linux/drivers/mtd/nand/raw/marvell_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Marvell NAND flash controller driver
   4 *
   5 * Copyright (C) 2017 Marvell
   6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
   7 *
   8 *
   9 * This NAND controller driver handles two versions of the hardware,
  10 * one is called NFCv1 and is available on PXA SoCs and the other is
  11 * called NFCv2 and is available on Armada SoCs.
  12 *
  13 * The main visible difference is that NFCv1 only has Hamming ECC
  14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
  15 * is not used with NFCv2.
  16 *
  17 * The ECC layouts are depicted in details in Marvell AN-379, but here
  18 * is a brief description.
  19 *
  20 * When using Hamming, the data is split in 512B chunks (either 1, 2
  21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
  22 * beginning of the OOB area and eventually the remaining free OOB
  23 * bytes (also called "spare" bytes in the driver). This engine
  24 * corrects up to 1 bit per chunk and detects reliably an error if
  25 * there are at most 2 bitflips. Here is the page layout used by the
  26 * controller when Hamming is chosen:
  27 *
  28 * +-------------------------------------------------------------+
  29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
  30 * +-------------------------------------------------------------+
  31 *
  32 * When using the BCH engine, there are N identical (data + free OOB +
  33 * ECC) sections and potentially an extra one to deal with
  34 * configurations where the chosen (data + free OOB + ECC) sizes do
  35 * not align with the page (data + OOB) size. ECC bytes are always
  36 * 30B per ECC chunk. Here is the page layout used by the controller
  37 * when BCH is chosen:
  38 *
  39 * +-----------------------------------------
  40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
  41 * +-----------------------------------------
  42 *
  43 *      -------------------------------------------
  44 *       ... | Data N | Free OOB bytes N | ECC N |
  45 *      -------------------------------------------
  46 *
  47 *           --------------------------------------------+
  48 *            Last Data | Last Free OOB bytes | Last ECC |
  49 *           --------------------------------------------+
  50 *
  51 * In both cases, the layout seen by the user is always: all data
  52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
  53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
  54 * bytes.
  55 *
  56 * The controller has certain limitations that are handled by the
  57 * driver:
  58 *   - It can only read 2k at a time. To overcome this limitation, the
  59 *     driver issues data cycles on the bus, without issuing new
  60 *     CMD + ADDR cycles. The Marvell term is "naked" operations.
  61 *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
  62 *     bits. What can be tuned is the ECC block size as long as it
  63 *     stays between 512B and 2kiB. It's usually chosen based on the
  64 *     chip ECC requirements. For instance, using 2kiB ECC chunks
  65 *     provides 4b/512B correctability.
  66 *   - The controller will always treat data bytes, free OOB bytes
  67 *     and ECC bytes in that order, no matter what the real layout is
  68 *     (which is usually all data then all OOB bytes). The
  69 *     marvell_nfc_layouts array below contains the currently
  70 *     supported layouts.
  71 *   - Because of these weird layouts, the Bad Block Markers can be
  72 *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
  73 *     option must be set to prevent scanning/writing bad block
  74 *     markers.
  75 */
  76
  77#include <linux/module.h>
  78#include <linux/clk.h>
  79#include <linux/mtd/rawnand.h>
  80#include <linux/of_platform.h>
  81#include <linux/iopoll.h>
  82#include <linux/interrupt.h>
  83#include <linux/slab.h>
  84#include <linux/mfd/syscon.h>
  85#include <linux/regmap.h>
  86#include <asm/unaligned.h>
  87
  88#include <linux/dmaengine.h>
  89#include <linux/dma-mapping.h>
  90#include <linux/dma/pxa-dma.h>
  91#include <linux/platform_data/mtd-nand-pxa3xx.h>
  92
  93/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
  94#define FIFO_DEPTH              8
  95#define FIFO_REP(x)             (x / sizeof(u32))
  96#define BCH_SEQ_READS           (32 / FIFO_DEPTH)
  97/* NFC does not support transfers of larger chunks at a time */
  98#define MAX_CHUNK_SIZE          2112
  99/* NFCv1 cannot read more that 7 bytes of ID */
 100#define NFCV1_READID_LEN        7
 101/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
 102#define POLL_PERIOD             0
 103#define POLL_TIMEOUT            100000
 104/* Interrupt maximum wait period in ms */
 105#define IRQ_TIMEOUT             1000
 106/* Latency in clock cycles between SoC pins and NFC logic */
 107#define MIN_RD_DEL_CNT          3
 108/* Maximum number of contiguous address cycles */
 109#define MAX_ADDRESS_CYC_NFCV1   5
 110#define MAX_ADDRESS_CYC_NFCV2   7
 111/* System control registers/bits to enable the NAND controller on some SoCs */
 112#define GENCONF_SOC_DEVICE_MUX  0x208
 113#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
 114#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
 115#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
 116#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
 117#define GENCONF_CLK_GATING_CTRL 0x220
 118#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
 119#define GENCONF_ND_CLK_CTRL     0x700
 120#define GENCONF_ND_CLK_CTRL_EN  BIT(0)
 121
 122/* NAND controller data flash control register */
 123#define NDCR                    0x00
 124#define NDCR_ALL_INT            GENMASK(11, 0)
 125#define NDCR_CS1_CMDDM          BIT(7)
 126#define NDCR_CS0_CMDDM          BIT(8)
 127#define NDCR_RDYM               BIT(11)
 128#define NDCR_ND_ARB_EN          BIT(12)
 129#define NDCR_RA_START           BIT(15)
 130#define NDCR_RD_ID_CNT(x)       (min_t(unsigned int, x, 0x7) << 16)
 131#define NDCR_PAGE_SZ(x)         (x >= 2048 ? BIT(24) : 0)
 132#define NDCR_DWIDTH_M           BIT(26)
 133#define NDCR_DWIDTH_C           BIT(27)
 134#define NDCR_ND_RUN             BIT(28)
 135#define NDCR_DMA_EN             BIT(29)
 136#define NDCR_ECC_EN             BIT(30)
 137#define NDCR_SPARE_EN           BIT(31)
 138#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
 139                                    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
 140
 141/* NAND interface timing parameter 0 register */
 142#define NDTR0                   0x04
 143#define NDTR0_TRP(x)            ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
 144#define NDTR0_TRH(x)            (min_t(unsigned int, x, 0x7) << 3)
 145#define NDTR0_ETRP(x)           ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
 146#define NDTR0_SEL_NRE_EDGE      BIT(7)
 147#define NDTR0_TWP(x)            (min_t(unsigned int, x, 0x7) << 8)
 148#define NDTR0_TWH(x)            (min_t(unsigned int, x, 0x7) << 11)
 149#define NDTR0_TCS(x)            (min_t(unsigned int, x, 0x7) << 16)
 150#define NDTR0_TCH(x)            (min_t(unsigned int, x, 0x7) << 19)
 151#define NDTR0_RD_CNT_DEL(x)     (min_t(unsigned int, x, 0xF) << 22)
 152#define NDTR0_SELCNTR           BIT(26)
 153#define NDTR0_TADL(x)           (min_t(unsigned int, x, 0x1F) << 27)
 154
 155/* NAND interface timing parameter 1 register */
 156#define NDTR1                   0x0C
 157#define NDTR1_TAR(x)            (min_t(unsigned int, x, 0xF) << 0)
 158#define NDTR1_TWHR(x)           (min_t(unsigned int, x, 0xF) << 4)
 159#define NDTR1_TRHW(x)           (min_t(unsigned int, x / 16, 0x3) << 8)
 160#define NDTR1_PRESCALE          BIT(14)
 161#define NDTR1_WAIT_MODE         BIT(15)
 162#define NDTR1_TR(x)             (min_t(unsigned int, x, 0xFFFF) << 16)
 163
 164/* NAND controller status register */
 165#define NDSR                    0x14
 166#define NDSR_WRCMDREQ           BIT(0)
 167#define NDSR_RDDREQ             BIT(1)
 168#define NDSR_WRDREQ             BIT(2)
 169#define NDSR_CORERR             BIT(3)
 170#define NDSR_UNCERR             BIT(4)
 171#define NDSR_CMDD(cs)           BIT(8 - cs)
 172#define NDSR_RDY(rb)            BIT(11 + rb)
 173#define NDSR_ERRCNT(x)          ((x >> 16) & 0x1F)
 174
 175/* NAND ECC control register */
 176#define NDECCCTRL               0x28
 177#define NDECCCTRL_BCH_EN        BIT(0)
 178
 179/* NAND controller data buffer register */
 180#define NDDB                    0x40
 181
 182/* NAND controller command buffer 0 register */
 183#define NDCB0                   0x48
 184#define NDCB0_CMD1(x)           ((x & 0xFF) << 0)
 185#define NDCB0_CMD2(x)           ((x & 0xFF) << 8)
 186#define NDCB0_ADDR_CYC(x)       ((x & 0x7) << 16)
 187#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
 188#define NDCB0_DBC               BIT(19)
 189#define NDCB0_CMD_TYPE(x)       ((x & 0x7) << 21)
 190#define NDCB0_CSEL              BIT(24)
 191#define NDCB0_RDY_BYP           BIT(27)
 192#define NDCB0_LEN_OVRD          BIT(28)
 193#define NDCB0_CMD_XTYPE(x)      ((x & 0x7) << 29)
 194
 195/* NAND controller command buffer 1 register */
 196#define NDCB1                   0x4C
 197#define NDCB1_COLS(x)           ((x & 0xFFFF) << 0)
 198#define NDCB1_ADDRS_PAGE(x)     (x << 16)
 199
 200/* NAND controller command buffer 2 register */
 201#define NDCB2                   0x50
 202#define NDCB2_ADDR5_PAGE(x)     (((x >> 16) & 0xFF) << 0)
 203#define NDCB2_ADDR5_CYC(x)      ((x & 0xFF) << 0)
 204
 205/* NAND controller command buffer 3 register */
 206#define NDCB3                   0x54
 207#define NDCB3_ADDR6_CYC(x)      ((x & 0xFF) << 16)
 208#define NDCB3_ADDR7_CYC(x)      ((x & 0xFF) << 24)
 209
 210/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
 211#define TYPE_READ               0
 212#define TYPE_WRITE              1
 213#define TYPE_ERASE              2
 214#define TYPE_READ_ID            3
 215#define TYPE_STATUS             4
 216#define TYPE_RESET              5
 217#define TYPE_NAKED_CMD          6
 218#define TYPE_NAKED_ADDR         7
 219#define TYPE_MASK               7
 220#define XTYPE_MONOLITHIC_RW     0
 221#define XTYPE_LAST_NAKED_RW     1
 222#define XTYPE_FINAL_COMMAND     3
 223#define XTYPE_READ              4
 224#define XTYPE_WRITE_DISPATCH    4
 225#define XTYPE_NAKED_RW          5
 226#define XTYPE_COMMAND_DISPATCH  6
 227#define XTYPE_MASK              7
 228
 229/**
 230 * struct marvell_hw_ecc_layout - layout of Marvell ECC
 231 *
 232 * Marvell ECC engine works differently than the others, in order to limit the
 233 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
 234 * per subpage, and depending on a the desired strength needed by the NAND chip,
 235 * a particular layout mixing data/spare/ecc is defined, with a possible last
 236 * chunk smaller that the others.
 237 *
 238 * @writesize:          Full page size on which the layout applies
 239 * @chunk:              Desired ECC chunk size on which the layout applies
 240 * @strength:           Desired ECC strength (per chunk size bytes) on which the
 241 *                      layout applies
 242 * @nchunks:            Total number of chunks
 243 * @full_chunk_cnt:     Number of full-sized chunks, which is the number of
 244 *                      repetitions of the pattern:
 245 *                      (data_bytes + spare_bytes + ecc_bytes).
