linux/drivers/mtd/nand/raw/mxc_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   5 */
   6
   7#include <linux/delay.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/module.h>
  11#include <linux/mtd/mtd.h>
  12#include <linux/mtd/rawnand.h>
  13#include <linux/mtd/partitions.h>
  14#include <linux/interrupt.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/clk.h>
  18#include <linux/err.h>
  19#include <linux/io.h>
  20#include <linux/irq.h>
  21#include <linux/completion.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24
  25#define DRIVER_NAME "mxc_nand"
  26
  27/* Addresses for NFC registers */
  28#define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
  29#define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
  30#define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
  31#define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
  32#define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
  33#define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
  34#define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
  35#define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
  36#define NFC_V1_V2_WRPROT                (host->regs + 0x12)
  37#define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
  38#define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
  39#define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
  40#define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
  41#define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
  42#define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
  43#define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
  44#define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
  45#define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
  46#define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
  47#define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
  48#define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
  49#define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
  50
  51#define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
  52#define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
  53#define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
  54#define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
  55#define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
  56#define NFC_V1_V2_CONFIG1_RST           (1 << 6)
  57#define NFC_V1_V2_CONFIG1_CE            (1 << 7)
  58#define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
  59#define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
  60#define NFC_V2_CONFIG1_FP_INT           (1 << 11)
  61
  62#define NFC_V1_V2_CONFIG2_INT           (1 << 15)
  63
  64/*
  65 * Operation modes for the NFC. Valid for v1, v2 and v3
  66 * type controllers.
  67 */
  68#define NFC_CMD                         (1 << 0)
  69#define NFC_ADDR                        (1 << 1)
  70#define NFC_INPUT                       (1 << 2)
  71#define NFC_OUTPUT                      (1 << 3)
  72#define NFC_ID                          (1 << 4)
  73#define NFC_STATUS                      (1 << 5)
  74
  75#define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
  76#define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
  77
  78#define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
  79#define NFC_V3_CONFIG1_SP_EN            (1 << 0)
  80#define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
  81
  82#define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
  83
  84#define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
  85
  86#define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
  87#define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
  88#define NFC_V3_WRPROT_LOCK              (1 << 1)
  89#define NFC_V3_WRPROT_UNLOCK            (1 << 2)
  90#define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
  91
  92#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
  93
  94#define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
  95#define NFC_V3_CONFIG2_PS_512                   (0 << 0)
  96#define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
  97#define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
  98#define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
  99#define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
 100#define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
 101#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
 102#define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
 103#define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
 104#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
 105#define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
 106#define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
 107#define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
 108
 109#define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
 110#define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
 111#define NFC_V3_CONFIG3_FW8                      (1 << 3)
 112#define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
 113#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
 114#define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
 115#define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
 116
 117#define NFC_V3_IPC                      (host->regs_ip + 0x2C)
 118#define NFC_V3_IPC_CREQ                 (1 << 0)
 119#define NFC_V3_IPC_INT                  (1 << 31)
 120
 121#define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
 122
 123struct mxc_nand_host;
 124
 125struct mxc_nand_devtype_data {
 126        void (*preset)(struct mtd_info *);
 127        int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
 128                         int page);
 129        void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 130        void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 131        void (*send_page)(struct mtd_info *, unsigned int);
 132        void (*send_read_id)(struct mxc_nand_host *);
 133        uint16_t (*get_dev_status)(struct mxc_nand_host *);
 134        int (*check_int)(struct mxc_nand_host *);
 135        void (*irq_control)(struct mxc_nand_host *, int);
 136        u32 (*get_ecc_status)(struct mxc_nand_host *);
 137        const struct mtd_ooblayout_ops *ooblayout;
 138        void (*select_chip)(struct nand_chip *chip, int cs);
 139        int (*setup_interface)(struct nand_chip *chip, int csline,
 140                               const struct nand_interface_config *conf);
 141        void (*enable_hwecc)(struct nand_chip *chip, bool enable);
 142
 143        /*
 144         * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 145         * (CONFIG1:INT_MSK is set). To handle this the driver uses
 146         * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 147         */
 148        int irqpending_quirk;
 149        int needs_ip;
 150
 151        size_t regs_offset;
 152        size_t spare0_offset;
 153        size_t axi_offset;
 154
 155        int spare_len;
 156        int eccbytes;
 157        int eccsize;
 158        int ppb_shift;
 159};
 160
 161struct mxc_nand_host {
 162        struct nand_chip        nand;
 163        struct device           *dev;
 164
 165        void __iomem            *spare0;
 166        void __iomem            *main_area0;
 167
 168        void __iomem            *base;
 169        void __iomem            *regs;
 170        void __iomem            *regs_axi;
 171        void __iomem            *regs_ip;
 172        int                     status_request;
 173        struct clk              *clk;
 174        int                     clk_act;
 175        int                     irq;
 176        int                     eccsize;
 177        int                     used_oobsize;
 178        int                     active_cs;
 179
 180        struct completion       op_completion;
 181
 182        uint8_t                 *data_buf;
 183        unsigned int            buf_start;
 184
 185        const struct mxc_nand_devtype_data *devtype_data;
 186};
 187
 188static const char * const part_probes[] = {
 189        "cmdlinepart", "RedBoot", "ofpart", NULL };
 190
 191static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 192{
 193        int i;
 194        u32 *t = trg;
 195        const __iomem u32 *s = src;
 196
 197        for (i = 0; i < (size >> 2); i++)
 198                *t++ = __raw_readl(s++);
 199}
 200
 201static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
 202{
 203        int i;
 204        u16 *t = trg;
 205        const __iomem u16 *s = src;
 206
 207        /* We assume that src (IO) is always 32bit aligned */
 208        if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
 209                memcpy32_fromio(trg, src, size);
 210                return;
 211        }
 212
 213        for (i = 0; i < (size >> 1); i++)
 214                *t++ = __raw_readw(s++);
 215}
 216
 217static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
 218{
 219        /* __iowrite32_copy use 32bit size values so divide by 4 */
 220        __iowrite32_copy(trg, src, size / 4);
 221}
 222
 223static void memcpy16_toio(void __iomem *trg, const void *src, int size)
 224{
 225        int i;
 226        __iomem u16 *t = trg;
 227        const u16 *s = src;
 228
 229        /* We assume that trg (IO) is always 32bit aligned */
 230        if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
 231                memcpy32_toio(trg, src, size);
 232                return;
 233        }
 234
 235        for (i = 0; i < (size >> 1); i++)
 236                __raw_writew(*s++, t++);
 237}
 238
 239/*
 240 * The controller splits a page into data chunks of 512 bytes + partial oob.
 241 * There are writesize / 512 such chunks, the size of the partial oob parts is
 242 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
 243 * contains additionally the byte lost by rounding (if any).
 244 * This function handles the needed shuffling between host->data_buf (which
 245 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
 246 * spare) and the NFC buffer.
