1
2
3
4
5
6
7
8#include <linux/platform_device.h>
9#include <linux/dmaengine.h>
10#include <linux/dma-mapping.h>
11#include <linux/delay.h>
12#include <linux/gpio/consumer.h>
13#include <linux/module.h>
14#include <linux/interrupt.h>
15#include <linux/jiffies.h>
16#include <linux/sched.h>
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/nand-ecc-sw-bch.h>
19#include <linux/mtd/rawnand.h>
20#include <linux/mtd/partitions.h>
21#include <linux/omap-dma.h>
22#include <linux/io.h>
23#include <linux/slab.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26
27#include <linux/platform_data/elm.h>
28
29#include <linux/omap-gpmc.h>
30#include <linux/platform_data/mtd-nand-omap2.h>
31
32#define DRIVER_NAME "omap2-nand"
33#define OMAP_NAND_TIMEOUT_MS 5000
34
35#define NAND_Ecc_P1e (1 << 0)
36#define NAND_Ecc_P2e (1 << 1)
37#define NAND_Ecc_P4e (1 << 2)
38#define NAND_Ecc_P8e (1 << 3)
39#define NAND_Ecc_P16e (1 << 4)
40#define NAND_Ecc_P32e (1 << 5)
41#define NAND_Ecc_P64e (1 << 6)
42#define NAND_Ecc_P128e (1 << 7)
43#define NAND_Ecc_P256e (1 << 8)
44#define NAND_Ecc_P512e (1 << 9)
45#define NAND_Ecc_P1024e (1 << 10)
46#define NAND_Ecc_P2048e (1 << 11)
47
48#define NAND_Ecc_P1o (1 << 16)
49#define NAND_Ecc_P2o (1 << 17)
50#define NAND_Ecc_P4o (1 << 18)
51#define NAND_Ecc_P8o (1 << 19)
52#define NAND_Ecc_P16o (1 << 20)
53#define NAND_Ecc_P32o (1 << 21)
54#define NAND_Ecc_P64o (1 << 22)
55#define NAND_Ecc_P128o (1 << 23)
56#define NAND_Ecc_P256o (1 << 24)
57#define NAND_Ecc_P512o (1 << 25)
58#define NAND_Ecc_P1024o (1 << 26)
59#define NAND_Ecc_P2048o (1 << 27)
60
61#define TF(value) (value ? 1 : 0)
62
63#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
64#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
65#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
66#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
67#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
68#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
69#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
70#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
71
72#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
73#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
74#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
75#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
76#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
77#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
78#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
79#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
80
81#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
82#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
83#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
84#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
85#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
86#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
87#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
88#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
89
90#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
91#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
92#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
93#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
94#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
95#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
96#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
97#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
98
99#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
100#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
101
102#define PREFETCH_CONFIG1_CS_SHIFT 24
103#define ECC_CONFIG_CS_SHIFT 1
104#define CS_MASK 0x7
105#define ENABLE_PREFETCH (0x1 << 7)
106#define DMA_MPU_MODE_SHIFT 2
107#define ECCSIZE0_SHIFT 12
108#define ECCSIZE1_SHIFT 22
109#define ECC1RESULTSIZE 0x1
110#define ECCCLEAR 0x100
111#define ECC1 0x1
112#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
113#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
114#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
115#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
116#define STATUS_BUFF_EMPTY 0x00000001
117
118#define SECTOR_BYTES 512
119
120#define BCH4_BIT_PAD 4
121
122
123#define BCH_WRAPMODE_1 1
124#define BCH8R_ECC_SIZE0 0x1a
125#define BCH8R_ECC_SIZE1 0x2
126#define BCH4R_ECC_SIZE0 0xd
127#define BCH4R_ECC_SIZE1 0x3
128
129
130#define BCH_WRAPMODE_6 6
131#define BCH_ECC_SIZE0 0x0
132#define BCH_ECC_SIZE1 0x20
133
134#define BBM_LEN 2
135
136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
137 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
138 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139 0x07, 0x0e};
140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141 0xac, 0x6b, 0xff, 0x99, 0x7b};
142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143
144struct omap_nand_info {
145 struct nand_chip nand;
146 struct platform_device *pdev;
147
148 int gpmc_cs;
149 bool dev_ready;
150 enum nand_io xfer_type;
151 int devsize;
152 enum omap_ecc ecc_opt;
153 struct device_node *elm_of_node;
154
155 unsigned long phys_base;
156 struct completion comp;
157 struct dma_chan *dma;
158 int gpmc_irq_fifo;
159 int gpmc_irq_count;
160 enum {
161 OMAP_NAND_IO_READ = 0,
162 OMAP_NAND_IO_WRITE,
163 } iomode;
164 u_char *buf;
165 int buf_len;
166
167 struct gpmc_nand_regs reg;
168 struct gpmc_nand_ops *ops;
169 bool flash_bbt;
170
171 struct device *elm_dev;
172
173 struct gpio_desc *ready_gpiod;
174 unsigned int neccpg;
175 unsigned int nsteps_per_eccpg;
176 unsigned int eccpg_size;
177 unsigned int eccpg_bytes;
178};
179
180static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
181{
182 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
183}
184
185
186
187
188
189
190
191
192
193
194static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
195 unsigned int u32_count, int is_write, struct omap_nand_info *info)
196{
197 u32 val;
198
199 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
200 return -1;
201
202 if (readl(info->reg.gpmc_prefetch_control))
203 return -EBUSY;
204
205
206 writel(u32_count, info->reg.gpmc_prefetch_config2);
207
208
209
210
211 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
212 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
213 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
214 writel(val, info->reg.gpmc_prefetch_config1);
215
216
217 writel(0x1, info->reg.gpmc_prefetch_control);
218
219 return 0;
220}
221
222
223
224
225static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
226{
227 u32 config1;
228
229
230 config1 = readl(info->reg.gpmc_prefetch_config1);
231 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
232 return -EINVAL;
233
234
235 writel(0x0, info->reg.gpmc_prefetch_control);
236
237
238 writel(0x0, info->reg.gpmc_prefetch_config1);
239
240 return 0;
241}
242
243
244
245
246
247
248
249
250
251
252
253
254static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
255{
256 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