 246 * @data_bytes:         Number of data bytes per chunk
 247 * @spare_bytes:        Number of spare bytes per chunk
 248 * @ecc_bytes:          Number of ecc bytes per chunk
 249 * @last_data_bytes:    Number of data bytes in the last chunk
 250 * @last_spare_bytes:   Number of spare bytes in the last chunk
 251 * @last_ecc_bytes:     Number of ecc bytes in the last chunk
 252 */
 253struct marvell_hw_ecc_layout {
 254        /* Constraints */
 255        int writesize;
 256        int chunk;
 257        int strength;
 258        /* Corresponding layout */
 259        int nchunks;
 260        int full_chunk_cnt;
 261        int data_bytes;
 262        int spare_bytes;
 263        int ecc_bytes;
 264        int last_data_bytes;
 265        int last_spare_bytes;
 266        int last_ecc_bytes;
 267};
 268
 269#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)  \
 270        {                                                               \
 271                .writesize = ws,                                        \
 272                .chunk = dc,                                            \
 273                .strength = ds,                                         \
 274                .nchunks = nc,                                          \
 275                .full_chunk_cnt = fcc,                                  \
 276                .data_bytes = db,                                       \
 277                .spare_bytes = sb,                                      \
 278                .ecc_bytes = eb,                                        \
 279                .last_data_bytes = ldb,                                 \
 280                .last_spare_bytes = lsb,                                \
 281                .last_ecc_bytes = leb,                                  \
 282        }
 283
 284/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
 285static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
 286        MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
 287        MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
 288        MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
 289        MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
 290        MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
 291        MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
 292        MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
 293        MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
 294};
 295
 296/**
 297 * struct marvell_nand_chip_sel - CS line description
 298 *
 299 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
 300 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
 301 * The datasheet describes the logic with an error: ADDR5 field is once
 302 * declared at the beginning of NDCB2, and another time at its end. Because the
 303 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
 304 * to use the last bit of this field instead of the first ones.
 305 *
 306 * @cs:                 Wanted CE lane.
 307 * @ndcb0_csel:         Value of the NDCB0 register with or without the flag
 308 *                      selecting the wanted CE lane. This is set once when
 309 *                      the Device Tree is probed.
 310 * @rb:                 Ready/Busy pin for the flash chip
 311 */
 312struct marvell_nand_chip_sel {
 313        unsigned int cs;
 314        u32 ndcb0_csel;
 315        unsigned int rb;
 316};
 317
 318/**
 319 * struct marvell_nand_chip - stores NAND chip device related information
 320 *
 321 * @chip:               Base NAND chip structure
 322 * @node:               Used to store NAND chips into a list
 323 * @layout:             NAND layout when using hardware ECC
 324 * @ndcr:               Controller register value for this NAND chip
 325 * @ndtr0:              Timing registers 0 value for this NAND chip
 326 * @ndtr1:              Timing registers 1 value for this NAND chip
 327 * @addr_cyc:           Amount of cycles needed to pass column address
 328 * @selected_die:       Current active CS
 329 * @nsels:              Number of CS lines required by the NAND chip
 330 * @sels:               Array of CS lines descriptions
 331 */
 332struct marvell_nand_chip {
 333        struct nand_chip chip;
 334        struct list_head node;
 335        const struct marvell_hw_ecc_layout *layout;
 336        u32 ndcr;
 337        u32 ndtr0;
 338        u32 ndtr1;
 339        int addr_cyc;
 340        int selected_die;
 341        unsigned int nsels;
 342        struct marvell_nand_chip_sel sels[];
 343};
 344
 345static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
 346{
 347        return container_of(chip, struct marvell_nand_chip, chip);
 348}
 349
 350static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
 351                                                        *nand)
 352{
 353        return &nand->sels[nand->selected_die];
 354}
 355
 356/**
 357 * struct marvell_nfc_caps - NAND controller capabilities for distinction
 358 *                           between compatible strings
 359 *
 360 * @max_cs_nb:          Number of Chip Select lines available
 361 * @max_rb_nb:          Number of Ready/Busy lines available
 362 * @need_system_controller: Indicates if the SoC needs to have access to the
 363 *                      system controller (ie. to enable the NAND controller)
 364 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
 365 *                      fashion way
 366 * @is_nfcv2:           NFCv2 has numerous enhancements compared to NFCv1, ie.
 367 *                      BCH error detection and correction algorithm,
 368 *                      NDCB3 register has been added
 369 * @use_dma:            Use dma for data transfers
 370 */
 371struct marvell_nfc_caps {
 372        unsigned int max_cs_nb;
 373        unsigned int max_rb_nb;
 374        bool need_system_controller;
 375        bool legacy_of_bindings;
 376        bool is_nfcv2;
 377        bool use_dma;
 378};
 379
 380/**
 381 * struct marvell_nfc - stores Marvell NAND controller information
 382 *
 383 * @controller:         Base controller structure
 384 * @dev:                Parent device (used to print error messages)
 385 * @regs:               NAND controller registers
 386 * @core_clk:           Core clock
 387 * @reg_clk:            Registers clock
 388 * @complete:           Completion object to wait for NAND controller events
 389 * @assigned_cs:        Bitmask describing already assigned CS lines
 390 * @chips:              List containing all the NAND chips attached to
 391 *                      this NAND controller
 392 * @selected_chip:      Currently selected target chip
 393 * @caps:               NAND controller capabilities for each compatible string
 394 * @use_dma:            Whetner DMA is used
 395 * @dma_chan:           DMA channel (NFCv1 only)
 396 * @dma_buf:            32-bit aligned buffer for DMA transfers (NFCv1 only)
 397 */
 398struct marvell_nfc {
 399        struct nand_controller controller;
 400        struct device *dev;
 401        void __iomem *regs;
 402        struct clk *core_clk;
 403        struct clk *reg_clk;
 404        struct completion complete;
 405        unsigned long assigned_cs;
 406        struct list_head chips;
 407        struct nand_chip *selected_chip;
 408        const struct marvell_nfc_caps *caps;
 409
 410        /* DMA (NFCv1 only) */
 411        bool use_dma;
 412        struct dma_chan *dma_chan;
 413        u8 *dma_buf;
 414};
 415
 416static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
 417{
 418        return container_of(ctrl, struct marvell_nfc, controller);
 419}
 420
 421/**
 422 * struct marvell_nfc_timings - NAND controller timings expressed in NAND
 423 *                              Controller clock cycles
 424 *
 425 * @tRP:                ND_nRE pulse width
 426 * @tRH:                ND_nRE high duration
 427 * @tWP:                ND_nWE pulse time
 428 * @tWH:                ND_nWE high duration
 429 * @tCS:                Enable signal setup time
 430 * @tCH:                Enable signal hold time
 431 * @tADL:               Address to write data delay
 432 * @tAR:                ND_ALE low to ND_nRE low delay
 433 * @tWHR:               ND_nWE high to ND_nRE low for status read
 434 * @tRHW:               ND_nRE high duration, read to write delay
 435 * @tR:                 ND_nWE high to ND_nRE low for read
 436 */
 437struct marvell_nfc_timings {
 438        /* NDTR0 fields */
 439        unsigned int tRP;
 440        unsigned int tRH;
 441        unsigned int tWP;
 442        unsigned int tWH;
 443        unsigned int tCS;
 444        unsigned int tCH;
 445        unsigned int tADL;
 446        /* NDTR1 fields */
 447        unsigned int tAR;
 448        unsigned int tWHR;
 449        unsigned int tRHW;
 450        unsigned int tR;
 451};
 452
 453/**
 454 * TO_CYCLES() - Derives a duration in numbers of clock cycles.
 455 *
 456 * @ps: Duration in pico-seconds
 457 * @period_ns:  Clock period in nano-seconds
 458 *
 459 * Convert the duration in nano-seconds, then divide by the period and
 460 * return the number of clock periods.
 461 */
 462#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
 463#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
 464                                                     period_ns))
 465
 466/**
 467 * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
 468 *                         subop subset of instructions.
 469 *
 470 * @ndcb:               Array of values written to NDCBx registers
 471 * @cle_ale_delay_ns:   Optional delay after the last CMD or ADDR cycle
 472 * @rdy_timeout_ms:     Timeout for waits on Ready/Busy pin
 473 * @rdy_delay_ns:       Optional delay after waiting for the RB pin
 474 * @data_delay_ns:      Optional delay after the data xfer
 475 * @data_instr_idx:     Index of the data instruction in the subop
 476 * @data_instr:         Pointer to the data instruction in the subop
 477 */
 478struct marvell_nfc_op {
 479        u32 ndcb[4];
 480        unsigned int cle_ale_delay_ns;
 481        unsigned int rdy_timeout_ms;
 482        unsigned int rdy_delay_ns;
 483        unsigned int data_delay_ns;
 484        unsigned int data_instr_idx;
 485        const struct nand_op_instr *data_instr;
 486};
 487
 488/*
 489 * Internal helper to conditionnally apply a delay (from the above structure,
 490 * most of the time).
 491 */
 492static void cond_delay(unsigned int ns)
 493{
 494        if (!ns)
 495                return;
 496
 497        if (ns < 10000)
 498                ndelay(ns);
 499        else
 500                udelay(DIV_ROUND_UP(ns, 1000));
 501}
 502
 503/*
 504 * The controller has many flags that could generate interrupts, most of them
 505 * are disabled and polling is used. For the very slow signals, using interrupts
 506 * may relax the CPU charge.
 507 */
 508static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
 509{
 510        u32 reg;
 511
 512        /* Writing 1 disables the interrupt */
 513        reg = readl_relaxed(nfc->regs + NDCR);
 514        writel_relaxed(reg | int_mask, nfc->regs + NDCR);
 515}
 516
 517static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
 518{
 519        u32 reg;
 520
 521        /* Writing 0 enables the interrupt */
 522        reg = readl_relaxed(nfc->regs + NDCR);
 523        writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
 524}
 525
 526static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
 527{
 528        u32 reg;
 529
 530        reg = readl_relaxed(nfc->regs + NDSR);
 531        writel_relaxed(int_mask, nfc->regs + NDSR);
 532
 533        return reg & int_mask;
 534}
 535
 536static void marvell_nfc_force_byte_access(struct nand_chip *chip,
 537                                          bool force_8bit)
 538{
 539        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 540        u32 ndcr;
 541
 542        /*
 543         * Callers of this function do not verify if the NAND is using a 16-bit
 544         * an 8-bit bus for normal operations, so we need to take care of that
 545         * here by leaving the configuration unchanged if the NAND does not have
 546         * the NAND_BUSWIDTH_16 flag set.
 547         */
 548        if (!(chip->options & NAND_BUSWIDTH_16))
 549                return;
 550
 551        ndcr = readl_relaxed(nfc->regs + NDCR);
 552
 553        if (force_8bit)
 554                ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
 555        else
 556                ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
 557
 558        writel_relaxed(ndcr, nfc->regs + NDCR);
 559}
 560
 561static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
 562{
 563        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 564        u32 val;
 565        int ret;
 566
 567        /*
 568         * The command is being processed, wait for the ND_RUN bit to be
 569         * cleared by the NFC. If not, we must clear it by hand.
 570         */
 571        ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
 572                                         (val & NDCR_ND_RUN) == 0,
 573                                         POLL_PERIOD, POLL_TIMEOUT);
 574        if (ret) {
 575                dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
 576                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
 577                               nfc->regs + NDCR);
 578                return ret;
 579        }
 580
 581        return 0;
 582}
 583
 584/*
 585 * Any time a command has to be sent to the controller, the following sequence
 586 * has to be followed:
 587 * - call marvell_nfc_prepare_cmd()
 588 *      -> activate the ND_RUN bit that will kind of 'start a job'
 589 *      -> wait the signal indicating the NFC is waiting for a command
 590 * - send the command (cmd and address cycles)
 591 * - enventually send or receive the data
 592 * - call marvell_nfc_end_cmd() with the corresponding flag
 593 *      -> wait the flag to be triggered or cancel the job with a timeout
 594 *
 595 * The following helpers are here to factorize the code a bit so that
 596 * specialized functions responsible for executing the actual NAND
 597 * operations do not have to replicate the same code blocks.
 598 */
 599static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
 600{
 601        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 602        u32 ndcr, val;
 603        int ret;
 604
 605        /* Poll ND_RUN and clear NDSR before issuing any command */
 606        ret = marvell_nfc_wait_ndrun(chip);
 607        if (ret) {
 608                dev_err(nfc->dev, "Last operation did not succeed\n");
 609                return ret;
 610        }
 611
 612        ndcr = readl_relaxed(nfc->regs + NDCR);
 613        writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
 614
 615        /* Assert ND_RUN bit and wait the NFC to be ready */
 616        writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
 617        ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
 618                                         val & NDSR_WRCMDREQ,
 619                                         POLL_PERIOD, POLL_TIMEOUT);
 620        if (ret) {
 621                dev_err(nfc->dev, "Timeout on WRCMDRE\n");
 622                return -ETIMEDOUT;
 623        }
 624
 625        /* Command may be written, clear WRCMDREQ status bit */
 626        writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
 627
 628        return 0;
 629}
 630
 631static void marvell_nfc_send_cmd(struct nand_chip *chip,
 632                                 struct marvell_nfc_op *nfc_op)
 633{
 634        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 635        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 636
 637        dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
 638                "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
 639                (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
 640                nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
 641
 642        writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
 643                       nfc->regs + NDCB0);
 644        writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
 645        writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
 646
 647        /*
 648         * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
 649         * fields are used (only available on NFCv2).
