linux/drivers/mtd/nand/raw/s3c2410.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright © 2004-2008 Simtec Electronics
   4 *      http://armlinux.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
   8*/
   9
  10#define pr_fmt(fmt) "nand-s3c2410: " fmt
  11
  12#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  13#define DEBUG
  14#endif
  15
  16#include <linux/module.h>
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19#include <linux/string.h>
  20#include <linux/io.h>
  21#include <linux/ioport.h>
  22#include <linux/platform_device.h>
  23#include <linux/delay.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <linux/clk.h>
  27#include <linux/cpufreq.h>
  28#include <linux/of.h>
  29#include <linux/of_device.h>
  30
  31#include <linux/mtd/mtd.h>
  32#include <linux/mtd/rawnand.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include <linux/platform_data/mtd-nand-s3c2410.h>
  36
  37#define S3C2410_NFREG(x) (x)
  38
  39#define S3C2410_NFCONF          S3C2410_NFREG(0x00)
  40#define S3C2410_NFCMD           S3C2410_NFREG(0x04)
  41#define S3C2410_NFADDR          S3C2410_NFREG(0x08)
  42#define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
  43#define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
  44#define S3C2410_NFECC           S3C2410_NFREG(0x14)
  45#define S3C2440_NFCONT          S3C2410_NFREG(0x04)
  46#define S3C2440_NFCMD           S3C2410_NFREG(0x08)
  47#define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
  48#define S3C2440_NFDATA          S3C2410_NFREG(0x10)
  49#define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
  50#define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
  51#define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
  52#define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
  53#define S3C2410_NFCONF_EN               (1<<15)
  54#define S3C2410_NFCONF_INITECC          (1<<12)
  55#define S3C2410_NFCONF_nFCE             (1<<11)
  56#define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
  57#define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
  58#define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
  59#define S3C2410_NFSTAT_BUSY             (1<<0)
  60#define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
  61#define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
  62#define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
  63#define S3C2440_NFCONT_INITECC          (1<<4)
  64#define S3C2440_NFCONT_nFCE             (1<<1)
  65#define S3C2440_NFCONT_ENABLE           (1<<0)
  66#define S3C2440_NFSTAT_READY            (1<<0)
  67#define S3C2412_NFCONF_NANDBOOT         (1<<31)
  68#define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
  69#define S3C2412_NFCONT_nFCE0            (1<<1)
  70#define S3C2412_NFSTAT_READY            (1<<0)
  71
  72/* new oob placement block for use with hardware ecc generation
  73 */
  74static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
  75                                 struct mtd_oob_region *oobregion)
  76{
  77        if (section)
  78                return -ERANGE;
  79
  80        oobregion->offset = 0;
  81        oobregion->length = 3;
  82
  83        return 0;
  84}
  85
  86static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
  87                                  struct mtd_oob_region *oobregion)
  88{
  89        if (section)
  90                return -ERANGE;
  91
  92        oobregion->offset = 8;
  93        oobregion->length = 8;
  94
  95        return 0;
  96}
  97
  98static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
  99        .ecc = s3c2410_ooblayout_ecc,
 100        .free = s3c2410_ooblayout_free,
 101};
 102
 103/* controller and mtd information */
 104
 105struct s3c2410_nand_info;
 106
 107/**
 108 * struct s3c2410_nand_mtd - driver MTD structure
 109 * @mtd: The MTD instance to pass to the MTD layer.
 110 * @chip: The NAND chip information.
 111 * @set: The platform information supplied for this set of NAND chips.
 112 * @info: Link back to the hardware information.
 113*/
 114struct s3c2410_nand_mtd {
 115        struct nand_chip                chip;
 116        struct s3c2410_nand_set         *set;
 117        struct s3c2410_nand_info        *info;
 118};
 119
 120enum s3c_cpu_type {
 121        TYPE_S3C2410,
 122        TYPE_S3C2412,
 123        TYPE_S3C2440,
 124};
 125
 126enum s3c_nand_clk_state {
 127        CLOCK_DISABLE   = 0,
 128        CLOCK_ENABLE,
 129        CLOCK_SUSPEND,
 130};
 131
 132/* overview of the s3c2410 nand state */
 133
 134/**
 135 * struct s3c2410_nand_info - NAND controller state.
 136 * @controller: Base controller structure.
 137 * @mtds: An array of MTD instances on this controller.
 138 * @platform: The platform data for this board.
 139 * @device: The platform device we bound to.
 140 * @clk: The clock resource for this controller.
 141 * @regs: The area mapped for the hardware registers.
 142 * @sel_reg: Pointer to the register controlling the NAND selection.
 143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
 144 * @mtd_count: The number of MTDs created from this controller.
 145 * @save_sel: The contents of @sel_reg to be saved over suspend.
