linux/drivers/mtd/nand/raw/mxic_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2019 Macronix International Co., Ltd.
   4 *
   5 * Author:
   6 *      Mason Yang <masonccyang@mxic.com.tw>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/io.h>
  11#include <linux/iopoll.h>
  12#include <linux/interrupt.h>
  13#include <linux/module.h>
  14#include <linux/mtd/mtd.h>
  15#include <linux/mtd/nand-ecc-sw-hamming.h>
  16#include <linux/mtd/rawnand.h>
  17#include <linux/platform_device.h>
  18
  19#include "internals.h"
  20
  21#define HC_CFG                  0x0
  22#define HC_CFG_IF_CFG(x)        ((x) << 27)
  23#define HC_CFG_DUAL_SLAVE       BIT(31)
  24#define HC_CFG_INDIVIDUAL       BIT(30)
  25#define HC_CFG_NIO(x)           (((x) / 4) << 27)
  26#define HC_CFG_TYPE(s, t)       ((t) << (23 + ((s) * 2)))
  27#define HC_CFG_TYPE_SPI_NOR     0
  28#define HC_CFG_TYPE_SPI_NAND    1
  29#define HC_CFG_TYPE_SPI_RAM     2
  30#define HC_CFG_TYPE_RAW_NAND    3
  31#define HC_CFG_SLV_ACT(x)       ((x) << 21)
  32#define HC_CFG_CLK_PH_EN        BIT(20)
  33#define HC_CFG_CLK_POL_INV      BIT(19)
  34#define HC_CFG_BIG_ENDIAN       BIT(18)
  35#define HC_CFG_DATA_PASS        BIT(17)
  36#define HC_CFG_IDLE_SIO_LVL(x)  ((x) << 16)
  37#define HC_CFG_MAN_START_EN     BIT(3)
  38#define HC_CFG_MAN_START        BIT(2)
  39#define HC_CFG_MAN_CS_EN        BIT(1)
  40#define HC_CFG_MAN_CS_ASSERT    BIT(0)
  41
  42#define INT_STS                 0x4
  43#define INT_STS_EN              0x8
  44#define INT_SIG_EN              0xc
  45#define INT_STS_ALL             GENMASK(31, 0)
  46#define INT_RDY_PIN             BIT(26)
  47#define INT_RDY_SR              BIT(25)
  48#define INT_LNR_SUSP            BIT(24)
  49#define INT_ECC_ERR             BIT(17)
  50#define INT_CRC_ERR             BIT(16)
  51#define INT_LWR_DIS             BIT(12)
  52#define INT_LRD_DIS             BIT(11)
  53#define INT_SDMA_INT            BIT(10)
  54#define INT_DMA_FINISH          BIT(9)
  55#define INT_RX_NOT_FULL         BIT(3)
  56#define INT_RX_NOT_EMPTY        BIT(2)
  57#define INT_TX_NOT_FULL         BIT(1)
  58#define INT_TX_EMPTY            BIT(0)
  59
  60#define HC_EN                   0x10
  61#define HC_EN_BIT               BIT(0)
  62
  63#define TXD(x)                  (0x14 + ((x) * 4))
  64#define RXD                     0x24
  65
  66#define SS_CTRL(s)              (0x30 + ((s) * 4))
  67#define LRD_CFG                 0x44
  68#define LWR_CFG                 0x80
  69#define RWW_CFG                 0x70
  70#define OP_READ                 BIT(23)
  71#define OP_DUMMY_CYC(x)         ((x) << 17)
  72#define OP_ADDR_BYTES(x)        ((x) << 14)
  73#define OP_CMD_BYTES(x)         (((x) - 1) << 13)
  74#define OP_OCTA_CRC_EN          BIT(12)
  75#define OP_DQS_EN               BIT(11)
  76#define OP_ENHC_EN              BIT(10)
  77#define OP_PREAMBLE_EN          BIT(9)
  78#define OP_DATA_DDR             BIT(8)
  79#define OP_DATA_BUSW(x)         ((x) << 6)
  80#define OP_ADDR_DDR             BIT(5)
  81#define OP_ADDR_BUSW(x)         ((x) << 3)
  82#define OP_CMD_DDR              BIT(2)
  83#define OP_CMD_BUSW(x)          (x)
  84#define OP_BUSW_1               0
  85#define OP_BUSW_2               1
  86#define OP_BUSW_4               2
  87#define OP_BUSW_8               3
  88
  89#define OCTA_CRC                0x38
  90#define OCTA_CRC_IN_EN(s)       BIT(3 + ((s) * 16))
  91#define OCTA_CRC_CHUNK(s, x)    ((fls((x) / 32)) << (1 + ((s) * 16)))
  92#define OCTA_CRC_OUT_EN(s)      BIT(0 + ((s) * 16))
  93
  94#define ONFI_DIN_CNT(s)         (0x3c + (s))
  95
  96#define LRD_CTRL                0x48
  97#define RWW_CTRL                0x74
  98#define LWR_CTRL                0x84
  99#define LMODE_EN                BIT(31)
 100#define LMODE_SLV_ACT(x)        ((x) << 21)
 101#define LMODE_CMD1(x)           ((x) << 8)
 102#define LMODE_CMD0(x)           (x)
 103
 104#define LRD_ADDR                0x4c
 105#define LWR_ADDR                0x88
 106#define LRD_RANGE               0x50
 107#define LWR_RANGE               0x8c
 108
 109#define AXI_SLV_ADDR            0x54
 110
 111#define DMAC_RD_CFG             0x58
 112#define DMAC_WR_CFG             0x94