 247 */
 248static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
 249{
 250        struct nand_chip *this = mtd_to_nand(mtd);
 251        struct mxc_nand_host *host = nand_get_controller_data(this);
 252        u16 i, oob_chunk_size;
 253        u16 num_chunks = mtd->writesize / 512;
 254
 255        u8 *d = buf;
 256        u8 __iomem *s = host->spare0;
 257        u16 sparebuf_size = host->devtype_data->spare_len;
 258
 259        /* size of oob chunk for all but possibly the last one */
 260        oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
 261
 262        if (bfrom) {
 263                for (i = 0; i < num_chunks - 1; i++)
 264                        memcpy16_fromio(d + i * oob_chunk_size,
 265                                        s + i * sparebuf_size,
 266                                        oob_chunk_size);
 267
 268                /* the last chunk */
 269                memcpy16_fromio(d + i * oob_chunk_size,
 270                                s + i * sparebuf_size,
 271                                host->used_oobsize - i * oob_chunk_size);
 272        } else {
 273                for (i = 0; i < num_chunks - 1; i++)
 274                        memcpy16_toio(&s[i * sparebuf_size],
 275                                      &d[i * oob_chunk_size],
 276                                      oob_chunk_size);
 277
 278                /* the last chunk */
 279                memcpy16_toio(&s[i * sparebuf_size],
 280                              &d[i * oob_chunk_size],
 281                              host->used_oobsize - i * oob_chunk_size);
 282        }
 283}
 284
 285/*
 286 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
 287 * the upper layers perform a read/write buf operation, the saved column address
 288 * is used to index into the full page. So usually this function is called with
 289 * column == 0 (unless no column cycle is needed indicated by column == -1)
 290 */
 291static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 292{
 293        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 294        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 295
 296        /* Write out column address, if necessary */
 297        if (column != -1) {
 298                host->devtype_data->send_addr(host, column & 0xff,
 299                                              page_addr == -1);
 300                if (mtd->writesize > 512)
 301                        /* another col addr cycle for 2k page */
 302                        host->devtype_data->send_addr(host,
 303                                                      (column >> 8) & 0xff,
 304                                                      false);
 305        }
 306
 307        /* Write out page address, if necessary */
 308        if (page_addr != -1) {
 309                /* paddr_0 - p_addr_7 */
 310                host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 311
 312                if (mtd->writesize > 512) {
 313                        if (mtd->size >= 0x10000000) {
 314                                /* paddr_8 - paddr_15 */
 315                                host->devtype_data->send_addr(host,
 316                                                (page_addr >> 8) & 0xff,
 317                                                false);
 318                                host->devtype_data->send_addr(host,
 319                                                (page_addr >> 16) & 0xff,
 320                                                true);
 321                        } else
 322                                /* paddr_8 - paddr_15 */
 323                                host->devtype_data->send_addr(host,
 324                                                (page_addr >> 8) & 0xff, true);
 325                } else {
 326                        if (nand_chip->options & NAND_ROW_ADDR_3) {
 327                                /* paddr_8 - paddr_15 */
 328                                host->devtype_data->send_addr(host,
 329                                                (page_addr >> 8) & 0xff,
 330                                                false);
 331                                host->devtype_data->send_addr(host,
 332                                                (page_addr >> 16) & 0xff,
 333                                                true);
 334                        } else
 335                                /* paddr_8 - paddr_15 */
 336                                host->devtype_data->send_addr(host,
 337                                                (page_addr >> 8) & 0xff, true);
 338                }
 339        }
 340}
 341
 342static int check_int_v3(struct mxc_nand_host *host)
 343{
 344        uint32_t tmp;
 345
 346        tmp = readl(NFC_V3_IPC);
 347        if (!(tmp & NFC_V3_IPC_INT))
 348                return 0;
 349
 350        tmp &= ~NFC_V3_IPC_INT;
 351        writel(tmp, NFC_V3_IPC);
 352
 353        return 1;
 354}
 355
 356static int check_int_v1_v2(struct mxc_nand_host *host)
 357{
 358        uint32_t tmp;
 359
 360        tmp = readw(NFC_V1_V2_CONFIG2);
 361        if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 362                return 0;
 363
 364        if (!host->devtype_data->irqpending_quirk)
 365                writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 366
 367        return 1;
 368}
 369
 370static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 371{
 372        uint16_t tmp;
 373
 374        tmp = readw(NFC_V1_V2_CONFIG1);
 375
 376        if (activate)
 377                tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 378        else
 379                tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 380
 381        writew(tmp, NFC_V1_V2_CONFIG1);
 382}
 383
 384static void irq_control_v3(struct mxc_nand_host *host, int activate)
 385{
 386        uint32_t tmp;
 387
 388        tmp = readl(NFC_V3_CONFIG2);
 389
 390        if (activate)
 391                tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 392        else
 393                tmp |= NFC_V3_CONFIG2_INT_MSK;
 394
 395        writel(tmp, NFC_V3_CONFIG2);
 396}
 397
 398static void irq_control(struct mxc_nand_host *host, int activate)
 399{
 400        if (host->devtype_data->irqpending_quirk) {
 401                if (activate)
 402                        enable_irq(host->irq);
 403                else
 404                        disable_irq_nosync(host->irq);
 405        } else {
 406                host->devtype_data->irq_control(host, activate);
 407        }
 408}
 409
 410static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 411{
 412        return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 413}
 414
 415static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 416{
 417        return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 418}
 419
 420static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 421{
 422        return readl(NFC_V3_ECC_STATUS_RESULT);
 423}
 424
 425static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 426{
 427        struct mxc_nand_host *host = dev_id;
 428
 429        if (!host->devtype_data->check_int(host))
 430                return IRQ_NONE;
 431
 432        irq_control(host, 0);
 433
 434        complete(&host->op_completion);
 435
 436        return IRQ_HANDLED;
 437}
 438
 439/* This function polls the NANDFC to wait for the basic operation to
 440 * complete by checking the INT bit of config2 register.
 441 */
 442static int wait_op_done(struct mxc_nand_host *host, int useirq)
 443{
 444        int ret = 0;
 445
 446        /*
 447         * If operation is already complete, don't bother to setup an irq or a
 448         * loop.