257
258 if (cmd != NAND_CMD_NONE) {
259 if (ctrl & NAND_CLE)
260 writeb(cmd, info->reg.gpmc_nand_command);
261
262 else if (ctrl & NAND_ALE)
263 writeb(cmd, info->reg.gpmc_nand_address);
264
265 else
266 writeb(cmd, info->reg.gpmc_nand_data);
267 }
268}
269
270
271
272
273
274
275
276static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
277{
278 struct nand_chip *nand = mtd_to_nand(mtd);
279
280 ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
281}
282
283
284
285
286
287
288
289static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
290{
291 struct omap_nand_info *info = mtd_to_omap(mtd);
292 u_char *p = (u_char *)buf;
293 bool status;
294
295 while (len--) {
296 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
297
298 do {
299 status = info->ops->nand_writebuffer_empty();
300 } while (!status);
301 }
302}
303
304
305
306
307
308
309
310static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
311{
312 struct nand_chip *nand = mtd_to_nand(mtd);
313
314 ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
315}
316
317
318
319
320
321
322
323static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
324{
325 struct omap_nand_info *info = mtd_to_omap(mtd);
326 u16 *p = (u16 *) buf;
327 bool status;
328
329 len >>= 1;
330
331 while (len--) {
332 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
333
334 do {
335 status = info->ops->nand_writebuffer_empty();
336 } while (!status);
337 }
338}
339
340
341
342
343
344
345
346static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
347{
348 struct mtd_info *mtd = nand_to_mtd(chip);
349 struct omap_nand_info *info = mtd_to_omap(mtd);
350 uint32_t r_count = 0;
351 int ret = 0;
352 u32 *p = (u32 *)buf;
353
354
355 if (len % 4) {
356 if (info->nand.options & NAND_BUSWIDTH_16)
357 omap_read_buf16(mtd, buf, len % 4);
358 else
359 omap_read_buf8(mtd, buf, len % 4);
360 p = (u32 *) (buf + len % 4);
361 len -= len % 4;
362 }
363
364
365 ret = omap_prefetch_enable(info->gpmc_cs,
366 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
367 if (ret) {
368
369 if (info->nand.options & NAND_BUSWIDTH_16)
370 omap_read_buf16(mtd, (u_char *)p, len);
371 else
372 omap_read_buf8(mtd, (u_char *)p, len);
373 } else {
374 do {
375 r_count = readl(info->reg.gpmc_prefetch_status);
376 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
377 r_count = r_count >> 2;
378 ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
379 p += r_count;
380 len -= r_count << 2;
381 } while (len);
382
383 omap_prefetch_reset(info->gpmc_cs, info);
384 }
385}
386
387
388
389
390
391
392
393static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
394 int len)
395{
396 struct mtd_info *mtd = nand_to_mtd(chip);
397 struct omap_nand_info *info = mtd_to_omap(mtd);
398 uint32_t w_count = 0;
399 int i = 0, ret = 0;
400 u16 *p = (u16 *)buf;
401 unsigned long tim, limit;
402 u32 val;
403
404
405 if (len % 2 != 0) {
406 writeb(*buf, info->nand.legacy.IO_ADDR_W);
407 p = (u16 *)(buf + 1);
408 len--;
409 }
410
411
412 ret = omap_prefetch_enable(info->gpmc_cs,
413 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
414 if (ret) {
415
416 if (info->nand.options & NAND_BUSWIDTH_16)
417 omap_write_buf16(mtd, (u_char *)p, len);
418 else
419 omap_write_buf8(mtd, (u_char *)p, len);
420 } else {
421 while (len) {
422 w_count = readl(info->reg.gpmc_prefetch_status);
423 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
424 w_count = w_count >> 1;
425 for (i = 0; (i < w_count) && len; i++, len -= 2)
426 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
427 }
428
429 tim = 0;
430 limit = (loops_per_jiffy *
431 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
432 do {
433 cpu_relax();
434 val = readl(info->reg.gpmc_prefetch_status);
435 val = PREFETCH_STATUS_COUNT(val);
436 } while (val && (tim++ < limit));
437
438
439 omap_prefetch_reset(info->gpmc_cs, info);
440 }
441}
442
443
444
445
446
447static void omap_nand_dma_callback(void *data)
448{
449 complete((struct completion *) data);
450}
451
452
453
454
455
456
457
458
459static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
460 unsigned int len, int is_write)
461{
462 struct omap_nand_info *info = mtd_to_omap(mtd);
463 struct dma_async_tx_descriptor *tx;
464 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
465 DMA_FROM_DEVICE;
466 struct scatterlist sg;
467 unsigned long tim, limit;
468 unsigned n;
469 int ret;
470 u32 val;
471
472 if (!virt_addr_valid(addr))
473 goto out_copy;
474
475 sg_init_one(&sg, addr, len);
476 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
477 if (n == 0) {
478 dev_err(&info->pdev->dev,
479 "Couldn't DMA map a %d byte buffer\n", len);
480 goto out_copy;
481 }
482
483 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
484 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
485 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
486 if (!tx)
487 goto out_copy_unmap;
488
489 tx->callback = omap_nand_dma_callback;
490 tx->callback_param = &info->comp;
491 dmaengine_submit(tx);
492
493 init_completion(&info->comp);
494
495
496 dma_async_issue_pending(info->dma);
497
498
499 ret = omap_prefetch_enable(info->gpmc_cs,
500 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
501 if (ret)
502
503 goto out_copy_unmap;
504
505 wait_for_completion(&info->comp);
506 tim = 0;
507 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
508
509 do {
510 cpu_relax();
511 val = readl(info->reg.gpmc_prefetch_status);
512 val = PREFETCH_STATUS_COUNT(val);
513 } while (val && (tim++ < limit));
514
515
516 omap_prefetch_reset(info->gpmc_cs, info);
517
518 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
519 return 0;
520
521out_copy_unmap:
522 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
523out_copy:
524 if (info->nand.options & NAND_BUSWIDTH_16)
525 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
526 : omap_write_buf16(mtd, (u_char *) addr, len);
527 else
528 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
529 : omap_write_buf8(mtd, (u_char *) addr, len);
530 return 0;
531}
532
533
534
535
536
537
538
539static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
540 int len)
541{
542 struct mtd_info *mtd = nand_to_mtd(chip);
543
544 if (len <= mtd->oobsize)
545 omap_read_buf_pref(chip, buf, len);
546 else
547
548 omap_nand_dma_transfer(mtd, buf, len, 0x0);
549}
550
551
552
553
554
555
556
557static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
558 int len)
559{
560 struct mtd_info *mtd = nand_to_mtd(chip);
561
562 if (len <= mtd->oobsize)
563 omap_write_buf_pref(chip, buf, len);
564 else
565
566 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
567}
568
569
570
571
572
573
574static irqreturn_t omap_nand_irq(int this_irq, void *dev)
575{
576 struct omap_nand_info *info = (struct omap_nand_info *) dev;
577 u32 bytes;
578
579 bytes = readl(info->reg.gpmc_prefetch_status);
580 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
581 bytes = bytes & 0xFFFC;
582 if (info->iomode == OMAP_NAND_IO_WRITE) {
583 if (this_irq == info->gpmc_irq_count)