 113#define DMAC_CFG_PERIPH_EN      BIT(31)
 114#define DMAC_CFG_ALLFLUSH_EN    BIT(30)
 115#define DMAC_CFG_LASTFLUSH_EN   BIT(29)
 116#define DMAC_CFG_QE(x)          (((x) + 1) << 16)
 117#define DMAC_CFG_BURST_LEN(x)   (((x) + 1) << 12)
 118#define DMAC_CFG_BURST_SZ(x)    ((x) << 8)
 119#define DMAC_CFG_DIR_READ       BIT(1)
 120#define DMAC_CFG_START          BIT(0)
 121
 122#define DMAC_RD_CNT             0x5c
 123#define DMAC_WR_CNT             0x98
 124
 125#define SDMA_ADDR               0x60
 126
 127#define DMAM_CFG                0x64
 128#define DMAM_CFG_START          BIT(31)
 129#define DMAM_CFG_CONT           BIT(30)
 130#define DMAM_CFG_SDMA_GAP(x)    (fls((x) / 8192) << 2)
 131#define DMAM_CFG_DIR_READ       BIT(1)
 132#define DMAM_CFG_EN             BIT(0)
 133
 134#define DMAM_CNT                0x68
 135
 136#define LNR_TIMER_TH            0x6c
 137
 138#define RDM_CFG0                0x78
 139#define RDM_CFG0_POLY(x)        (x)
 140
 141#define RDM_CFG1                0x7c
 142#define RDM_CFG1_RDM_EN         BIT(31)
 143#define RDM_CFG1_SEED(x)        (x)
 144
 145#define LWR_SUSP_CTRL           0x90
 146#define LWR_SUSP_CTRL_EN        BIT(31)
 147
 148#define DMAS_CTRL               0x9c
 149#define DMAS_CTRL_EN            BIT(31)
 150#define DMAS_CTRL_DIR_READ      BIT(30)
 151
 152#define DATA_STROB              0xa0
 153#define DATA_STROB_EDO_EN       BIT(2)
 154#define DATA_STROB_INV_POL      BIT(1)
 155#define DATA_STROB_DELAY_2CYC   BIT(0)
 156
 157#define IDLY_CODE(x)            (0xa4 + ((x) * 4))
 158#define IDLY_CODE_VAL(x, v)     ((v) << (((x) % 4) * 8))
 159
 160#define GPIO                    0xc4
 161#define GPIO_PT(x)              BIT(3 + ((x) * 16))
 162#define GPIO_RESET(x)           BIT(2 + ((x) * 16))
 163#define GPIO_HOLDB(x)           BIT(1 + ((x) * 16))
 164#define GPIO_WPB(x)             BIT((x) * 16)
 165
 166#define HC_VER                  0xd0
 167
 168#define HW_TEST(x)              (0xe0 + ((x) * 4))
 169
 170#define MXIC_NFC_MAX_CLK_HZ     50000000
 171#define IRQ_TIMEOUT             1000
 172
 173struct mxic_nand_ctlr {
 174        struct clk *ps_clk;
 175        struct clk *send_clk;
 176        struct clk *send_dly_clk;
 177        struct completion complete;
 178        void __iomem *regs;
 179        struct nand_controller controller;
 180        struct device *dev;
 181        struct nand_chip chip;
 182};
 183
 184static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
 185{
 186        int ret;
 187
 188        ret = clk_prepare_enable(nfc->ps_clk);
 189        if (ret)
 190                return ret;
 191
 192        ret = clk_prepare_enable(nfc->send_clk);
 193        if (ret)
 194                goto err_ps_clk;
 195
 196        ret = clk_prepare_enable(nfc->send_dly_clk);
 197        if (ret)
 198                goto err_send_dly_clk;
 199
 200        return ret;
 201
 202err_send_dly_clk:
 203        clk_disable_unprepare(nfc->send_clk);
 204err_ps_clk:
 205        clk_disable_unprepare(nfc->ps_clk);
 206
 207        return ret;
 208}
 209
 210static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
 211{
 212        clk_disable_unprepare(nfc->send_clk);
 213        clk_disable_unprepare(nfc->send_dly_clk);
 214        clk_disable_unprepare(nfc->ps_clk);
 215}
 216
 217static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
 218{
 219        writel(IDLY_CODE_VAL(0, idly_code) |
 220               IDLY_CODE_VAL(1, idly_code) |
 221               IDLY_CODE_VAL(2, idly_code) |
 222               IDLY_CODE_VAL(3, idly_code),
 223               nfc->regs + IDLY_CODE(0));
 224        writel(IDLY_CODE_VAL(4, idly_code) |
 225               IDLY_CODE_VAL(5, idly_code) |
 226               IDLY_CODE_VAL(6, idly_code) |
 227               IDLY_CODE_VAL(7, idly_code),
 228               nfc->regs + IDLY_CODE(1));
 229}
 230
 231static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
 232{
 233        int ret;
 234
 235        ret = clk_set_rate(nfc->send_clk, freq);
 236        if (ret)
 237                return ret;
 238
 239        ret = clk_set_rate(nfc->send_dly_clk, freq);
 240        if (ret)
 241                return ret;
 242
 243        /*
