linux/drivers/mtd/nand/raw/omap2.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   4 * Copyright © 2004 Micron Technology Inc.
   5 * Copyright © 2004 David Brownell
   6 */
   7
   8#include <linux/platform_device.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/delay.h>
  12#include <linux/gpio/consumer.h>
  13#include <linux/module.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand-ecc-sw-bch.h>
  19#include <linux/mtd/rawnand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/omap-dma.h>
  22#include <linux/io.h>
  23#include <linux/slab.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26
  27#include <linux/platform_data/elm.h>
  28
  29#include <linux/omap-gpmc.h>
  30#include <linux/platform_data/mtd-nand-omap2.h>
  31
  32#define DRIVER_NAME     "omap2-nand"
  33#define OMAP_NAND_TIMEOUT_MS    5000
  34
  35#define NAND_Ecc_P1e            (1 << 0)
  36#define NAND_Ecc_P2e            (1 << 1)
  37#define NAND_Ecc_P4e            (1 << 2)
  38#define NAND_Ecc_P8e            (1 << 3)
  39#define NAND_Ecc_P16e           (1 << 4)
  40#define NAND_Ecc_P32e           (1 << 5)
  41#define NAND_Ecc_P64e           (1 << 6)
  42#define NAND_Ecc_P128e          (1 << 7)
  43#define NAND_Ecc_P256e          (1 << 8)
  44#define NAND_Ecc_P512e          (1 << 9)
  45#define NAND_Ecc_P1024e         (1 << 10)
  46#define NAND_Ecc_P2048e         (1 << 11)
  47
  48#define NAND_Ecc_P1o            (1 << 16)
  49#define NAND_Ecc_P2o            (1 << 17)
  50#define NAND_Ecc_P4o            (1 << 18)
  51#define NAND_Ecc_P8o            (1 << 19)
  52#define NAND_Ecc_P16o           (1 << 20)
  53#define NAND_Ecc_P32o           (1 << 21)
  54#define NAND_Ecc_P64o           (1 << 22)
  55#define NAND_Ecc_P128o          (1 << 23)
  56#define NAND_Ecc_P256o          (1 << 24)
  57#define NAND_Ecc_P512o          (1 << 25)
  58#define NAND_Ecc_P1024o         (1 << 26)
  59#define NAND_Ecc_P2048o         (1 << 27)
  60
  61#define TF(value)       (value ? 1 : 0)
  62
  63#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  64#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  65#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  66#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  67#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  68#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  69#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  70#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  71
  72#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  73#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  74#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  75#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  76#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  77#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  78#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  79#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  80
  81#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  82#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  83#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  84#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  85#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  86#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  87#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  88#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  89
  90#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  91#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  92#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  93#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  94#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  95#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  96#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  97#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  98
  99#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 100#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 101
 102#define PREFETCH_CONFIG1_CS_SHIFT       24
 103#define ECC_CONFIG_CS_SHIFT             1
 104#define CS_MASK                         0x7
 105#define ENABLE_PREFETCH                 (0x1 << 7)
 106#define DMA_MPU_MODE_SHIFT              2
 107#define ECCSIZE0_SHIFT                  12
 108#define ECCSIZE1_SHIFT                  22
 109#define ECC1RESULTSIZE                  0x1
 110#define ECCCLEAR                        0x100
 111#define ECC1                            0x1
 112#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 113#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 114#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 115#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 116#define STATUS_BUFF_EMPTY               0x00000001
 117
 118#define SECTOR_BYTES            512
 119/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 120#define BCH4_BIT_PAD            4
 121
 122/* GPMC ecc engine settings for read */
 123#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
 124#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
 125#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
 126#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
 127#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
 128
 129/* GPMC ecc engine settings for write */
 130#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
 131#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
 132#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
 133
 134#define BBM_LEN                 2
 135
 136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 137                                0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 138                                0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 139                                0x07, 0x0e};
 140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 141        0xac, 0x6b, 0xff, 0x99, 0x7b};
 142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 143
 144struct omap_nand_info {
 145        struct nand_chip                nand;
 146        struct platform_device          *pdev;
 147
 148        int                             gpmc_cs;
 149        bool                            dev_ready;
 150        enum nand_io                    xfer_type;
 151        int                             devsize;
 152        enum omap_ecc                   ecc_opt;
 153        struct device_node              *elm_of_node;
 154
 155        unsigned long                   phys_base;
 156        struct completion               comp;
 157        struct dma_chan                 *dma;
 158        int                             gpmc_irq_fifo;
 159        int                             gpmc_irq_count;
 160        enum {
 161                OMAP_NAND_IO_READ = 0,  /* read */
 162                OMAP_NAND_IO_WRITE,     /* write */
 163        } iomode;
 164        u_char                          *buf;
 165        int                                     buf_len;
 166        /* Interface to GPMC */
 167        struct gpmc_nand_regs           reg;
 168        struct gpmc_nand_ops            *ops;
 169        bool                            flash_bbt;
 170        /* fields specific for BCHx_HW ECC scheme */
 171        struct device                   *elm_dev;
 172        /* NAND ready gpio */
 173        struct gpio_desc                *ready_gpiod;
 174        unsigned int                    neccpg;
 175        unsigned int                    nsteps_per_eccpg;
 176        unsigned int                    eccpg_size;
 177        unsigned int                    eccpg_bytes;
 178};
 179
 180static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 181{
 182        return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 183}
 184
 185/**
 186 * omap_prefetch_enable - configures and starts prefetch transfer
 187 * @cs: cs (chip select) number
 188 * @fifo_th: fifo threshold to be used for read/ write
 189 * @dma_mode: dma mode enable (1) or disable (0)
 190 * @u32_count: number of bytes to be transferred
 191 * @is_write: prefetch read(0) or write post(1) mode
 192 * @info: NAND device structure containing platform data
 193 */
 194static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 195        unsigned int u32_count, int is_write, struct omap_nand_info *info)
 196{
 197        u32 val;
 198
 199        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 200                return -1;
 201
 202        if (readl(info->reg.gpmc_prefetch_control))
 203                return -EBUSY;
 204
 205        /* Set the amount of bytes to be prefetched */
 206        writel(u32_count, info->reg.gpmc_prefetch_config2);
 207
 208        /* Set dma/mpu mode, the prefetch read / post write and
 209         * enable the engine. Set which cs is has requested for.
 210         */
 211        val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 212                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 213                (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 214        writel(val, info->reg.gpmc_prefetch_config1);
 215
 216        /*  Start the prefetch engine */
 217        writel(0x1, info->reg.gpmc_prefetch_control);
 218
 219        return 0;
 220}
 221
 222/*
 223 * omap_prefetch_reset - disables and stops the prefetch engine
 224 */
 225static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 226{
 227        u32 config1;
 228
 229        /* check if the same module/cs is trying to reset */
 230        config1 = readl(info->reg.gpmc_prefetch_config1);
 231        if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 232                return -EINVAL;
 233
 234        /* Stop the PFPW engine */
 235        writel(0x0, info->reg.gpmc_prefetch_control);
 236
 237        /* Reset/disable the PFPW engine */
 238        writel(0x0, info->reg.gpmc_prefetch_config1);
 239
 240        return 0;
 241}
 242
 243/**
 244 * omap_hwcontrol - hardware specific access to control-lines
 245 * @chip: NAND chip object
 246 * @cmd: command to device
 247 * @ctrl:
 248 * NAND_NCE: bit 0 -> don't care
 249 * NAND_CLE: bit 1 -> Command Latch
 250 * NAND_ALE: bit 2 -> Address Latch
 251 *
 252 * NOTE: boards may use different bits for these!!
