probe - Probe function
 997 * @pdev:       platform device structure
 998 */
 999static int __init fsmc_nand_probe(struct platform_device *pdev)
1000{
1001        struct fsmc_nand_data *host;
1002        struct mtd_info *mtd;
1003        struct nand_chip *nand;
1004        struct resource *res;
1005        void __iomem *base;
1006        dma_cap_mask_t mask;
1007        int ret = 0;
1008        u32 pid;
1009        int i;
1010
1011        /* Allocate memory for the device structure (and zero it) */
1012        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1013        if (!host)
1014                return -ENOMEM;
1015
1016        nand = &host->nand;
1017
1018        ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1019        if (ret)
1020                return ret;
1021
1022        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1023        host->data_va = devm_ioremap_resource(&pdev->dev, res);
1024        if (IS_ERR(host->data_va))
1025                return PTR_ERR(host->data_va);
1026
1027        host->data_pa = (dma_addr_t)res->start;
1028
1029        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1030        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1031        if (IS_ERR(host->addr_va))
1032                return PTR_ERR(host->addr_va);
1033
1034        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1035        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1036        if (IS_ERR(host->cmd_va))
1037                return PTR_ERR(host->cmd_va);
1038
1039        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1040        base = devm_ioremap_resource(&pdev->dev, res);
1041        if (IS_ERR(base))
1042                return PTR_ERR(base);
1043
1044        host->regs_va = base + FSMC_NOR_REG_SIZE +
1045                (host->bank * FSMC_NAND_BANK_SZ);
1046
1047        host->clk = devm_clk_get(&pdev->dev, NULL);
1048        if (IS_ERR(host->clk)) {
1049                dev_err(&pdev->dev, "failed to fetch block clock\n");
1050                return PTR_ERR(host->clk);
1051        }
1052
1053        ret = clk_prepare_enable(host->clk);
1054        if (ret)
1055                return ret;
1056
1057        /*
1058         * This device ID is actually a common AMBA ID as used on the
1059         * AMBA PrimeCell bus. However it is not a PrimeCell.
1060         */
1061        for (pid = 0, i = 0; i < 4; i++)
1062                pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1063                        255) << (i * 8);
1064
1065        host->pid = pid;
1066
1067        dev_info(&pdev->dev,
1068                 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1069                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1070                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1071
1072        host->dev = &pdev->dev;
1073
1074        if (host->mode == USE_DMA_ACCESS)
1075                init_completion(&host->dma_access_complete);
1076
1077        /* Link all private pointers */
1078        mtd = nand_to_mtd(&host->nand);
1079        nand_set_flash_node(nand, pdev->dev.of_node);
1080
1081        mtd->dev.parent = &pdev->dev;
1082
1083        nand->badblockbits = 7;
1084
1085        if (host->mode == USE_DMA_ACCESS) {
1086                dma_cap_zero(mask);
1087                dma_cap_set(DMA_MEMCPY, mask);
1088                host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1089                if (!host->read_dma_chan) {
1090                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
1091                        ret = -ENODEV;
1092                        goto disable_clk;
1093                }
1094                host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1095                if (!host->write_dma_chan) {
1096                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
1097                        ret = -ENODEV;
1098                        goto release_dma_read_chan;
1099                }
1100        }
1101
1102        if (host->dev_timings) {
1103                fsmc_nand_setup(host, host->dev_timings);
1104                nand->options |= NAND_KEEP_TIMINGS;
1105        }
1106
1107        nand_controller_init(&host->base);
1108        host->base.ops = &fsmc_nand_controller_ops;
1109        nand->controller = &host->base;
1110
1111        /*
1112         * Scan to find existence of the device
1113         */
1114        ret = nand_scan(nand, 1);
1115        if (ret)
1116                goto release_dma_write_chan;
1117
1118        mtd->name = "nand";
1119        ret = mtd_device_register(mtd, NULL, 0);
1120        if (ret)
1121                goto cleanup_nand;
1122
1123        platform_set_drvdata(pdev, host);
1124        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1125
1126        return 0;
1127
1128cleanup_nand:
1129        nand_cleanup(nand);
1130release_dma_write_chan:
1131        if (host->mode == USE_DMA_ACCESS)
1132                dma_release_channel(host->write_dma_chan);
1133release_dma_read_chan:
1134        if (host->mode == USE_DMA_ACCESS)
1135                dma_release_channel(host->read_dma_chan);
1136disable_clk:
1137        fsmc_nand_disable(host);
1138        clk_disable_unprepare(host->clk);
1139
1140        return ret;
1141}
1142
1143/*
1144 * Clean up routine
1145 */
1146static int fsmc_nand_remove(struct platform_device *pdev)
1147{
1148        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1149
1150        if (host) {
1151                struct nand_chip *chip = &host->nand;
1152                int ret;
1153
1154                ret = mtd_device_unregister(nand_to_mtd(chip));
1155                WARN_ON(ret);
1156                nand_cleanup(chip);
1157                fsmc_nand_disable(host);
1158
1159                if (host->mode == USE_DMA_ACCESS) {
1160                        dma_release_channel(host->write_dma_chan);
1161                        dma_release_channel(host->read_dma_chan);
1162                }
1163                clk_disable_unprepare(host->clk);
1164        }
1165
1166        return 0;
1167}
1168
1169#ifdef CONFIG_PM_SLEEP
1170static int fsmc_nand_suspend(struct device *dev)
1171{
1172        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1173
1174        if (host)
1175                clk_disable_unprepare(host->clk);
1176
1177        return 0;
1178}
1179
1180static int fsmc_nand_resume(struct device *dev)
1181{
1182        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1183
1184        if (host) {
1185                clk_prepare_enable(host->clk);
1186                if (host->dev_timings)
1187                        fsmc_nand_setup(host, host->dev_timings);
1188                nand_reset(&host->nand, 0);
1189        }
1190
1191        return 0;
1192}
1193#endif
1194
1195static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1196
1197static const struct of_device_id fsmc_nand_id_table[] = {
1198        { .compatible = "st,spear600-fsmc-nand" },
1199        { .compatible = "stericsson,fsmc-nand" },
1200        {}
1201};
1202MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1203
1204static struct platform_driver fsmc_nand_driver = {
1205        .remove = fsmc_nand_remove,
1206        .driver = {
1207                .name = "fsmc-nand",
1208                .of_match_table = fsmc_nand_id_table,
1209                .pm = &fsmc_nand_pm_ops,
1210        },
1211};
1212
1213module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1214
1215MODULE_LICENSE("GPL v2");
1216MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1217MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1218