linux/drivers/mtd/nand/raw/nand_legacy.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
   4 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
   5 *
   6 *  Credits:
   7 *      David Woodhouse for adding multichip support
   8 *
   9 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  10 *      rework for 2K page size chips
  11 *
  12 * This file contains all legacy helpers/code that should be removed
  13 * at some point.
  14 */
  15
  16#include <linux/delay.h>
  17#include <linux/io.h>
  18#include <linux/nmi.h>
  19
  20#include "internals.h"
  21
  22/**
  23 * nand_read_byte - [DEFAULT] read one byte from the chip
  24 * @chip: NAND chip object
  25 *
  26 * Default read function for 8bit buswidth
  27 */
  28static uint8_t nand_read_byte(struct nand_chip *chip)
  29{
  30        return readb(chip->legacy.IO_ADDR_R);
  31}
  32
  33/**
  34 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
  35 * @chip: NAND chip object
  36 *
  37 * Default read function for 16bit buswidth with endianness conversion.
  38 *
  39 */
  40static uint8_t nand_read_byte16(struct nand_chip *chip)
  41{
  42        return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
  43}
  44
  45/**
  46 * nand_select_chip - [DEFAULT] control CE line
  47 * @chip: NAND chip object
  48 * @chipnr: chipnumber to select, -1 for deselect
  49 *
  50 * Default select function for 1 chip devices.
  51 */
  52static void nand_select_chip(struct nand_chip *chip, int chipnr)
  53{
  54        switch (chipnr) {
  55        case -1:
  56                chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
  57                                      0 | NAND_CTRL_CHANGE);
  58                break;
  59        case 0:
  60                break;
  61
  62        default:
  63                BUG();
  64        }
  65}
  66
  67/**
  68 * nand_write_byte - [DEFAULT] write single byte to chip
  69 * @chip: NAND chip object
  70 * @byte: value to write
  71 *
  72 * Default function to write a byte to I/O[7:0]
  73 */
  74static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
  75{
  76        chip->legacy.write_buf(chip, &byte, 1);
  77}
  78
  79/**
  80 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
  81 * @chip: NAND chip object
  82 * @byte: value to write
  83 *
  84 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
  85 */
  86static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
  87{
  88        uint16_t word = byte;
  89
  90        /*
  91         * It's not entirely clear what should happen to I/O[15:8] when writing
  92         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
  93         *
  94         *    When the host supports a 16-bit bus width, only data is
  95         *    transferred at the 16-bit width. All address and command line
  96         *    transfers shall use only the lower 8-bits of the data bus. During
  97         *    command transfers, the host may place any value on the upper
  98         *    8-bits of the data bus. During address transfers, the host shall
  99         *    set the upper 8-bits of the data bus to 00h.
 100         *
 101         * One user of the write_byte callback is nand_set_features. The
 102         * four parameters are specified to be written to I/O[7:0], but this is
 103         * neither an address nor a command transfer. Let's assume a 0 on the
 104         * upper I/O lines is OK.
 105         */
 106        chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
 107}
 108
 109/**
 110 * nand_write_buf - [DEFAULT] write buffer to chip
 111 * @chip: NAND chip object
 112 * @buf: data buffer
 113 * @len: number of bytes to write
 114 *
 115 * Default write function for 8bit buswidth.
 116 */
 117static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 118{
 119        iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
 120}
 121
 122/**
 123 * nand_read_buf - [DEFAULT] read chip data into buffer
 124 * @chip: NAND chip object
 125 * @buf: buffer to store date
 126 * @len: number of bytes to read
 127 *
 128 * Default read function for 8bit buswidth.
 129 */
 130static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 131{
 132        ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
 133}
 134
 135/**
 136 * nand_write_buf16 - [DEFAULT] write buffer to chip
 137 * @chip: NAND chip object
 138 * @buf: data buffer
 139 * @len: number of bytes to write
 140 *
 141 * Default write function for 16bit buswidth.