 253 */
 254static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
 255{
 256        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 257
 258        if (cmd != NAND_CMD_NONE) {
 259                if (ctrl & NAND_CLE)
 260                        writeb(cmd, info->reg.gpmc_nand_command);
 261
 262                else if (ctrl & NAND_ALE)
 263                        writeb(cmd, info->reg.gpmc_nand_address);
 264
 265                else /* NAND_NCE */
 266                        writeb(cmd, info->reg.gpmc_nand_data);
 267        }
 268}
 269
 270/**
 271 * omap_read_buf8 - read data from NAND controller into buffer
 272 * @mtd: MTD device structure
 273 * @buf: buffer to store date
 274 * @len: number of bytes to read
 275 */
 276static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 277{
 278        struct nand_chip *nand = mtd_to_nand(mtd);
 279
 280        ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
 281}
 282
 283/**
 284 * omap_write_buf8 - write buffer to NAND controller
 285 * @mtd: MTD device structure
 286 * @buf: data buffer
 287 * @len: number of bytes to write
 288 */
 289static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 290{
 291        struct omap_nand_info *info = mtd_to_omap(mtd);
 292        u_char *p = (u_char *)buf;
 293        bool status;
 294
 295        while (len--) {
 296                iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
 297                /* wait until buffer is available for write */
 298                do {
 299                        status = info->ops->nand_writebuffer_empty();
 300                } while (!status);
 301        }
 302}
 303
 304/**
 305 * omap_read_buf16 - read data from NAND controller into buffer
 306 * @mtd: MTD device structure
 307 * @buf: buffer to store date
 308 * @len: number of bytes to read
 309 */
 310static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 311{
 312        struct nand_chip *nand = mtd_to_nand(mtd);
 313
 314        ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
 315}
 316
 317/**
 318 * omap_write_buf16 - write buffer to NAND controller
 319 * @mtd: MTD device structure
 320 * @buf: data buffer
 321 * @len: number of bytes to write
 322 */
 323static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 324{
 325        struct omap_nand_info *info = mtd_to_omap(mtd);
 326        u16 *p = (u16 *) buf;
 327        bool status;
 328        /* FIXME try bursts of writesw() or DMA ... */
 329        len >>= 1;
 330
 331        while (len--) {
 332                iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 333                /* wait until buffer is available for write */
 334                do {
 335                        status = info->ops->nand_writebuffer_empty();
 336                } while (!status);
 337        }
 338}
 339
 340/**
 341 * omap_read_buf_pref - read data from NAND controller into buffer
 342 * @chip: NAND chip object
 343 * @buf: buffer to store date
 344 * @len: number of bytes to read
 345 */
 346static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
 347{
 348        struct mtd_info *mtd = nand_to_mtd(chip);
 349        struct omap_nand_info *info = mtd_to_omap(mtd);
 350        uint32_t r_count = 0;
 351        int ret = 0;
 352        u32 *p = (u32 *)buf;
 353
 354        /* take care of subpage reads */
 355        if (len % 4) {
 356                if (info->nand.options & NAND_BUSWIDTH_16)
 357                        omap_read_buf16(mtd, buf, len % 4);
 358                else
 359                        omap_read_buf8(mtd, buf, len % 4);
 360                p = (u32 *) (buf + len % 4);
 361                len -= len % 4;
 362        }
 363
 364        /* configure and start prefetch transfer */
 365        ret = omap_prefetch_enable(info->gpmc_cs,
 366                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 367        if (ret) {
 368                /* PFPW engine is busy, use cpu copy method */
 369                if (info->nand.options & NAND_BUSWIDTH_16)
 370                        omap_read_buf16(mtd, (u_char *)p, len);
 371                else
 372                        omap_read_buf8(mtd, (u_char *)p, len);
 373        } else {
 374                do {
 375                        r_count = readl(info->reg.gpmc_prefetch_status);
 376                        r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 377                        r_count = r_count >> 2;
 378                        ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
 379                        p += r_count;
 380                        len -= r_count << 2;
 381                } while (len);
 382                /* disable and stop the PFPW engine */
 383                omap_prefetch_reset(info->gpmc_cs, info);
 384        }
 385}
 386
 387/**
 388 * omap_write_buf_pref - write buffer to NAND controller
 389 * @chip: NAND chip object
 390 * @buf: data buffer
 391 * @len: number of bytes to write
 392 */
 393static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
 394                                int len)
 395{
 396        struct mtd_info *mtd = nand_to_mtd(chip);
 397        struct omap_nand_info *info = mtd_to_omap(mtd);
 398        uint32_t w_count = 0;
 399        int i = 0, ret = 0;
 400        u16 *p = (u16 *)buf;
 401        unsigned long tim, limit;
 402        u32 val;
 403
 404        /* take care of subpage writes */
 405        if (len % 2 != 0) {
 406                writeb(*buf, info->nand.legacy.IO_ADDR_W);
 407                p = (u16 *)(buf + 1);
 408                len--;
 409        }
 410
 411        /*  configure and start prefetch transfer */
 412        ret = omap_prefetch_enable(info->gpmc_cs,
 413                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 414        if (ret) {
 415                /* PFPW engine is busy, use cpu copy method */
 416                if (info->nand.options & NAND_BUSWIDTH_16)
 417                        omap_write_buf16(mtd, (u_char *)p, len);
 418                else
 419                        omap_write_buf8(mtd, (u_char *)p, len);
 420        } else {
 421                while (len) {
 422                        w_count = readl(info->reg.gpmc_prefetch_status);
 423                        w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 424                        w_count = w_count >> 1;
 425                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 426                                iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 427                }
 428                /* wait for data to flushed-out before reset the prefetch */
 429                tim = 0;
 430                limit = (loops_per_jiffy *
 431                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 432                do {
 433                        cpu_relax();
 434                        val = readl(info->reg.gpmc_prefetch_status);
 435                        val = PREFETCH_STATUS_COUNT(val);
 436                } while (val && (tim++ < limit));
 437
 438                /* disable and stop the PFPW engine */
 439                omap_prefetch_reset(info->gpmc_cs, info);
 440        }
 441}
 442
 443/*
 444 * omap_nand_dma_callback: callback on the completion of dma transfer
 445 * @data: pointer to completion data structure
 446 */
 447static void omap_nand_dma_callback(void *data)
 448{
 449        complete((struct completion *) data);
 450}
 451
 452/*
 453 * omap_nand_dma_transfer: configure and start dma transfer
 454 * @mtd: MTD device structure
 455 * @addr: virtual address in RAM of source/destination
 456 * @len: number of data bytes to be transferred
 457 * @is_write: flag for read/write operation
 458 */
 459static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 460                                        unsigned int len, int is_write)
 461{
 462        struct omap_nand_info *info = mtd_to_omap(mtd);
 463        struct dma_async_tx_descriptor *tx;
 464        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 465                                                        DMA_FROM_DEVICE;
 466        struct scatterlist sg;
 467        unsigned long tim, limit;
 468        unsigned n;
 469        int ret;
 470        u32 val;
 471
 472        if (!virt_addr_valid(addr))
 473                goto out_copy;
 474
 475        sg_init_one(&sg, addr, len);
 476        n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 477        if (n == 0) {
 478                dev_err(&info->pdev->dev,
 479                        "Couldn't DMA map a %d byte buffer\n", len);
 480                goto out_copy;
 481        }
 482
 483        tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 484                is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 485                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 486        if (!tx)
 487                goto out_copy_unmap;
 488
 489        tx->callback = omap_nand_dma_callback;
 490        tx->callback_param = &info->comp;
 491        dmaengine_submit(tx);
 492
 493        init_completion(&info->comp);
 494
 495        /* setup and start DMA using dma_addr */
 496        dma_async_issue_pending(info->dma);
 497
 498        /*  configure and start prefetch transfer */
 499        ret = omap_prefetch_enable(info->gpmc_cs,
 500                PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 501        if (ret)
 502                /* PFPW engine is busy, use cpu copy method */
 503                goto out_copy_unmap;
 504
 505        wait_for_completion(&info->comp);
 506        tim = 0;
 507        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 508
 509        do {
 510                cpu_relax();
 511                val = readl(info->reg.gpmc_prefetch_status);
 512                val = PREFETCH_STATUS_COUNT(val);
 513        } while (val && (tim++ < limit));
 514
 515        /* disable and stop the PFPW engine */
 516        omap_prefetch_reset(info->gpmc_cs, info);
 517
 518        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 519        return 0;
 520
 521out_copy_unmap:
 522        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 523out_copy:
 524        if (info->nand.options & NAND_BUSWIDTH_16)
 525                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 526                        : omap_write_buf16(mtd, (u_char *) addr, len);
 527        else
 528                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 529                        : omap_write_buf8(mtd, (u_char *) addr, len);
 530        return 0;
 531}
 532
 533/**
 534 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 535 * @chip: NAND chip object
 536 * @buf: buffer to store date
 537 * @len: number of bytes to read
 538 */
 539static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
 540                                   int len)
 541{
 542        struct mtd_info *mtd = nand_to_mtd(chip);
 543
 544        if (len <= mtd->oobsize)
 545                omap_read_buf_pref(chip, buf, len);
 546        else
 547                /* start transfer in DMA mode */
 548                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 549}
 550
 551/**
 552 * omap_write_buf_dma_pref - write buffer to NAND controller
 553 * @chip: NAND chip object
 554 * @buf: data buffer
 555 * @len: number of bytes to write
 556 */
 557static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
 558                                    int len)
 559{
 560        struct mtd_info *mtd = nand_to_mtd(chip);
 561
 562        if (len <= mtd->oobsize)
 563                omap_write_buf_pref(chip, buf, len);
 564        else
 565                /* start transfer in DMA mode */
 566                omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
 567}
 568
 569/*
 570 * omap_nand_irq - GPMC irq handler
 571 * @this_irq: gpmc irq number
 572 * @dev: omap_nand_info structure pointer is passed here
 573 */
 574static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 575{
 576        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 577        u32 bytes;
 578
 579        bytes = readl(info->reg.gpmc_prefetch_status);
 580        bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 581        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 582        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 583                if (this_irq == info->gpmc_irq_count)
 584                        goto done;
 585
 586                if (info->buf_len && (info->buf_len < bytes))
 587                        bytes = info->buf_len;