 650         */
 651        if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
 652            NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
 653                if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
 654                        writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
 655        }
 656}
 657
 658static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
 659                               const char *label)
 660{
 661        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 662        u32 val;
 663        int ret;
 664
 665        ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
 666                                         val & flag,
 667                                         POLL_PERIOD, POLL_TIMEOUT);
 668
 669        if (ret) {
 670                dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
 671                        label, val);
 672                if (nfc->dma_chan)
 673                        dmaengine_terminate_all(nfc->dma_chan);
 674                return ret;
 675        }
 676
 677        /*
 678         * DMA function uses this helper to poll on CMDD bits without wanting
 679         * them to be cleared.
 680         */
 681        if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
 682                return 0;
 683
 684        writel_relaxed(flag, nfc->regs + NDSR);
 685
 686        return 0;
 687}
 688
 689static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
 690{
 691        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 692        int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
 693
 694        return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
 695}
 696
 697static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
 698                                   u32 expected_val, unsigned long timeout_ms)
 699{
 700        unsigned long limit;
 701        u32 st;
 702
 703        limit = jiffies + msecs_to_jiffies(timeout_ms);
 704        do {
 705                st = readl_relaxed(nfc->regs + NDSR);
 706                if (st & NDSR_RDY(1))
 707                        st |= NDSR_RDY(0);
 708
 709                if ((st & mask) == expected_val)
 710                        return 0;
 711
 712                cpu_relax();
 713        } while (time_after(limit, jiffies));
 714
 715        return -ETIMEDOUT;
 716}
 717
 718static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
 719{
 720        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 721        struct mtd_info *mtd = nand_to_mtd(chip);
 722        u32 pending;
 723        int ret;
 724
 725        /* Timeout is expressed in ms */
 726        if (!timeout_ms)
 727                timeout_ms = IRQ_TIMEOUT;
 728
 729        if (mtd->oops_panic_write) {
 730                ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
 731                                              NDSR_RDY(0),
 732                                              timeout_ms);
 733        } else {
 734                init_completion(&nfc->complete);
 735
 736                marvell_nfc_enable_int(nfc, NDCR_RDYM);
 737                ret = wait_for_completion_timeout(&nfc->complete,
 738                                                  msecs_to_jiffies(timeout_ms));
 739                marvell_nfc_disable_int(nfc, NDCR_RDYM);
 740        }
 741        pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
 742
 743        /*
 744         * In case the interrupt was not served in the required time frame,
 745         * check if the ISR was not served or if something went actually wrong.
 746         */
 747        if (!ret && !pending) {
 748                dev_err(nfc->dev, "Timeout waiting for RB signal\n");
 749                return -ETIMEDOUT;
 750        }
 751
 752        return 0;
 753}
 754
 755static void marvell_nfc_select_target(struct nand_chip *chip,
 756                                      unsigned int die_nr)
 757{
 758        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 759        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 760        u32 ndcr_generic;
 761
 762        /*
 763         * Reset the NDCR register to a clean state for this particular chip,
 764         * also clear ND_RUN bit.
 765         */
 766        ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
 767                       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
 768        writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
 769
 770        /* Also reset the interrupt status register */
 771        marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
 772
 773        if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
 774                return;
 775
 776        writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
 777        writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
 778
 779        nfc->selected_chip = chip;
 780        marvell_nand->selected_die = die_nr;
 781}
 782
 783static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
 784{
 785        struct marvell_nfc *nfc = dev_id;
 786        u32 st = readl_relaxed(nfc->regs + NDSR);
 787        u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
 788
 789        /*
 790         * RDY interrupt mask is one bit in NDCR while there are two status
 791         * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
 792         */
 793        if (st & NDSR_RDY(1))
 794                st |= NDSR_RDY(0);
 795
 796        if (!(st & ien))
 797                return IRQ_NONE;
 798
 799        marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
 800
 801        if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
 802                complete(&nfc->complete);
 803
 804        return IRQ_HANDLED;
 805}
 806
 807/* HW ECC related functions */
 808static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
 809{
 810        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 811        u32 ndcr = readl_relaxed(nfc->regs + NDCR);
 812
 813        if (!(ndcr & NDCR_ECC_EN)) {
 814                writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
 815
 816                /*
 817                 * When enabling BCH, set threshold to 0 to always know the
 818                 * number of corrected bitflips.
 819                 */
 820                if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
 821                        writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
 822        }
 823}
 824
 825static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
 826{
 827        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 828        u32 ndcr = readl_relaxed(nfc->regs + NDCR);
 829
 830        if (ndcr & NDCR_ECC_EN) {
 831                writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
 832                if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
 833                        writel_relaxed(0, nfc->regs + NDECCCTRL);
 834        }
 835}
 836
 837/* DMA related helpers */
 838static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
 839{
 840        u32 reg;
 841
 842        reg = readl_relaxed(nfc->regs + NDCR);
 843        writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
 844}
 845
 846static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
 847{
 848        u32 reg;
 849
 850        reg = readl_relaxed(nfc->regs + NDCR);
 851        writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
 852}
 853
 854/* Read/write PIO/DMA accessors */
 855static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
 856                                     enum dma_data_direction direction,
 857                                     unsigned int len)
 858{
 859        unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
 860        struct dma_async_tx_descriptor *tx;
 861        struct scatterlist sg;
 862        dma_cookie_t cookie;
 863        int ret;
 864
 865        marvell_nfc_enable_dma(nfc);
 866        /* Prepare the DMA transfer */
 867        sg_init_one(&sg, nfc->dma_buf, dma_len);
 868        dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
 869        tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
 870                                     direction == DMA_FROM_DEVICE ?
 871                                     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
 872                                     DMA_PREP_INTERRUPT);
 873        if (!tx) {
 874                dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
 875                return -ENXIO;
 876        }
 877
 878        /* Do the task and wait for it to finish */
 879        cookie = dmaengine_submit(tx);
 880        ret = dma_submit_error(cookie);
 881        if (ret)
 882                return -EIO;
 883
 884        dma_async_issue_pending(nfc->dma_chan);
 885        ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
 886        dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
 887        marvell_nfc_disable_dma(nfc);
 888        if (ret) {
 889                dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
 890                        dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
 891                dmaengine_terminate_all(nfc->dma_chan);
 892                return -ETIMEDOUT;
 893        }
 894
 895        return 0;
 896}
 897
 898static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
 899                                        unsigned int len)
 900{
 901        unsigned int last_len = len % FIFO_DEPTH;
 902        unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
 903        int i;
 904
 905        for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
 906                ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
 907
 908        if (last_len) {
 909                u8 tmp_buf[FIFO_DEPTH];
 910
 911                ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
 912                memcpy(in + last_full_offset, tmp_buf, last_len);
 913        }
 914
 915        return 0;
 916}
 917
 918static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
 919                                         unsigned int len)
 920{
 921        unsigned int last_len = len % FIFO_DEPTH;
 922        unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
 923        int i;
 924
 925        for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
 926                iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
 927
 928        if (last_len) {
 929                u8 tmp_buf[FIFO_DEPTH];
 930
 931                memcpy(tmp_buf, out + last_full_offset, last_len);
 932                iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
 933        }
 934
 935        return 0;
 936}
 937
 938static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
 939                                          u8 *data, int data_len,
 940                                          u8 *spare, int spare_len,
 941                                          u8 *ecc, int ecc_len,
 942                                          unsigned int *max_bitflips)
 943{
 944        struct mtd_info *mtd = nand_to_mtd(chip);
 945        int bf;
 946
 947        /*
 948         * Blank pages (all 0xFF) that have not been written may be recognized
 949         * as bad if bitflips occur, so whenever an uncorrectable error occurs,
 950         * check if the entire page (with ECC bytes) is actually blank or not.
 951         */
 952        if (!data)
 953                data_len = 0;
 954        if (!spare)
 955                spare_len = 0;
 956        if (!ecc)
 957                ecc_len = 0;
 958
 959        bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
 960                                         spare, spare_len, chip->ecc.strength);
 961        if (bf < 0) {
 962                mtd->ecc_stats.failed++;
 963                return;
 964        }
 965
 966        /* Update the stats and max_bitflips */
 967        mtd->ecc_stats.corrected += bf;
 968        *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
 969}
 970
 971/*
 972 * Check if a chunk is correct or not according to the hardware ECC engine.
 973 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
 974 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
 975 * value indicating that a check on the emptyness of the subpage must be
 976 * performed before actually declaring the subpage as "corrupted".
 977 */
 978static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
 979                                             unsigned int *max_bitflips)
 980{
 981        struct mtd_info *mtd = nand_to_mtd(chip);
 982        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 983        int bf = 0;
 984        u32 ndsr;
 985
 986        ndsr = readl_relaxed(nfc->regs + NDSR);
 987
 988        /* Check uncorrectable error flag */
 989        if (ndsr & NDSR_UNCERR) {
 990                writel_relaxed(ndsr, nfc->regs + NDSR);
 991
 992                /*
 993                 * Do not increment ->ecc_stats.failed now, instead, return a
 994                 * non-zero value to indicate that this chunk was apparently
 995                 * bad, and it should be check to see if it empty or not. If
 996                 * the chunk (with ECC bytes) is not declared empty, the calling
 997                 * function must increment the failure count.
 998                 */
 999                return -EBADMSG;
1000        }
1001
1002        /* Check correctable error flag */
1003        if (ndsr & NDSR_CORERR) {
1004                writel_relaxed(ndsr, nfc->regs + NDSR);
1005
1006                if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1007                        bf = NDSR_ERRCNT(ndsr);
1008                else
1009                        bf = 1;
1010        }
1011
1012        /* Update the stats and max_bitflips */
1013        mtd->ecc_stats.corrected += bf;
1014        *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1015
1016        return 0;
1017}
1018
1019/* Hamming read helpers */
1020static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1021                                               u8 *data_buf, u8 *oob_buf,
1022                                               bool raw, int page)
1023{
1024        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1025        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1026        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1027        struct marvell_nfc_op nfc_op = {
1028                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1029                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1030                           NDCB0_DBC |
1031                           NDCB0_CMD1(NAND_CMD_READ0) |
1032                           NDCB0_CMD2(NAND_CMD_READSTART),
1033                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1034                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1035        };
1036        unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1037        int ret;
1038
1039        /* NFCv2 needs more information about the operation being executed */
1040        if (nfc->caps->is_nfcv2)
1041                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1042
1043        ret = marvell_nfc_prepare_cmd(chip);
1044        if (ret)
1045                return ret;
1046
1047        marvell_nfc_send_cmd(chip, &nfc_op);
1048        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1049                                  "RDDREQ while draining FIFO (data/oob)");
1050        if (ret)
1051                return ret;
1052
1053        /*
1054         * Read the page then the OOB area. Unlike what is shown in current
1055         * documentation, spare bytes are protected by the ECC engine, and must
1056         * be at the beginning of the OOB area or running this driver on legacy
1057         * systems will prevent the discovery of the BBM/BBT.
1058         */
1059        if (nfc->use_dma) {
1060                marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1061                                          lt->data_bytes + oob_bytes);
1062                memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1063                memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1064        } else {
1065                marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1066                marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1067        }
1068
1069        ret = marvell_nfc_wait_cmdd(chip);
1070        return ret;
1071}
1072
1073static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1074                                                int oob_required, int page)
1075{
1076        marvell_nfc_select_target(chip, chip->cur_cs);
1077        return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1078                                                   true, page);
1079}
1080
1081static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1082                                            int oob_required, int page)
1083{
1084        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1085        unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1086        int max_bitflips = 0, ret;
1087        u8 *raw_buf;
1088
1089        marvell_nfc_select_target(chip, chip->cur_cs);
1090        marvell_nfc_enable_hw_ecc(chip);
1091        marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1092                                            page);
1093        ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1094        marvell_nfc_disable_hw_ecc(chip);
1095
1096        if (!ret)
1097                return max_bitflips;
1098
1099        /*
1100         * When ECC failures are detected, check if the full page has been
1101         * written or not. Ignore the failure if it is actually empty.