 142 */
 143static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
 144                             int len)
 145{
 146        u16 *p = (u16 *) buf;
 147
 148        iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
 149}
 150
 151/**
 152 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 153 * @chip: NAND chip object
 154 * @buf: buffer to store date
 155 * @len: number of bytes to read
 156 *
 157 * Default read function for 16bit buswidth.
 158 */
 159static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
 160{
 161        u16 *p = (u16 *) buf;
 162
 163        ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
 164}
 165
 166/**
 167 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 168 * @chip: NAND chip object
 169 * @timeo: Timeout
 170 *
 171 * Helper function for nand_wait_ready used when needing to wait in interrupt
 172 * context.
 173 */
 174static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
 175{
 176        int i;
 177
 178        /* Wait for the device to get ready */
 179        for (i = 0; i < timeo; i++) {
 180                if (chip->legacy.dev_ready(chip))
 181                        break;
 182                touch_softlockup_watchdog();
 183                mdelay(1);
 184        }
 185}
 186
 187/**
 188 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 189 * @chip: NAND chip object
 190 *
 191 * Wait for the ready pin after a command, and warn if a timeout occurs.
 192 */
 193void nand_wait_ready(struct nand_chip *chip)
 194{
 195        struct mtd_info *mtd = nand_to_mtd(chip);
 196        unsigned long timeo = 400;
 197
 198        if (mtd->oops_panic_write)
 199                return panic_nand_wait_ready(chip, timeo);
 200
 201        /* Wait until command is processed or timeout occurs */
 202        timeo = jiffies + msecs_to_jiffies(timeo);
 203        do {
 204                if (chip->legacy.dev_ready(chip))
 205                        return;
 206                cond_resched();
 207        } while (time_before(jiffies, timeo));
 208
 209        if (!chip->legacy.dev_ready(chip))
 210                pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
 211}
 212EXPORT_SYMBOL_GPL(nand_wait_ready);
 213
 214/**
 215 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 216 * @chip: NAND chip object
 217 * @timeo: Timeout in ms
 218 *
 219 * Wait for status ready (i.e. command done) or timeout.
 220 */
 221static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
 222{
 223        int ret;
 224
 225        timeo = jiffies + msecs_to_jiffies(timeo);
 226        do {
 227                u8 status;
 228
 229                ret = nand_read_data_op(chip, &status, sizeof(status), true,
 230                                        false);
 231                if (ret)
 232                        return;
 233
 234                if (status & NAND_STATUS_READY)
 235                        break;
 236                touch_softlockup_watchdog();
 237        } while (time_before(jiffies, timeo));
 238};
 239
 240/**
 241 * nand_command - [DEFAULT] Send command to NAND device
 242 * @chip: NAND chip object
 243 * @command: the command to be sent
 244 * @column: the column address for this command, -1 if none
 245 * @page_addr: the page address for this command, -1 if none
 246 *
 247 * Send command to NAND device. This function is used for small page devices
 248 * (512 Bytes per page).