 588                else if (!info->buf_len)
 589                        bytes = 0;
 590                iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
 591                              bytes >> 2);
 592                info->buf = info->buf + bytes;
 593                info->buf_len -= bytes;
 594
 595        } else {
 596                ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
 597                             bytes >> 2);
 598                info->buf = info->buf + bytes;
 599
 600                if (this_irq == info->gpmc_irq_count)
 601                        goto done;
 602        }
 603
 604        return IRQ_HANDLED;
 605
 606done:
 607        complete(&info->comp);
 608
 609        disable_irq_nosync(info->gpmc_irq_fifo);
 610        disable_irq_nosync(info->gpmc_irq_count);
 611
 612        return IRQ_HANDLED;
 613}
 614
 615/*
 616 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 617 * @chip: NAND chip object
 618 * @buf: buffer to store date
 619 * @len: number of bytes to read
 620 */
 621static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
 622                                   int len)
 623{
 624        struct mtd_info *mtd = nand_to_mtd(chip);
 625        struct omap_nand_info *info = mtd_to_omap(mtd);
 626        int ret = 0;
 627
 628        if (len <= mtd->oobsize) {
 629                omap_read_buf_pref(chip, buf, len);
 630                return;
 631        }
 632
 633        info->iomode = OMAP_NAND_IO_READ;
 634        info->buf = buf;
 635        init_completion(&info->comp);
 636
 637        /*  configure and start prefetch transfer */
 638        ret = omap_prefetch_enable(info->gpmc_cs,
 639                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 640        if (ret)
 641                /* PFPW engine is busy, use cpu copy method */
 642                goto out_copy;
 643
 644        info->buf_len = len;
 645
 646        enable_irq(info->gpmc_irq_count);
 647        enable_irq(info->gpmc_irq_fifo);
 648
 649        /* waiting for read to complete */
 650        wait_for_completion(&info->comp);
 651
 652        /* disable and stop the PFPW engine */
 653        omap_prefetch_reset(info->gpmc_cs, info);
 654        return;
 655
 656out_copy:
 657        if (info->nand.options & NAND_BUSWIDTH_16)
 658                omap_read_buf16(mtd, buf, len);
 659        else
 660                omap_read_buf8(mtd, buf, len);
 661}
 662
 663/*
 664 * omap_write_buf_irq_pref - write buffer to NAND controller
 665 * @chip: NAND chip object
 666 * @buf: data buffer
 667 * @len: number of bytes to write
 668 */
 669static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
 670                                    int len)
 671{
 672        struct mtd_info *mtd = nand_to_mtd(chip);
 673        struct omap_nand_info *info = mtd_to_omap(mtd);
 674        int ret = 0;
 675        unsigned long tim, limit;
 676        u32 val;
 677
 678        if (len <= mtd->oobsize) {
 679                omap_write_buf_pref(chip, buf, len);
 680                return;
 681        }
 682
 683        info->iomode = OMAP_NAND_IO_WRITE;
 684        info->buf = (u_char *) buf;
 685        init_completion(&info->comp);
 686
 687        /* configure and start prefetch transfer : size=24 */
 688        ret = omap_prefetch_enable(info->gpmc_cs,
 689                (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 690        if (ret)
 691                /* PFPW engine is busy, use cpu copy method */
 692                goto out_copy;
 693
 694        info->buf_len = len;
 695
 696        enable_irq(info->gpmc_irq_count);
 697        enable_irq(info->gpmc_irq_fifo);
 698
 699        /* waiting for write to complete */
 700        wait_for_completion(&info->comp);
 701
 702        /* wait for data to flushed-out before reset the prefetch */
 703        tim = 0;
 704        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 705        do {
 706                val = readl(info->reg.gpmc_prefetch_status);
 707                val = PREFETCH_STATUS_COUNT(val);
 708                cpu_relax();
 709        } while (val && (tim++ < limit));
 710
 711        /* disable and stop the PFPW engine */
 712        omap_prefetch_reset(info->gpmc_cs, info);
 713        return;
 714
 715out_copy:
 716        if (info->nand.options & NAND_BUSWIDTH_16)
 717                omap_write_buf16(mtd, buf, len);
 718        else
 719                omap_write_buf8(mtd, buf, len);
 720}
 721
 722/**
 723 * gen_true_ecc - This function will generate true ECC value
 724 * @ecc_buf: buffer to store ecc code
 725 *
 726 * This generated true ECC value can be used when correcting
 727 * data read from NAND flash memory core
 728 */
 729static void gen_true_ecc(u8 *ecc_buf)
 730{
 731        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 732                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 733
 734        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 735                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 736        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 737                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 738        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 739                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 740}
 741
 742/**
 743 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 744 * @ecc_data1:  ecc code from nand spare area
 745 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 746 * @page_data:  page data
 747 *
 748 * This function compares two ECC's and indicates if there is an error.
 749 * If the error can be corrected it will be corrected to the buffer.
 750 * If there is no error, %0 is returned. If there is an error but it
 751 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 752 */
 753static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 754                            u8 *ecc_data2,      /* read from register */
 755                            u8 *page_data)
 756{
 757        uint    i;
 758        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 759        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 760        u8      ecc_bit[24];
 761        u8      ecc_sum = 0;
 762        u8      find_bit = 0;
 763        uint    find_byte = 0;
 764        int     isEccFF;
 765
 766        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 767
 768        gen_true_ecc(ecc_data1);
 769        gen_true_ecc(ecc_data2);
 770
 771        for (i = 0; i <= 2; i++) {
 772                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 773                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 774        }
 775
 776        for (i = 0; i < 8; i++) {
 777                tmp0_bit[i]     = *ecc_data1 % 2;
 778                *ecc_data1      = *ecc_data1 / 2;
 779        }
 780
 781        for (i = 0; i < 8; i++) {
 782                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 783                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 784        }
 785
 786        for (i = 0; i < 8; i++) {
 787                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 788                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 789        }
 790
 791        for (i = 0; i < 8; i++) {
 792                comp0_bit[i]     = *ecc_data2 % 2;
 793                *ecc_data2       = *ecc_data2 / 2;
 794        }
 795
 796        for (i = 0; i < 8; i++) {
 797                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 798                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 799        }
 800
 801        for (i = 0; i < 8; i++) {
 802                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 803                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 804        }
 805
 806        for (i = 0; i < 6; i++)
 807                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 808
 809        for (i = 0; i < 8; i++)
 810                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 811
 812        for (i = 0; i < 8; i++)
 813                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 814
 815        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 816        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 817
 818        for (i = 0; i < 24; i++)
 819                ecc_sum += ecc_bit[i];
 820
 821        switch (ecc_sum) {
 822        case 0:
 823                /* Not reached because this function is not called if
 824                 *  ECC values are equal
 825                 */
 826                return 0;
 827
 828        case 1:
 829                /* Uncorrectable error */
 830                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 831                return -EBADMSG;
 832
 833        case 11:
 834                /* UN-Correctable error */
 835                pr_debug("ECC UNCORRECTED_ERROR B\n");
 836                return -EBADMSG;
 837
 838        case 12:
 839                /* Correctable error */
 840                find_byte = (ecc_bit[23] << 8) +
 841                            (ecc_bit[21] << 7) +
 842                            (ecc_bit[19] << 6) +
 843                            (ecc_bit[17] << 5) +
 844                            (ecc_bit[15] << 4) +
 845                            (ecc_bit[13] << 3) +
 846                            (ecc_bit[11] << 2) +
 847                            (ecc_bit[9]  << 1) +
 848                            ecc_bit[7];
 849
 850                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 851
 852                pr_debug("Correcting single bit ECC error at offset: "
 853                                "%d, bit: %d\n", find_byte, find_bit);
 854
 855                page_data[find_byte] ^= (1 << find_bit);
 856
 857                return 1;
 858        default:
 859                if (isEccFF) {
 860                        if (ecc_data2[0] == 0 &&
 861                            ecc_data2[1] == 0 &&
 862                            ecc_data2[2] == 0)
 863                                return 0;
 864                }
 865                pr_debug("UNCORRECTED_ERROR default\n");
 866                return -EBADMSG;
 867        }
 868}
 869
 870/**
 871 * omap_correct_data - Compares the ECC read with HW generated ECC
 872 * @chip: NAND chip object
 873 * @dat: page data
 874 * @read_ecc: ecc read from nand flash
 875 * @calc_ecc: ecc read from HW ECC registers
 876 *
 877 * Compares the ecc read from nand spare area with ECC registers values
 878 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 879 * detection and correction. If there are no errors, %0 is returned. If
 880 * there were errors and all of the errors were corrected, the number of
 881 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 882 * returned.
 883 */
 884static int omap_correct_data(struct nand_chip *chip, u_char *dat,
 885                             u_char *read_ecc, u_char *calc_ecc)
 886{
 887        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 888        int blockCnt = 0, i = 0, ret = 0;
 889        int stat = 0;
 890
 891        /* Ex NAND_ECC_HW12_2048 */
 892        if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
 893            info->nand.ecc.size == 2048)
 894                blockCnt = 4;
 895        else
 896                blockCnt = 1;
 897
 898        for (i = 0; i < blockCnt; i++) {
 899                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 900                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 901                        if (ret < 0)
 902                                return ret;
 903                        /* keep track of the number of corrected errors */
 904                        stat += ret;
 905                }
 906                read_ecc += 3;
 907                calc_ecc += 3;
 908                dat      += 512;
 909        }
 910        return stat;
 911}
 912
 913/**
 914 * omap_calculate_ecc - Generate non-inverted ECC bytes.
 915 * @chip: NAND chip object
 916 * @dat: The pointer to data on which ecc is computed
 917 * @ecc_code: The ecc_code buffer
 918 *
 919 * Using noninverted ECC can be considered ugly since writing a blank
 920 * page ie. padding will clear the ECC bytes. This is no problem as long
 921 * nobody is trying to write data on the seemingly unused page. Reading
 922 * an erased page will produce an ECC mismatch between generated and read
 923 * ECC bytes that has to be dealt with separately.