 449         */
 450        if (host->devtype_data->check_int(host))
 451                return 0;
 452
 453        if (useirq) {
 454                unsigned long timeout;
 455
 456                reinit_completion(&host->op_completion);
 457
 458                irq_control(host, 1);
 459
 460                timeout = wait_for_completion_timeout(&host->op_completion, HZ);
 461                if (!timeout && !host->devtype_data->check_int(host)) {
 462                        dev_dbg(host->dev, "timeout waiting for irq\n");
 463                        ret = -ETIMEDOUT;
 464                }
 465        } else {
 466                int max_retries = 8000;
 467                int done;
 468
 469                do {
 470                        udelay(1);
 471
 472                        done = host->devtype_data->check_int(host);
 473                        if (done)
 474                                break;
 475
 476                } while (--max_retries);
 477
 478                if (!done) {
 479                        dev_dbg(host->dev, "timeout polling for completion\n");
 480                        ret = -ETIMEDOUT;
 481                }
 482        }
 483
 484        WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
 485
 486        return ret;
 487}
 488
 489static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 490{
 491        /* fill command */
 492        writel(cmd, NFC_V3_FLASH_CMD);
 493
 494        /* send out command */
 495        writel(NFC_CMD, NFC_V3_LAUNCH);
 496
 497        /* Wait for operation to complete */
 498        wait_op_done(host, useirq);
 499}
 500
 501/* This function issues the specified command to the NAND device and
 502 * waits for completion. */
 503static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 504{
 505        dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 506
 507        writew(cmd, NFC_V1_V2_FLASH_CMD);
 508        writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 509
 510        if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 511                int max_retries = 100;
 512                /* Reset completion is indicated by NFC_CONFIG2 */
 513                /* being set to 0 */
 514                while (max_retries-- > 0) {
 515                        if (readw(NFC_V1_V2_CONFIG2) == 0) {
 516                                break;
 517                        }
 518                        udelay(1);
 519                }
 520                if (max_retries < 0)
 521                        dev_dbg(host->dev, "%s: RESET failed\n", __func__);
 522        } else {
 523                /* Wait for operation to complete */
 524                wait_op_done(host, useirq);
 525        }
 526}
 527
 528static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 529{
 530        /* fill address */
 531        writel(addr, NFC_V3_FLASH_ADDR0);
 532
 533        /* send out address */
 534        writel(NFC_ADDR, NFC_V3_LAUNCH);
 535
 536        wait_op_done(host, 0);
 537}
 538
 539/* This function sends an address (or partial address) to the
 540 * NAND device. The address is used to select the source/destination for
 541 * a NAND command. */
 542static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 543{
 544        dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
 545
 546        writew(addr, NFC_V1_V2_FLASH_ADDR);
 547        writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 548
 549        /* Wait for operation to complete */
 550        wait_op_done(host, islast);
 551}
 552
 553static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 554{
 555        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 556        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 557        uint32_t tmp;
 558
 559        tmp = readl(NFC_V3_CONFIG1);
 560        tmp &= ~(7 << 4);
 561        writel(tmp, NFC_V3_CONFIG1);
 562
 563        /* transfer data from NFC ram to nand */
 564        writel(ops, NFC_V3_LAUNCH);
 565
 566        wait_op_done(host, false);
 567}
 568
 569static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 570{
 571        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 572        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 573
 574        /* NANDFC buffer 0 is used for page read/write */
 575        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 576
 577        writew(ops, NFC_V1_V2_CONFIG2);
 578
 579        /* Wait for operation to complete */
 580        wait_op_done(host, true);
 581}
 582
 583static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 584{
 585        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 586        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 587        int bufs, i;
 588
 589        if (mtd->writesize > 512)
 590                bufs = 4;
 591        else
 592                bufs = 1;
 593
 594        for (i = 0; i < bufs; i++) {
 595
 596                /* NANDFC buffer 0 is used for page read/write */
 597                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 598
 599                writew(ops, NFC_V1_V2_CONFIG2);
 600
 601                /* Wait for operation to complete */
 602                wait_op_done(host, true);
 603        }
 604}
 605
 606static void send_read_id_v3(struct mxc_nand_host *host)
 607{
 608        /* Read ID into main buffer */
 609        writel(NFC_ID, NFC_V3_LAUNCH);
 610
 611        wait_op_done(host, true);
 612
 613        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 614}
 615
 616/* Request the NANDFC to perform a read of the NAND device ID. */
 617static void send_read_id_v1_v2(struct mxc_nand_host *host)
 618{
 619        /* NANDFC buffer 0 is used for device ID output */
 620        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 621
 622        writew(NFC_ID, NFC_V1_V2_CONFIG2);
 623
 624        /* Wait for operation to complete */
 625        wait_op_done(host, true);
 626
 627        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 628}
 629
 630static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 631{
 632        writew(NFC_STATUS, NFC_V3_LAUNCH);
 633        wait_op_done(host, true);
 634
 635        return readl(NFC_V3_CONFIG1) >> 16;
 636}
 637
 638/* This function requests the NANDFC to perform a read of the
 639 * NAND device status and returns the current status. */
 640static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 641{
 642        void __iomem *main_buf = host->main_area0;
 643        uint32_t store;
 644        uint16_t ret;
 645
 646        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 647
 648        /*
 649         * The device status is stored in main_area0. To
 650         * prevent corruption of the buffer save the value
 651         * and restore it afterwards.
 652         */
 653        store = readl(main_buf);
 654
 655        writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 656        wait_op_done(host, true);
 657
 658        ret = readw(main_buf);
 659
 660        writel(store, main_buf);
 661
 662        return ret;
 663}
 664
 665static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
 666{
 667        struct mxc_nand_host *host = nand_get_controller_data(chip);
 668        uint16_t config1;
 669
 670        if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
 671                return;
 672
 673        config1 = readw(NFC_V1_V2_CONFIG1);
 674
 675        if (enable)
 676                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 677        else
 678                config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
 679
 680        writew(config1, NFC_V1_V2_CONFIG1);
 681}
 682
 683static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
 684{
 685        struct mxc_nand_host *host = nand_get_controller_data(chip);
 686        uint32_t config2;
 687
 688        if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
 689                return;
 690
 691        config2 = readl(NFC_V3_CONFIG2);
 692
 693        if (enable)
 694                config2 |= NFC_V3_CONFIG2_ECC_EN;
 695        else
 696                config2 &= ~NFC_V3_CONFIG2_ECC_EN;
 697
 698        writel(config2, NFC_V3_CONFIG2);
 699}
 700
 701/* This functions is used by upper layer to checks if device is ready */
 702static int mxc_nand_dev_ready(struct nand_chip *chip)
 703{
 704        /*
 705         * NFC handles R/B internally. Therefore, this function
 706         * always returns status as ready.