 244         * A constant delay range from 0x0 ~ 0x1F for input delay,
 245         * the unit is 78 ps, the max input delay is 2.418 ns.
 246         */
 247        mxic_nfc_set_input_delay(nfc, 0xf);
 248
 249        /*
 250         * Phase degree = 360 * freq * output-delay
 251         * where output-delay is a constant value 1 ns in FPGA.
 252         *
 253         * Get Phase degree = 360 * freq * 1 ns
 254         *                  = 360 * freq * 1 sec / 1000000000
 255         *                  = 9 * freq / 25000000
 256         */
 257        ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
 258        if (ret)
 259                return ret;
 260
 261        return 0;
 262}
 263
 264static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
 265{
 266        int ret;
 267
 268        if (freq > MXIC_NFC_MAX_CLK_HZ)
 269                freq = MXIC_NFC_MAX_CLK_HZ;
 270
 271        mxic_nfc_clk_disable(nfc);
 272        ret = mxic_nfc_clk_setup(nfc, freq);
 273        if (ret)
 274                return ret;
 275
 276        ret = mxic_nfc_clk_enable(nfc);
 277        if (ret)
 278                return ret;
 279
 280        return 0;
 281}
 282
 283static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
 284{
 285        struct mxic_nand_ctlr *nfc = dev_id;
 286        u32 sts;
 287
 288        sts = readl(nfc->regs + INT_STS);
 289        if (sts & INT_RDY_PIN)
 290                complete(&nfc->complete);
 291        else
 292                return IRQ_NONE;
 293
 294        return IRQ_HANDLED;
 295}
 296
 297static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
 298{
 299        writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
 300               HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
 301               HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
 302        writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
 303        writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
 304        writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
 305        writel(0, nfc->regs + LRD_CFG);
 306        writel(0, nfc->regs + LRD_CTRL);
 307        writel(0x0, nfc->regs + HC_EN);
 308}
 309
 310static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
 311{
 312        writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
 313               nfc->regs + HC_CFG);
 314        writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
 315               nfc->regs + HC_CFG);
 316}
 317
 318static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
 319{
 320        writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
 321               nfc->regs + HC_CFG);
 322}
 323
 324static int  mxic_nfc_wait_ready(struct nand_chip *chip)
 325{
 326        struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
 327        int ret;
 328
 329        ret = wait_for_completion_timeout(&nfc->complete,
 330                                          msecs_to_jiffies(IRQ_TIMEOUT));
 331        if (!ret) {
 332                dev_err(nfc->dev, "nand device timeout\n");
 333                return -ETIMEDOUT;
 334        }
 335
 336        return 0;
 337}
 338
 339static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
 340                              void *rxbuf, unsigned int len)
 341{
 342        unsigned int pos = 0;
 343
 344        while (pos < len) {
 345                unsigned int nbytes = len - pos;
 346                u32 data = 0xffffffff;
 347                u32 sts;
 348                int ret;
 349
 350                if (nbytes > 4)
 351                        nbytes = 4;
 352
 353                if (txbuf)
 354                        memcpy(&data, txbuf + pos, nbytes);
 355
 356                ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
 357                                         sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
 358                if (ret)
 359                        return ret;
 360
 361                writel(data, nfc->regs + TXD(nbytes % 4));
 362
 363                ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
 364                                         sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