1102         */
1103        raw_buf = kmalloc(full_sz, GFP_KERNEL);
1104        if (!raw_buf)
1105                return -ENOMEM;
1106
1107        marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1108                                            lt->data_bytes, true, page);
1109        marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1110                                      &max_bitflips);
1111        kfree(raw_buf);
1112
1113        return max_bitflips;
1114}
1115
1116/*
1117 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1118 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1119 * also stands for ->read_oob().
1120 */
1121static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1122{
1123        u8 *buf = nand_get_data_buf(chip);
1124
1125        marvell_nfc_select_target(chip, chip->cur_cs);
1126        return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1127                                                   true, page);
1128}
1129
1130/* Hamming write helpers */
1131static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1132                                                const u8 *data_buf,
1133                                                const u8 *oob_buf, bool raw,
1134                                                int page)
1135{
1136        const struct nand_sdr_timings *sdr =
1137                nand_get_sdr_timings(nand_get_interface_config(chip));
1138        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1139        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1140        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1141        struct marvell_nfc_op nfc_op = {
1142                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1143                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1144                           NDCB0_CMD1(NAND_CMD_SEQIN) |
1145                           NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1146                           NDCB0_DBC,
1147                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1148                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1149        };
1150        unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1151        int ret;
1152
1153        /* NFCv2 needs more information about the operation being executed */
1154        if (nfc->caps->is_nfcv2)
1155                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1156
1157        ret = marvell_nfc_prepare_cmd(chip);
1158        if (ret)
1159                return ret;
1160
1161        marvell_nfc_send_cmd(chip, &nfc_op);
1162        ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1163                                  "WRDREQ while loading FIFO (data)");
1164        if (ret)
1165                return ret;
1166
1167        /* Write the page then the OOB area */
1168        if (nfc->use_dma) {
1169                memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1170                memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1171                marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1172                                          lt->ecc_bytes + lt->spare_bytes);
1173        } else {
1174                marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1175                marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1176        }
1177
1178        ret = marvell_nfc_wait_cmdd(chip);
1179        if (ret)
1180                return ret;
1181
1182        ret = marvell_nfc_wait_op(chip,
1183                                  PSEC_TO_MSEC(sdr->tPROG_max));
1184        return ret;
1185}
1186
1187static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1188                                                 const u8 *buf,
1189                                                 int oob_required, int page)
1190{
1191        marvell_nfc_select_target(chip, chip->cur_cs);
1192        return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1193                                                    true, page);
1194}
1195
1196static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1197                                             const u8 *buf,
1198                                             int oob_required, int page)
1199{
1200        int ret;
1201
1202        marvell_nfc_select_target(chip, chip->cur_cs);
1203        marvell_nfc_enable_hw_ecc(chip);
1204        ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1205                                                   false, page);
1206        marvell_nfc_disable_hw_ecc(chip);
1207
1208        return ret;
1209}
1210
1211/*
1212 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1213 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1214 * also stands for ->write_oob().
1215 */
1216static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1217                                                int page)
1218{
1219        struct mtd_info *mtd = nand_to_mtd(chip);
1220        u8 *buf = nand_get_data_buf(chip);
1221
1222        memset(buf, 0xFF, mtd->writesize);
1223
1224        marvell_nfc_select_target(chip, chip->cur_cs);
1225        return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1226                                                    true, page);
1227}
1228
1229/* BCH read helpers */
1230static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1231                                                int oob_required, int page)
1232{
1233        struct mtd_info *mtd = nand_to_mtd(chip);
1234        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1235        u8 *oob = chip->oob_poi;
1236        int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1237        int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1238                lt->last_spare_bytes;
1239        int data_len = lt->data_bytes;
1240        int spare_len = lt->spare_bytes;
1241        int ecc_len = lt->ecc_bytes;
1242        int chunk;
1243
1244        marvell_nfc_select_target(chip, chip->cur_cs);
1245
1246        if (oob_required)
1247                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1248
1249        nand_read_page_op(chip, page, 0, NULL, 0);
1250
1251        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1252                /* Update last chunk length */
1253                if (chunk >= lt->full_chunk_cnt) {
1254                        data_len = lt->last_data_bytes;
1255                        spare_len = lt->last_spare_bytes;
1256                        ecc_len = lt->last_ecc_bytes;
1257                }
1258
1259                /* Read data bytes*/
1260                nand_change_read_column_op(chip, chunk * chunk_size,
1261                                           buf + (lt->data_bytes * chunk),
1262                                           data_len, false);
1263
1264                /* Read spare bytes */
1265                nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1266                                  spare_len, false, false);
1267
1268                /* Read ECC bytes */
1269                nand_read_data_op(chip, oob + ecc_offset +
1270                                  (ALIGN(lt->ecc_bytes, 32) * chunk),
1271                                  ecc_len, false, false);
1272        }
1273
1274        return 0;
1275}
1276
1277static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1278                                              u8 *data, unsigned int data_len,
1279                                              u8 *spare, unsigned int spare_len,
1280                                              int page)
1281{
1282        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1283        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1284        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1285        int i, ret;
1286        struct marvell_nfc_op nfc_op = {
1287                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1288                           NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1289                           NDCB0_LEN_OVRD,
1290                .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1291                .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1292                .ndcb[3] = data_len + spare_len,
1293        };
1294
1295        ret = marvell_nfc_prepare_cmd(chip);
1296        if (ret)
1297                return;
1298
1299        if (chunk == 0)
1300                nfc_op.ndcb[0] |= NDCB0_DBC |
1301                                  NDCB0_CMD1(NAND_CMD_READ0) |
1302                                  NDCB0_CMD2(NAND_CMD_READSTART);
1303
1304        /*
1305         * Trigger the monolithic read on the first chunk, then naked read on
1306         * intermediate chunks and finally a last naked read on the last chunk.
1307         */
1308        if (chunk == 0)
1309                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1310        else if (chunk < lt->nchunks - 1)
1311                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1312        else
1313                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1314
1315        marvell_nfc_send_cmd(chip, &nfc_op);
1316
1317        /*
1318         * According to the datasheet, when reading from NDDB
1319         * with BCH enabled, after each 32 bytes reads, we
1320         * have to make sure that the NDSR.RDDREQ bit is set.
1321         *
1322         * Drain the FIFO, 8 32-bit reads at a time, and skip
1323         * the polling on the last read.
1324         *
1325         * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1326         */
1327        for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1328                marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1329                                    "RDDREQ while draining FIFO (data)");
1330                marvell_nfc_xfer_data_in_pio(nfc, data,
1331                                             FIFO_DEPTH * BCH_SEQ_READS);
1332                data += FIFO_DEPTH * BCH_SEQ_READS;
1333        }
1334
1335        for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1336                marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1337                                    "RDDREQ while draining FIFO (OOB)");
1338                marvell_nfc_xfer_data_in_pio(nfc, spare,
1339                                             FIFO_DEPTH * BCH_SEQ_READS);
1340                spare += FIFO_DEPTH * BCH_SEQ_READS;
1341        }
1342}
1343
1344static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1345                                            u8 *buf, int oob_required,
1346                                            int page)
1347{
1348        struct mtd_info *mtd = nand_to_mtd(chip);
1349        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1350        int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1351        u8 *data = buf, *spare = chip->oob_poi;
1352        int max_bitflips = 0;
1353        u32 failure_mask = 0;
1354        int chunk, ret;
1355
1356        marvell_nfc_select_target(chip, chip->cur_cs);
1357
1358        /*
1359         * With BCH, OOB is not fully used (and thus not read entirely), not
1360         * expected bytes could show up at the end of the OOB buffer if not
1361         * explicitly erased.
1362         */
1363        if (oob_required)
1364                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1365
1366        marvell_nfc_enable_hw_ecc(chip);
1367
1368        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1369                /* Update length for the last chunk */
1370                if (chunk >= lt->full_chunk_cnt) {
1371                        data_len = lt->last_data_bytes;
1372                        spare_len = lt->last_spare_bytes;
1373                }
1374
1375                /* Read the chunk and detect number of bitflips */
1376                marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1377                                                  spare, spare_len, page);
1378                ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1379                if (ret)
1380                        failure_mask |= BIT(chunk);
1381
1382                data += data_len;
1383                spare += spare_len;
1384        }
1385
1386        marvell_nfc_disable_hw_ecc(chip);
1387
1388        if (!failure_mask)
1389                return max_bitflips;
1390
1391        /*
1392         * Please note that dumping the ECC bytes during a normal read with OOB
1393         * area would add a significant overhead as ECC bytes are "consumed" by
1394         * the controller in normal mode and must be re-read in raw mode. To
1395         * avoid dropping the performances, we prefer not to include them. The
1396         * user should re-read the page in raw mode if ECC bytes are required.
1397         */
1398
1399        /*
1400         * In case there is any subpage read error, we usually re-read only ECC
1401         * bytes in raw mode and check if the whole page is empty. In this case,
1402         * it is normal that the ECC check failed and we just ignore the error.
1403         *
1404         * However, it has been empirically observed that for some layouts (e.g
1405         * 2k page, 8b strength per 512B chunk), the controller tries to correct
1406         * bits and may create itself bitflips in the erased area. To overcome
1407         * this strange behavior, the whole page is re-read in raw mode, not
1408         * only the ECC bytes.
1409         */
1410        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1411                int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1412                int data_off, spare_off, ecc_off;
1413                int data_len, spare_len, ecc_len;
1414
1415                /* No failure reported for this chunk, move to the next one */
1416                if (!(failure_mask & BIT(chunk)))
1417                        continue;
1418
1419                data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1420                                            lt->ecc_bytes);
1421                spare_off_in_page = data_off_in_page +
1422                        (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1423                                                      lt->last_data_bytes);
1424                ecc_off_in_page = spare_off_in_page +
1425                        (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1426                                                      lt->last_spare_bytes);
1427
1428                data_off = chunk * lt->data_bytes;
1429                spare_off = chunk * lt->spare_bytes;
1430                ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1431                          lt->last_spare_bytes +
1432                          (chunk * (lt->ecc_bytes + 2));
1433
1434                data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1435                                                        lt->last_data_bytes;
1436                spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1437                                                         lt->last_spare_bytes;
1438                ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1439                                                       lt->last_ecc_bytes;
1440
1441                /*
1442                 * Only re-read the ECC bytes, unless we are using the 2k/8b
1443                 * layout which is buggy in the sense that the ECC engine will
1444                 * try to correct data bytes anyway, creating bitflips. In this
1445                 * case, re-read the entire page.
1446                 */
1447                if (lt->writesize == 2048 && lt->strength == 8) {
1448                        nand_change_read_column_op(chip, data_off_in_page,
1449                                                   buf + data_off, data_len,
1450                                                   false);
1451                        nand_change_read_column_op(chip, spare_off_in_page,
1452                                                   chip->oob_poi + spare_off, spare_len,
1453                                                   false);
1454                }
1455
1456                nand_change_read_column_op(chip, ecc_off_in_page,
1457                                           chip->oob_poi + ecc_off, ecc_len,
1458                                           false);
1459
1460                /* Check the entire chunk (data + spare + ecc) for emptyness */
1461                marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1462                                              chip->oob_poi + spare_off, spare_len,
1463                                              chip->oob_poi + ecc_off, ecc_len,
1464                                              &max_bitflips);
1465        }
1466
1467        return max_bitflips;
1468}
1469
1470static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1471{
1472        u8 *buf = nand_get_data_buf(chip);
1473
1474        return chip->ecc.read_page_raw(chip, buf, true, page);
1475}
1476
1477static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1478{
1479        u8 *buf = nand_get_data_buf(chip);
1480
1481        return chip->ecc.read_page(chip, buf, true, page);
1482}
1483
1484/* BCH write helpers */
1485static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1486                                                 const u8 *buf,
1487                                                 int oob_required, int page)
1488{
1489        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1490        int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1491        int data_len = lt->data_bytes;
1492        int spare_len = lt->spare_bytes;
1493        int ecc_len = lt->ecc_bytes;
1494        int spare_offset = 0;
1495        int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1496                lt->last_spare_bytes;
1497        int chunk;
1498
1499        marvell_nfc_select_target(chip, chip->cur_cs);
1500
1501        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1502
1503        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1504                if (chunk >= lt->full_chunk_cnt) {
1505                        data_len = lt->last_data_bytes;
1506                        spare_len = lt->last_spare_bytes;
1507                        ecc_len = lt->last_ecc_bytes;
1508                }
1509
1510                /* Point to the column of the next chunk */
1511                nand_change_write_column_op(chip, chunk * full_chunk_size,
1512                                            NULL, 0, false);
1513
1514                /* Write the data */
1515                nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1516                                   data_len, false);
1517
1518                if (!oob_required)
1519                        continue;
1520
1521                /* Write the spare bytes */
1522                if (spare_len)
1523                        nand_write_data_op(chip, chip->oob_poi + spare_offset,
1524                                           spare_len, false);
1525
1526                /* Write the ECC bytes */
1527                if (ecc_len)
1528                        nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1529                                           ecc_len, false);
1530
1531                spare_offset += spare_len;
1532                ecc_offset += ALIGN(ecc_len, 32);
1533        }
1534
1535        return nand_prog_page_end_op(chip);
1536}
1537
1538static int
1539marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1540                                   const u8 *data, unsigned int data_len,
1541                                   const u8 *spare, unsigned int spare_len,
1542                                   int page)
1543{
1544        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1545        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1546        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1547        u32 xtype;
1548        int ret;
1549        struct marvell_nfc_op nfc_op = {
1550                .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1551                .ndcb[3] = data_len + spare_len,
1552        };
1553
1554        /*
1555         * First operation dispatches the CMD_SEQIN command, issue the address
1556         * cycles and asks for the first chunk of data.