 707         */
 708        return 1;
 709}
 710
 711static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
 712                                 bool ecc, int page)
 713{
 714        struct mtd_info *mtd = nand_to_mtd(chip);
 715        struct mxc_nand_host *host = nand_get_controller_data(chip);
 716        unsigned int bitflips_corrected = 0;
 717        int no_subpages;
 718        int i;
 719
 720        host->devtype_data->enable_hwecc(chip, ecc);
 721
 722        host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
 723        mxc_do_addr_cycle(mtd, 0, page);
 724
 725        if (mtd->writesize > 512)
 726                host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
 727
 728        no_subpages = mtd->writesize >> 9;
 729
 730        for (i = 0; i < no_subpages; i++) {
 731                uint16_t ecc_stats;
 732
 733                /* NANDFC buffer 0 is used for page read/write */
 734                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 735
 736                writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
 737
 738                /* Wait for operation to complete */
 739                wait_op_done(host, true);
 740
 741                ecc_stats = get_ecc_status_v1(host);
 742
 743                ecc_stats >>= 2;
 744
 745                if (buf && ecc) {
 746                        switch (ecc_stats & 0x3) {
 747                        case 0:
 748                        default:
 749                                break;
 750                        case 1:
 751                                mtd->ecc_stats.corrected++;
 752                                bitflips_corrected = 1;
 753                                break;
 754                        case 2:
 755                                mtd->ecc_stats.failed++;
 756                                break;
 757                        }
 758                }
 759        }
 760
 761        if (buf)
 762                memcpy32_fromio(buf, host->main_area0, mtd->writesize);
 763        if (oob)
 764                copy_spare(mtd, true, oob);
 765
 766        return bitflips_corrected;
 767}
 768
 769static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
 770                                    void *oob, bool ecc, int page)
 771{
 772        struct mtd_info *mtd = nand_to_mtd(chip);
 773        struct mxc_nand_host *host = nand_get_controller_data(chip);
 774        unsigned int max_bitflips = 0;
 775        u32 ecc_stat, err;
 776        int no_subpages;
 777        u8 ecc_bit_mask, err_limit;
 778
 779        host->devtype_data->enable_hwecc(chip, ecc);
 780
 781        host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
 782        mxc_do_addr_cycle(mtd, 0, page);
 783
 784        if (mtd->writesize > 512)
 785                host->devtype_data->send_cmd(host,
 786                                NAND_CMD_READSTART, true);
 787
 788        host->devtype_data->send_page(mtd, NFC_OUTPUT);
 789
 790        if (buf)
 791                memcpy32_fromio(buf, host->main_area0, mtd->writesize);
 792        if (oob)
 793                copy_spare(mtd, true, oob);
 794
 795        ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 796        err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 797
 798        no_subpages = mtd->writesize >> 9;
 799
 800        ecc_stat = host->devtype_data->get_ecc_status(host);
 801
 802        do {
 803                err = ecc_stat & ecc_bit_mask;
 804                if (err > err_limit) {
 805                        mtd->ecc_stats.failed++;
 806                } else {
 807                        mtd->ecc_stats.corrected += err;
 808                        max_bitflips = max_t(unsigned int, max_bitflips, err);
 809                }
 810
 811                ecc_stat >>= 4;
 812        } while (--no_subpages);
 813
 814        return max_bitflips;
 815}
 816
 817static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
 818                              int oob_required, int page)
 819{
 820        struct mxc_nand_host *host = nand_get_controller_data(chip);
 821        void *oob_buf;
 822
 823        if (oob_required)
 824                oob_buf = chip->oob_poi;
 825        else
 826                oob_buf = NULL;
 827
 828        return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
 829}
 830
 831static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
 832                                  int oob_required, int page)
 833{
 834        struct mxc_nand_host *host = nand_get_controller_data(chip);
 835        void *oob_buf;
 836
 837        if (oob_required)
 838                oob_buf = chip->oob_poi;
 839        else
 840                oob_buf = NULL;
 841
 842        return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
 843}
 844
 845static int mxc_nand_read_oob(struct nand_chip *chip, int page)
 846{
 847        struct mxc_nand_host *host = nand_get_controller_data(chip);
 848
 849        return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
 850                                             page);
 851}
 852
 853static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
 854                               bool ecc, int page)
 855{
 856        struct mtd_info *mtd = nand_to_mtd(chip);
 857        struct mxc_nand_host *host = nand_get_controller_data(chip);
 858
 859        host->devtype_data->enable_hwecc(chip, ecc);
 860
 861        host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
 862        mxc_do_addr_cycle(mtd, 0, page);
 863
 864        memcpy32_toio(host->main_area0, buf, mtd->writesize);
 865        copy_spare(mtd, false, chip->oob_poi);
 866
 867        host->devtype_data->send_page(mtd, NFC_INPUT);
 868        host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
 869        mxc_do_addr_cycle(mtd, 0, page);
 870
 871        return 0;
 872}
 873
 874static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
 875                                   int oob_required, int page)
 876{
 877        return mxc_nand_write_page(chip, buf, true, page);
 878}
 879
 880static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
 881                                   int oob_required, int page)
 882{
 883        return mxc_nand_write_page(chip, buf, false, page);
 884}
 885
 886static int mxc_nand_write_oob(struct nand_chip *chip, int page)
 887{
 888        struct mtd_info *mtd = nand_to_mtd(chip);
 889        struct mxc_nand_host *host = nand_get_controller_data(chip);
 890
 891        memset(host->data_buf, 0xff, mtd->writesize);
 892
 893        return mxc_nand_write_page(chip, host->data_buf, false, page);
 894}
 895
 896static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
 897{
 898        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 899        uint8_t ret;
 900
 901        /* Check for status request */
 902        if (host->status_request)
 903                return host->devtype_data->get_dev_status(host) & 0xFF;
 904
 905        if (nand_chip->options & NAND_BUSWIDTH_16) {
 906                /* only take the lower byte of each word */
 907                ret = *(uint16_t *)(host->data_buf + host->buf_start);
 908
 909                host->buf_start += 2;
 910        } else {
 911                ret = *(uint8_t *)(host->data_buf + host->buf_start);
 912                host->buf_start++;
 913        }
 914
 915        dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
 916        return ret;
 917}
 918
 919/* Write data of length len to buffer buf. The data to be
 920 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 921 * Operation by the NFC, the data is written to NAND Flash */
 922static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
 923                               int len)
 924{
 925        struct mtd_info *mtd = nand_to_mtd(nand_chip);
 926        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 927        u16 col = host->buf_start;
 928        int n = mtd->oobsize + mtd->writesize - col;
 929
 930        n = min(n, len);
 931
 932        memcpy(host->data_buf + col, buf, n);
 933
 934        host->buf_start += n;
 935}
 936
 937/* Read the data buffer from the NAND Flash. To read the data from NAND
 938 * Flash first the data output cycle is initiated by the NFC, which copies
 939 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 940 */
 941static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
 942                              int len)
 943{
 944        struct mtd_info *mtd = nand_to_mtd(nand_chip);
 945        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 946        u16 col = host->buf_start;
 947        int n = mtd->oobsize + mtd->writesize - col;
 948
 949        n = min(n, len);
 950
 951        memcpy(buf, host->data_buf + col, n);
 952
 953        host->buf_start += n;
 954}
 955
 956/* This function is used by upper layer for select and
 957 * deselect of the NAND chip */
 958static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
 959{
 960        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 961
 962        if (chip == -1) {