 924 */
 925static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 926                              u_char *ecc_code)
 927{
 928        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 929        u32 val;
 930
 931        val = readl(info->reg.gpmc_ecc_config);
 932        if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 933                return -EINVAL;
 934
 935        /* read ecc result */
 936        val = readl(info->reg.gpmc_ecc1_result);
 937        *ecc_code++ = val;          /* P128e, ..., P1e */
 938        *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 939        /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 940        *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 941
 942        return 0;
 943}
 944
 945/**
 946 * omap_enable_hwecc - This function enables the hardware ecc functionality
 947 * @chip: NAND chip object
 948 * @mode: Read/Write mode
 949 */
 950static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 951{
 952        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 953        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 954        u32 val;
 955
 956        /* clear ecc and enable bits */
 957        val = ECCCLEAR | ECC1;
 958        writel(val, info->reg.gpmc_ecc_control);
 959
 960        /* program ecc and result sizes */
 961        val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 962                         ECC1RESULTSIZE);
 963        writel(val, info->reg.gpmc_ecc_size_config);
 964
 965        switch (mode) {
 966        case NAND_ECC_READ:
 967        case NAND_ECC_WRITE:
 968                writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 969                break;
 970        case NAND_ECC_READSYN:
 971                writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 972                break;
 973        default:
 974                dev_info(&info->pdev->dev,
 975                        "error: unrecognized Mode[%d]!\n", mode);
 976                break;
 977        }
 978
 979        /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 980        val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 981        writel(val, info->reg.gpmc_ecc_config);
 982}
 983
 984/**
 985 * omap_wait - wait until the command is done
 986 * @this: NAND Chip structure
 987 *
 988 * Wait function is called during Program and erase operations and
 989 * the way it is called from MTD layer, we should wait till the NAND
 990 * chip is ready after the programming/erase operation has completed.
 991 *
 992 * Erase can take up to 400ms and program up to 20ms according to
 993 * general NAND and SmartMedia specs
 994 */
 995static int omap_wait(struct nand_chip *this)
 996{
 997        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
 998        unsigned long timeo = jiffies;
 999        int status;
1000
1001        timeo += msecs_to_jiffies(400);
1002
1003        writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004        while (time_before(jiffies, timeo)) {
1005                status = readb(info->reg.gpmc_nand_data);
1006                if (status & NAND_STATUS_READY)
1007                        break;
1008                cond_resched();
1009        }
1010
1011        status = readb(info->reg.gpmc_nand_data);
1012        return status;
1013}
1014
1015/**
1016 * omap_dev_ready - checks the NAND Ready GPIO line
1017 * @chip: NAND chip object
1018 *
1019 * Returns true if ready and false if busy.
1020 */
1021static int omap_dev_ready(struct nand_chip *chip)
1022{
1023        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1024
1025        return gpiod_get_value(info->ready_gpiod);
1026}
1027
1028/**
1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 * @chip: NAND chip object
1031 * @mode: Read/Write mode
1032 *
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
1036 * eccsize0 = 0  (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1038 */
1039static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1040                                                 int mode)
1041{
1042        unsigned int bch_type;
1043        unsigned int dev_width, nsectors;
1044        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1045        enum omap_ecc ecc_opt = info->ecc_opt;
1046        u32 val, wr_mode;
1047        unsigned int ecc_size1, ecc_size0;
1048
1049        /* GPMC configurations for calculating ECC */
1050        switch (ecc_opt) {
1051        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052                bch_type = 0;
1053                nsectors = 1;
1054                wr_mode   = BCH_WRAPMODE_6;
1055                ecc_size0 = BCH_ECC_SIZE0;
1056                ecc_size1 = BCH_ECC_SIZE1;
1057                break;
1058        case OMAP_ECC_BCH4_CODE_HW:
1059                bch_type = 0;
1060                nsectors = chip->ecc.steps;
1061                if (mode == NAND_ECC_READ) {
1062                        wr_mode   = BCH_WRAPMODE_1;
1063                        ecc_size0 = BCH4R_ECC_SIZE0;
1064                        ecc_size1 = BCH4R_ECC_SIZE1;
1065                } else {
1066                        wr_mode   = BCH_WRAPMODE_6;
1067                        ecc_size0 = BCH_ECC_SIZE0;
1068                        ecc_size1 = BCH_ECC_SIZE1;
1069                }
1070                break;
1071        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072                bch_type = 1;
1073                nsectors = 1;
1074                wr_mode   = BCH_WRAPMODE_6;
1075                ecc_size0 = BCH_ECC_SIZE0;
1076                ecc_size1 = BCH_ECC_SIZE1;
1077                break;
1078        case OMAP_ECC_BCH8_CODE_HW:
1079                bch_type = 1;
1080                nsectors = chip->ecc.steps;
1081                if (mode == NAND_ECC_READ) {
1082                        wr_mode   = BCH_WRAPMODE_1;
1083                        ecc_size0 = BCH8R_ECC_SIZE0;
1084                        ecc_size1 = BCH8R_ECC_SIZE1;
1085                } else {
1086                        wr_mode   = BCH_WRAPMODE_6;
1087                        ecc_size0 = BCH_ECC_SIZE0;
1088                        ecc_size1 = BCH_ECC_SIZE1;
1089                }
1090                break;
1091        case OMAP_ECC_BCH16_CODE_HW:
1092                bch_type = 0x2;
1093                nsectors = chip->ecc.steps;
1094                if (mode == NAND_ECC_READ) {
1095                        wr_mode   = 0x01;
1096                        ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097                        ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1098                } else {
1099                        wr_mode   = 0x01;
1100                        ecc_size0 = 0;  /* extra bits in nibbles per sector */
1101                        ecc_size1 = 52; /* OOB bits in nibbles per sector */
1102                }
1103                break;
1104        default:
1105                return;
1106        }
1107
1108        writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110        /* Configure ecc size for BCH */
1111        val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112        writel(val, info->reg.gpmc_ecc_size_config);
1113
1114        dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116        /* BCH configuration */
1117        val = ((1                        << 16) | /* enable BCH */
1118               (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1119               (wr_mode                  <<  8) | /* wrap mode */
1120               (dev_width                <<  7) | /* bus width */
1121               (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1122               (info->gpmc_cs            <<  1) | /* ECC CS */
1123               (0x1));                            /* enable ECC */
1124
1125        writel(val, info->reg.gpmc_ecc_config);
1126
1127        /* Clear ecc and enable bits */
1128        writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129}
1130
1131static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133                                0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135/**
1136 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1137 * @mtd:        MTD device structure
1138 * @dat:        The pointer to data on which ecc is computed
1139 * @ecc_calc:   The ecc_code buffer
1140 * @i:          The sector number (for a multi sector page)
1141 *
1142 * Support calculating of BCH4/8/16 ECC vectors for one sector
1143 * within a page. Sector number is in @i.
1144 */
1145static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146                                   const u_char *dat, u_char *ecc_calc, int i)
1147{
1148        struct omap_nand_info *info = mtd_to_omap(mtd);
1149        int eccbytes    = info->nand.ecc.bytes;
1150        struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1151        u8 *ecc_code;
1152        unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153        u32 val;
1154        int j;
1155
1156        ecc_code = ecc_calc;
1157        switch (info->ecc_opt) {
1158        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159        case OMAP_ECC_BCH8_CODE_HW:
1160                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162                bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163                bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164                *ecc_code++ = (bch_val4 & 0xFF);
1165                *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166                *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167                *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168                *ecc_code++ = (bch_val3 & 0xFF);
1169                *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170                *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171                *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172                *ecc_code++ = (bch_val2 & 0xFF);
1173                *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174                *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175                *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176                *ecc_code++ = (bch_val1 & 0xFF);
1177                break;
1178        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179        case OMAP_ECC_BCH4_CODE_HW:
1180                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182                *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183                *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184                *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185                        ((bch_val1 >> 28) & 0xF);
1186                *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187                *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188                *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189                *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190                break;
1191        case OMAP_ECC_BCH16_CODE_HW:
1192                val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193                ecc_code[0]  = ((val >>  8) & 0xFF);
1194                ecc_code[1]  = ((val >>  0) & 0xFF);
1195                val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196                ecc_code[2]  = ((val >> 24) & 0xFF);
1197                ecc_code[3]  = ((val >> 16) & 0xFF);
1198                ecc_code[4]  = ((val >>  8) & 0xFF);
1199                ecc_code[5]  = ((val >>  0) & 0xFF);
1200                val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201                ecc_code[6]  = ((val >> 24) & 0xFF);
1202                ecc_code[7]  = ((val >> 16) & 0xFF);
1203                ecc_code[8]  = ((val >>  8) & 0xFF);
1204                ecc_code[9]  = ((val >>  0) & 0xFF);
1205                val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206                ecc_code[10] = ((val >> 24) & 0xFF);
1207                ecc_code[11] = ((val >> 16) & 0xFF);
1208                ecc_code[12] = ((val >>  8) & 0xFF);
1209                ecc_code[13] = ((val >>  0) & 0xFF);
1210                val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211                ecc_code[14] = ((val >> 24) & 0xFF);
1212                ecc_code[15] = ((val >> 16) & 0xFF);
1213                ecc_code[16] = ((val >>  8) & 0xFF);
1214                ecc_code[17] = ((val >>  0) & 0xFF);
1215                val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216                ecc_code[18] = ((val >> 24) & 0xFF);
1217                ecc_code[19] = ((val >> 16) & 0xFF);
1218                ecc_code[20] = ((val >>  8) & 0xFF);
1219                ecc_code[21] = ((val >>  0) & 0xFF);
1220                val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221                ecc_code[22] = ((val >> 24) & 0xFF);
1222                ecc_code[23] = ((val >> 16) & 0xFF);
1223                ecc_code[24] = ((val >>  8) & 0xFF);
1224                ecc_code[25] = ((val >>  0) & 0xFF);
1225                break;
1226        default:
1227                return -EINVAL;
1228        }
1229
1230        /* ECC scheme specific syndrome customizations */
1231        switch (info->ecc_opt) {
1232        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233                /* Add constant polynomial to remainder, so that
1234                 * ECC of blank pages results in 0x0 on reading back
1235                 */
1236                for (j = 0; j < eccbytes; j++)
1237                        ecc_calc[j] ^= bch4_polynomial[j];
1238                break;
1239        case OMAP_ECC_BCH4_CODE_HW:
1240                /* Set  8th ECC byte as 0x0 for ROM compatibility */
1241                ecc_calc[eccbytes - 1] = 0x0;
1242                break;
1243        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244                /* Add constant polynomial to remainder, so that
1245                 * ECC of blank pages results in 0x0 on reading back
1246                 */
1247                for (j = 0; j < eccbytes; j++)
1248                        ecc_calc[j] ^= bch8_polynomial[j];
1249                break;
1250        case OMAP_ECC_BCH8_CODE_HW:
1251                /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252                ecc_calc[eccbytes - 1] = 0x0;
1253                break;
1254        case OMAP_ECC_BCH16_CODE_HW:
1255                break;
1256        default:
1257                return -EINVAL;
1258        }
1259
1260        return 0;
1261}
1262
1263/**
1264 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1265 * @chip:       NAND chip object
1266 * @dat:        The pointer to data on which ecc is computed
1267 * @ecc_calc:   Buffer storing the calculated ECC bytes
1268 *
1269 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1270 * when SW based correction is required as ECC is required for one sector
1271 * at a time.