1557         * All operations in the middle (if any) will issue a naked write and
1558         * also ask for data.
1559         * Last operation (if any) asks for the last chunk of data through a
1560         * last naked write.
1561         */
1562        if (chunk == 0) {
1563                if (lt->nchunks == 1)
1564                        xtype = XTYPE_MONOLITHIC_RW;
1565                else
1566                        xtype = XTYPE_WRITE_DISPATCH;
1567
1568                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1569                                  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1570                                  NDCB0_CMD1(NAND_CMD_SEQIN);
1571                nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1572                nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1573        } else if (chunk < lt->nchunks - 1) {
1574                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1575        } else {
1576                nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1577        }
1578
1579        /* Always dispatch the PAGEPROG command on the last chunk */
1580        if (chunk == lt->nchunks - 1)
1581                nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1582
1583        ret = marvell_nfc_prepare_cmd(chip);
1584        if (ret)
1585                return ret;
1586
1587        marvell_nfc_send_cmd(chip, &nfc_op);
1588        ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1589                                  "WRDREQ while loading FIFO (data)");
1590        if (ret)
1591                return ret;
1592
1593        /* Transfer the contents */
1594        iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1595        iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1596
1597        return 0;
1598}
1599
1600static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1601                                             const u8 *buf,
1602                                             int oob_required, int page)
1603{
1604        const struct nand_sdr_timings *sdr =
1605                nand_get_sdr_timings(nand_get_interface_config(chip));
1606        struct mtd_info *mtd = nand_to_mtd(chip);
1607        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1608        const u8 *data = buf;
1609        const u8 *spare = chip->oob_poi;
1610        int data_len = lt->data_bytes;
1611        int spare_len = lt->spare_bytes;
1612        int chunk, ret;
1613
1614        marvell_nfc_select_target(chip, chip->cur_cs);
1615
1616        /* Spare data will be written anyway, so clear it to avoid garbage */
1617        if (!oob_required)
1618                memset(chip->oob_poi, 0xFF, mtd->oobsize);
1619
1620        marvell_nfc_enable_hw_ecc(chip);
1621
1622        for (chunk = 0; chunk < lt->nchunks; chunk++) {
1623                if (chunk >= lt->full_chunk_cnt) {
1624                        data_len = lt->last_data_bytes;
1625                        spare_len = lt->last_spare_bytes;
1626                }
1627
1628                marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1629                                                   spare, spare_len, page);
1630                data += data_len;
1631                spare += spare_len;
1632
1633                /*
1634                 * Waiting only for CMDD or PAGED is not enough, ECC are
1635                 * partially written. No flag is set once the operation is
1636                 * really finished but the ND_RUN bit is cleared, so wait for it
1637                 * before stepping into the next command.
1638                 */
1639                marvell_nfc_wait_ndrun(chip);
1640        }
1641
1642        ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1643
1644        marvell_nfc_disable_hw_ecc(chip);
1645
1646        if (ret)
1647                return ret;
1648
1649        return 0;
1650}
1651
1652static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1653                                                int page)
1654{
1655        struct mtd_info *mtd = nand_to_mtd(chip);
1656        u8 *buf = nand_get_data_buf(chip);
1657
1658        memset(buf, 0xFF, mtd->writesize);
1659
1660        return chip->ecc.write_page_raw(chip, buf, true, page);
1661}
1662
1663static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1664{
1665        struct mtd_info *mtd = nand_to_mtd(chip);
1666        u8 *buf = nand_get_data_buf(chip);
1667
1668        memset(buf, 0xFF, mtd->writesize);
1669
1670        return chip->ecc.write_page(chip, buf, true, page);
1671}
1672
1673/* NAND framework ->exec_op() hooks and related helpers */
1674static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1675                                           const struct nand_subop *subop,
1676                                           struct marvell_nfc_op *nfc_op)
1677{
1678        const struct nand_op_instr *instr = NULL;
1679        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1680        bool first_cmd = true;
1681        unsigned int op_id;
1682        int i;
1683
1684        /* Reset the input structure as most of its fields will be OR'ed */
1685        memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1686
1687        for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1688                unsigned int offset, naddrs;
1689                const u8 *addrs;
1690                int len;
1691
1692                instr = &subop->instrs[op_id];
1693
1694                switch (instr->type) {
1695                case NAND_OP_CMD_INSTR:
1696                        if (first_cmd)
1697                                nfc_op->ndcb[0] |=
1698                                        NDCB0_CMD1(instr->ctx.cmd.opcode);
1699                        else
1700                                nfc_op->ndcb[0] |=
1701                                        NDCB0_CMD2(instr->ctx.cmd.opcode) |
1702                                        NDCB0_DBC;
1703
1704                        nfc_op->cle_ale_delay_ns = instr->delay_ns;
1705                        first_cmd = false;
1706                        break;
1707
1708                case NAND_OP_ADDR_INSTR:
1709                        offset = nand_subop_get_addr_start_off(subop, op_id);
1710                        naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1711                        addrs = &instr->ctx.addr.addrs[offset];
1712
1713                        nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1714
1715                        for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1716                                nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1717
1718                        if (naddrs >= 5)
1719                                nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1720                        if (naddrs >= 6)
1721                                nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1722                        if (naddrs == 7)
1723                                nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1724
1725                        nfc_op->cle_ale_delay_ns = instr->delay_ns;
1726                        break;
1727
1728                case NAND_OP_DATA_IN_INSTR:
1729                        nfc_op->data_instr = instr;
1730                        nfc_op->data_instr_idx = op_id;
1731                        nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1732                        if (nfc->caps->is_nfcv2) {
1733                                nfc_op->ndcb[0] |=
1734                                        NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1735                                        NDCB0_LEN_OVRD;
1736                                len = nand_subop_get_data_len(subop, op_id);
1737                                nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1738                        }
1739                        nfc_op->data_delay_ns = instr->delay_ns;
1740                        break;
1741
1742                case NAND_OP_DATA_OUT_INSTR:
1743                        nfc_op->data_instr = instr;
1744                        nfc_op->data_instr_idx = op_id;
1745                        nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1746                        if (nfc->caps->is_nfcv2) {
1747                                nfc_op->ndcb[0] |=
1748                                        NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1749                                        NDCB0_LEN_OVRD;
1750                                len = nand_subop_get_data_len(subop, op_id);
1751                                nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1752                        }
1753                        nfc_op->data_delay_ns = instr->delay_ns;
1754                        break;
1755
1756                case NAND_OP_WAITRDY_INSTR:
1757                        nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1758                        nfc_op->rdy_delay_ns = instr->delay_ns;
1759                        break;
1760                }
1761        }
1762}
1763
1764static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1765                                     const struct nand_subop *subop,
1766                                     struct marvell_nfc_op *nfc_op)
1767{
1768        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1769        const struct nand_op_instr *instr = nfc_op->data_instr;
1770        unsigned int op_id = nfc_op->data_instr_idx;
1771        unsigned int len = nand_subop_get_data_len(subop, op_id);
1772        unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1773        bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1774        int ret;
1775
1776        if (instr->ctx.data.force_8bit)
1777                marvell_nfc_force_byte_access(chip, true);
1778
1779        if (reading) {
1780                u8 *in = instr->ctx.data.buf.in + offset;
1781
1782                ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1783        } else {
1784                const u8 *out = instr->ctx.data.buf.out + offset;
1785
1786                ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1787        }
1788
1789        if (instr->ctx.data.force_8bit)
1790                marvell_nfc_force_byte_access(chip, false);
1791
1792        return ret;
1793}
1794
1795static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1796                                              const struct nand_subop *subop)
1797{
1798        struct marvell_nfc_op nfc_op;
1799        bool reading;
1800        int ret;
1801
1802        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1803        reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1804
1805        ret = marvell_nfc_prepare_cmd(chip);
1806        if (ret)
1807                return ret;
1808
1809        marvell_nfc_send_cmd(chip, &nfc_op);
1810        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1811                                  "RDDREQ/WRDREQ while draining raw data");
1812        if (ret)
1813                return ret;
1814
1815        cond_delay(nfc_op.cle_ale_delay_ns);
1816
1817        if (reading) {
1818                if (nfc_op.rdy_timeout_ms) {
1819                        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1820                        if (ret)
1821                                return ret;
1822                }
1823
1824                cond_delay(nfc_op.rdy_delay_ns);
1825        }
1826
1827        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1828        ret = marvell_nfc_wait_cmdd(chip);
1829        if (ret)
1830                return ret;
1831
1832        cond_delay(nfc_op.data_delay_ns);
1833
1834        if (!reading) {
1835                if (nfc_op.rdy_timeout_ms) {
1836                        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1837                        if (ret)
1838                                return ret;
1839                }
1840
1841                cond_delay(nfc_op.rdy_delay_ns);
1842        }
1843
1844        /*
1845         * NDCR ND_RUN bit should be cleared automatically at the end of each
1846         * operation but experience shows that the behavior is buggy when it
1847         * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1848         */
1849        if (!reading) {
1850                struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1851
1852                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1853                               nfc->regs + NDCR);
1854        }
1855
1856        return 0;
1857}
1858
1859static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1860                                         const struct nand_subop *subop)
1861{
1862        struct marvell_nfc_op nfc_op;
1863        int ret;
1864
1865        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1866
1867        /*
1868         * Naked access are different in that they need to be flagged as naked
1869         * by the controller. Reset the controller registers fields that inform
1870         * on the type and refill them according to the ongoing operation.