 249 */
 250static void nand_command(struct nand_chip *chip, unsigned int command,
 251                         int column, int page_addr)
 252{
 253        struct mtd_info *mtd = nand_to_mtd(chip);
 254        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 255
 256        /* Write out the command to the device */
 257        if (command == NAND_CMD_SEQIN) {
 258                int readcmd;
 259
 260                if (column >= mtd->writesize) {
 261                        /* OOB area */
 262                        column -= mtd->writesize;
 263                        readcmd = NAND_CMD_READOOB;
 264                } else if (column < 256) {
 265                        /* First 256 bytes --> READ0 */
 266                        readcmd = NAND_CMD_READ0;
 267                } else {
 268                        column -= 256;
 269                        readcmd = NAND_CMD_READ1;
 270                }
 271                chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
 272                ctrl &= ~NAND_CTRL_CHANGE;
 273        }
 274        if (command != NAND_CMD_NONE)
 275                chip->legacy.cmd_ctrl(chip, command, ctrl);
 276
 277        /* Address cycle, when necessary */
 278        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 279        /* Serially input address */
 280        if (column != -1) {
 281                /* Adjust columns for 16 bit buswidth */
 282                if (chip->options & NAND_BUSWIDTH_16 &&
 283                                !nand_opcode_8bits(command))
 284                        column >>= 1;
 285                chip->legacy.cmd_ctrl(chip, column, ctrl);
 286                ctrl &= ~NAND_CTRL_CHANGE;
 287        }
 288        if (page_addr != -1) {
 289                chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
 290                ctrl &= ~NAND_CTRL_CHANGE;
 291                chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
 292                if (chip->options & NAND_ROW_ADDR_3)
 293                        chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
 294        }
 295        chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 296                              NAND_NCE | NAND_CTRL_CHANGE);
 297
 298        /*
 299         * Program and erase have their own busy handlers status and sequential
 300         * in needs no delay
 301         */
 302        switch (command) {
 303
 304        case NAND_CMD_NONE:
 305        case NAND_CMD_PAGEPROG:
 306        case NAND_CMD_ERASE1:
 307        case NAND_CMD_ERASE2:
 308        case NAND_CMD_SEQIN:
 309        case NAND_CMD_STATUS:
 310        case NAND_CMD_READID:
 311        case NAND_CMD_SET_FEATURES:
 312                return;
 313
 314        case NAND_CMD_RESET:
 315                if (chip->legacy.dev_ready)
 316                        break;
 317                udelay(chip->legacy.chip_delay);
 318                chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
 319                                      NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 320                chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 321                                      NAND_NCE | NAND_CTRL_CHANGE);
 322                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 323                nand_wait_status_ready(chip, 250);
 324                return;
 325
 326                /* This applies to read commands */
 327        case NAND_CMD_READ0:
 328                /*
 329                 * READ0 is sometimes used to exit GET STATUS mode. When this
 330                 * is the case no address cycles are requested, and we can use
 331                 * this information to detect that we should not wait for the
 332                 * device to be ready.
 333                 */
 334                if (column == -1 && page_addr == -1)
 335                        return;
 336                fallthrough;
 337        default:
 338                /*
 339                 * If we don't have access to the busy pin, we apply the given
 340                 * command delay
 341                 */
 342                if (!chip->legacy.dev_ready) {
 343                        udelay(chip->legacy.chip_delay);
 344                        return;
 345                }
 346        }
 347        /*
 348         * Apply this short delay always to ensure that we do wait tWB in
 349         * any case on any machine.
 350         */
 351        ndelay(100);
 352
 353        nand_wait_ready(chip);
 354}
 355
 356static void nand_ccs_delay(struct nand_chip *chip)
 357{
 358        const struct nand_sdr_timings *sdr =
 359                nand_get_sdr_timings(nand_get_interface_config(chip));
 360
 361        /*
 362         * The controller already takes care of waiting for tCCS when the RNDIN
 363         * or RNDOUT command is sent, return directly.
 364         */
 365        if (!(chip->options & NAND_WAIT_TCCS))
 366                return;
 367
 368        /*
 369         * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
 370         * (which should be safe for all NANDs).