584 goto done;
585
586 if (info->buf_len && (info->buf_len < bytes))
587 bytes = info->buf_len;
588 else if (!info->buf_len)
589 bytes = 0;
590 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
591 bytes >> 2);
592 info->buf = info->buf + bytes;
593 info->buf_len -= bytes;
594
595 } else {
596 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
597 bytes >> 2);
598 info->buf = info->buf + bytes;
599
600 if (this_irq == info->gpmc_irq_count)
601 goto done;
602 }
603
604 return IRQ_HANDLED;
605
606done:
607 complete(&info->comp);
608
609 disable_irq_nosync(info->gpmc_irq_fifo);
610 disable_irq_nosync(info->gpmc_irq_count);
611
612 return IRQ_HANDLED;
613}
614
615
616
617
618
619
620
621static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
622 int len)
623{
624 struct mtd_info *mtd = nand_to_mtd(chip);
625 struct omap_nand_info *info = mtd_to_omap(mtd);
626 int ret = 0;
627
628 if (len <= mtd->oobsize) {
629 omap_read_buf_pref(chip, buf, len);
630 return;
631 }
632
633 info->iomode = OMAP_NAND_IO_READ;
634 info->buf = buf;
635 init_completion(&info->comp);
636
637
638 ret = omap_prefetch_enable(info->gpmc_cs,
639 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
640 if (ret)
641
642 goto out_copy;
643
644 info->buf_len = len;
645
646 enable_irq(info->gpmc_irq_count);
647 enable_irq(info->gpmc_irq_fifo);
648
649
650 wait_for_completion(&info->comp);
651
652
653 omap_prefetch_reset(info->gpmc_cs, info);
654 return;
655
656out_copy:
657 if (info->nand.options & NAND_BUSWIDTH_16)
658 omap_read_buf16(mtd, buf, len);
659 else
660 omap_read_buf8(mtd, buf, len);
661}
662
663
664
665
666
667
668
669static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
670 int len)
671{
672 struct mtd_info *mtd = nand_to_mtd(chip);
673 struct omap_nand_info *info = mtd_to_omap(mtd);
674 int ret = 0;
675 unsigned long tim, limit;
676 u32 val;
677
678 if (len <= mtd->oobsize) {
679 omap_write_buf_pref(chip, buf, len);
680 return;
681 }
682
683 info->iomode = OMAP_NAND_IO_WRITE;
684 info->buf = (u_char *) buf;
685 init_completion(&info->comp);
686
687
688 ret = omap_prefetch_enable(info->gpmc_cs,
689 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
690 if (ret)
691
692 goto out_copy;
693
694 info->buf_len = len;
695
696 enable_irq(info->gpmc_irq_count);
697 enable_irq(info->gpmc_irq_fifo);
698
699
700 wait_for_completion(&info->comp);
701
702
703 tim = 0;
704 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
705 do {
706 val = readl(info->reg.gpmc_prefetch_status);
707 val = PREFETCH_STATUS_COUNT(val);
708 cpu_relax();
709 } while (val && (tim++ < limit));
710
711
712 omap_prefetch_reset(info->gpmc_cs, info);
713 return;
714
715out_copy:
716 if (info->nand.options & NAND_BUSWIDTH_16)
717 omap_write_buf16(mtd, buf, len);
718 else
719 omap_write_buf8(mtd, buf, len);
720}
721
722
723
724
725
726
727
728
729static void gen_true_ecc(u8 *ecc_buf)
730{
731 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
732 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
733
734 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
735 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
736 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
737 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
738 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
739 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
740}
741
742
743
744
745
746
747
748
749
750
751
752
753static int omap_compare_ecc(u8 *ecc_data1,
754 u8 *ecc_data2,
755 u8 *page_data)
756{
757 uint i;
758 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
759 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
760 u8 ecc_bit[24];
761 u8 ecc_sum = 0;
762 u8 find_bit = 0;
763 uint find_byte = 0;
764 int isEccFF;
765
766 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
767
768 gen_true_ecc(ecc_data1);
769 gen_true_ecc(ecc_data2);
770
771 for (i = 0; i <= 2; i++) {
772 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
773 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
774 }
775
776 for (i = 0; i < 8; i++) {
777 tmp0_bit[i] = *ecc_data1 % 2;
778 *ecc_data1 = *ecc_data1 / 2;
779 }
780
781 for (i = 0; i < 8; i++) {
782 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
783 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
784 }
785
786 for (i = 0; i < 8; i++) {
787 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
788 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
789 }
790
791 for (i = 0; i < 8; i++) {
792 comp0_bit[i] = *ecc_data2 % 2;
793 *ecc_data2 = *ecc_data2 / 2;
794 }
795
796 for (i = 0; i < 8; i++) {
797 comp1_bit[i] = *(ecc_data2 + 1) % 2;
798 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
799 }
800
801 for (i = 0; i < 8; i++) {
802 comp2_bit[i] = *(ecc_data2 + 2) % 2;
803 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
804 }
805
806 for (i = 0; i < 6; i++)
807 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
808
809 for (i = 0; i < 8; i++)
810 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
811
812 for (i = 0; i < 8; i++)
813 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
814
815 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
816 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
817
818 for (i = 0; i < 24; i++)
819 ecc_sum += ecc_bit[i];
820
821 switch (ecc_sum) {
822 case 0:
823
824
825
826 return 0;
827
828 case 1:
829
830 pr_debug("ECC UNCORRECTED_ERROR 1\n");
831 return -EBADMSG;
832
833 case 11:
834
835 pr_debug("ECC UNCORRECTED_ERROR B\n");
836 return -EBADMSG;
837
838 case 12:
839
840 find_byte = (ecc_bit[23] << 8) +
841 (ecc_bit[21] << 7) +
842 (ecc_bit[19] << 6) +
843 (ecc_bit[17] << 5) +
844 (ecc_bit[15] << 4) +
845 (ecc_bit[13] << 3) +
846 (ecc_bit[11] << 2) +
847 (ecc_bit[9] << 1) +
848 ecc_bit[7];
849
850 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
851
852 pr_debug("Correcting single bit ECC error at offset: "
853 "%d, bit: %d\n", find_byte, find_bit);
854
855 page_data[find_byte] ^= (1 << find_bit);
856
857 return 1;
858 default:
859 if (isEccFF) {
860 if (ecc_data2[0] == 0 &&
861 ecc_data2[1] == 0 &&
862 ecc_data2[2] == 0)
863 return 0;
864 }
865 pr_debug("UNCORRECTED_ERROR default\n");
866 return -EBADMSG;
867 }
868}
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884static int omap_correct_data(struct nand_chip *chip, u_char *dat,
885 u_char *read_ecc, u_char *calc_ecc)
886{
887 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
888 int blockCnt = 0, i = 0, ret = 0;
889 int stat = 0;
890
891
892 if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
893 info->nand.ecc.size == 2048)
894 blockCnt = 4;
895 else
896 blockCnt = 1;
897
898 for (i = 0; i < blockCnt; i++) {
899 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
900 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
901 if (ret < 0)
902 return ret;
903
904 stat += ret;
905 }
906 read_ecc += 3;
907 calc_ecc += 3;
908 dat += 512;
909 }
910 return stat;
911}
912
913
914
915
916
917
918
919
920
921
922
923
924