1871         */
1872        nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1873                            NDCB0_CMD_XTYPE(XTYPE_MASK));
1874        switch (subop->instrs[0].type) {
1875        case NAND_OP_CMD_INSTR:
1876                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1877                break;
1878        case NAND_OP_ADDR_INSTR:
1879                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1880                break;
1881        case NAND_OP_DATA_IN_INSTR:
1882                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1883                                  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1884                break;
1885        case NAND_OP_DATA_OUT_INSTR:
1886                nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1887                                  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1888                break;
1889        default:
1890                /* This should never happen */
1891                break;
1892        }
1893
1894        ret = marvell_nfc_prepare_cmd(chip);
1895        if (ret)
1896                return ret;
1897
1898        marvell_nfc_send_cmd(chip, &nfc_op);
1899
1900        if (!nfc_op.data_instr) {
1901                ret = marvell_nfc_wait_cmdd(chip);
1902                cond_delay(nfc_op.cle_ale_delay_ns);
1903                return ret;
1904        }
1905
1906        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1907                                  "RDDREQ/WRDREQ while draining raw data");
1908        if (ret)
1909                return ret;
1910
1911        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1912        ret = marvell_nfc_wait_cmdd(chip);
1913        if (ret)
1914                return ret;
1915
1916        /*
1917         * NDCR ND_RUN bit should be cleared automatically at the end of each
1918         * operation but experience shows that the behavior is buggy when it
1919         * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1920         */
1921        if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1922                struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1923
1924                writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1925                               nfc->regs + NDCR);
1926        }
1927
1928        return 0;
1929}
1930
1931static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1932                                          const struct nand_subop *subop)
1933{
1934        struct marvell_nfc_op nfc_op;
1935        int ret;
1936
1937        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1938
1939        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1940        cond_delay(nfc_op.rdy_delay_ns);
1941
1942        return ret;
1943}
1944
1945static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1946                                         const struct nand_subop *subop)
1947{
1948        struct marvell_nfc_op nfc_op;
1949        int ret;
1950
1951        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1952        nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1953        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1954
1955        ret = marvell_nfc_prepare_cmd(chip);
1956        if (ret)
1957                return ret;
1958
1959        marvell_nfc_send_cmd(chip, &nfc_op);
1960        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1961                                  "RDDREQ while reading ID");
1962        if (ret)
1963                return ret;
1964
1965        cond_delay(nfc_op.cle_ale_delay_ns);
1966
1967        if (nfc_op.rdy_timeout_ms) {
1968                ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1969                if (ret)
1970                        return ret;
1971        }
1972
1973        cond_delay(nfc_op.rdy_delay_ns);
1974
1975        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1976        ret = marvell_nfc_wait_cmdd(chip);
1977        if (ret)
1978                return ret;
1979
1980        cond_delay(nfc_op.data_delay_ns);
1981
1982        return 0;
1983}
1984
1985static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1986                                        const struct nand_subop *subop)
1987{
1988        struct marvell_nfc_op nfc_op;
1989        int ret;
1990
1991        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1992        nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1993        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1994
1995        ret = marvell_nfc_prepare_cmd(chip);
1996        if (ret)
1997                return ret;
1998
1999        marvell_nfc_send_cmd(chip, &nfc_op);
2000        ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2001                                  "RDDREQ while reading status");
2002        if (ret)
2003                return ret;
2004
2005        cond_delay(nfc_op.cle_ale_delay_ns);
2006
2007        if (nfc_op.rdy_timeout_ms) {
2008                ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2009                if (ret)
2010                        return ret;
2011        }
2012
2013        cond_delay(nfc_op.rdy_delay_ns);
2014
2015        marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2016        ret = marvell_nfc_wait_cmdd(chip);
2017        if (ret)
2018                return ret;
2019
2020        cond_delay(nfc_op.data_delay_ns);
2021
2022        return 0;
2023}
2024
2025static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2026                                           const struct nand_subop *subop)
2027{
2028        struct marvell_nfc_op nfc_op;
2029        int ret;
2030
2031        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2032        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2033
2034        ret = marvell_nfc_prepare_cmd(chip);
2035        if (ret)
2036                return ret;
2037
2038        marvell_nfc_send_cmd(chip, &nfc_op);
2039        ret = marvell_nfc_wait_cmdd(chip);
2040        if (ret)
2041                return ret;
2042
2043        cond_delay(nfc_op.cle_ale_delay_ns);
2044
2045        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2046        if (ret)
2047                return ret;
2048
2049        cond_delay(nfc_op.rdy_delay_ns);
2050
2051        return 0;
2052}
2053
2054static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2055                                           const struct nand_subop *subop)
2056{
2057        struct marvell_nfc_op nfc_op;
2058        int ret;
2059
2060        marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2061        nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2062
2063        ret = marvell_nfc_prepare_cmd(chip);
2064        if (ret)
2065                return ret;
2066
2067        marvell_nfc_send_cmd(chip, &nfc_op);
2068        ret = marvell_nfc_wait_cmdd(chip);
2069        if (ret)
2070                return ret;
2071
2072        cond_delay(nfc_op.cle_ale_delay_ns);
2073
2074        ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2075        if (ret)
2076                return ret;
2077
2078        cond_delay(nfc_op.rdy_delay_ns);
2079
2080        return 0;
2081}
2082
2083static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2084        /* Monolithic reads/writes */
2085        NAND_OP_PARSER_PATTERN(
2086                marvell_nfc_monolithic_access_exec,
2087                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088                NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2089                NAND_OP_PARSER_PAT_CMD_ELEM(true),
2090                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2091                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2092        NAND_OP_PARSER_PATTERN(
2093                marvell_nfc_monolithic_access_exec,
2094                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2095                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2096                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2097                NAND_OP_PARSER_PAT_CMD_ELEM(true),
2098                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2099        /* Naked commands */
2100        NAND_OP_PARSER_PATTERN(
2101                marvell_nfc_naked_access_exec,
2102                NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2103        NAND_OP_PARSER_PATTERN(
2104                marvell_nfc_naked_access_exec,
2105                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2106        NAND_OP_PARSER_PATTERN(
2107                marvell_nfc_naked_access_exec,
2108                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2109        NAND_OP_PARSER_PATTERN(
2110                marvell_nfc_naked_access_exec,
2111                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2112        NAND_OP_PARSER_PATTERN(
2113                marvell_nfc_naked_waitrdy_exec,
2114                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2115        );
2116
2117static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2118        /* Naked commands not supported, use a function for each pattern */
2119        NAND_OP_PARSER_PATTERN(
2120                marvell_nfc_read_id_type_exec,
2121                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2122                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2123                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2124        NAND_OP_PARSER_PATTERN(
2125                marvell_nfc_erase_cmd_type_exec,
2126                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2127                NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2128                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2129                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2130        NAND_OP_PARSER_PATTERN(
2131                marvell_nfc_read_status_exec,
2132                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2133                NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2134        NAND_OP_PARSER_PATTERN(
2135                marvell_nfc_reset_cmd_type_exec,
2136                NAND_OP_PARSER_PAT_CMD_ELEM(false),
2137                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2138        NAND_OP_PARSER_PATTERN(
2139                marvell_nfc_naked_waitrdy_exec,
2140                NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2141        );
2142
2143static int marvell_nfc_exec_op(struct nand_chip *chip,
2144                               const struct nand_operation *op,
2145                               bool check_only)
2146{
2147        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2148
2149        if (!check_only)
2150                marvell_nfc_select_target(chip, op->cs);
2151
2152        if (nfc->caps->is_nfcv2)
2153                return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2154                                              op, check_only);
2155        else
2156                return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2157                                              op, check_only);
2158}
2159
2160/*
2161 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2162 * usable.
2163 */
2164static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2165                                      struct mtd_oob_region *oobregion)
2166{
2167        struct nand_chip *chip = mtd_to_nand(mtd);
2168        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2169
2170        if (section)
2171                return -ERANGE;
2172
2173        oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2174                            lt->last_ecc_bytes;
2175        oobregion->offset = mtd->oobsize - oobregion->length;
2176
2177        return 0;
2178}
2179
2180static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2181                                       struct mtd_oob_region *oobregion)
2182{
2183        struct nand_chip *chip = mtd_to_nand(mtd);
2184        const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2185
2186        if (section)
2187                return -ERANGE;
2188
2189        /*
2190         * Bootrom looks in bytes 0 & 5 for bad blocks for the
2191         * 4KB page / 4bit BCH combination.
2192         */
2193        if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2194                oobregion->offset = 6;
2195        else
2196                oobregion->offset = 2;
2197
2198        oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2199                            lt->last_spare_bytes - oobregion->offset;
2200
2201        return 0;
2202}
2203
2204static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2205        .ecc = marvell_nand_ooblayout_ecc,
2206        .free = marvell_nand_ooblayout_free,
2207};
2208
2209static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2210                                               struct nand_ecc_ctrl *ecc)
2211{
2212        struct nand_chip *chip = mtd_to_nand(mtd);
2213        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2214        const struct marvell_hw_ecc_layout *l;
2215        int i;
2216
2217        if (!nfc->caps->is_nfcv2 &&
2218            (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2219                dev_err(nfc->dev,
2220                        "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2221                        mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2222                return -ENOTSUPP;
2223        }
2224
2225        to_marvell_nand(chip)->layout = NULL;
2226        for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2227                l = &marvell_nfc_layouts[i];
2228                if (mtd->writesize == l->writesize &&
2229                    ecc->size == l->chunk && ecc->strength == l->strength) {
2230                        to_marvell_nand(chip)->layout = l;
2231                        break;
2232                }
2233        }
2234
2235        if (!to_marvell_nand(chip)->layout ||
2236            (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2237                dev_err(nfc->dev,
2238                        "ECC strength %d at page size %d is not supported\n",
2239                        ecc->strength, mtd->writesize);
2240                return -ENOTSUPP;
2241        }
2242
2243        /* Special care for the layout 2k/8-bit/512B  */
2244        if (l->writesize == 2048 && l->strength == 8) {
2245                if (mtd->oobsize < 128) {
2246                        dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2247                        return -ENOTSUPP;
2248                } else {
2249                        chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2250                }
2251        }
2252
2253        mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2254        ecc->steps = l->nchunks;
2255        ecc->size = l->data_bytes;
2256
2257        if (ecc->strength == 1) {
2258                chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2259                ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2260                ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2261                ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2262                ecc->read_oob = ecc->read_oob_raw;
2263                ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2264                ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2265                ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2266                ecc->write_oob = ecc->write_oob_raw;
2267        } else {
2268                chip->ecc.algo = NAND_ECC_ALGO_BCH;
2269                ecc->strength = 16;
2270                ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2271                ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2272                ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2273                ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2274                ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2275                ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2276                ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2277                ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2278        }
2279
2280        return 0;
2281}
2282
2283static int marvell_nand_ecc_init(struct mtd_info *mtd,
2284                                 struct nand_ecc_ctrl *ecc)
2285{
2286        struct nand_chip *chip = mtd_to_nand(mtd);
2287        const struct nand_ecc_props *requirements =
2288                nanddev_get_ecc_requirements(&chip->base);
2289        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2290        int ret;
2291
2292        if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2293            (!ecc->size || !ecc->strength)) {
2294                if (requirements->step_size && requirements->strength) {
2295                        ecc->size = requirements->step_size;
2296                        ecc->strength = requirements->strength;
2297                } else {
2298                        dev_info(nfc->dev,
2299                                 "No minimum ECC strength, using 1b/512B\n");
2300                        ecc->size = 512;
2301                        ecc->strength = 1;
2302                }
2303        }
2304
2305        switch (ecc->engine_type) {
2306        case NAND_ECC_ENGINE_TYPE_ON_HOST:
2307                ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2308                if (ret)
2309                        return ret;
2310                break;
2311        case NAND_ECC_ENGINE_TYPE_NONE:
2312        case NAND_ECC_ENGINE_TYPE_SOFT:
2313        case NAND_ECC_ENGINE_TYPE_ON_DIE:
2314                if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2315                    mtd->writesize != SZ_2K) {
2316                        dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2317                                mtd->writesize);
2318                        return -EINVAL;
2319                }
2320                break;
2321        default:
2322                return -EINVAL;
2323        }
2324
2325        return 0;
2326}
2327
2328static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2329static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2330
2331static struct nand_bbt_descr bbt_main_descr = {
2332        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2333                   NAND_BBT_2BIT | NAND_BBT_VERSION,
2334        .offs = 8,
2335        .len = 6,
2336        .veroffs = 14,
2337        .maxblocks = 8, /* Last 8 blocks in each chip */
2338        .pattern = bbt_pattern
2339};
2340
2341static struct nand_bbt_descr bbt_mirror_descr = {
2342        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2343                   NAND_BBT_2BIT | NAND_BBT_VERSION,
2344        .offs = 8,
2345        .len = 6,
2346        .veroffs = 14,
2347        .maxblocks = 8, /* Last 8 blocks in each chip */
2348        .pattern = bbt_mirror_pattern
2349};
2350
2351static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2352                                       const struct nand_interface_config *conf)
2353{
2354        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2355        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2356        unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2357        const struct nand_sdr_timings *sdr;
2358        struct marvell_nfc_timings nfc_tmg;
2359        int read_delay;
2360
2361        sdr = nand_get_sdr_timings(conf);
2362        if (IS_ERR(sdr))
2363                return PTR_ERR(sdr);
2364
2365        /*
2366         * SDR timings are given in pico-seconds while NFC timings must be
2367         * expressed in NAND controller clock cycles, which is half of the
2368         * frequency of the accessible ECC clock retrieved by clk_get_rate().
2369         * This is not written anywhere in the datasheet but was observed
2370         * with an oscilloscope.