 146 * @clk_rate: The clock rate from @clk.
 147 * @clk_state: The current clock state.
 148 * @cpu_type: The exact type of this controller.
 149 * @freq_transition: CPUFreq notifier block
 150 */
 151struct s3c2410_nand_info {
 152        /* mtd info */
 153        struct nand_controller          controller;
 154        struct s3c2410_nand_mtd         *mtds;
 155        struct s3c2410_platform_nand    *platform;
 156
 157        /* device info */
 158        struct device                   *device;
 159        struct clk                      *clk;
 160        void __iomem                    *regs;
 161        void __iomem                    *sel_reg;
 162        int                             sel_bit;
 163        int                             mtd_count;
 164        unsigned long                   save_sel;
 165        unsigned long                   clk_rate;
 166        enum s3c_nand_clk_state         clk_state;
 167
 168        enum s3c_cpu_type               cpu_type;
 169
 170#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 171        struct notifier_block   freq_transition;
 172#endif
 173};
 174
 175struct s3c24XX_nand_devtype_data {
 176        enum s3c_cpu_type type;
 177};
 178
 179static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
 180        .type = TYPE_S3C2410,
 181};
 182
 183static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
 184        .type = TYPE_S3C2412,
 185};
 186
 187static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
 188        .type = TYPE_S3C2440,
 189};
 190
 191/* conversion functions */
 192
 193static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
 194{
 195        return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
 196                            chip);
 197}
 198
 199static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
 200{
 201        return s3c2410_nand_mtd_toours(mtd)->info;
 202}
 203
 204static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
 205{
 206        return platform_get_drvdata(dev);
 207}
 208
 209static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
 210{
 211        return dev_get_platdata(&dev->dev);
 212}
 213
 214static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
 215{
 216#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
 217        return 1;
 218#else
 219        return 0;
 220#endif
 221}
 222
 223/**
 224 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
 225 * @info: The controller instance.
 226 * @new_state: State to which clock should be set.
 227 */
 228static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
 229                enum s3c_nand_clk_state new_state)
 230{
 231        if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
 232                return;
 233
 234        if (info->clk_state == CLOCK_ENABLE) {
 235                if (new_state != CLOCK_ENABLE)
 236                        clk_disable_unprepare(info->clk);
 237        } else {
 238                if (new_state == CLOCK_ENABLE)
 239                        clk_prepare_enable(info->clk);
 240        }
 241
 242        info->clk_state = new_state;
 243}
 244
 245/* timing calculations */
 246
 247#define NS_IN_KHZ 1000000
 248
 249/**
 250 * s3c_nand_calc_rate - calculate timing data.
 251 * @wanted: The cycle time in nanoseconds.
 252 * @clk: The clock rate in kHz.
 253 * @max: The maximum divider value.
 254 *
 255 * Calculate the timing value from the given parameters.
 256 */
 257static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
 258{
 259        int result;
 260
 261        result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
 262
 263        pr_debug("result %d from %ld, %d\n", result, clk, wanted);
 264
 265        if (result > max) {
 266                pr_err("%d ns is too big for current clock rate %ld\n",
 267                        wanted, clk);
 268                return -1;
 269        }
 270
 271        if (result < 1)
 272                result = 1;
 273
 274        return result;
 275}
 276
 277#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
 278
 279/* controller setup */
 280
 281/**
 282 * s3c2410_nand_setrate - setup controller timing information.
 283 * @info: The controller instance.
 284 *
 285 * Given the information supplied by the platform, calculate and set
 286 * the necessary timing registers in the hardware to generate the
 287 * necessary timing cycles to the hardware.