1272 */
1273static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1274                                     const u_char *dat, u_char *ecc_calc)
1275{
1276        return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1277}
1278
1279/**
1280 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1281 * @mtd:        MTD device structure
1282 * @dat:        The pointer to data on which ecc is computed
1283 * @ecc_calc:   Buffer storing the calculated ECC bytes
1284 *
1285 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1286 */
1287static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288                                        const u_char *dat, u_char *ecc_calc)
1289{
1290        struct omap_nand_info *info = mtd_to_omap(mtd);
1291        int eccbytes = info->nand.ecc.bytes;
1292        unsigned long nsectors;
1293        int i, ret;
1294
1295        nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296        for (i = 0; i < nsectors; i++) {
1297                ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298                if (ret)
1299                        return ret;
1300
1301                ecc_calc += eccbytes;
1302        }
1303
1304        return 0;
1305}
1306
1307/**
1308 * erased_sector_bitflips - count bit flips
1309 * @data:       data sector buffer
1310 * @oob:        oob buffer
1311 * @info:       omap_nand_info
1312 *
1313 * Check the bit flips in erased page falls below correctable level.
1314 * If falls below, report the page as erased with correctable bit
1315 * flip, else report as uncorrectable page.
1316 */
1317static int erased_sector_bitflips(u_char *data, u_char *oob,
1318                struct omap_nand_info *info)
1319{
1320        int flip_bits = 0, i;
1321
1322        for (i = 0; i < info->nand.ecc.size; i++) {
1323                flip_bits += hweight8(~data[i]);
1324                if (flip_bits > info->nand.ecc.strength)
1325                        return 0;
1326        }
1327
1328        for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329                flip_bits += hweight8(~oob[i]);
1330                if (flip_bits > info->nand.ecc.strength)
1331                        return 0;
1332        }
1333
1334        /*
1335         * Bit flips falls in correctable level.
1336         * Fill data area with 0xFF
1337         */
1338        if (flip_bits) {
1339                memset(data, 0xFF, info->nand.ecc.size);
1340                memset(oob, 0xFF, info->nand.ecc.bytes);
1341        }
1342
1343        return flip_bits;
1344}
1345
1346/**
1347 * omap_elm_correct_data - corrects page data area in case error reported
1348 * @chip:       NAND chip object
1349 * @data:       page data
1350 * @read_ecc:   ecc read from nand flash
1351 * @calc_ecc:   ecc read from HW ECC registers
1352 *
1353 * Calculated ecc vector reported as zero in case of non-error pages.
1354 * In case of non-zero ecc vector, first filter out erased-pages, and
1355 * then process data via ELM to detect bit-flips.
1356 */
1357static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1358                                 u_char *read_ecc, u_char *calc_ecc)
1359{
1360        struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1361        struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362        int eccsteps = info->nsteps_per_eccpg;
1363        int i , j, stat = 0;
1364        int eccflag, actual_eccbytes;
1365        struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366        u_char *ecc_vec = calc_ecc;
1367        u_char *spare_ecc = read_ecc;
1368        u_char *erased_ecc_vec;
1369        u_char *buf;
1370        int bitflip_count;
1371        bool is_error_reported = false;
1372        u32 bit_pos, byte_pos, error_max, pos;
1373        int err;
1374
1375        switch (info->ecc_opt) {
1376        case OMAP_ECC_BCH4_CODE_HW:
1377                /* omit  7th ECC byte reserved for ROM code compatibility */
1378                actual_eccbytes = ecc->bytes - 1;
1379                erased_ecc_vec = bch4_vector;
1380                break;
1381        case OMAP_ECC_BCH8_CODE_HW:
1382                /* omit 14th ECC byte reserved for ROM code compatibility */
1383                actual_eccbytes = ecc->bytes - 1;
1384                erased_ecc_vec = bch8_vector;
1385                break;
1386        case OMAP_ECC_BCH16_CODE_HW:
1387                actual_eccbytes = ecc->bytes;
1388                erased_ecc_vec = bch16_vector;
1389                break;
1390        default:
1391                dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392                return -EINVAL;
1393        }
1394
1395        /* Initialize elm error vector to zero */
1396        memset(err_vec, 0, sizeof(err_vec));
1397
1398        for (i = 0; i < eccsteps ; i++) {
1399                eccflag = 0;    /* initialize eccflag */
1400
1401                /*
1402                 * Check any error reported,
1403                 * In case of error, non zero ecc reported.
1404                 */
1405                for (j = 0; j < actual_eccbytes; j++) {
1406                        if (calc_ecc[j] != 0) {
1407                                eccflag = 1; /* non zero ecc, error present */
1408                                break;
1409                        }
1410                }
1411
1412                if (eccflag == 1) {
1413                        if (memcmp(calc_ecc, erased_ecc_vec,
1414                                                actual_eccbytes) == 0) {
1415                                /*
1416                                 * calc_ecc[] matches pattern for ECC(all 0xff)
1417                                 * so this is definitely an erased-page
1418                                 */
1419                        } else {
1420                                buf = &data[info->nand.ecc.size * i];
1421                                /*
1422                                 * count number of 0-bits in read_buf.
1423                                 * This check can be removed once a similar
1424                                 * check is introduced in generic NAND driver
1425                                 */
1426                                bitflip_count = erased_sector_bitflips(
1427                                                buf, read_ecc, info);
1428                                if (bitflip_count) {
1429                                        /*
1430                                         * number of 0-bits within ECC limits
1431                                         * So this may be an erased-page
1432                                         */
1433                                        stat += bitflip_count;
1434                                } else {
1435                                        /*
1436                                         * Too many 0-bits. It may be a
1437                                         * - programmed-page, OR
1438                                         * - erased-page with many bit-flips
1439                                         * So this page requires check by ELM
1440                                         */
1441                                        err_vec[i].error_reported = true;
1442                                        is_error_reported = true;
1443                                }
1444                        }
1445                }
1446
1447                /* Update the ecc vector */
1448                calc_ecc += ecc->bytes;
1449                read_ecc += ecc->bytes;
1450        }
1451
1452        /* Check if any error reported */
1453        if (!is_error_reported)
1454                return stat;
1455
1456        /* Decode BCH error using ELM module */
1457        elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1458
1459        err = 0;
1460        for (i = 0; i < eccsteps; i++) {
1461                if (err_vec[i].error_uncorrectable) {
1462                        dev_err(&info->pdev->dev,
1463                                "uncorrectable bit-flips found\n");
1464                        err = -EBADMSG;
1465                } else if (err_vec[i].error_reported) {
1466                        for (j = 0; j < err_vec[i].error_count; j++) {
1467                                switch (info->ecc_opt) {
1468                                case OMAP_ECC_BCH4_CODE_HW:
1469                                        /* Add 4 bits to take care of padding */
1470                                        pos = err_vec[i].error_loc[j] +
1471                                                BCH4_BIT_PAD;
1472                                        break;
1473                                case OMAP_ECC_BCH8_CODE_HW:
1474                                case OMAP_ECC_BCH16_CODE_HW:
1475                                        pos = err_vec[i].error_loc[j];
1476                                        break;
1477                                default:
1478                                        return -EINVAL;
1479                                }
1480                                error_max = (ecc->size + actual_eccbytes) * 8;
1481                                /* Calculate bit position of error */
1482                                bit_pos = pos % 8;
1483
1484                                /* Calculate byte position of error */
1485                                byte_pos = (error_max - pos - 1) / 8;
1486
1487                                if (pos < error_max) {
1488                                        if (byte_pos < 512) {
1489                                                pr_debug("bitflip@dat[%d]=%x\n",
1490                                                     byte_pos, data[byte_pos]);
1491                                                data[byte_pos] ^= 1 << bit_pos;
1492                                        } else {
1493                                                pr_debug("bitflip@oob[%d]=%x\n",
1494                                                        (byte_pos - 512),
1495                                                     spare_ecc[byte_pos - 512]);
1496                                                spare_ecc[byte_pos - 512] ^=
1497                                                        1 << bit_pos;
1498                                        }
1499                                } else {
1500                                        dev_err(&info->pdev->dev,
1501                                                "invalid bit-flip @ %d:%d\n",
1502                                                byte_pos, bit_pos);
1503                                        err = -EBADMSG;
1504                                }
1505                        }
1506                }
1507
1508                /* Update number of correctable errors */
1509                stat = max_t(unsigned int, stat, err_vec[i].error_count);
1510
1511                /* Update page data with sector size */
1512                data += ecc->size;
1513                spare_ecc += ecc->bytes;
1514        }
1515
1516        return (err) ? err : stat;
1517}
1518
1519/**
1520 * omap_write_page_bch - BCH ecc based write page function for entire page
1521 * @chip:               nand chip info structure
1522 * @buf:                data buffer
1523 * @oob_required:       must write chip->oob_poi to OOB
1524 * @page:               page
1525 *
1526 * Custom write page method evolved to support multi sector writing in one shot
1527 */
1528static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1529                               int oob_required, int page)
1530{
1531        struct mtd_info *mtd = nand_to_mtd(chip);
1532        struct omap_nand_info *info = mtd_to_omap(mtd);
1533        uint8_t *ecc_calc = chip->ecc.calc_buf;
1534        unsigned int eccpg;
1535        int ret;
1536
1537        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1538        if (ret)
1539                return ret;
1540
1541        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1542                /* Enable GPMC ecc engine */
1543                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1544
1545                /* Write data */
1546                chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1547                                       info->eccpg_size);
1548
1549                /* Update ecc vector from GPMC result registers */
1550                ret = omap_calculate_ecc_bch_multi(mtd,
1551                                                   buf + (eccpg * info->eccpg_size),
1552                                                   ecc_calc);
1553                if (ret)
1554                        return ret;
1555
1556                ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1557                                                 chip->oob_poi,
1558                                                 eccpg * info->eccpg_bytes,
1559                                                 info->eccpg_bytes);
1560                if (ret)
1561                        return ret;
1562        }
1563
1564        /* Write ecc vector to OOB area */
1565        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1566
1567        return nand_prog_page_end_op(chip);
1568}
1569
1570/**
1571 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1572 * @chip:       nand chip info structure
1573 * @offset:     column address of subpage within the page
1574 * @data_len:   data length
1575 * @buf:        data buffer
1576 * @oob_required: must write chip->oob_poi to OOB
1577 * @page: page number to write
1578 *
1579 * OMAP optimized subpage write method.