2371         *
2372         * NFC datasheet gives equations from which thoses calculations
2373         * are derived, they tend to be slightly more restrictives than the
2374         * given core timings and may improve the overall speed.
2375         */
2376        nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2377        nfc_tmg.tRH = nfc_tmg.tRP;
2378        nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2379        nfc_tmg.tWH = nfc_tmg.tWP;
2380        nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2381        nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2382        nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2383        /*
2384         * Read delay is the time of propagation from SoC pins to NFC internal
2385         * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2386         * EDO mode, an additional delay of tRH must be taken into account so
2387         * the data is sampled on the falling edge instead of the rising edge.
2388         */
2389        read_delay = sdr->tRC_min >= 30000 ?
2390                MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2391
2392        nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2393        /*
2394         * tWHR and tRHW are supposed to be read to write delays (and vice
2395         * versa) but in some cases, ie. when doing a change column, they must
2396         * be greater than that to be sure tCCS delay is respected.
2397         */
2398        nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2399                                 period_ns) - 2;
2400        nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2401                                 period_ns);
2402
2403        /*
2404         * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2405         * NFCv1: No WAIT_MODE, tR must be maximal.
2406         */
2407        if (nfc->caps->is_nfcv2) {
2408                nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2409        } else {
2410                nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2411                                         period_ns);
2412                if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2413                        nfc_tmg.tR = nfc_tmg.tCH - 3;
2414                else
2415                        nfc_tmg.tR = 0;
2416        }
2417
2418        if (chipnr < 0)
2419                return 0;
2420
2421        marvell_nand->ndtr0 =
2422                NDTR0_TRP(nfc_tmg.tRP) |
2423                NDTR0_TRH(nfc_tmg.tRH) |
2424                NDTR0_ETRP(nfc_tmg.tRP) |
2425                NDTR0_TWP(nfc_tmg.tWP) |
2426                NDTR0_TWH(nfc_tmg.tWH) |
2427                NDTR0_TCS(nfc_tmg.tCS) |
2428                NDTR0_TCH(nfc_tmg.tCH);
2429
2430        marvell_nand->ndtr1 =
2431                NDTR1_TAR(nfc_tmg.tAR) |
2432                NDTR1_TWHR(nfc_tmg.tWHR) |
2433                NDTR1_TR(nfc_tmg.tR);
2434
2435        if (nfc->caps->is_nfcv2) {
2436                marvell_nand->ndtr0 |=
2437                        NDTR0_RD_CNT_DEL(read_delay) |
2438                        NDTR0_SELCNTR |
2439                        NDTR0_TADL(nfc_tmg.tADL);
2440
2441                marvell_nand->ndtr1 |=
2442                        NDTR1_TRHW(nfc_tmg.tRHW) |
2443                        NDTR1_WAIT_MODE;
2444        }
2445
2446        return 0;
2447}
2448
2449static int marvell_nand_attach_chip(struct nand_chip *chip)
2450{
2451        struct mtd_info *mtd = nand_to_mtd(chip);
2452        struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2453        struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2454        struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2455        int ret;
2456
2457        if (pdata && pdata->flash_bbt)
2458                chip->bbt_options |= NAND_BBT_USE_FLASH;
2459
2460        if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2461                /*
2462                 * We'll use a bad block table stored in-flash and don't
2463                 * allow writing the bad block marker to the flash.
2464                 */
2465                chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2466                chip->bbt_td = &bbt_main_descr;
2467                chip->bbt_md = &bbt_mirror_descr;
2468        }
2469
2470        /* Save the chip-specific fields of NDCR */
2471        marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2472        if (chip->options & NAND_BUSWIDTH_16)
2473                marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2474
2475        /*
2476         * On small page NANDs, only one cycle is needed to pass the
2477         * column address.
2478         */
2479        if (mtd->writesize <= 512) {
2480                marvell_nand->addr_cyc = 1;
2481        } else {
2482                marvell_nand->addr_cyc = 2;
2483                marvell_nand->ndcr |= NDCR_RA_START;
2484        }
2485
2486        /*
2487         * Now add the number of cycles needed to pass the row
2488         * address.
2489         *
2490         * Addressing a chip using CS 2 or 3 should also need the third row
2491         * cycle but due to inconsistance in the documentation and lack of
2492         * hardware to test this situation, this case is not supported.
2493         */
2494        if (chip->options & NAND_ROW_ADDR_3)
2495                marvell_nand->addr_cyc += 3;
2496        else
2497                marvell_nand->addr_cyc += 2;
2498
2499        if (pdata) {
2500                chip->ecc.size = pdata->ecc_step_size;
2501                chip->ecc.strength = pdata->ecc_strength;
2502        }
2503
2504        ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2505        if (ret) {
2506                dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2507                return ret;
2508        }
2509
2510        if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2511                /*
2512                 * Subpage write not available with hardware ECC, prohibit also
2513                 * subpage read as in userspace subpage access would still be
2514                 * allowed and subpage write, if used, would lead to numerous
2515                 * uncorrectable ECC errors.
2516                 */
2517                chip->options |= NAND_NO_SUBPAGE_WRITE;
2518        }
2519
2520        if (pdata || nfc->caps->legacy_of_bindings) {
2521                /*
2522                 * We keep the MTD name unchanged to avoid breaking platforms
2523                 * where the MTD cmdline parser is used and the bootloader
2524                 * has not been updated to use the new naming scheme.
2525                 */
2526                mtd->name = "pxa3xx_nand-0";
2527        } else if (!mtd->name) {
2528                /*
2529                 * If the new bindings are used and the bootloader has not been
2530                 * updated to pass a new mtdparts parameter on the cmdline, you
2531                 * should define the following property in your NAND node, ie:
2532                 *
2533                 *      label = "main-storage";
2534                 *
2535                 * This way, mtd->name will be set by the core when
2536                 * nand_set_flash_node() is called.
2537                 */
2538                mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2539                                           "%s:nand.%d", dev_name(nfc->dev),
2540                                           marvell_nand->sels[0].cs);
2541                if (!mtd->name) {
2542                        dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2543                        return -ENOMEM;
2544                }
2545        }
2546
2547        return 0;
2548}
2549
2550static const struct nand_controller_ops marvell_nand_controller_ops = {
2551        .attach_chip = marvell_nand_attach_chip,
2552        .exec_op = marvell_nfc_exec_op,
2553        .setup_interface = marvell_nfc_setup_interface,
2554};
2555
2556static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2557                                  struct device_node *np)
2558{
2559        struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2560        struct marvell_nand_chip *marvell_nand;
2561        struct mtd_info *mtd;
2562        struct nand_chip *chip;
2563        int nsels, ret, i;
2564        u32 cs, rb;
2565
2566        /*
2567         * The legacy "num-cs" property indicates the number of CS on the only
2568         * chip connected to the controller (legacy bindings does not support
2569         * more than one chip). The CS and RB pins are always the #0.
2570         *
2571         * When not using legacy bindings, a couple of "reg" and "nand-rb"
2572         * properties must be filled. For each chip, expressed as a subnode,
2573         * "reg" points to the CS lines and "nand-rb" to the RB line.
2574         */
2575        if (pdata || nfc->caps->legacy_of_bindings) {
2576                nsels = 1;
2577        } else {
2578                nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2579                if (nsels <= 0) {
2580                        dev_err(dev, "missing/invalid reg property\n");
2581                        return -EINVAL;
2582                }
2583        }
2584
2585        /* Alloc the nand chip structure */
2586        marvell_nand = devm_kzalloc(dev,
2587                                    struct_size(marvell_nand, sels, nsels),
2588                                    GFP_KERNEL);
2589        if (!marvell_nand) {
2590                dev_err(dev, "could not allocate chip structure\n");
2591                return -ENOMEM;
2592        }
2593
2594        marvell_nand->nsels = nsels;
2595        marvell_nand->selected_die = -1;
2596
2597        for (i = 0; i < nsels; i++) {
2598                if (pdata || nfc->caps->legacy_of_bindings) {
2599                        /*
2600                         * Legacy bindings use the CS lines in natural
2601                         * order (0, 1, ...)
2602                         */
2603                        cs = i;
2604                } else {
2605                        /* Retrieve CS id */
2606                        ret = of_property_read_u32_index(np, "reg", i, &cs);
2607                        if (ret) {
2608                                dev_err(dev, "could not retrieve reg property: %d\n",
2609                                        ret);
2610                                return ret;
2611                        }
2612                }
2613
2614                if (cs >= nfc->caps->max_cs_nb) {
2615                        dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2616                                cs, nfc->caps->max_cs_nb);
2617                        return -EINVAL;
2618                }
2619
2620                if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2621                        dev_err(dev, "CS %d already assigned\n", cs);
2622                        return -EINVAL;
2623                }
2624
2625                /*
2626                 * The cs variable represents the chip select id, which must be
2627                 * converted in bit fields for NDCB0 and NDCB2 to select the
2628                 * right chip. Unfortunately, due to a lack of information on
2629                 * the subject and incoherent documentation, the user should not
2630                 * use CS1 and CS3 at all as asserting them is not supported in
2631                 * a reliable way (due to multiplexing inside ADDR5 field).
2632                 */
2633                marvell_nand->sels[i].cs = cs;
2634                switch (cs) {
2635                case 0:
2636                case 2:
2637                        marvell_nand->sels[i].ndcb0_csel = 0;
2638                        break;
2639                case 1:
2640                case 3:
2641                        marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2642                        break;
2643                default:
2644                        return -EINVAL;
2645                }
2646
2647                /* Retrieve RB id */
2648                if (pdata || nfc->caps->legacy_of_bindings) {
2649                        /* Legacy bindings always use RB #0 */
2650                        rb = 0;
2651                } else {
2652                        ret = of_property_read_u32_index(np, "nand-rb", i,
2653                                                         &rb);
2654                        if (ret) {
2655                                dev_err(dev,
2656                                        "could not retrieve RB property: %d\n",
2657                                        ret);
2658                                return ret;
2659                        }
2660                }
2661
2662                if (rb >= nfc->caps->max_rb_nb) {
2663                        dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2664                                rb, nfc->caps->max_rb_nb);
2665                        return -EINVAL;
2666                }
2667
2668                marvell_nand->sels[i].rb = rb;
2669        }
2670
2671        chip = &marvell_nand->chip;
2672        chip->controller = &nfc->controller;
2673        nand_set_flash_node(chip, np);
2674
2675        if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2676                chip->options |= NAND_KEEP_TIMINGS;
2677
2678        mtd = nand_to_mtd(chip);
2679        mtd->dev.parent = dev;
2680
2681        /*
2682         * Save a reference value for timing registers before
2683         * ->setup_interface() is called.
2684         */
2685        marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2686        marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2687
2688        chip->options |= NAND_BUSWIDTH_AUTO;
2689
2690        ret = nand_scan(chip, marvell_nand->nsels);
2691        if (ret) {
2692                dev_err(dev, "could not scan the nand chip\n");
2693                return ret;
2694        }
2695
2696        if (pdata)
2697                /* Legacy bindings support only one chip */
2698                ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2699        else
2700                ret = mtd_device_register(mtd, NULL, 0);
2701        if (ret) {
2702                dev_err(dev, "failed to register mtd device: %d\n", ret);
2703                nand_cleanup(chip);
2704                return ret;
2705        }
2706
2707        list_add_tail(&marvell_nand->node, &nfc->chips);
2708
2709        return 0;
2710}
2711
2712static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2713{
2714        struct marvell_nand_chip *entry, *temp;
2715        struct nand_chip *chip;
2716        int ret;
2717
2718        list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2719                chip = &entry->chip;
2720                ret = mtd_device_unregister(nand_to_mtd(chip));
2721                WARN_ON(ret);
2722                nand_cleanup(chip);
2723                list_del(&entry->node);
2724        }
2725}
2726
2727static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2728{
2729        struct device_node *np = dev->of_node;
2730        struct device_node *nand_np;
2731        int max_cs = nfc->caps->max_cs_nb;
2732        int nchips;
2733        int ret;
2734
2735        if (!np)
2736                nchips = 1;
2737        else
2738                nchips = of_get_child_count(np);
2739
2740        if (nchips > max_cs) {
2741                dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2742                        max_cs);
2743                return -EINVAL;
2744        }
2745
2746        /*
2747         * Legacy bindings do not use child nodes to exhibit NAND chip
2748         * properties and layout. Instead, NAND properties are mixed with the
2749         * controller ones, and partitions are defined as direct subnodes of the
2750         * NAND controller node.