925static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
926 u_char *ecc_code)
927{
928 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
929 u32 val;
930
931 val = readl(info->reg.gpmc_ecc_config);
932 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
933 return -EINVAL;
934
935
936 val = readl(info->reg.gpmc_ecc1_result);
937 *ecc_code++ = val;
938 *ecc_code++ = val >> 16;
939
940 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
941
942 return 0;
943}
944
945
946
947
948
949
950static void omap_enable_hwecc(struct nand_chip *chip, int mode)
951{
952 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
953 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
954 u32 val;
955
956
957 val = ECCCLEAR | ECC1;
958 writel(val, info->reg.gpmc_ecc_control);
959
960
961 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
962 ECC1RESULTSIZE);
963 writel(val, info->reg.gpmc_ecc_size_config);
964
965 switch (mode) {
966 case NAND_ECC_READ:
967 case NAND_ECC_WRITE:
968 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
969 break;
970 case NAND_ECC_READSYN:
971 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
972 break;
973 default:
974 dev_info(&info->pdev->dev,
975 "error: unrecognized Mode[%d]!\n", mode);
976 break;
977 }
978
979
980 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
981 writel(val, info->reg.gpmc_ecc_config);
982}
983
984
985
986
987
988
989
990
991
992
993
994
995static int omap_wait(struct nand_chip *this)
996{
997 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
998 unsigned long timeo = jiffies;
999 int status;
1000
1001 timeo += msecs_to_jiffies(400);
1002
1003 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004 while (time_before(jiffies, timeo)) {
1005 status = readb(info->reg.gpmc_nand_data);
1006 if (status & NAND_STATUS_READY)
1007 break;
1008 cond_resched();
1009 }
1010
1011 status = readb(info->reg.gpmc_nand_data);
1012 return status;
1013}
1014
1015
1016
1017
1018
1019
1020
1021static int omap_dev_ready(struct nand_chip *chip)
1022{
1023 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1024
1025 return gpiod_get_value(info->ready_gpiod);
1026}
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1040 int mode)
1041{
1042 unsigned int bch_type;
1043 unsigned int dev_width, nsectors;
1044 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1045 enum omap_ecc ecc_opt = info->ecc_opt;
1046 u32 val, wr_mode;
1047 unsigned int ecc_size1, ecc_size0;
1048
1049
1050 switch (ecc_opt) {
1051 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052 bch_type = 0;
1053 nsectors = 1;
1054 wr_mode = BCH_WRAPMODE_6;
1055 ecc_size0 = BCH_ECC_SIZE0;
1056 ecc_size1 = BCH_ECC_SIZE1;
1057 break;
1058 case OMAP_ECC_BCH4_CODE_HW:
1059 bch_type = 0;
1060 nsectors = chip->ecc.steps;
1061 if (mode == NAND_ECC_READ) {
1062 wr_mode = BCH_WRAPMODE_1;
1063 ecc_size0 = BCH4R_ECC_SIZE0;
1064 ecc_size1 = BCH4R_ECC_SIZE1;
1065 } else {
1066 wr_mode = BCH_WRAPMODE_6;
1067 ecc_size0 = BCH_ECC_SIZE0;
1068 ecc_size1 = BCH_ECC_SIZE1;
1069 }
1070 break;
1071 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072 bch_type = 1;
1073 nsectors = 1;
1074 wr_mode = BCH_WRAPMODE_6;
1075 ecc_size0 = BCH_ECC_SIZE0;
1076 ecc_size1 = BCH_ECC_SIZE1;
1077 break;
1078 case OMAP_ECC_BCH8_CODE_HW:
1079 bch_type = 1;
1080 nsectors = chip->ecc.steps;
1081 if (mode == NAND_ECC_READ) {
1082 wr_mode = BCH_WRAPMODE_1;
1083 ecc_size0 = BCH8R_ECC_SIZE0;
1084 ecc_size1 = BCH8R_ECC_SIZE1;
1085 } else {
1086 wr_mode = BCH_WRAPMODE_6;
1087 ecc_size0 = BCH_ECC_SIZE0;
1088 ecc_size1 = BCH_ECC_SIZE1;
1089 }
1090 break;
1091 case OMAP_ECC_BCH16_CODE_HW:
1092 bch_type = 0x2;
1093 nsectors = chip->ecc.steps;
1094 if (mode == NAND_ECC_READ) {
1095 wr_mode = 0x01;
1096 ecc_size0 = 52;
1097 ecc_size1 = 0;
1098 } else {
1099 wr_mode = 0x01;
1100 ecc_size0 = 0;
1101 ecc_size1 = 52;
1102 }
1103 break;
1104 default:
1105 return;
1106 }
1107
1108 writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110
1111 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112 writel(val, info->reg.gpmc_ecc_size_config);
1113
1114 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116
1117 val = ((1 << 16) |
1118 (bch_type << 12) |
1119 (wr_mode << 8) |
1120 (dev_width << 7) |
1121 (((nsectors-1) & 0x7) << 4) |
1122 (info->gpmc_cs << 1) |
1123 (0x1));
1124
1125 writel(val, info->reg.gpmc_ecc_config);
1126
1127
1128 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129}
1130
1131static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133 0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146 const u_char *dat, u_char *ecc_calc, int i)
1147{
1148 struct omap_nand_info *info = mtd_to_omap(mtd);
1149 int eccbytes = info->nand.ecc.bytes;
1150 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1151 u8 *ecc_code;
1152 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153 u32 val;
1154 int j;
1155
1156 ecc_code = ecc_calc;
1157 switch (info->ecc_opt) {
1158 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159 case OMAP_ECC_BCH8_CODE_HW:
1160 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164 *ecc_code++ = (bch_val4 & 0xFF);
1165 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168 *ecc_code++ = (bch_val3 & 0xFF);
1169 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172 *ecc_code++ = (bch_val2 & 0xFF);
1173 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176 *ecc_code++ = (bch_val1 & 0xFF);
1177 break;
1178 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179 case OMAP_ECC_BCH4_CODE_HW:
1180 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185 ((bch_val1 >> 28) & 0xF);
1186 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190 break;
1191 case OMAP_ECC_BCH16_CODE_HW:
1192 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193 ecc_code[0] = ((val >> 8) & 0xFF);
1194 ecc_code[1] = ((val >> 0) & 0xFF);
1195 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196 ecc_code[2] = ((val >> 24) & 0xFF);
1197 ecc_code[3] = ((val >> 16) & 0xFF);
1198 ecc_code[4] = ((val >> 8) & 0xFF);
1199 ecc_code[5] = ((val >> 0) & 0xFF);
1200 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201 ecc_code[6] = ((val >> 24) & 0xFF);
1202 ecc_code[7] = ((val >> 16) & 0xFF);
1203 ecc_code[8] = ((val >> 8) & 0xFF);
1204 ecc_code[9] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206 ecc_code[10] = ((val >> 24) & 0xFF);
1207 ecc_code[11] = ((val >> 16) & 0xFF);
1208 ecc_code[12] = ((val >> 8) & 0xFF);
1209 ecc_code[13] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211 ecc_code[14] = ((val >> 24) & 0xFF);
1212 ecc_code[15] = ((val >> 16) & 0xFF);
1213 ecc_code[16] = ((val >> 8) & 0xFF);
1214 ecc_code[17] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216 ecc_code[18] = ((val >> 24) & 0xFF);
1217 ecc_code[19] = ((val >> 16) & 0xFF);
1218 ecc_code[20] = ((val >> 8) & 0xFF);
1219 ecc_code[21] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221 ecc_code[22] = ((val >> 24) & 0xFF);
1222 ecc_code[23] = ((val >> 16) & 0xFF);
1223 ecc_code[24] = ((val >> 8) & 0xFF);
1224 ecc_code[25] = ((val >> 0) & 0xFF);