1580 */
1581static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1582                                  u32 data_len, const u8 *buf,
1583                                  int oob_required, int page)
1584{
1585        struct mtd_info *mtd = nand_to_mtd(chip);
1586        struct omap_nand_info *info = mtd_to_omap(mtd);
1587        u8 *ecc_calc = chip->ecc.calc_buf;
1588        int ecc_size      = chip->ecc.size;
1589        int ecc_bytes     = chip->ecc.bytes;
1590        u32 start_step = offset / ecc_size;
1591        u32 end_step   = (offset + data_len - 1) / ecc_size;
1592        unsigned int eccpg;
1593        int step, ret = 0;
1594
1595        /*
1596         * Write entire page at one go as it would be optimal
1597         * as ECC is calculated by hardware.
1598         * ECC is calculated for all subpages but we choose
1599         * only what we want.
1600         */
1601        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1602        if (ret)
1603                return ret;
1604
1605        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1606                /* Enable GPMC ECC engine */
1607                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1608
1609                /* Write data */
1610                chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
1611                                       info->eccpg_size);
1612
1613                for (step = 0; step < info->nsteps_per_eccpg; step++) {
1614                        unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1615                        const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1616
1617                        /* Mask ECC of un-touched subpages with 0xFFs */
1618                        if ((step + base_step) < start_step ||
1619                            (step + base_step) > end_step)
1620                                memset(ecc_calc + (step * ecc_bytes), 0xff,
1621                                       ecc_bytes);
1622                        else
1623                                ret = _omap_calculate_ecc_bch(mtd,
1624                                                              bufoffs + (step * ecc_size),
1625                                                              ecc_calc + (step * ecc_bytes),
1626                                                              step);
1627
1628                        if (ret)
1629                                return ret;
1630                }
1631
1632                /*
1633                 * Copy the calculated ECC for the whole page including the
1634                 * masked values (0xFF) corresponding to unwritten subpages.
1635                 */
1636                ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1637                                                 eccpg * info->eccpg_bytes,
1638                                                 info->eccpg_bytes);
1639                if (ret)
1640                        return ret;
1641        }
1642
1643        /* write OOB buffer to NAND device */
1644        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1645
1646        return nand_prog_page_end_op(chip);
1647}
1648
1649/**
1650 * omap_read_page_bch - BCH ecc based page read function for entire page
1651 * @chip:               nand chip info structure
1652 * @buf:                buffer to store read data
1653 * @oob_required:       caller requires OOB data read to chip->oob_poi
1654 * @page:               page number to read
1655 *
1656 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1657 * used for error correction.
1658 * Custom method evolved to support ELM error correction & multi sector
1659 * reading. On reading page data area is read along with OOB data with
1660 * ecc engine enabled. ecc vector updated after read of OOB data.
1661 * For non error pages ecc vector reported as zero.
1662 */
1663static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1664                              int oob_required, int page)
1665{
1666        struct mtd_info *mtd = nand_to_mtd(chip);
1667        struct omap_nand_info *info = mtd_to_omap(mtd);
1668        uint8_t *ecc_calc = chip->ecc.calc_buf;
1669        uint8_t *ecc_code = chip->ecc.code_buf;
1670        unsigned int max_bitflips = 0, eccpg;
1671        int stat, ret;
1672
1673        ret = nand_read_page_op(chip, page, 0, NULL, 0);
1674        if (ret)
1675                return ret;
1676
1677        for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1678                /* Enable GPMC ecc engine */
1679                chip->ecc.hwctl(chip, NAND_ECC_READ);
1680
1681                /* Read data */
1682                ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1683                                                 buf + (eccpg * info->eccpg_size),
1684                                                 info->eccpg_size, false);
1685                if (ret)
1686                        return ret;
1687
1688                /* Read oob bytes */
1689                ret = nand_change_read_column_op(chip,
1690                                                 mtd->writesize + BBM_LEN +
1691                                                 (eccpg * info->eccpg_bytes),
1692                                                 chip->oob_poi + BBM_LEN +
1693                                                 (eccpg * info->eccpg_bytes),
1694                                                 info->eccpg_bytes, false);
1695                if (ret)
1696                        return ret;
1697
1698                /* Calculate ecc bytes */
1699                ret = omap_calculate_ecc_bch_multi(mtd,
1700                                                   buf + (eccpg * info->eccpg_size),
1701                                                   ecc_calc);
1702                if (ret)
1703                        return ret;
1704
1705                ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1706                                                 chip->oob_poi,
1707                                                 eccpg * info->eccpg_bytes,
1708                                                 info->eccpg_bytes);
1709                if (ret)
1710                        return ret;
1711
1712                stat = chip->ecc.correct(chip,
1713                                         buf + (eccpg * info->eccpg_size),
1714                                         ecc_code, ecc_calc);
1715                if (stat < 0) {
1716                        mtd->ecc_stats.failed++;
1717                } else {
1718                        mtd->ecc_stats.corrected += stat;
1719                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1720                }
1721        }
1722
1723        return max_bitflips;
1724}
1725
1726/**
1727 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1728 * @info: NAND device structure containing platform data
1729 * @elm_node: ELM's DT node
1730 */
1731static bool is_elm_present(struct omap_nand_info *info,
1732                           struct device_node *elm_node)
1733{
1734        struct platform_device *pdev;
1735
1736        /* check whether elm-id is passed via DT */
1737        if (!elm_node) {
1738                dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1739                return false;
1740        }
1741        pdev = of_find_device_by_node(elm_node);
1742        /* check whether ELM device is registered */
1743        if (!pdev) {
1744                dev_err(&info->pdev->dev, "ELM device not found\n");
1745                return false;
1746        }
1747        /* ELM module available, now configure it */
1748        info->elm_dev = &pdev->dev;
1749        return true;
1750}
1751
1752static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1753{
1754        bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1755
1756        switch (info->ecc_opt) {
1757        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1758        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1759                ecc_needs_omap_bch = false;
1760                ecc_needs_bch = true;
1761                ecc_needs_elm = false;
1762                break;
1763        case OMAP_ECC_BCH4_CODE_HW:
1764        case OMAP_ECC_BCH8_CODE_HW:
1765        case OMAP_ECC_BCH16_CODE_HW:
1766                ecc_needs_omap_bch = true;
1767                ecc_needs_bch = false;
1768                ecc_needs_elm = true;
1769                break;
1770        default:
1771                ecc_needs_omap_bch = false;
1772                ecc_needs_bch = false;
1773                ecc_needs_elm = false;
1774                break;
1775        }
1776
1777        if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1778                dev_err(&info->pdev->dev,
1779                        "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1780                return false;
1781        }
1782        if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1783                dev_err(&info->pdev->dev,
1784                        "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1785                return false;
1786        }
1787        if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1788                dev_err(&info->pdev->dev, "ELM not available\n");
1789                return false;
1790        }
1791
1792        return true;
1793}
1794
1795static const char * const nand_xfer_types[] = {
1796        [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1797        [NAND_OMAP_POLLED] = "polled",
1798        [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1799        [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1800};
1801
1802static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1803{
1804        struct device_node *child = dev->of_node;
1805        int i;
1806        const char *s;
1807        u32 cs;
1808
1809        if (of_property_read_u32(child, "reg", &cs) < 0) {
1810                dev_err(dev, "reg not found in DT\n");
1811                return -EINVAL;
1812        }
1813
1814        info->gpmc_cs = cs;