 288 */
 289static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
 290{
 291        struct s3c2410_platform_nand *plat = info->platform;
 292        int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
 293        int tacls, twrph0, twrph1;
 294        unsigned long clkrate = clk_get_rate(info->clk);
 295        unsigned long set, cfg, mask;
 296        unsigned long flags;
 297
 298        /* calculate the timing information for the controller */
 299
 300        info->clk_rate = clkrate;
 301        clkrate /= 1000;        /* turn clock into kHz for ease of use */
 302
 303        if (plat != NULL) {
 304                tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
 305                twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
 306                twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
 307        } else {
 308                /* default timings */
 309                tacls = tacls_max;
 310                twrph0 = 8;
 311                twrph1 = 8;
 312        }
 313
 314        if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
 315                dev_err(info->device, "cannot get suitable timings\n");
 316                return -EINVAL;
 317        }
 318
 319        dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
 320                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
 321                                                twrph1, to_ns(twrph1, clkrate));
 322
 323        switch (info->cpu_type) {
 324        case TYPE_S3C2410:
 325                mask = (S3C2410_NFCONF_TACLS(3) |
 326                        S3C2410_NFCONF_TWRPH0(7) |
 327                        S3C2410_NFCONF_TWRPH1(7));
 328                set = S3C2410_NFCONF_EN;
 329                set |= S3C2410_NFCONF_TACLS(tacls - 1);
 330                set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
 331                set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
 332                break;
 333
 334        case TYPE_S3C2440:
 335        case TYPE_S3C2412:
 336                mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
 337                        S3C2440_NFCONF_TWRPH0(7) |
 338                        S3C2440_NFCONF_TWRPH1(7));
 339
 340                set = S3C2440_NFCONF_TACLS(tacls - 1);
 341                set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
 342                set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
 343                break;
 344
 345        default:
 346                BUG();
 347        }
 348
 349        local_irq_save(flags);
 350
 351        cfg = readl(info->regs + S3C2410_NFCONF);
 352        cfg &= ~mask;
 353        cfg |= set;
 354        writel(cfg, info->regs + S3C2410_NFCONF);
 355
 356        local_irq_restore(flags);
 357
 358        dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
 359
 360        return 0;
 361}
 362
 363/**
 364 * s3c2410_nand_inithw - basic hardware initialisation
 365 * @info: The hardware state.
 366 *
 367 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
 368 * to setup the hardware access speeds and set the controller to be enabled.
 369*/
 370static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
 371{
 372        int ret;
 373
 374        ret = s3c2410_nand_setrate(info);
 375        if (ret < 0)
 376                return ret;
 377
 378        switch (info->cpu_type) {
 379        case TYPE_S3C2410:
 380        default:
 381                break;
 382
 383        case TYPE_S3C2440:
 384        case TYPE_S3C2412:
 385                /* enable the controller and de-assert nFCE */
 386
 387                writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
 388        }
 389
 390        return 0;
 391}
 392
 393/**
 394 * s3c2410_nand_select_chip - select the given nand chip
 395 * @this: NAND chip object.
 396 * @chip: The chip number.
 397 *
 398 * This is called by the MTD layer to either select a given chip for the
 399 * @mtd instance, or to indicate that the access has finished and the
 400 * chip can be de-selected.
 401 *
 402 * The routine ensures that the nFCE line is correctly setup, and any
 403 * platform specific selection code is called to route nFCE to the specific
 404 * chip.
 405 */
 406static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
 407{
 408        struct s3c2410_nand_info *info;
 409        struct s3c2410_nand_mtd *nmtd;
 410        unsigned long cur;
 411
 412        nmtd = nand_get_controller_data(this);
 413        info = nmtd->info;
 414
 415        if (chip != -1)
 416                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
 417
 418        cur = readl(info->sel_reg);
 419
 420        if (chip == -1) {
 421                cur |= info->sel_bit;
 422        } else {
 423                if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
 424                        dev_err(info->device, "invalid chip %d\n", chip);
 425                        return;
 426                }
 427
 428                if (info->platform != NULL) {
 429                        if (info->platform->select_chip != NULL)
 430                                (info->platform->select_chip) (nmtd->set, chip);
 431                }
 432
 433                cur &= ~info->sel_bit;
 434        }
 435
 436        writel(cur, info->sel_reg);
 437
 438        if (chip == -1)
 439                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
 440}
 441
 442/* s3c2410_nand_hwcontrol
 443 *
 444 * Issue command and address cycles to the chip
 445*/
 446
 447static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
 448                                   unsigned int ctrl)
 449{
 450        struct mtd_info *mtd = nand_to_mtd(chip);
 451        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 452
 453        if (cmd == NAND_CMD_NONE)
 454                return;
 455
 456        if (ctrl & NAND_CLE)
 457                writeb(cmd, info->regs + S3C2410_NFCMD);
 458        else
 459                writeb(cmd, info->regs + S3C2410_NFADDR);
 460}
 461
 462/* command and control functions */
 463
 464static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
 465                                   unsigned int ctrl)
 466{
 467        struct mtd_info *mtd = nand_to_mtd(chip);
 468        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 469
 470        if (cmd == NAND_CMD_NONE)
 471                return;
 472
 473        if (ctrl & NAND_CLE)
 474                writeb(cmd, info->regs + S3C2440_NFCMD);
 475        else
 476                writeb(cmd, info->regs + S3C2440_NFADDR);
 477}
 478
 479/* s3c2410_nand_devready()
 480 *
 481 * returns 0 if the nand is busy, 1 if it is ready
 482*/
 483
 484static int s3c2410_nand_devready(struct nand_chip *chip)
 485{
 486        struct mtd_info *mtd = nand_to_mtd(chip);
 487        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 488        return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
 489}
 490
 491static int s3c2440_nand_devready(struct nand_chip *chip)
 492{
 493        struct mtd_info *mtd = nand_to_mtd(chip);
 494        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 495        return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
 496}
 497
 498static int s3c2412_nand_devready(struct nand_chip *chip)
 499{
 500        struct mtd_info *mtd = nand_to_mtd(chip);
 501        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 502        return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
 503}
 504
 505/* ECC handling functions */
 506
 507static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
 508                                     u_char *read_ecc, u_char *calc_ecc)
 509{
 510        struct mtd_info *mtd = nand_to_mtd(chip);
 511        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 512        unsigned int diff0, diff1, diff2;
 513        unsigned int bit, byte;
 514
 515        pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
 516
 517        diff0 = read_ecc[0] ^ calc_ecc[0];
 518        diff1 = read_ecc[1] ^ calc_ecc[1];
 519        diff2 = read_ecc[2] ^ calc_ecc[2];
 520
 521        pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
 522                 __func__, 3, read_ecc, 3, calc_ecc,
 523                 diff0, diff1, diff2);
 524
 525        if (diff0 == 0 && diff1 == 0 && diff2 == 0)
 526                return 0;               /* ECC is ok */
 527
 528        /* sometimes people do not think about using the ECC, so check
 529         * to see if we have an 0xff,0xff,0xff read ECC and then ignore
 530         * the error, on the assumption that this is an un-eccd page.