 365                if (ret)
 366                        return ret;
 367
 368                ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
 369                                         sts & INT_RX_NOT_EMPTY, 0,
 370                                         USEC_PER_SEC);
 371                if (ret)
 372                        return ret;
 373
 374                data = readl(nfc->regs + RXD);
 375                if (rxbuf) {
 376                        data >>= (8 * (4 - nbytes));
 377                        memcpy(rxbuf + pos, &data, nbytes);
 378                }
 379                if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
 380                        dev_warn(nfc->dev, "RX FIFO not empty\n");
 381
 382                pos += nbytes;
 383        }
 384
 385        return 0;
 386}
 387
 388static int mxic_nfc_exec_op(struct nand_chip *chip,
 389                            const struct nand_operation *op, bool check_only)
 390{
 391        struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
 392        const struct nand_op_instr *instr = NULL;
 393        int ret = 0;
 394        unsigned int op_id;
 395
 396        if (check_only)
 397                return 0;
 398
 399        mxic_nfc_cs_enable(nfc);
 400        init_completion(&nfc->complete);
 401        for (op_id = 0; op_id < op->ninstrs; op_id++) {
 402                instr = &op->instrs[op_id];
 403
 404                switch (instr->type) {
 405                case NAND_OP_CMD_INSTR:
 406                        writel(0, nfc->regs + HC_EN);
 407                        writel(HC_EN_BIT, nfc->regs + HC_EN);
 408                        writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
 409                               OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
 410
 411                        ret = mxic_nfc_data_xfer(nfc,
 412                                                 &instr->ctx.cmd.opcode,
 413                                                 NULL, 1);
 414                        break;
 415
 416                case NAND_OP_ADDR_INSTR:
 417                        writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
 418                               OP_ADDR_BYTES(instr->ctx.addr.naddrs),
 419                               nfc->regs + SS_CTRL(0));
 420                        ret = mxic_nfc_data_xfer(nfc,
 421                                                 instr->ctx.addr.addrs, NULL,
 422                                                 instr->ctx.addr.naddrs);
 423                        break;
 424
 425                case NAND_OP_DATA_IN_INSTR:
 426                        writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
 427                        writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
 428                               OP_READ, nfc->regs + SS_CTRL(0));
 429                        ret = mxic_nfc_data_xfer(nfc, NULL,
 430                                                 instr->ctx.data.buf.in,
 431                                                 instr->ctx.data.len);
 432                        break;
 433
 434                case NAND_OP_DATA_OUT_INSTR:
 435                        writel(instr->ctx.data.len,
 436                               nfc->regs + ONFI_DIN_CNT(0));
 437                        writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
 438                               nfc->regs + SS_CTRL(0));
 439                        ret = mxic_nfc_data_xfer(nfc,
 440                                                 instr->ctx.data.buf.out, NULL,
 441                                                 instr->ctx.data.len);
 442                        break;
 443
 444                case NAND_OP_WAITRDY_INSTR:
 445                        ret = mxic_nfc_wait_ready(chip);
 446                        break;
 447                }
 448        }
 449        mxic_nfc_cs_disable(nfc);
 450
 451        return ret;
 452}
 453
 454static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr,
 455                                    const struct nand_interface_config *conf)
 456{
 457        struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
 458        const struct nand_sdr_timings *sdr;