 963                /* Disable the NFC clock */
 964                if (host->clk_act) {
 965                        clk_disable_unprepare(host->clk);
 966                        host->clk_act = 0;
 967                }
 968                return;
 969        }
 970
 971        if (!host->clk_act) {
 972                /* Enable the NFC clock */
 973                clk_prepare_enable(host->clk);
 974                host->clk_act = 1;
 975        }
 976}
 977
 978static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
 979{
 980        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 981
 982        if (chip == -1) {
 983                /* Disable the NFC clock */
 984                if (host->clk_act) {
 985                        clk_disable_unprepare(host->clk);
 986                        host->clk_act = 0;
 987                }
 988                return;
 989        }
 990
 991        if (!host->clk_act) {
 992                /* Enable the NFC clock */
 993                clk_prepare_enable(host->clk);
 994                host->clk_act = 1;
 995        }
 996
 997        host->active_cs = chip;
 998        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 999}
1000
1001#define MXC_V1_ECCBYTES         5
1002
1003static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1004                                struct mtd_oob_region *oobregion)
1005{
1006        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1007
1008        if (section >= nand_chip->ecc.steps)
1009                return -ERANGE;
1010
1011        oobregion->offset = (section * 16) + 6;
1012        oobregion->length = MXC_V1_ECCBYTES;
1013
1014        return 0;
1015}
1016
1017static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1018                                 struct mtd_oob_region *oobregion)
1019{
1020        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1021
1022        if (section > nand_chip->ecc.steps)
1023                return -ERANGE;
1024
1025        if (!section) {
1026                if (mtd->writesize <= 512) {
1027                        oobregion->offset = 0;
1028                        oobregion->length = 5;
1029                } else {
1030                        oobregion->offset = 2;
1031                        oobregion->length = 4;
1032                }
1033        } else {
1034                oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1035                if (section < nand_chip->ecc.steps)
1036                        oobregion->length = (section * 16) + 6 -
1037                                            oobregion->offset;
1038                else
1039                        oobregion->length = mtd->oobsize - oobregion->offset;
1040        }
1041
1042        return 0;
1043}
1044
1045static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1046        .ecc = mxc_v1_ooblayout_ecc,
1047        .free = mxc_v1_ooblayout_free,
1048};
1049
1050static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1051                                struct mtd_oob_region *oobregion)
1052{
1053        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1054        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1055
1056        if (section >= nand_chip->ecc.steps)
1057                return -ERANGE;
1058
1059        oobregion->offset = (section * stepsize) + 7;
1060        oobregion->length = nand_chip->ecc.bytes;
1061
1062        return 0;
1063}
1064
1065static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1066                                 struct mtd_oob_region *oobregion)
1067{
1068        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1069        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1070
1071        if (section >= nand_chip->ecc.steps)
1072                return -ERANGE;
1073
1074        if (!section) {
1075                if (mtd->writesize <= 512) {
1076                        oobregion->offset = 0;
1077                        oobregion->length = 5;
1078                } else {
1079                        oobregion->offset = 2;
1080                        oobregion->length = 4;
1081                }
1082        } else {
1083                oobregion->offset = section * stepsize;
1084                oobregion->length = 7;
1085        }
1086
1087        return 0;
1088}
1089
1090static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1091        .ecc = mxc_v2_ooblayout_ecc,
1092        .free = mxc_v2_ooblayout_free,
1093};
1094
1095/*
1096 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1097 * on how much oob the nand chip has. For 8bit ecc we need at least
1098 * 26 bytes of oob data per 512 byte block.
1099 */
1100static int get_eccsize(struct mtd_info *mtd)
1101{
1102        int oobbytes_per_512 = 0;
1103
1104        oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1105
1106        if (oobbytes_per_512 < 26)
1107                return 4;
1108        else
1109                return 8;
1110}
1111
1112static void preset_v1(struct mtd_info *mtd)
1113{
1114        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1115        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1116        uint16_t config1 = 0;
1117
1118        if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1119            mtd->writesize)
1120                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1121
1122        if (!host->devtype_data->irqpending_quirk)
1123                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1124
1125        host->eccsize = 1;
1126
1127        writew(config1, NFC_V1_V2_CONFIG1);
1128        /* preset operation */
1129
1130        /* Unlock the internal RAM Buffer */
1131        writew(0x2, NFC_V1_V2_CONFIG);
1132
1133        /* Blocks to be unlocked */
1134        writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1135        writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1136
1137        /* Unlock Block Command for given address range */
1138        writew(0x4, NFC_V1_V2_WRPROT);
1139}
1140
1141static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1142                                       const struct nand_interface_config *conf)
1143{
1144        struct mxc_nand_host *host = nand_get_controller_data(chip);
1145        int tRC_min_ns, tRC_ps, ret;
1146        unsigned long rate, rate_round;
1147        const struct nand_sdr_timings *timings;
1148        u16 config1;
1149
1150        timings = nand_get_sdr_timings(conf);
1151        if (IS_ERR(timings))
1152                return -ENOTSUPP;
1153
1154        config1 = readw(NFC_V1_V2_CONFIG1);
1155
1156        tRC_min_ns = timings->tRC_min / 1000;
1157        rate = 1000000000 / tRC_min_ns;
1158
1159        /*
1160         * For tRC < 30ns we have to use EDO mode. In this case the controller
1161         * does one access per clock cycle. Otherwise the controller does one
1162         * access in two clock cycles, thus we have to double the rate to the
1163         * controller.
1164         */
1165        if (tRC_min_ns < 30) {
1166                rate_round = clk_round_rate(host->clk, rate);
1167                config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1168                tRC_ps = 1000000000 / (rate_round / 1000);
1169        } else {
1170                rate *= 2;
1171                rate_round = clk_round_rate(host->clk, rate);
1172                config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1173                tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1174        }
1175
1176        /*
1177         * The timing values compared against are from the i.MX25 Automotive
1178         * datasheet, Table 50. NFC Timing Parameters
1179         */
1180        if (timings->tCLS_min > tRC_ps - 1000 ||
1181            timings->tCLH_min > tRC_ps - 2000 ||
1182            timings->tCS_min > tRC_ps - 1000 ||
1183            timings->tCH_min > tRC_ps - 2000 ||
1184            timings->tWP_min > tRC_ps - 1500 ||
1185            timings->tALS_min > tRC_ps ||
1186            timings->tALH_min > tRC_ps - 3000 ||
1187            timings->tDS_min > tRC_ps ||
1188            timings->tDH_min > tRC_ps - 5000 ||
1189            timings->tWC_min > 2 * tRC_ps ||
1190            timings->tWH_min > tRC_ps - 2500 ||
1191            timings->tRR_min > 6 * tRC_ps ||
1192            timings->tRP_min > 3 * tRC_ps / 2 ||
1193            timings->tRC_min > 2 * tRC_ps ||
1194            timings->tREH_min > (tRC_ps / 2) - 2500) {
1195                dev_dbg(host->dev, "Timing out of bounds\n");
1196                return -EINVAL;
1197        }
1198
1199        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1200                return 0;
1201
1202        ret = clk_set_rate(host->clk, rate);
1203        if (ret)
1204                return ret;
1205
1206        writew(config1, NFC_V1_V2_CONFIG1);
1207
1208        dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1209                config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1210                "normal");
1211
1212        return 0;
1213}
1214
1215static void preset_v2(struct mtd_info *mtd)