2751         */
2752        if (nfc->caps->legacy_of_bindings) {
2753                ret = marvell_nand_chip_init(dev, nfc, np);
2754                return ret;
2755        }
2756
2757        for_each_child_of_node(np, nand_np) {
2758                ret = marvell_nand_chip_init(dev, nfc, nand_np);
2759                if (ret) {
2760                        of_node_put(nand_np);
2761                        goto cleanup_chips;
2762                }
2763        }
2764
2765        return 0;
2766
2767cleanup_chips:
2768        marvell_nand_chips_cleanup(nfc);
2769
2770        return ret;
2771}
2772
2773static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2774{
2775        struct platform_device *pdev = container_of(nfc->dev,
2776                                                    struct platform_device,
2777                                                    dev);
2778        struct dma_slave_config config = {};
2779        struct resource *r;
2780        int ret;
2781
2782        if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2783                dev_warn(nfc->dev,
2784                         "DMA not enabled in configuration\n");
2785                return -ENOTSUPP;
2786        }
2787
2788        ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2789        if (ret)
2790                return ret;
2791
2792        nfc->dma_chan = dma_request_chan(nfc->dev, "data");
2793        if (IS_ERR(nfc->dma_chan)) {
2794                ret = PTR_ERR(nfc->dma_chan);
2795                nfc->dma_chan = NULL;
2796                return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2797        }
2798
2799        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2800        if (!r) {
2801                ret = -ENXIO;
2802                goto release_channel;
2803        }
2804
2805        config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2806        config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2807        config.src_addr = r->start + NDDB;
2808        config.dst_addr = r->start + NDDB;
2809        config.src_maxburst = 32;
2810        config.dst_maxburst = 32;
2811        ret = dmaengine_slave_config(nfc->dma_chan, &config);
2812        if (ret < 0) {
2813                dev_err(nfc->dev, "Failed to configure DMA channel\n");
2814                goto release_channel;
2815        }
2816
2817        /*
2818         * DMA must act on length multiple of 32 and this length may be
2819         * bigger than the destination buffer. Use this buffer instead
2820         * for DMA transfers and then copy the desired amount of data to
2821         * the provided buffer.
2822         */
2823        nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2824        if (!nfc->dma_buf) {
2825                ret = -ENOMEM;
2826                goto release_channel;
2827        }
2828
2829        nfc->use_dma = true;
2830
2831        return 0;
2832
2833release_channel:
2834        dma_release_channel(nfc->dma_chan);
2835        nfc->dma_chan = NULL;
2836
2837        return ret;
2838}
2839
2840static void marvell_nfc_reset(struct marvell_nfc *nfc)
2841{
2842        /*
2843         * ECC operations and interruptions are only enabled when specifically
2844         * needed. ECC shall not be activated in the early stages (fails probe).
2845         * Arbiter flag, even if marked as "reserved", must be set (empirical).
2846         * SPARE_EN bit must always be set or ECC bytes will not be at the same
2847         * offset in the read page and this will fail the protection.
2848         */
2849        writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2850                       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2851        writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2852        writel_relaxed(0, nfc->regs + NDECCCTRL);
2853}
2854
2855static int marvell_nfc_init(struct marvell_nfc *nfc)
2856{
2857        struct device_node *np = nfc->dev->of_node;
2858
2859        /*
2860         * Some SoCs like A7k/A8k need to enable manually the NAND
2861         * controller, gated clocks and reset bits to avoid being bootloader
2862         * dependent. This is done through the use of the System Functions
2863         * registers.
2864         */
2865        if (nfc->caps->need_system_controller) {
2866                struct regmap *sysctrl_base =
2867                        syscon_regmap_lookup_by_phandle(np,
2868                                                        "marvell,system-controller");
2869
2870                if (IS_ERR(sysctrl_base))
2871                        return PTR_ERR(sysctrl_base);
2872
2873                regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2874                             GENCONF_SOC_DEVICE_MUX_NFC_EN |
2875                             GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2876                             GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2877                             GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2878
2879                regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2880                                   GENCONF_CLK_GATING_CTRL_ND_GATE,
2881                                   GENCONF_CLK_GATING_CTRL_ND_GATE);
2882
2883                regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2884                                   GENCONF_ND_CLK_CTRL_EN,
2885                                   GENCONF_ND_CLK_CTRL_EN);
2886        }
2887
2888        /* Configure the DMA if appropriate */
2889        if (!nfc->caps->is_nfcv2)
2890                marvell_nfc_init_dma(nfc);
2891
2892        marvell_nfc_reset(nfc);
2893
2894        return 0;
2895}
2896
2897static int marvell_nfc_probe(struct platform_device *pdev)
2898{
2899        struct device *dev = &pdev->dev;
2900        struct marvell_nfc *nfc;
2901        int ret;
2902        int irq;
2903
2904        nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2905                           GFP_KERNEL);
2906        if (!nfc)
2907                return -ENOMEM;
2908
2909        nfc->dev = dev;
2910        nand_controller_init(&nfc->controller);
2911        nfc->controller.ops = &marvell_nand_controller_ops;
2912        INIT_LIST_HEAD(&nfc->chips);
2913
2914        nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2915        if (IS_ERR(nfc->regs))
2916                return PTR_ERR(nfc->regs);
2917
2918        irq = platform_get_irq(pdev, 0);
2919        if (irq < 0)
2920                return irq;
2921
2922        nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2923
2924        /* Managed the legacy case (when the first clock was not named) */
2925        if (nfc->core_clk == ERR_PTR(-ENOENT))
2926                nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2927
2928        if (IS_ERR(nfc->core_clk))
2929                return PTR_ERR(nfc->core_clk);
2930
2931        ret = clk_prepare_enable(nfc->core_clk);
2932        if (ret)
2933                return ret;
2934
2935        nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2936        if (IS_ERR(nfc->reg_clk)) {
2937                if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2938                        ret = PTR_ERR(nfc->reg_clk);
2939                        goto unprepare_core_clk;
2940                }
2941
2942                nfc->reg_clk = NULL;
2943        }
2944
2945        ret = clk_prepare_enable(nfc->reg_clk);
2946        if (ret)
2947                goto unprepare_core_clk;
2948
2949        marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2950        marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2951        ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2952                               0, "marvell-nfc", nfc);
2953        if (ret)
2954                goto unprepare_reg_clk;
2955
2956        /* Get NAND controller capabilities */
2957        if (pdev->id_entry)
2958                nfc->caps = (void *)pdev->id_entry->driver_data;
2959        else
2960                nfc->caps = of_device_get_match_data(&pdev->dev);
2961
2962        if (!nfc->caps) {
2963                dev_err(dev, "Could not retrieve NFC caps\n");
2964                ret = -EINVAL;
2965                goto unprepare_reg_clk;
2966        }
2967
2968        /* Init the controller and then probe the chips */
2969        ret = marvell_nfc_init(nfc);
2970        if (ret)
2971                goto unprepare_reg_clk;
2972
2973        platform_set_drvdata(pdev, nfc);
2974
2975        ret = marvell_nand_chips_init(dev, nfc);
2976        if (ret)
2977                goto release_dma;
2978
2979        return 0;
2980
2981release_dma:
2982        if (nfc->use_dma)
2983                dma_release_channel(nfc->dma_chan);
2984unprepare_reg_clk:
2985        clk_disable_unprepare(nfc->reg_clk);
2986unprepare_core_clk:
2987        clk_disable_unprepare(nfc->core_clk);
2988
2989        return ret;
2990}
2991
2992static int marvell_nfc_remove(struct platform_device *pdev)
2993{
2994        struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2995
2996        marvell_nand_chips_cleanup(nfc);
2997
2998        if (nfc->use_dma) {
2999                dmaengine_terminate_all(nfc->dma_chan);
3000                dma_release_channel(nfc->dma_chan);
3001        }
3002
3003        clk_disable_unprepare(nfc->reg_clk);
3004        clk_disable_unprepare(nfc->core_clk);
3005
3006        return 0;
3007}
3008
3009static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3010{
3011        struct marvell_nfc *nfc = dev_get_drvdata(dev);
3012        struct marvell_nand_chip *chip;
3013
3014        list_for_each_entry(chip, &nfc->chips, node)
3015                marvell_nfc_wait_ndrun(&chip->chip);
3016
3017        clk_disable_unprepare(nfc->reg_clk);
3018        clk_disable_unprepare(nfc->core_clk);
3019
3020        return 0;
3021}
3022
3023static int __maybe_unused marvell_nfc_resume(struct device *dev)
3024{
3025        struct marvell_nfc *nfc = dev_get_drvdata(dev);
3026        int ret;
3027
3028        ret = clk_prepare_enable(nfc->core_clk);
3029        if (ret < 0)
3030                return ret;
3031
3032        ret = clk_prepare_enable(nfc->reg_clk);
3033        if (ret < 0) {
3034                clk_disable_unprepare(nfc->core_clk);
3035                return ret;
3036        }
3037
3038        /*
3039         * Reset nfc->selected_chip so the next command will cause the timing
3040         * registers to be restored in marvell_nfc_select_target().
3041         */
3042        nfc->selected_chip = NULL;
3043
3044        /* Reset registers that have lost their contents */
3045        marvell_nfc_reset(nfc);
3046
3047        return 0;
3048}
3049
3050static const struct dev_pm_ops marvell_nfc_pm_ops = {
3051        SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3052};
3053
3054static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3055        .max_cs_nb = 4,
3056        .max_rb_nb = 2,
3057        .need_system_controller = true,
3058        .is_nfcv2 = true,
3059};
3060
3061static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3062        .max_cs_nb = 4,
3063        .max_rb_nb = 2,
3064        .is_nfcv2 = true,
3065};
3066
3067static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3068        .max_cs_nb = 2,
3069        .max_rb_nb = 1,
3070        .use_dma = true,
3071};
3072
3073static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3074        .max_cs_nb = 4,
3075        .max_rb_nb = 2,
3076        .need_system_controller = true,
3077        .legacy_of_bindings = true,
3078        .is_nfcv2 = true,
3079};
3080
3081static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3082        .max_cs_nb = 4,
3083        .max_rb_nb = 2,
3084        .legacy_of_bindings = true,
3085        .is_nfcv2 = true,
3086};
3087
3088static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3089        .max_cs_nb = 2,
3090        .max_rb_nb = 1,
3091        .legacy_of_bindings = true,
3092        .use_dma = true,
3093};
3094
3095static const struct platform_device_id marvell_nfc_platform_ids[] = {
3096        {
3097                .name = "pxa3xx-nand",
3098                .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3099        },
3100        { /* sentinel */ },
3101};
3102MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3103
3104static const struct of_device_id marvell_nfc_of_ids[] = {
3105        {
3106                .compatible = "marvell,armada-8k-nand-controller",
3107                .data = &marvell_armada_8k_nfc_caps,
3108        },
3109        {
3110                .compatible = "marvell,armada370-nand-controller",
3111                .data = &marvell_armada370_nfc_caps,
3112        },
3113        {
3114                .compatible = "marvell,pxa3xx-nand-controller",
3115                .data = &marvell_pxa3xx_nfc_caps,
3116        },
3117        /* Support for old/deprecated bindings: */
3118        {
3119                .compatible = "marvell,armada-8k-nand",
3120                .data = &marvell_armada_8k_nfc_legacy_caps,
3121        },
3122        {
3123                .compatible = "marvell,armada370-nand",
3124                .data = &marvell_armada370_nfc_legacy_caps,
3125        },
3126        {
3127                .compatible = "marvell,pxa3xx-nand",
3128                .data = &marvell_pxa3xx_nfc_legacy_caps,
3129        },
3130        { /* sentinel */ },
3131};
3132MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3133
3134static struct platform_driver marvell_nfc_driver = {
3135        .driver = {
3136                .name           = "marvell-nfc",
3137                .of_match_table = marvell_nfc_of_ids,
3138                .pm             = &marvell_nfc_pm_ops,
3139        },
3140        .id_table = marvell_nfc_platform_ids,
3141        .probe = marvell_nfc_probe,
3142        .remove = marvell_nfc_remove,
3143};
3144module_platform_driver(marvell_nfc_driver);
3145
3146MODULE_LICENSE("GPL");
3147MODULE_DESCRIPTION("Marvell NAND controller driver");
3148