 371         */
 372        if (!IS_ERR(sdr) && nand_controller_can_setup_interface(chip))
 373                ndelay(sdr->tCCS_min / 1000);
 374        else
 375                ndelay(500);
 376}
 377
 378/**
 379 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 380 * @chip: NAND chip object
 381 * @command: the command to be sent
 382 * @column: the column address for this command, -1 if none
 383 * @page_addr: the page address for this command, -1 if none
 384 *
 385 * Send command to NAND device. This is the version for the new large page
 386 * devices. We don't have the separate regions as we have in the small page
 387 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 388 */
 389static void nand_command_lp(struct nand_chip *chip, unsigned int command,
 390                            int column, int page_addr)
 391{
 392        struct mtd_info *mtd = nand_to_mtd(chip);
 393
 394        /* Emulate NAND_CMD_READOOB */
 395        if (command == NAND_CMD_READOOB) {
 396                column += mtd->writesize;
 397                command = NAND_CMD_READ0;
 398        }
 399
 400        /* Command latch cycle */
 401        if (command != NAND_CMD_NONE)
 402                chip->legacy.cmd_ctrl(chip, command,
 403                                      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 404
 405        if (column != -1 || page_addr != -1) {
 406                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 407
 408                /* Serially input address */
 409                if (column != -1) {
 410                        /* Adjust columns for 16 bit buswidth */
 411                        if (chip->options & NAND_BUSWIDTH_16 &&
 412                                        !nand_opcode_8bits(command))
 413                                column >>= 1;
 414                        chip->legacy.cmd_ctrl(chip, column, ctrl);
 415                        ctrl &= ~NAND_CTRL_CHANGE;
 416
 417                        /* Only output a single addr cycle for 8bits opcodes. */
 418                        if (!nand_opcode_8bits(command))
 419                                chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
 420                }
 421                if (page_addr != -1) {
 422                        chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
 423                        chip->legacy.cmd_ctrl(chip, page_addr >> 8,
 424                                             NAND_NCE | NAND_ALE);
 425                        if (chip->options & NAND_ROW_ADDR_3)
 426                                chip->legacy.cmd_ctrl(chip, page_addr >> 16,
 427                                                      NAND_NCE | NAND_ALE);
 428                }
 429        }
 430        chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 431                              NAND_NCE | NAND_CTRL_CHANGE);
 432
 433        /*
 434         * Program and erase have their own busy handlers status, sequential
 435         * in and status need no delay.
 436         */
 437        switch (command) {
 438
 439        case NAND_CMD_NONE:
 440        case NAND_CMD_CACHEDPROG:
 441        case NAND_CMD_PAGEPROG:
 442        case NAND_CMD_ERASE1:
 443        case NAND_CMD_ERASE2:
 444        case NAND_CMD_SEQIN:
 445        case NAND_CMD_STATUS:
 446        case NAND_CMD_READID:
 447        case NAND_CMD_SET_FEATURES:
 448                return;
 449
 450        case NAND_CMD_RNDIN:
 451                nand_ccs_delay(chip);
 452                return;
 453
 454        case NAND_CMD_RESET:
 455                if (chip->legacy.dev_ready)
 456                        break;
 457                udelay(chip->legacy.chip_delay);
 458                chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
 459                                      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 460                chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 461                                      NAND_NCE | NAND_CTRL_CHANGE);
 462                /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
 463                nand_wait_status_ready(chip, 250);
 464                return;
 465
 466        case NAND_CMD_RNDOUT:
 467                /* No ready / busy check necessary */
 468                chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
 469                                      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 470                chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 471                                      NAND_NCE | NAND_CTRL_CHANGE);
 472
 473                nand_ccs_delay(chip);
 474                return;
 475
 476        case NAND_CMD_READ0:
 477                /*
 478                 * READ0 is sometimes used to exit GET STATUS mode. When this
 479                 * is the case no address cycles are requested, and we can use
 480                 * this information to detect that READSTART should not be
 481                 * issued.
 482                 */
 483                if (column == -1 && page_addr == -1)
 484                        return;
 485
 486                chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
 487                                      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 488                chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 489                                      NAND_NCE | NAND_CTRL_CHANGE);
 490                fallthrough;    /* This applies to read commands */
 491        default:
 492                /*
 493                 * If we don't have access to the busy pin, we apply the given
 494                 * command delay.
 495                 */
 496                if (!chip->legacy.dev_ready) {
 497                        udelay(chip->legacy.chip_delay);
 498                        return;
 499                }
 500        }
 501
 502        /*
 503         * Apply this short delay always to ensure that we do wait tWB in
 504         * any case on any machine.
 505         */
 506        ndelay(100);
 507
 508        nand_wait_ready(chip);
 509}
 510
 511/**
 512 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
 513 * @chip: nand chip info structure
 514 * @addr: feature address.