1216{
1217        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1218        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1219        uint16_t config1 = 0;
1220
1221        config1 |= NFC_V2_CONFIG1_FP_INT;
1222
1223        if (!host->devtype_data->irqpending_quirk)
1224                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1225
1226        if (mtd->writesize) {
1227                uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1228
1229                if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1230                        config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1231
1232                host->eccsize = get_eccsize(mtd);
1233                if (host->eccsize == 4)
1234                        config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1235
1236                config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1237        } else {
1238                host->eccsize = 1;
1239        }
1240
1241        writew(config1, NFC_V1_V2_CONFIG1);
1242        /* preset operation */
1243
1244        /* spare area size in 16-bit half-words */
1245        writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1246
1247        /* Unlock the internal RAM Buffer */
1248        writew(0x2, NFC_V1_V2_CONFIG);
1249
1250        /* Blocks to be unlocked */
1251        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1252        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1253        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1254        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1255        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1256        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1257        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1258        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1259
1260        /* Unlock Block Command for given address range */
1261        writew(0x4, NFC_V1_V2_WRPROT);
1262}
1263
1264static void preset_v3(struct mtd_info *mtd)
1265{
1266        struct nand_chip *chip = mtd_to_nand(mtd);
1267        struct mxc_nand_host *host = nand_get_controller_data(chip);
1268        uint32_t config2, config3;
1269        int i, addr_phases;
1270
1271        writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1272        writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1273
1274        /* Unlock the internal RAM Buffer */
1275        writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1276                        NFC_V3_WRPROT);
1277
1278        /* Blocks to be unlocked */
1279        for (i = 0; i < NAND_MAX_CHIPS; i++)
1280                writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1281
1282        writel(0, NFC_V3_IPC);
1283
1284        config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1285                NFC_V3_CONFIG2_2CMD_PHASES |
1286                NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1287                NFC_V3_CONFIG2_ST_CMD(0x70) |
1288                NFC_V3_CONFIG2_INT_MSK |
1289                NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1290
1291        addr_phases = fls(chip->pagemask) >> 3;
1292
1293        if (mtd->writesize == 2048) {
1294                config2 |= NFC_V3_CONFIG2_PS_2048;
1295                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1296        } else if (mtd->writesize == 4096) {
1297                config2 |= NFC_V3_CONFIG2_PS_4096;
1298                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1299        } else {
1300                config2 |= NFC_V3_CONFIG2_PS_512;
1301                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1302        }
1303
1304        if (mtd->writesize) {
1305                if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1306                        config2 |= NFC_V3_CONFIG2_ECC_EN;
1307
1308                config2 |= NFC_V3_CONFIG2_PPB(
1309                                ffs(mtd->erasesize / mtd->writesize) - 6,
1310                                host->devtype_data->ppb_shift);
1311                host->eccsize = get_eccsize(mtd);
1312                if (host->eccsize == 8)
1313                        config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1314        }
1315
1316        writel(config2, NFC_V3_CONFIG2);
1317
1318        config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1319                        NFC_V3_CONFIG3_NO_SDMA |
1320                        NFC_V3_CONFIG3_RBB_MODE |
1321                        NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1322                        NFC_V3_CONFIG3_ADD_OP(0);
1323
1324        if (!(chip->options & NAND_BUSWIDTH_16))
1325                config3 |= NFC_V3_CONFIG3_FW8;
1326
1327        writel(config3, NFC_V3_CONFIG3);
1328
1329        writel(0, NFC_V3_DELAY_LINE);
1330}
1331
1332/* Used by the upper layer to write command to NAND Flash for
1333 * different operations to be carried out on NAND Flash */
1334static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1335                             int column, int page_addr)
1336{
1337        struct mtd_info *mtd = nand_to_mtd(nand_chip);
1338        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1339
1340        dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1341              command, column, page_addr);
1342
1343        /* Reset command state information */
1344        host->status_request = false;
1345
1346        /* Command pre-processing step */
1347        switch (command) {
1348        case NAND_CMD_RESET:
1349                host->devtype_data->preset(mtd);
1350                host->devtype_data->send_cmd(host, command, false);
1351                break;
1352
1353        case NAND_CMD_STATUS:
1354                host->buf_start = 0;
1355                host->status_request = true;
1356
1357                host->devtype_data->send_cmd(host, command, true);
1358                WARN_ONCE(column != -1 || page_addr != -1,
1359                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1360                          command, column, page_addr);
1361                mxc_do_addr_cycle(mtd, column, page_addr);
1362                break;
1363
1364        case NAND_CMD_READID:
1365                host->devtype_data->send_cmd(host, command, true);
1366                mxc_do_addr_cycle(mtd, column, page_addr);
1367                host->devtype_data->send_read_id(host);
1368                host->buf_start = 0;
1369                break;
1370
1371        case NAND_CMD_ERASE1:
1372        case NAND_CMD_ERASE2:
1373                host->devtype_data->send_cmd(host, command, false);
1374                WARN_ONCE(column != -1,
1375                          "Unexpected column value (cmd=%u, col=%d)\n",
1376                          command, column);
1377                mxc_do_addr_cycle(mtd, column, page_addr);
1378
1379                break;
1380        case NAND_CMD_PARAM:
1381                host->devtype_data->send_cmd(host, command, false);
1382                mxc_do_addr_cycle(mtd, column, page_addr);
1383                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1384                memcpy32_fromio(host->data_buf, host->main_area0, 512);
1385                host->buf_start = 0;
1386                break;
1387        default:
1388                WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1389                          command);
1390                break;
1391        }
1392}
1393
1394static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1395                                 u8 *subfeature_param)
1396{
1397        struct mtd_info *mtd = nand_to_mtd(chip);
1398        struct mxc_nand_host *host = nand_get_controller_data(chip);
1399        int i;
1400
1401        host->buf_start = 0;
1402
1403        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1404                chip->legacy.write_byte(chip, subfeature_param[i]);
1405
1406        memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1407        host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1408        mxc_do_addr_cycle(mtd, addr, -1);
1409        host->devtype_data->send_page(mtd, NFC_INPUT);
1410
1411        return 0;
1412}
1413
1414static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1415                                 u8 *subfeature_param)
1416{
1417        struct mtd_info *mtd = nand_to_mtd(chip);
1418        struct mxc_nand_host *host = nand_get_controller_data(chip);
1419        int i;
1420
1421        host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1422        mxc_do_addr_cycle(mtd, addr, -1);
1423        host->devtype_data->send_page(mtd, NFC_OUTPUT);
1424        memcpy32_fromio(host->data_buf, host->main_area0, 512);
1425        host->buf_start = 0;
1426
1427        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1428                *subfeature_param++ = chip->legacy.read_byte(chip);
1429
1430        return 0;
1431}
1432
1433/*
1434 * The generic flash bbt descriptors overlap with our ecc
1435 * hardware, so define some i.MX specific ones.