1225 break;
1226 default:
1227 return -EINVAL;
1228 }
1229
1230
1231 switch (info->ecc_opt) {
1232 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233
1234
1235
1236 for (j = 0; j < eccbytes; j++)
1237 ecc_calc[j] ^= bch4_polynomial[j];
1238 break;
1239 case OMAP_ECC_BCH4_CODE_HW:
1240
1241 ecc_calc[eccbytes - 1] = 0x0;
1242 break;
1243 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244
1245
1246
1247 for (j = 0; j < eccbytes; j++)
1248 ecc_calc[j] ^= bch8_polynomial[j];
1249 break;
1250 case OMAP_ECC_BCH8_CODE_HW:
1251
1252 ecc_calc[eccbytes - 1] = 0x0;
1253 break;
1254 case OMAP_ECC_BCH16_CODE_HW:
1255 break;
1256 default:
1257 return -EINVAL;
1258 }
1259
1260 return 0;
1261}
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1274 const u_char *dat, u_char *ecc_calc)
1275{
1276 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1277}
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288 const u_char *dat, u_char *ecc_calc)
1289{
1290 struct omap_nand_info *info = mtd_to_omap(mtd);
1291 int eccbytes = info->nand.ecc.bytes;
1292 unsigned long nsectors;
1293 int i, ret;
1294
1295 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296 for (i = 0; i < nsectors; i++) {
1297 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298 if (ret)
1299 return ret;
1300
1301 ecc_calc += eccbytes;
1302 }
1303
1304 return 0;
1305}
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317static int erased_sector_bitflips(u_char *data, u_char *oob,
1318 struct omap_nand_info *info)
1319{
1320 int flip_bits = 0, i;
1321
1322 for (i = 0; i < info->nand.ecc.size; i++) {
1323 flip_bits += hweight8(~data[i]);
1324 if (flip_bits > info->nand.ecc.strength)
1325 return 0;
1326 }
1327
1328 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329 flip_bits += hweight8(~oob[i]);
1330 if (flip_bits > info->nand.ecc.strength)
1331 return 0;
1332 }
1333
1334
1335
1336
1337
1338 if (flip_bits) {
1339 memset(data, 0xFF, info->nand.ecc.size);
1340 memset(oob, 0xFF, info->nand.ecc.bytes);
1341 }
1342
1343 return flip_bits;
1344}
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1358 u_char *read_ecc, u_char *calc_ecc)
1359{
1360 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1361 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362 int eccsteps = info->nsteps_per_eccpg;
1363 int i , j, stat = 0;
1364 int eccflag, actual_eccbytes;
1365 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366 u_char *ecc_vec = calc_ecc;
1367 u_char *spare_ecc = read_ecc;
1368 u_char *erased_ecc_vec;
1369 u_char *buf;
1370 int bitflip_count;
1371 bool is_error_reported = false;
1372 u32 bit_pos, byte_pos, error_max, pos;
1373 int err;
1374
1375 switch (info->ecc_opt) {
1376 case OMAP_ECC_BCH4_CODE_HW:
1377
1378 actual_eccbytes = ecc->bytes - 1;
1379 erased_ecc_vec = bch4_vector;
1380 break;
1381 case OMAP_ECC_BCH8_CODE_HW:
1382
1383 actual_eccbytes = ecc->bytes - 1;
1384 erased_ecc_vec = bch8_vector;
1385 break;
1386 case OMAP_ECC_BCH16_CODE_HW:
1387 actual_eccbytes = ecc->bytes;
1388 erased_ecc_vec = bch16_vector;
1389 break;
1390 default:
1391 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392 return -EINVAL;
1393 }
1394
1395
1396 memset(err_vec, 0, sizeof(err_vec));
1397
1398 for (i = 0; i < eccsteps ; i++) {
1399 eccflag = 0;
1400
1401
1402
1403
1404
1405 for (j = 0; j < actual_eccbytes; j++) {
1406 if (calc_ecc[j] != 0) {
1407 eccflag = 1;
1408 break;
1409 }
1410 }
1411
1412 if (eccflag == 1) {
1413 if (memcmp(calc_ecc, erased_ecc_vec,
1414 actual_eccbytes) == 0) {
1415
1416
1417
1418
1419 } else {
1420 buf = &data[info->nand.ecc.size * i];
1421
1422
1423
1424
1425
1426 bitflip_count = erased_sector_bitflips(
1427 buf, read_ecc, info);
1428 if (bitflip_count) {
1429
1430
1431
1432
1433 stat += bitflip_count;
1434 } else {
1435
1436
1437
1438
1439
1440
1441 err_vec[i].error_reported = true;
1442 is_error_reported = true;
1443 }
1444 }
1445 }
1446
1447
1448 calc_ecc += ecc->bytes;
1449 read_ecc += ecc->bytes;
1450 }
1451
1452
1453 if (!is_error_reported)
1454 return stat;
1455
1456
1457 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1458
1459 err = 0;
1460 for (i = 0; i < eccsteps; i++) {
1461 if (err_vec[i].error_uncorrectable) {
1462 dev_err(&info->pdev->dev,
1463 "uncorrectable bit-flips found\n");
1464 err = -EBADMSG;
1465 } else if (err_vec[i].error_reported) {
1466 for (j = 0; j < err_vec[i].error_count; j++) {
1467 switch (info->ecc_opt) {
1468 case OMAP_ECC_BCH4_CODE_HW:
1469
1470 pos = err_vec[i].error_loc[j] +
1471 BCH4_BIT_PAD;
1472 break;
1473 case OMAP_ECC_BCH8_CODE_HW:
1474 case OMAP_ECC_BCH16_CODE_HW:
1475 pos = err_vec[i].error_loc[j];
1476 break;
1477 default:
1478 return -EINVAL;
1479 }
1480 error_max = (ecc->size + actual_eccbytes) * 8;
1481
1482 bit_pos = pos % 8;
1483
1484
1485 byte_pos = (error_max - pos - 1) / 8;
1486
1487 if (pos < error_max) {
1488 if (byte_pos < 512) {
1489 pr_debug("bitflip@dat[%d]=%x\n",
1490 byte_pos, data[byte_pos]);
1491 data[byte_pos] ^= 1 << bit_pos;
1492 } else {
1493 pr_debug("bitflip@oob[%d]=%x\n",
1494 (byte_pos - 512),
1495 spare_ecc[byte_pos - 512]);
1496 spare_ecc[byte_pos - 512] ^=
1497 1 << bit_pos;
1498 }
1499 } else {
1500 dev_err(&info->pdev->dev,
1501 "invalid bit-flip @ %d:%d\n",
1502 byte_pos, bit_pos);
1503 err = -EBADMSG;
1504 }
1505 }
1506 }
1507
1508
1509 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1510
1511
1512 data += ecc->size;
1513 spare_ecc += ecc->bytes;
1514 }
1515
1516 return (err) ? err : stat;
1517}
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1529 int oob_required, int page)
1530{
1531 struct mtd_info *mtd = nand_to_mtd(chip);
1532 struct omap_nand_info *info = mtd_to_omap(mtd);
1533 uint8_t *ecc_calc = chip->ecc.calc_buf;
1534 unsigned int eccpg;
1535 int ret;
1536
1537 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1538 if (ret)
1539 return ret;
1540
1541 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1542
1543 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1544
1545
1546 chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1547 info->eccpg_size);
1548
1549
1550 ret = omap_calculate_ecc_bch_multi(mtd,
1551 buf + (eccpg * info->eccpg_size),
1552 ecc_calc);
1553 if (ret)
1554 return ret;
1555
1556 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1557 chip->oob_poi,
1558 eccpg * info->eccpg_bytes,
1559 info->eccpg_bytes);
1560 if (ret)
1561 return ret;
1562 }
1563
1564
1565 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1566
1567 return nand_prog_page_end_op(chip);
1568}
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1582 u32 data_len, const u8 *buf,
1583 int oob_required, int page)
1584{
1585 struct mtd_info *mtd = nand_to_mtd(chip);
1586 struct omap_nand_info *info = mtd_to_omap(mtd);
1587 u8 *ecc_calc = chip->ecc.calc_buf;
1588 int ecc_size = chip->ecc.size;
1589 int ecc_bytes = chip->ecc.bytes;
1590 u32 start_step = offset / ecc_size;
1591 u32 end_step = (offset + data_len - 1) / ecc_size;
1592 unsigned int eccpg;
1593 int step, ret = 0;
1594
1595