 515 * @subfeature_param: the subfeature parameters, a four bytes array.
 516 *
 517 * Should be used by NAND controller drivers that do not support the SET/GET
 518 * FEATURES operations.
 519 */
 520int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
 521                                  u8 *subfeature_param)
 522{
 523        return -ENOTSUPP;
 524}
 525EXPORT_SYMBOL(nand_get_set_features_notsupp);
 526
 527/**
 528 * nand_wait - [DEFAULT] wait until the command is done
 529 * @chip: NAND chip structure
 530 *
 531 * Wait for command done. This applies to erase and program only.
 532 */
 533static int nand_wait(struct nand_chip *chip)
 534{
 535        struct mtd_info *mtd = nand_to_mtd(chip);
 536        unsigned long timeo = 400;
 537        u8 status;
 538        int ret;
 539
 540        /*
 541         * Apply this short delay always to ensure that we do wait tWB in any
 542         * case on any machine.
 543         */
 544        ndelay(100);
 545
 546        ret = nand_status_op(chip, NULL);
 547        if (ret)
 548                return ret;
 549
 550        if (mtd->oops_panic_write) {
 551                panic_nand_wait(chip, timeo);
 552        } else {
 553                timeo = jiffies + msecs_to_jiffies(timeo);
 554                do {
 555                        if (chip->legacy.dev_ready) {
 556                                if (chip->legacy.dev_ready(chip))
 557                                        break;
 558                        } else {
 559                                ret = nand_read_data_op(chip, &status,
 560                                                        sizeof(status), true,
 561                                                        false);
 562                                if (ret)
 563                                        return ret;
 564
 565                                if (status & NAND_STATUS_READY)
 566                                        break;
 567                        }
 568                        cond_resched();
 569                } while (time_before(jiffies, timeo));
 570        }
 571
 572        ret = nand_read_data_op(chip, &status, sizeof(status), true, false);
 573        if (ret)
 574                return ret;
 575
 576        /* This can happen if in case of timeout or buggy dev_ready */
 577        WARN_ON(!(status & NAND_STATUS_READY));
 578        return status;
 579}
 580
 581void nand_legacy_set_defaults(struct nand_chip *chip)
 582{
 583        unsigned int busw = chip->options & NAND_BUSWIDTH_16;
 584
 585        if (nand_has_exec_op(chip))
 586                return;
 587
 588        /* check for proper chip_delay setup, set 20us if not */
 589        if (!chip->legacy.chip_delay)
 590                chip->legacy.chip_delay = 20;
 591
 592        /* check, if a user supplied command function given */
 593        if (!chip->legacy.cmdfunc)
 594                chip->legacy.cmdfunc = nand_command;
 595
 596        /* check, if a user supplied wait function given */
 597        if (chip->legacy.waitfunc == NULL)
 598                chip->legacy.waitfunc = nand_wait;
 599
 600        if (!chip->legacy.select_chip)
 601                chip->legacy.select_chip = nand_select_chip;
 602
 603        /* If called twice, pointers that depend on busw may need to be reset */
 604        if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
 605                chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
 606        if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
 607                chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
 608        if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
 609                chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
 610        if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
 611                chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
 612}
 613
 614void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
 615{
 616        struct mtd_info *mtd = nand_to_mtd(chip);
 617
 618        /* Do not replace user supplied command function! */
 619        if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
 620                chip->legacy.cmdfunc = nand_command_lp;
 621}
 622
 623int nand_legacy_check_hooks(struct nand_chip *chip)
 624{
 625        /*
 626         * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
 627         * not populated.
 628         */
 629        if (nand_has_exec_op(chip))
 630                return 0;
 631
 632        /*
 633         * Default functions assigned for ->legacy.cmdfunc() and
 634         * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
 635         *  populated.
 636         */
 637        if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
 638            !chip->legacy.cmd_ctrl) {
 639                pr_err("->legacy.cmd_ctrl() should be provided\n");
 640                return -EINVAL;
 641        }
 642
 643        return 0;
 644}
 645