1815
1816        /* detect availability of ELM module. Won't be present pre-OMAP4 */
1817        info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1818        if (!info->elm_of_node) {
1819                info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1820                if (!info->elm_of_node)
1821                        dev_dbg(dev, "ti,elm-id not in DT\n");
1822        }
1823
1824        /* select ecc-scheme for NAND */
1825        if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1826                dev_err(dev, "ti,nand-ecc-opt not found\n");
1827                return -EINVAL;
1828        }
1829
1830        if (!strcmp(s, "sw")) {
1831                info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1832        } else if (!strcmp(s, "ham1") ||
1833                   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1834                info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1835        } else if (!strcmp(s, "bch4")) {
1836                if (info->elm_of_node)
1837                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1838                else
1839                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1840        } else if (!strcmp(s, "bch8")) {
1841                if (info->elm_of_node)
1842                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1843                else
1844                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1845        } else if (!strcmp(s, "bch16")) {
1846                info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1847        } else {
1848                dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1849                return -EINVAL;
1850        }
1851
1852        /* select data transfer mode */
1853        if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1854                for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1855                        if (!strcasecmp(s, nand_xfer_types[i])) {
1856                                info->xfer_type = i;
1857                                return 0;
1858                        }
1859                }
1860
1861                dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1862                return -EINVAL;
1863        }
1864
1865        return 0;
1866}
1867
1868static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1869                              struct mtd_oob_region *oobregion)
1870{
1871        struct omap_nand_info *info = mtd_to_omap(mtd);
1872        struct nand_chip *chip = &info->nand;
1873        int off = BBM_LEN;
1874
1875        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1876            !(chip->options & NAND_BUSWIDTH_16))
1877                off = 1;
1878
1879        if (section)
1880                return -ERANGE;
1881
1882        oobregion->offset = off;
1883        oobregion->length = chip->ecc.total;
1884
1885        return 0;
1886}
1887
1888static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1889                               struct mtd_oob_region *oobregion)
1890{
1891        struct omap_nand_info *info = mtd_to_omap(mtd);
1892        struct nand_chip *chip = &info->nand;
1893        int off = BBM_LEN;
1894
1895        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1896            !(chip->options & NAND_BUSWIDTH_16))
1897                off = 1;
1898
1899        if (section)
1900                return -ERANGE;
1901
1902        off += chip->ecc.total;
1903        if (off >= mtd->oobsize)
1904                return -ERANGE;
1905
1906        oobregion->offset = off;
1907        oobregion->length = mtd->oobsize - off;
1908
1909        return 0;
1910}
1911
1912static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1913        .ecc = omap_ooblayout_ecc,
1914        .free = omap_ooblayout_free,
1915};
1916
1917static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1918                                 struct mtd_oob_region *oobregion)
1919{
1920        struct nand_device *nand = mtd_to_nanddev(mtd);
1921        unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1922        unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1923        int off = BBM_LEN;
1924
1925        if (section >= nsteps)
1926                return -ERANGE;
1927
1928        /*
1929         * When SW correction is employed, one OMAP specific marker byte is
1930         * reserved after each ECC step.
1931         */
1932        oobregion->offset = off + (section * (ecc_bytes + 1));
1933        oobregion->length = ecc_bytes;
1934
1935        return 0;
1936}
1937
1938static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1939                                  struct mtd_oob_region *oobregion)
1940{
1941        struct nand_device *nand = mtd_to_nanddev(mtd);
1942        unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1943        unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1944        int off = BBM_LEN;
1945
1946        if (section)
1947                return -ERANGE;
1948
1949        /*
1950         * When SW correction is employed, one OMAP specific marker byte is
1951         * reserved after each ECC step.
1952         */
1953        off += ((ecc_bytes + 1) * nsteps);
1954        if (off >= mtd->oobsize)
1955                return -ERANGE;
1956
1957        oobregion->offset = off;
1958        oobregion->length = mtd->oobsize - off;
1959
1960        return 0;
1961}
1962
1963static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1964        .ecc = omap_sw_ooblayout_ecc,
1965        .free = omap_sw_ooblayout_free,
1966};
1967
1968static int omap_nand_attach_chip(struct nand_chip *chip)
1969{
1970        struct mtd_info *mtd = nand_to_mtd(chip);
1971        struct omap_nand_info *info = mtd_to_omap(mtd);
1972        struct device *dev = &info->pdev->dev;
1973        int min_oobbytes = BBM_LEN;
1974        int elm_bch_strength = -1;
1975        int oobbytes_per_step;
1976        dma_cap_mask_t mask;
1977        int err;
1978
1979        if (chip->bbt_options & NAND_BBT_USE_FLASH)
1980                chip->bbt_options |= NAND_BBT_NO_OOB;
1981        else
1982                chip->options |= NAND_SKIP_BBTSCAN;
1983
1984        /* Re-populate low-level callbacks based on xfer modes */
1985        switch (info->xfer_type) {
1986        case NAND_OMAP_PREFETCH_POLLED:
1987                chip->legacy.read_buf = omap_read_buf_pref;
1988                chip->legacy.write_buf = omap_write_buf_pref;
1989                break;
1990
1991        case NAND_OMAP_POLLED:
1992                /* Use nand_base defaults for {read,write}_buf */
1993                break;
1994
1995        case NAND_OMAP_PREFETCH_DMA:
1996                dma_cap_zero(mask);
1997                dma_cap_set(DMA_SLAVE, mask);
1998                info->dma = dma_request_chan(dev->parent, "rxtx");
1999
2000                if (IS_ERR(info->dma)) {
2001                        dev_err(dev, "DMA engine request failed\n");
2002                        return PTR_ERR(info->dma);
2003                } else {
2004                        struct dma_slave_config cfg;
2005
2006                        memset(&cfg, 0, sizeof(cfg));
2007                        cfg.src_addr = info->phys_base;
2008                        cfg.dst_addr = info->phys_base;
2009                        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2010                        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2011                        cfg.src_maxburst = 16;
2012                        cfg.dst_maxburst = 16;
2013                        err = dmaengine_slave_config(info->dma, &cfg);
2014                        if (err) {
2015                                dev_err(dev,
2016                                        "DMA engine slave config failed: %d\n",
2017                                        err);
2018                                return err;
2019                        }
2020                        chip->legacy.read_buf = omap_read_buf_dma_pref;
2021                        chip->legacy.write_buf = omap_write_buf_dma_pref;
2022                }
2023                break;
2024
2025        case NAND_OMAP_PREFETCH_IRQ:
2026                info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
2027                if (info->gpmc_irq_fifo <= 0)
2028                        return -ENODEV;
2029                err = devm_request_irq(dev, info->gpmc_irq_fifo,
2030                                       omap_nand_irq, IRQF_SHARED,
2031                                       "gpmc-nand-fifo", info);
2032                if (err) {
2033                        dev_err(dev, "Requesting IRQ %d, error %d\n",
2034                                info->gpmc_irq_fifo, err);
2035                        info->gpmc_irq_fifo = 0;
2036                        return err;
2037                }
2038
2039                info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
2040                if (info->gpmc_irq_count <= 0)
2041                        return -ENODEV;
2042                err = devm_request_irq(dev, info->gpmc_irq_count,
2043                                       omap_nand_irq, IRQF_SHARED,
2044                                       "gpmc-nand-count", info);
2045                if (err) {
2046                        dev_err(dev, "Requesting IRQ %d, error %d\n",
2047                                info->gpmc_irq_count, err);
2048                        info->gpmc_irq_count = 0;
2049                        return err;
2050                }
2051
2052                chip->legacy.read_buf = omap_read_buf_irq_pref;
2053                chip->legacy.write_buf = omap_write_buf_irq_pref;
2054
2055                break;
2056
2057        default:
2058                dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2059                return -EINVAL;
2060        }
2061
2062        if (!omap2_nand_ecc_check(info))
2063                return -EINVAL;
2064
2065        /*
2066         * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
2067         * ooblayout instead of using ours.