 459        unsigned long freq;
 460        int ret;
 461
 462        sdr = nand_get_sdr_timings(conf);
 463        if (IS_ERR(sdr))
 464                return PTR_ERR(sdr);
 465
 466        if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
 467                return 0;
 468
 469        freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
 470
 471        ret =  mxic_nfc_set_freq(nfc, freq);
 472        if (ret)
 473                dev_err(nfc->dev, "set freq:%ld failed\n", freq);
 474
 475        if (sdr->tRC_min < 30000)
 476                writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
 477
 478        return 0;
 479}
 480
 481static const struct nand_controller_ops mxic_nand_controller_ops = {
 482        .exec_op = mxic_nfc_exec_op,
 483        .setup_interface = mxic_nfc_setup_interface,
 484};
 485
 486static int mxic_nfc_probe(struct platform_device *pdev)
 487{
 488        struct device_node *nand_np, *np = pdev->dev.of_node;
 489        struct mtd_info *mtd;
 490        struct mxic_nand_ctlr *nfc;
 491        struct nand_chip *nand_chip;
 492        int err;
 493        int irq;
 494
 495        nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
 496                           GFP_KERNEL);
 497        if (!nfc)
 498                return -ENOMEM;
 499
 500        nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
 501        if (IS_ERR(nfc->ps_clk))
 502                return PTR_ERR(nfc->ps_clk);
 503
 504        nfc->send_clk = devm_clk_get(&pdev->dev, "send");
 505        if (IS_ERR(nfc->send_clk))
 506                return PTR_ERR(nfc->send_clk);
 507
 508        nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
 509        if (IS_ERR(nfc->send_dly_clk))
 510                return PTR_ERR(nfc->send_dly_clk);
 511
 512        nfc->regs = devm_platform_ioremap_resource(pdev, 0);
 513        if (IS_ERR(nfc->regs))
 514                return PTR_ERR(nfc->regs);
 515
 516        nand_chip = &nfc->chip;
 517        mtd = nand_to_mtd(nand_chip);
 518        mtd->dev.parent = &pdev->dev;
 519
 520        for_each_child_of_node(np, nand_np)
 521                nand_set_flash_node(nand_chip, nand_np);
 522
 523        nand_chip->priv = nfc;
 524        nfc->dev = &pdev->dev;
 525        nfc->controller.ops = &mxic_nand_controller_ops;
 526        nand_controller_init(&nfc->controller);
 527        nand_chip->controller = &nfc->controller;
 528
 529        irq = platform_get_irq(pdev, 0);
 530        if (irq < 0)
 531                return irq;
 532
 533        mxic_nfc_hw_init(nfc);
 534
 535        err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
 536                               0, "mxic-nfc", nfc);
 537        if (err)
 538                goto fail;
 539
 540        err = nand_scan(nand_chip, 1);
 541        if (err)
 542                goto fail;
 543
 544        err = mtd_device_register(mtd, NULL, 0);
 545        if (err)
 546                goto fail;
 547
 548        platform_set_drvdata(pdev, nfc);
 549        return 0;
 550
 551fail:
 552        mxic_nfc_clk_disable(nfc);
 553        return err;
 554}
 555
 556static int mxic_nfc_remove(struct platform_device *pdev)
 557{
 558        struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
 559        struct nand_chip *chip = &nfc->chip;
 560        int ret;
 561
 562        ret = mtd_device_unregister(nand_to_mtd(chip));
 563        WARN_ON(ret);
 564        nand_cleanup(chip);
 565
 566        mxic_nfc_clk_disable(nfc);
 567        return 0;
 568}
 569
 570static const struct of_device_id mxic_nfc_of_ids[] = {
 571        { .compatible = "mxic,multi-itfc-v009-nand-controller", },
 572        {},
 573};
 574MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
 575
 576static struct platform_driver mxic_nfc_driver = {
 577        .probe = mxic_nfc_probe,
 578        .remove = mxic_nfc_remove,
 579        .driver = {
 580                .name = "mxic-nfc",
 581                .of_match_table = mxic_nfc_of_ids,
 582        },
 583};
 584module_platform_driver(mxic_nfc_driver);
 585
 586MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
 587MODULE_DESCRIPTION("Macronix raw NAND controller driver");
 588MODULE_LICENSE("GPL v2");
 589