1436 */
1437static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1438static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1439
1440static struct nand_bbt_descr bbt_main_descr = {
1441        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1442            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1443        .offs = 0,
1444        .len = 4,
1445        .veroffs = 4,
1446        .maxblocks = 4,
1447        .pattern = bbt_pattern,
1448};
1449
1450static struct nand_bbt_descr bbt_mirror_descr = {
1451        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1452            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1453        .offs = 0,
1454        .len = 4,
1455        .veroffs = 4,
1456        .maxblocks = 4,
1457        .pattern = mirror_pattern,
1458};
1459
1460/* v1 + irqpending_quirk: i.MX21 */
1461static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1462        .preset = preset_v1,
1463        .read_page = mxc_nand_read_page_v1,
1464        .send_cmd = send_cmd_v1_v2,
1465        .send_addr = send_addr_v1_v2,
1466        .send_page = send_page_v1,
1467        .send_read_id = send_read_id_v1_v2,
1468        .get_dev_status = get_dev_status_v1_v2,
1469        .check_int = check_int_v1_v2,
1470        .irq_control = irq_control_v1_v2,
1471        .get_ecc_status = get_ecc_status_v1,
1472        .ooblayout = &mxc_v1_ooblayout_ops,
1473        .select_chip = mxc_nand_select_chip_v1_v3,
1474        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1475        .irqpending_quirk = 1,
1476        .needs_ip = 0,
1477        .regs_offset = 0xe00,
1478        .spare0_offset = 0x800,
1479        .spare_len = 16,
1480        .eccbytes = 3,
1481        .eccsize = 1,
1482};
1483
1484/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1485static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1486        .preset = preset_v1,
1487        .read_page = mxc_nand_read_page_v1,
1488        .send_cmd = send_cmd_v1_v2,
1489        .send_addr = send_addr_v1_v2,
1490        .send_page = send_page_v1,
1491        .send_read_id = send_read_id_v1_v2,
1492        .get_dev_status = get_dev_status_v1_v2,
1493        .check_int = check_int_v1_v2,
1494        .irq_control = irq_control_v1_v2,
1495        .get_ecc_status = get_ecc_status_v1,
1496        .ooblayout = &mxc_v1_ooblayout_ops,
1497        .select_chip = mxc_nand_select_chip_v1_v3,
1498        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1499        .irqpending_quirk = 0,
1500        .needs_ip = 0,
1501        .regs_offset = 0xe00,
1502        .spare0_offset = 0x800,
1503        .axi_offset = 0,
1504        .spare_len = 16,
1505        .eccbytes = 3,
1506        .eccsize = 1,
1507};
1508
1509/* v21: i.MX25, i.MX35 */
1510static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1511        .preset = preset_v2,
1512        .read_page = mxc_nand_read_page_v2_v3,
1513        .send_cmd = send_cmd_v1_v2,
1514        .send_addr = send_addr_v1_v2,
1515        .send_page = send_page_v2,
1516        .send_read_id = send_read_id_v1_v2,
1517        .get_dev_status = get_dev_status_v1_v2,
1518        .check_int = check_int_v1_v2,
1519        .irq_control = irq_control_v1_v2,
1520        .get_ecc_status = get_ecc_status_v2,
1521        .ooblayout = &mxc_v2_ooblayout_ops,
1522        .select_chip = mxc_nand_select_chip_v2,
1523        .setup_interface = mxc_nand_v2_setup_interface,
1524        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1525        .irqpending_quirk = 0,
1526        .needs_ip = 0,
1527        .regs_offset = 0x1e00,
1528        .spare0_offset = 0x1000,
1529        .axi_offset = 0,
1530        .spare_len = 64,
1531        .eccbytes = 9,
1532        .eccsize = 0,
1533};
1534
1535/* v3.2a: i.MX51 */
1536static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1537        .preset = preset_v3,
1538        .read_page = mxc_nand_read_page_v2_v3,
1539        .send_cmd = send_cmd_v3,
1540        .send_addr = send_addr_v3,
1541        .send_page = send_page_v3,
1542        .send_read_id = send_read_id_v3,
1543        .get_dev_status = get_dev_status_v3,
1544        .check_int = check_int_v3,
1545        .irq_control = irq_control_v3,
1546        .get_ecc_status = get_ecc_status_v3,
1547        .ooblayout = &mxc_v2_ooblayout_ops,
1548        .select_chip = mxc_nand_select_chip_v1_v3,
1549        .enable_hwecc = mxc_nand_enable_hwecc_v3,
1550        .irqpending_quirk = 0,
1551        .needs_ip = 1,
1552        .regs_offset = 0,
1553        .spare0_offset = 0x1000,
1554        .axi_offset = 0x1e00,
1555        .spare_len = 64,
1556        .eccbytes = 0,
1557        .eccsize = 0,
1558        .ppb_shift = 7,
1559};
1560
1561/* v3.2b: i.MX53 */
1562static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1563        .preset = preset_v3,
1564        .read_page = mxc_nand_read_page_v2_v3,
1565        .send_cmd = send_cmd_v3,
1566        .send_addr = send_addr_v3,
1567        .send_page = send_page_v3,
1568        .send_read_id = send_read_id_v3,
1569        .get_dev_status = get_dev_status_v3,
1570        .check_int = check_int_v3,
1571        .irq_control = irq_control_v3,
1572        .get_ecc_status = get_ecc_status_v3,
1573        .ooblayout = &mxc_v2_ooblayout_ops,
1574        .select_chip = mxc_nand_select_chip_v1_v3,
1575        .enable_hwecc = mxc_nand_enable_hwecc_v3,
1576        .irqpending_quirk = 0,
1577        .needs_ip = 1,
1578        .regs_offset = 0,
1579        .spare0_offset = 0x1000,
1580        .axi_offset = 0x1e00,
1581        .spare_len = 64,
1582        .eccbytes = 0,
1583        .eccsize = 0,
1584        .ppb_shift = 8,
1585};
1586
1587static inline int is_imx21_nfc(struct mxc_nand_host *host)
1588{
1589        return host->devtype_data == &imx21_nand_devtype_data;
1590}
1591
1592static inline int is_imx27_nfc(struct mxc_nand_host *host)
1593{
1594        return host->devtype_data == &imx27_nand_devtype_data;
1595}
1596
1597static inline int is_imx25_nfc(struct mxc_nand_host *host)
1598{
1599        return host->devtype_data == &imx25_nand_devtype_data;
1600}
1601
1602static inline int is_imx51_nfc(struct mxc_nand_host *host)
1603{
1604        return host->devtype_data == &imx51_nand_devtype_data;
1605}
1606
1607static inline int is_imx53_nfc(struct mxc_nand_host *host)
1608{
1609        return host->devtype_data == &imx53_nand_devtype_data;
1610}
1611
1612static const struct of_device_id mxcnd_dt_ids[] = {
1613        { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1614        { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1615        { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1616        { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1617        { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1618        { /* sentinel */ }
1619};
1620MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1621
1622static int mxcnd_attach_chip(struct nand_chip *chip)
1623{
1624        struct mtd_info *mtd = nand_to_mtd(chip);
1625        struct mxc_nand_host *host = nand_get_controller_data(chip);
1626        struct device *dev = mtd->dev.parent;
1627
1628        chip->ecc.bytes = host->devtype_data->eccbytes;
1629        host->eccsize = host->devtype_data->eccsize;
1630        chip->ecc.size = 512;
1631        mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1632
1633        switch (chip->ecc.engine_type) {
1634        case NAND_ECC_ENGINE_TYPE_ON_HOST:
1635                chip->ecc.read_page = mxc_nand_read_page;
1636                chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1637                chip->ecc.read_oob = mxc_nand_read_oob;
1638                chip->ecc.write_page = mxc_nand_write_page_ecc;
1639                chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1640                chip->ecc.write_oob = mxc_nand_write_oob;
1641                break;
1642
1643        case NAND_ECC_ENGINE_TYPE_SOFT:
1644                break;
1645
1646        default:
1647                return -EINVAL;
1648        }
1649
1650        if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1651                chip->bbt_td = &bbt_main_descr;
1652                chip->bbt_md = &bbt_mirror_descr;
1653        }
1654
1655        /* Allocate the right size buffer now */
1656        devm_kfree(dev, (void *)host->data_buf);
1657        host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1658                                      GFP_KERNEL);
1659        if (!host->data_buf)
1660                return -ENOMEM;
1661
1662        /* Call preset again, with correct writesize chip time */
1663        host->devtype_data->preset(mtd);
1664
1665        if (!chip->ecc.bytes) {
1666                if (host->eccsize == 8)
1667                        chip->ecc.bytes = 18;
1668                else if (host->eccsize == 4)
1669                        chip->ecc.bytes = 9;
1670        }
1671
1672        /*
1673         * Experimentation shows that i.MX NFC can only handle up to 218 oob
1674         * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1675         * into copying invalid data to/from the spare IO buffer, as this
1676         * might cause ECC data corruption when doing sub-page write to a
1677         * partially written page.