2068         */
2069        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2070                chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2071                chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2072                return 0;
2073        }
2074
2075        /* Populate MTD interface based on ECC scheme */
2076        switch (info->ecc_opt) {
2077        case OMAP_ECC_HAM1_CODE_HW:
2078                dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2079                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2080                chip->ecc.bytes         = 3;
2081                chip->ecc.size          = 512;
2082                chip->ecc.strength      = 1;
2083                chip->ecc.calculate     = omap_calculate_ecc;
2084                chip->ecc.hwctl         = omap_enable_hwecc;
2085                chip->ecc.correct       = omap_correct_data;
2086                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2087                oobbytes_per_step       = chip->ecc.bytes;
2088
2089                if (!(chip->options & NAND_BUSWIDTH_16))
2090                        min_oobbytes    = 1;
2091
2092                break;
2093
2094        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2095                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2096                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2097                chip->ecc.size          = 512;
2098                chip->ecc.bytes         = 7;
2099                chip->ecc.strength      = 4;
2100                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2101                chip->ecc.correct       = rawnand_sw_bch_correct;
2102                chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2103                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2104                /* Reserve one byte for the OMAP marker */
2105                oobbytes_per_step       = chip->ecc.bytes + 1;
2106                /* Software BCH library is used for locating errors */
2107                err = rawnand_sw_bch_init(chip);
2108                if (err) {
2109                        dev_err(dev, "Unable to use BCH library\n");
2110                        return err;
2111                }
2112                break;
2113
2114        case OMAP_ECC_BCH4_CODE_HW:
2115                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2116                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2117                chip->ecc.size          = 512;
2118                /* 14th bit is kept reserved for ROM-code compatibility */
2119                chip->ecc.bytes         = 7 + 1;
2120                chip->ecc.strength      = 4;
2121                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2122                chip->ecc.correct       = omap_elm_correct_data;
2123                chip->ecc.read_page     = omap_read_page_bch;
2124                chip->ecc.write_page    = omap_write_page_bch;
2125                chip->ecc.write_subpage = omap_write_subpage_bch;
2126                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2127                oobbytes_per_step       = chip->ecc.bytes;
2128                elm_bch_strength = BCH4_ECC;
2129                break;
2130
2131        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2132                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2133                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2134                chip->ecc.size          = 512;
2135                chip->ecc.bytes         = 13;
2136                chip->ecc.strength      = 8;
2137                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2138                chip->ecc.correct       = rawnand_sw_bch_correct;
2139                chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2140                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2141                /* Reserve one byte for the OMAP marker */
2142                oobbytes_per_step       = chip->ecc.bytes + 1;
2143                /* Software BCH library is used for locating errors */
2144                err = rawnand_sw_bch_init(chip);
2145                if (err) {
2146                        dev_err(dev, "unable to use BCH library\n");
2147                        return err;
2148                }
2149                break;
2150
2151        case OMAP_ECC_BCH8_CODE_HW:
2152                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2153                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2154                chip->ecc.size          = 512;
2155                /* 14th bit is kept reserved for ROM-code compatibility */
2156                chip->ecc.bytes         = 13 + 1;
2157                chip->ecc.strength      = 8;
2158                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2159                chip->ecc.correct       = omap_elm_correct_data;
2160                chip->ecc.read_page     = omap_read_page_bch;
2161                chip->ecc.write_page    = omap_write_page_bch;
2162                chip->ecc.write_subpage = omap_write_subpage_bch;
2163                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2164                oobbytes_per_step       = chip->ecc.bytes;
2165                elm_bch_strength = BCH8_ECC;
2166                break;
2167
2168        case OMAP_ECC_BCH16_CODE_HW:
2169                pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2170                chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2171                chip->ecc.size          = 512;
2172                chip->ecc.bytes         = 26;
2173                chip->ecc.strength      = 16;
2174                chip->ecc.hwctl         = omap_enable_hwecc_bch;
2175                chip->ecc.correct       = omap_elm_correct_data;
2176                chip->ecc.read_page     = omap_read_page_bch;
2177                chip->ecc.write_page    = omap_write_page_bch;
2178                chip->ecc.write_subpage = omap_write_subpage_bch;
2179                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2180                oobbytes_per_step       = chip->ecc.bytes;
2181                elm_bch_strength = BCH16_ECC;
2182                break;
2183        default:
2184                dev_err(dev, "Invalid or unsupported ECC scheme\n");
2185                return -EINVAL;
2186        }
2187
2188        if (elm_bch_strength >= 0) {
2189                chip->ecc.steps = mtd->writesize / chip->ecc.size;
2190                info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2191                if (info->neccpg) {
2192                        info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2193                } else {
2194                        info->neccpg = 1;
2195                        info->nsteps_per_eccpg = chip->ecc.steps;
2196                }
2197                info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2198                info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2199
2200                err = elm_config(info->elm_dev, elm_bch_strength,
2201                                 info->nsteps_per_eccpg, chip->ecc.size,
2202                                 chip->ecc.bytes);
2203                if (err < 0)
2204                        return err;
2205        }
2206
2207        /* Check if NAND device's OOB is enough to store ECC signatures */
2208        min_oobbytes += (oobbytes_per_step *
2209                         (mtd->writesize / chip->ecc.size));
2210        if (mtd->oobsize < min_oobbytes) {
2211                dev_err(dev,
2212                        "Not enough OOB bytes: required = %d, available=%d\n",
2213                        min_oobbytes, mtd->oobsize);
2214                return -EINVAL;
2215        }
2216
2217        return 0;
2218}
2219
2220static const struct nand_controller_ops omap_nand_controller_ops = {
2221        .attach_chip = omap_nand_attach_chip,
2222};
2223
2224/* Shared among all NAND instances to synchronize access to the ECC Engine */
2225static struct nand_controller omap_gpmc_controller;
2226static bool omap_gpmc_controller_initialized;
2227
2228static int omap_nand_probe(struct platform_device *pdev)
2229{
2230        struct omap_nand_info           *info;
2231        struct mtd_info                 *mtd;
2232        struct nand_chip                *nand_chip;
2233        int                             err;
2234        struct resource                 *res;
2235        struct device                   *dev = &pdev->dev;
2236
2237        info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2238                                GFP_KERNEL);
2239        if (!info)
2240                return -ENOMEM;
2241
2242        info->pdev = pdev;
2243
2244        err = omap_get_dt_info(dev, info);
2245        if (err)
2246                return err;
2247
2248        info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2249        if (!info->ops) {
2250                dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2251                return -ENODEV;
2252        }
2253
2254        nand_chip               = &info->nand;
2255        mtd                     = nand_to_mtd(nand_chip);
2256        mtd->dev.parent         = &pdev->dev;
2257        nand_set_flash_node(nand_chip, dev->of_node);
2258
2259        if (!mtd->name) {
2260                mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2261                                           "omap2-nand.%d", info->gpmc_cs);
2262                if (!mtd->name) {
2263                        dev_err(&pdev->dev, "Failed to set MTD name\n");
2264                        return -ENOMEM;
2265                }
2266        }
2267
2268        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2269        nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2270        if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2271                return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2272
2273        info->phys_base = res->start;
2274
2275        if (!omap_gpmc_controller_initialized) {
2276                omap_gpmc_controller.ops = &omap_nand_controller_ops;
2277                nand_controller_init(&omap_gpmc_controller);
2278                omap_gpmc_controller_initialized = true;
2279        }
2280
2281        nand_chip->controller = &omap_gpmc_controller;
2282
2283        nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2284        nand_chip->legacy.cmd_ctrl  = omap_hwcontrol;
2285
2286        info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2287                                                    GPIOD_IN);
2288        if (IS_ERR(info->ready_gpiod)) {
2289                dev_err(dev, "failed to get ready gpio\n");
2290                return PTR_ERR(info->ready_gpiod);
2291        }
2292
2293        /*
2294         * If RDY/BSY line is connected to OMAP then use the omap ready
2295         * function and the generic nand_wait function which reads the status
2296         * register after monitoring the RDY/BSY line. Otherwise use a standard
2297         * chip delay which is slightly more than tR (AC Timing) of the NAND
2298         * device and read status register until you get a failure or success
2299         */
2300        if (info->ready_gpiod) {
2301                nand_chip->legacy.dev_ready = omap_dev_ready;
2302                nand_chip->legacy.chip_delay = 0;
2303        } else {
2304                nand_chip->legacy.waitfunc = omap_wait;
2305                nand_chip->legacy.chip_delay = 50;
2306        }
2307
2308        if (info->flash_bbt)
2309                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2310
2311        /* scan NAND device connected to chip controller */
2312        nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2313
2314        err = nand_scan(nand_chip, 1);
2315        if (err)
2316                goto return_error;
2317
2318        err = mtd_device_register(mtd, NULL, 0);
2319        if (err)
2320                goto cleanup_nand;
2321
2322        platform_set_drvdata(pdev, mtd);
2323
2324        return 0;
2325
2326cleanup_nand:
2327        nand_cleanup(nand_chip);
2328
2329return_error:
2330        if (!IS_ERR_OR_NULL(info->dma))
2331                dma_release_channel(info->dma);
2332
2333        rawnand_sw_bch_cleanup(nand_chip);
2334
2335        return err;
2336}
2337
2338static int omap_nand_remove(struct platform_device *pdev)
2339{
2340        struct mtd_info *mtd = platform_get_drvdata(pdev);
2341        struct nand_chip *nand_chip = mtd_to_nand(mtd);
2342        struct omap_nand_info *info = mtd_to_omap(mtd);
2343        int ret;
2344
2345        rawnand_sw_bch_cleanup(nand_chip);
2346
2347        if (info->dma)
2348                dma_release_channel(info->dma);
2349        ret = mtd_device_unregister(mtd);
2350        WARN_ON(ret);
2351        nand_cleanup(nand_chip);
2352        return ret;
2353}
2354
2355static const struct of_device_id omap_nand_ids[] = {
2356        { .compatible = "ti,omap2-nand", },
2357        {},
2358};
2359MODULE_DEVICE_TABLE(of, omap_nand_ids);
2360
2361static struct platform_driver omap_nand_driver = {
2362        .probe          = omap_nand_probe,
2363        .remove         = omap_nand_remove,
2364        .driver         = {
2365                .name   = DRIVER_NAME,
2366                .of_match_table = of_match_ptr(omap_nand_ids),
2367        },
2368};
2369
2370module_platform_driver(omap_nand_driver);
2371
2372MODULE_ALIAS("platform:" DRIVER_NAME);
2373MODULE_LICENSE("GPL");
2374MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2375