1596
1597
1598
1599
1600
1601 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1602 if (ret)
1603 return ret;
1604
1605 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1606
1607 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1608
1609
1610 chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1611 info->eccpg_size);
1612
1613 for (step = 0; step < info->nsteps_per_eccpg; step++) {
1614 unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1615 const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1616
1617
1618 if ((step + base_step) < start_step ||
1619 (step + base_step) > end_step)
1620 memset(ecc_calc + (step * ecc_bytes), 0xff,
1621 ecc_bytes);
1622 else
1623 ret = _omap_calculate_ecc_bch(mtd,
1624 bufoffs + (step * ecc_size),
1625 ecc_calc + (step * ecc_bytes),
1626 step);
1627
1628 if (ret)
1629 return ret;
1630 }
1631
1632
1633
1634
1635
1636 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1637 eccpg * info->eccpg_bytes,
1638 info->eccpg_bytes);
1639 if (ret)
1640 return ret;
1641 }
1642
1643
1644 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1645
1646 return nand_prog_page_end_op(chip);
1647}
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1664 int oob_required, int page)
1665{
1666 struct mtd_info *mtd = nand_to_mtd(chip);
1667 struct omap_nand_info *info = mtd_to_omap(mtd);
1668 uint8_t *ecc_calc = chip->ecc.calc_buf;
1669 uint8_t *ecc_code = chip->ecc.code_buf;
1670 unsigned int max_bitflips = 0, eccpg;
1671 int stat, ret;
1672
1673 ret = nand_read_page_op(chip, page, 0, NULL, 0);
1674 if (ret)
1675 return ret;
1676
1677 for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1678
1679 chip->ecc.hwctl(chip, NAND_ECC_READ);
1680
1681
1682 ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1683 buf + (eccpg * info->eccpg_size),
1684 info->eccpg_size, false);
1685 if (ret)
1686 return ret;
1687
1688
1689 ret = nand_change_read_column_op(chip,
1690 mtd->writesize + BBM_LEN +
1691 (eccpg * info->eccpg_bytes),
1692 chip->oob_poi + BBM_LEN +
1693 (eccpg * info->eccpg_bytes),
1694 info->eccpg_bytes, false);
1695 if (ret)
1696 return ret;
1697
1698
1699 ret = omap_calculate_ecc_bch_multi(mtd,
1700 buf + (eccpg * info->eccpg_size),
1701 ecc_calc);
1702 if (ret)
1703 return ret;
1704
1705 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1706 chip->oob_poi,
1707 eccpg * info->eccpg_bytes,
1708 info->eccpg_bytes);
1709 if (ret)
1710 return ret;
1711
1712 stat = chip->ecc.correct(chip,
1713 buf + (eccpg * info->eccpg_size),
1714 ecc_code, ecc_calc);
1715 if (stat < 0) {
1716 mtd->ecc_stats.failed++;
1717 } else {
1718 mtd->ecc_stats.corrected += stat;
1719 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1720 }
1721 }
1722
1723 return max_bitflips;
1724}
1725
1726
1727
1728
1729
1730
1731static bool is_elm_present(struct omap_nand_info *info,
1732 struct device_node *elm_node)
1733{
1734 struct platform_device *pdev;
1735
1736
1737 if (!elm_node) {
1738 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1739 return false;
1740 }
1741 pdev = of_find_device_by_node(elm_node);
1742
1743 if (!pdev) {
1744 dev_err(&info->pdev->dev, "ELM device not found\n");
1745 return false;
1746 }
1747
1748 info->elm_dev = &pdev->dev;
1749 return true;
1750}
1751
1752static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1753{
1754 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1755
1756 switch (info->ecc_opt) {
1757 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1758 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1759 ecc_needs_omap_bch = false;
1760 ecc_needs_bch = true;
1761 ecc_needs_elm = false;
1762 break;
1763 case OMAP_ECC_BCH4_CODE_HW:
1764 case OMAP_ECC_BCH8_CODE_HW:
1765 case OMAP_ECC_BCH16_CODE_HW:
1766 ecc_needs_omap_bch = true;
1767 ecc_needs_bch = false;
1768 ecc_needs_elm = true;
1769 break;
1770 default:
1771 ecc_needs_omap_bch = false;
1772 ecc_needs_bch = false;
1773 ecc_needs_elm = false;
1774 break;
1775 }
1776
1777 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1778 dev_err(&info->pdev->dev,
1779 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1780 return false;
1781 }
1782 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1783 dev_err(&info->pdev->dev,
1784 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1785 return false;
1786 }
1787 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1788 dev_err(&info->pdev->dev, "ELM not available\n");
1789 return false;
1790 }
1791
1792 return true;
1793}
1794
1795static const char * const nand_xfer_types[] = {
1796 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1797 [NAND_OMAP_POLLED] = "polled",
1798 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1799 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1800};
1801
1802static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1803{
1804 struct device_node *child = dev->of_node;
1805 int i;
1806 const char *s;
1807 u32 cs;
1808
1809 if (of_property_read_u32(child, "reg", &cs) < 0) {
1810 dev_err(dev, "reg not found in DT\n");
1811 return -EINVAL;
1812 }
1813
1814 info->gpmc_cs = cs;
1815
1816
1817 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1818 if (!info->elm_of_node) {
1819 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1820 if (!info->elm_of_node)
1821 dev_dbg(dev, "ti,elm-id not in DT\n");
1822 }
1823
1824
1825 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1826 dev_err(dev, "ti,nand-ecc-opt not found\n");
1827 return -EINVAL;
1828 }
1829
1830 if (!strcmp(s, "sw")) {
1831 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1832 } else if (!strcmp(s, "ham1") ||
1833 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1834 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1835 } else if (!strcmp(s, "bch4")) {
1836 if (info->elm_of_node)
1837 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1838 else
1839 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1840 } else if (!strcmp(s, "bch8")) {
1841 if (info->elm_of_node)
1842 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1843 else
1844 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1845 } else if (!strcmp(s, "bch16")) {
1846 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1847 } else {
1848 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1849 return -EINVAL;
1850 }
1851
1852
1853 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1854 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1855 if (!strcasecmp(s, nand_xfer_types[i])) {
1856 info->xfer_type = i;
1857 return 0;
1858 }
1859 }
1860
1861 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1862 return -EINVAL;
1863 }
1864
1865 return 0;
1866}
1867
1868static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1869 struct mtd_oob_region *oobregion)
1870{
1871 struct omap_nand_info *info = mtd_to_omap(mtd);
1872 struct nand_chip *chip = &info->nand;
1873 int off = BBM_LEN;
1874
1875 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1876 !(chip->options & NAND_BUSWIDTH_16))
1877 off = 1;
1878
1879 if (section)