1678         */
1679        host->used_oobsize = min(mtd->oobsize, 218U);
1680
1681        if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1682                if (is_imx21_nfc(host) || is_imx27_nfc(host))
1683                        chip->ecc.strength = 1;
1684                else
1685                        chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1686        }
1687
1688        return 0;
1689}
1690
1691static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1692                                 const struct nand_interface_config *conf)
1693{
1694        struct mxc_nand_host *host = nand_get_controller_data(chip);
1695
1696        return host->devtype_data->setup_interface(chip, chipnr, conf);
1697}
1698
1699static const struct nand_controller_ops mxcnd_controller_ops = {
1700        .attach_chip = mxcnd_attach_chip,
1701        .setup_interface = mxcnd_setup_interface,
1702};
1703
1704static int mxcnd_probe(struct platform_device *pdev)
1705{
1706        struct nand_chip *this;
1707        struct mtd_info *mtd;
1708        struct mxc_nand_host *host;
1709        struct resource *res;
1710        int err = 0;
1711
1712        /* Allocate memory for MTD device structure and private data */
1713        host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1714                        GFP_KERNEL);
1715        if (!host)
1716                return -ENOMEM;
1717
1718        /* allocate a temporary buffer for the nand_scan_ident() */
1719        host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1720        if (!host->data_buf)
1721                return -ENOMEM;
1722
1723        host->dev = &pdev->dev;
1724        /* structures must be linked */
1725        this = &host->nand;
1726        mtd = nand_to_mtd(this);
1727        mtd->dev.parent = &pdev->dev;
1728        mtd->name = DRIVER_NAME;
1729
1730        /* 50 us command delay time */
1731        this->legacy.chip_delay = 5;
1732
1733        nand_set_controller_data(this, host);
1734        nand_set_flash_node(this, pdev->dev.of_node);
1735        this->legacy.dev_ready = mxc_nand_dev_ready;
1736        this->legacy.cmdfunc = mxc_nand_command;
1737        this->legacy.read_byte = mxc_nand_read_byte;
1738        this->legacy.write_buf = mxc_nand_write_buf;
1739        this->legacy.read_buf = mxc_nand_read_buf;
1740        this->legacy.set_features = mxc_nand_set_features;
1741        this->legacy.get_features = mxc_nand_get_features;
1742
1743        host->clk = devm_clk_get(&pdev->dev, NULL);
1744        if (IS_ERR(host->clk))
1745                return PTR_ERR(host->clk);
1746
1747        host->devtype_data = device_get_match_data(&pdev->dev);
1748
1749        if (!host->devtype_data->setup_interface)
1750                this->options |= NAND_KEEP_TIMINGS;
1751
1752        if (host->devtype_data->needs_ip) {
1753                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1754                host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1755                if (IS_ERR(host->regs_ip))
1756                        return PTR_ERR(host->regs_ip);
1757
1758                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1759        } else {
1760                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1761        }
1762
1763        host->base = devm_ioremap_resource(&pdev->dev, res);
1764        if (IS_ERR(host->base))
1765                return PTR_ERR(host->base);
1766
1767        host->main_area0 = host->base;
1768
1769        if (host->devtype_data->regs_offset)
1770                host->regs = host->base + host->devtype_data->regs_offset;
1771        host->spare0 = host->base + host->devtype_data->spare0_offset;
1772        if (host->devtype_data->axi_offset)
1773                host->regs_axi = host->base + host->devtype_data->axi_offset;
1774
1775        this->legacy.select_chip = host->devtype_data->select_chip;
1776
1777        init_completion(&host->op_completion);
1778
1779        host->irq = platform_get_irq(pdev, 0);
1780        if (host->irq < 0)
1781                return host->irq;
1782
1783        /*
1784         * Use host->devtype_data->irq_control() here instead of irq_control()
1785         * because we must not disable_irq_nosync without having requested the
1786         * irq.
1787         */
1788        host->devtype_data->irq_control(host, 0);
1789
1790        err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1791                        0, DRIVER_NAME, host);
1792        if (err)
1793                return err;
1794
1795        err = clk_prepare_enable(host->clk);
1796        if (err)
1797                return err;
1798        host->clk_act = 1;
1799
1800        /*
1801         * Now that we "own" the interrupt make sure the interrupt mask bit is
1802         * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1803         * on this machine.
1804         */
1805        if (host->devtype_data->irqpending_quirk) {
1806                disable_irq_nosync(host->irq);
1807                host->devtype_data->irq_control(host, 1);
1808        }
1809
1810        /* Scan the NAND device */
1811        this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1812        err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1813        if (err)
1814                goto escan;
1815
1816        /* Register the partitions */
1817        err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1818        if (err)
1819                goto cleanup_nand;
1820
1821        platform_set_drvdata(pdev, host);
1822
1823        return 0;
1824
1825cleanup_nand:
1826        nand_cleanup(this);
1827escan:
1828        if (host->clk_act)
1829                clk_disable_unprepare(host->clk);
1830
1831        return err;
1832}
1833
1834static int mxcnd_remove(struct platform_device *pdev)
1835{
1836        struct mxc_nand_host *host = platform_get_drvdata(pdev);
1837        struct nand_chip *chip = &host->nand;
1838        int ret;
1839
1840        ret = mtd_device_unregister(nand_to_mtd(chip));
1841        WARN_ON(ret);
1842        nand_cleanup(chip);
1843        if (host->clk_act)
1844                clk_disable_unprepare(host->clk);
1845
1846        return 0;
1847}
1848
1849static struct platform_driver mxcnd_driver = {
1850        .driver = {
1851                   .name = DRIVER_NAME,
1852                   .of_match_table = mxcnd_dt_ids,
1853        },
1854        .probe = mxcnd_probe,
1855        .remove = mxcnd_remove,
1856};
1857module_platform_driver(mxcnd_driver);
1858
1859MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1860MODULE_DESCRIPTION("MXC NAND MTD driver");
1861MODULE_LICENSE("GPL");
1862