1880 return -ERANGE;
1881
1882 oobregion->offset = off;
1883 oobregion->length = chip->ecc.total;
1884
1885 return 0;
1886}
1887
1888static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1889 struct mtd_oob_region *oobregion)
1890{
1891 struct omap_nand_info *info = mtd_to_omap(mtd);
1892 struct nand_chip *chip = &info->nand;
1893 int off = BBM_LEN;
1894
1895 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1896 !(chip->options & NAND_BUSWIDTH_16))
1897 off = 1;
1898
1899 if (section)
1900 return -ERANGE;
1901
1902 off += chip->ecc.total;
1903 if (off >= mtd->oobsize)
1904 return -ERANGE;
1905
1906 oobregion->offset = off;
1907 oobregion->length = mtd->oobsize - off;
1908
1909 return 0;
1910}
1911
1912static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1913 .ecc = omap_ooblayout_ecc,
1914 .free = omap_ooblayout_free,
1915};
1916
1917static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1918 struct mtd_oob_region *oobregion)
1919{
1920 struct nand_device *nand = mtd_to_nanddev(mtd);
1921 unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1922 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1923 int off = BBM_LEN;
1924
1925 if (section >= nsteps)
1926 return -ERANGE;
1927
1928
1929
1930
1931
1932 oobregion->offset = off + (section * (ecc_bytes + 1));
1933 oobregion->length = ecc_bytes;
1934
1935 return 0;
1936}
1937
1938static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1939 struct mtd_oob_region *oobregion)
1940{
1941 struct nand_device *nand = mtd_to_nanddev(mtd);
1942 unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1943 unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1944 int off = BBM_LEN;
1945
1946 if (section)
1947 return -ERANGE;
1948
1949
1950
1951
1952
1953 off += ((ecc_bytes + 1) * nsteps);
1954 if (off >= mtd->oobsize)
1955 return -ERANGE;
1956
1957 oobregion->offset = off;
1958 oobregion->length = mtd->oobsize - off;
1959
1960 return 0;
1961}
1962
1963static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1964 .ecc = omap_sw_ooblayout_ecc,
1965 .free = omap_sw_ooblayout_free,
1966};
1967
1968static int omap_nand_attach_chip(struct nand_chip *chip)
1969{
1970 struct mtd_info *mtd = nand_to_mtd(chip);
1971 struct omap_nand_info *info = mtd_to_omap(mtd);
1972 struct device *dev = &info->pdev->dev;
1973 int min_oobbytes = BBM_LEN;
1974 int elm_bch_strength = -1;
1975 int oobbytes_per_step;
1976 dma_cap_mask_t mask;
1977 int err;
1978
1979 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1980 chip->bbt_options |= NAND_BBT_NO_OOB;
1981 else
1982 chip->options |= NAND_SKIP_BBTSCAN;
1983
1984
1985 switch (info->xfer_type) {
1986 case NAND_OMAP_PREFETCH_POLLED:
1987 chip->legacy.read_buf = omap_read_buf_pref;
1988 chip->legacy.write_buf = omap_write_buf_pref;
1989 break;
1990
1991 case NAND_OMAP_POLLED:
1992
1993 break;
1994
1995 case NAND_OMAP_PREFETCH_DMA:
1996 dma_cap_zero(mask);
1997 dma_cap_set(DMA_SLAVE, mask);
1998 info->dma = dma_request_chan(dev->parent, "rxtx");
1999
2000 if (IS_ERR(info->dma)) {
2001 dev_err(dev, "DMA engine request failed\n");
2002 return PTR_ERR(info->dma);
2003 } else {
2004 struct dma_slave_config cfg;
2005
2006 memset(&cfg, 0, sizeof(cfg));
2007 cfg.src_addr = info->phys_base;
2008 cfg.dst_addr = info->phys_base;
2009 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2010 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2011 cfg.src_maxburst = 16;
2012 cfg.dst_maxburst = 16;
2013 err = dmaengine_slave_config(info->dma, &cfg);
2014 if (err) {
2015 dev_err(dev,
2016 "DMA engine slave config failed: %d\n",
2017 err);
2018 return err;
2019 }
2020 chip->legacy.read_buf = omap_read_buf_dma_pref;
2021 chip->legacy.write_buf = omap_write_buf_dma_pref;
2022 }
2023 break;
2024
2025 case NAND_OMAP_PREFETCH_IRQ:
2026 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
2027 if (info->gpmc_irq_fifo <= 0)
2028 return -ENODEV;
2029 err = devm_request_irq(dev, info->gpmc_irq_fifo,
2030 omap_nand_irq, IRQF_SHARED,
2031 "gpmc-nand-fifo", info);
2032 if (err) {
2033 dev_err(dev, "Requesting IRQ %d, error %d\n",
2034 info->gpmc_irq_fifo, err);
2035 info->gpmc_irq_fifo = 0;
2036 return err;
2037 }
2038
2039 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
2040 if (info->gpmc_irq_count <= 0)
2041 return -ENODEV;
2042 err = devm_request_irq(dev, info->gpmc_irq_count,
2043 omap_nand_irq, IRQF_SHARED,
2044 "gpmc-nand-count", info);
2045 if (err) {
2046 dev_err(dev, "Requesting IRQ %d, error %d\n",
2047 info->gpmc_irq_count, err);
2048 info->gpmc_irq_count = 0;
2049 return err;
2050 }
2051
2052 chip->legacy.read_buf = omap_read_buf_irq_pref;
2053 chip->legacy.write_buf = omap_write_buf_irq_pref;
2054
2055 break;
2056
2057 default:
2058 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2059 return -EINVAL;
2060 }
2061
2062 if (!omap2_nand_ecc_check(info))
2063 return -EINVAL;
2064
2065
2066
2067
2068
2069 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2070 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2071 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2072 return 0;
2073 }
2074
2075
2076 switch (info->ecc_opt) {
2077 case OMAP_ECC_HAM1_CODE_HW:
2078 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2079 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2080 chip->ecc.bytes = 3;
2081 chip->ecc.size = 512;
2082 chip->ecc.strength = 1;
2083 chip->ecc.calculate = omap_calculate_ecc;
2084 chip->ecc.hwctl = omap_enable_hwecc;
2085 chip->ecc.correct = omap_correct_data;
2086 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2087 oobbytes_per_step = chip->ecc.bytes;
2088
2089 if (!(chip->options & NAND_BUSWIDTH_16))
2090 min_oobbytes = 1;
2091
2092 break;
2093
2094 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2095 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2096 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2097 chip->ecc.size = 512;
2098 chip->ecc.bytes = 7;
2099 chip->ecc.strength = 4;
2100 chip->ecc.hwctl = omap_enable_hwecc_bch;
2101 chip->ecc.correct = rawnand_sw_bch_correct;
2102 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2103 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2104
2105 oobbytes_per_step = chip->ecc.bytes + 1;
2106
2107 err = rawnand_sw_bch_init(chip);
2108 if (err) {
2109 dev_err(dev, "Unable to use BCH library\n");
2110 return err;
2111 }
2112 break;
2113
2114 case OMAP_ECC_BCH4_CODE_HW:
2115 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2116 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2117 chip->ecc.size = 512;
2118
2119 chip->ecc.bytes = 7 + 1;
2120 chip->ecc.strength = 4;
2121 chip->ecc.hwctl = omap_enable_hwecc_bch;
2122 chip->ecc.correct = omap_elm_correct_data;
2123 chip->ecc.read_page = omap_read_page_bch;
2124 chip->ecc.write_page = omap_write_page_bch;
2125 chip->ecc.write_subpage = omap_write_subpage_bch;
2126 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2127 oobbytes_per_step = chip->ecc.bytes;
2128 elm_bch_strength = BCH4_ECC;
2129 break;
2130
2131 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2132 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2133 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2134 chip->ecc.size = 512;
2135 chip->ecc.bytes = 13;
2136 chip->ecc.strength = 8;
2137 chip->ecc.hwctl = omap_enable_hwecc_bch;
2138 chip->ecc.correct = rawnand_sw_bch_correct;
2139 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2140 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2141
2142 oobbytes_per_step = chip->ecc.bytes + 1;
2143
2144 err = rawnand_sw_bch_init(chip);
2145 if (err) {
2146 dev_err(dev, "unable to use BCH library\n");
2147 return err;
2148 }
2149 break;
2150
2151 case OMAP_ECC_BCH8_CODE_HW:
2152 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2153 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2154 chip->ecc.size = 512;
2155
2156 chip->ecc.bytes = 13 + 1;
2157 chip->ecc.strength = 8;
2158 chip->ecc.hwctl = omap_enable_hwecc_bch;
2159 chip->ecc.correct = omap_elm_correct_data;
2160 chip->ecc.read_page = omap_read_page_bch;
2161 chip->ecc.write_page = omap_write_page_bch;
2162 chip->ecc.write_subpage = omap_write_subpage_bch;
2163 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2164 oobbytes_per_step = chip->ecc.bytes;
2165 elm_bch_strength = BCH8_ECC;
2166 break;
2167
2168 case OMAP_ECC_BCH16_CODE_HW:
2169 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2170 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2171 chip->ecc.size = 512;
2172 chip->ecc.bytes = 26;
2173 chip->ecc.strength = 16;
2174 chip->ecc.hwctl = omap_enable_hwecc_bch;
2175 chip->ecc.correct = omap_elm_correct_data;
2176 chip->ecc.read_page = omap_read_page_bch;
2177 chip->ecc.write_page = omap_write_page_bch;
2178 chip->ecc.write_subpage = omap_write_subpage_bch;
2179 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2180 oobbytes_per_step = chip->ecc.bytes;
2181 elm_bch_strength = BCH16_ECC;
2182 break;
2183 default:
2184 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2185 return -EINVAL;
2186 }
2187
2188 if (elm_bch_strength >= 0) {
2189 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2190 info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2191 if (info->neccpg) {
2192 info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2193 } else {
2194 info->neccpg = 1;
2195 info->nsteps_per_eccpg = chip->ecc.steps;
2196 }
2197 info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2198 info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2199
2200 err = elm_config(info->elm_dev, elm_bch_strength,
2201 info->nsteps_per_eccpg, chip->ecc.size,
2202 chip->ecc.bytes);
2203 if (err < 0)
2204 return err;
2205 }
2206
2207
2208 min_oobbytes += (oobbytes_per_step *
2209 (mtd->writesize / chip->ecc.size));
2210 if (mtd->oobsize < min_oobbytes) {
2211 dev_err(dev,
2212 "Not enough OOB bytes: required = %d, available=%d\n",
2213 min_oobbytes, mtd->oobsize);
2214 return -EINVAL;
2215 }
2216
2217 return 0;
2218}
2219
2220static const struct nand_controller_ops omap_nand_controller_ops = {
2221 .attach_chip = omap_nand_attach_chip,
2222};
2223
2224
2225static struct nand_controller omap_gpmc_controller;
2226static bool omap_gpmc_controller_initialized;
2227
2228static int omap_nand_probe(struct platform_device *pdev)
2229{
2230 struct omap_nand_info *info;
2231 struct mtd_info *mtd;
2232 struct nand_chip *nand_chip;
2233 int err;
2234 struct resource *res;
2235 struct device *dev = &pdev->dev;
2236
2237 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2238 GFP_KERNEL);
2239 if (!info)
2240 return -ENOMEM;
2241
2242 info->pdev = pdev;
2243
2244 err = omap_get_dt_info(dev, info);
2245 if (err)
2246 return err;
2247
2248 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2249 if (!info->ops) {
2250 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2251 return -ENODEV;
2252 }
2253
2254 nand_chip = &info->nand;
2255 mtd = nand_to_mtd(nand_chip);
2256 mtd->dev.parent = &pdev->dev;
2257 nand_set_flash_node(nand_chip, dev->of_node);
2258
2259 if (!mtd->name) {
2260 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2261 "omap2-nand.%d", info->gpmc_cs);
2262 if (!mtd->name) {
2263 dev_err(&pdev->dev, "Failed to set MTD name\n");
2264 return -ENOMEM;
2265 }
2266 }
2267
2268 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2269 nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2270 if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2271 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2272
2273 info->phys_base = res->start;
2274
2275 if (!omap_gpmc_controller_initialized) {
2276 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2277 nand_controller_init(&omap_gpmc_controller);
2278 omap_gpmc_controller_initialized = true;
2279 }
2280
2281 nand_chip->controller = &omap_gpmc_controller;
2282
2283 nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2284 nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
2285
2286 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2287 GPIOD_IN);
2288 if (IS_ERR(info->ready_gpiod)) {
2289 dev_err(dev, "failed to get ready gpio\n");
2290 return PTR_ERR(info->ready_gpiod);
2291 }
2292
2293
2294
2295
2296
2297
2298
2299
2300 if (info->ready_gpiod) {
2301 nand_chip->legacy.dev_ready = omap_dev_ready;
2302 nand_chip->legacy.chip_delay = 0;
2303 } else {
2304 nand_chip->legacy.waitfunc = omap_wait;
2305 nand_chip->legacy.chip_delay = 50;
2306 }
2307
2308 if (info->flash_bbt)
2309 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2310
2311
2312 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2313
2314 err = nand_scan(nand_chip, 1);
2315 if (err)
2316 goto return_error;
2317
2318 err = mtd_device_register(mtd, NULL, 0);
2319 if (err)
2320 goto cleanup_nand;
2321
2322 platform_set_drvdata(pdev, mtd);
2323
2324 return 0;
2325
2326cleanup_nand:
2327 nand_cleanup(nand_chip);
2328
2329return_error:
2330 if (!IS_ERR_OR_NULL(info->dma))
2331 dma_release_channel(info->dma);
2332
2333 rawnand_sw_bch_cleanup(nand_chip);
2334
2335 return err;
2336}
2337
2338static int omap_nand_remove(struct platform_device *pdev)
2339{
2340 struct mtd_info *mtd = platform_get_drvdata(pdev);
2341 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2342 struct omap_nand_info *info = mtd_to_omap(mtd);
2343 int ret;
2344
2345 rawnand_sw_bch_cleanup(nand_chip);
2346
2347 if (info->dma)
2348 dma_release_channel(info->dma);
2349 ret = mtd_device_unregister(mtd);
2350 WARN_ON(ret);
2351 nand_cleanup(nand_chip);
2352 return ret;
2353}
2354
2355static const struct of_device_id omap_nand_ids[] = {
2356 { .compatible = "ti,omap2-nand", },
2357 {},
2358};
2359MODULE_DEVICE_TABLE(of, omap_nand_ids);
2360
2361static struct platform_driver omap_nand_driver = {
2362 .probe = omap_nand_probe,
2363 .remove = omap_nand_remove,
2364 .driver = {
2365 .name = DRIVER_NAME,
2366 .of_match_table = of_match_ptr(omap_nand_ids),
2367 },
2368};
2369
2370module_platform_driver(omap_nand_driver);
2371
2372MODULE_ALIAS("platform:" DRIVER_NAME);
2373MODULE_LICENSE("GPL");
2374MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2375