 531         */
 532        if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
 533            && info->platform->ignore_unset_ecc)
 534                return 0;
 535
 536        /* Can we correct this ECC (ie, one row and column change).
 537         * Note, this is similar to the 256 error code on smartmedia */
 538
 539        if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
 540            ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
 541            ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
 542                /* calculate the bit position of the error */
 543
 544                bit  = ((diff2 >> 3) & 1) |
 545                       ((diff2 >> 4) & 2) |
 546                       ((diff2 >> 5) & 4);
 547
 548                /* calculate the byte position of the error */
 549
 550                byte = ((diff2 << 7) & 0x100) |
 551                       ((diff1 << 0) & 0x80)  |
 552                       ((diff1 << 1) & 0x40)  |
 553                       ((diff1 << 2) & 0x20)  |
 554                       ((diff1 << 3) & 0x10)  |
 555                       ((diff0 >> 4) & 0x08)  |
 556                       ((diff0 >> 3) & 0x04)  |
 557                       ((diff0 >> 2) & 0x02)  |
 558                       ((diff0 >> 1) & 0x01);
 559
 560                dev_dbg(info->device, "correcting error bit %d, byte %d\n",
 561                        bit, byte);
 562
 563                dat[byte] ^= (1 << bit);
 564                return 1;
 565        }
 566
 567        /* if there is only one bit difference in the ECC, then
 568         * one of only a row or column parity has changed, which
 569         * means the error is most probably in the ECC itself */
 570
 571        diff0 |= (diff1 << 8);
 572        diff0 |= (diff2 << 16);
 573
 574        /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
 575        if ((diff0 & (diff0 - 1)) == 0)
 576                return 1;
 577
 578        return -1;
 579}
 580
 581/* ECC functions
 582 *
 583 * These allow the s3c2410 and s3c2440 to use the controller's ECC
 584 * generator block to ECC the data as it passes through]
 585*/
 586
 587static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
 588{
 589        struct s3c2410_nand_info *info;
 590        unsigned long ctrl;
 591
 592        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 593        ctrl = readl(info->regs + S3C2410_NFCONF);
 594        ctrl |= S3C2410_NFCONF_INITECC;
 595        writel(ctrl, info->regs + S3C2410_NFCONF);
 596}
 597
 598static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
 599{
 600        struct s3c2410_nand_info *info;
 601        unsigned long ctrl;
 602
 603        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 604        ctrl = readl(info->regs + S3C2440_NFCONT);
 605        writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
 606               info->regs + S3C2440_NFCONT);
 607}
 608
 609static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
 610{
 611        struct s3c2410_nand_info *info;
 612        unsigned long ctrl;
 613
 614        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 615        ctrl = readl(info->regs + S3C2440_NFCONT);
 616        writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
 617}
 618
 619static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
 620                                      const u_char *dat, u_char *ecc_code)
 621{
 622        struct mtd_info *mtd = nand_to_mtd(chip);
 623        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 624
 625        ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
 626        ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
 627        ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
 628
 629        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 630
 631        return 0;
 632}
 633
 634static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
 635                                      const u_char *dat, u_char *ecc_code)
 636{
 637        struct mtd_info *mtd = nand_to_mtd(chip);
 638        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 639        unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
 640
 641        ecc_code[0] = ecc;
 642        ecc_code[1] = ecc >> 8;
 643        ecc_code[2] = ecc >> 16;
 644
 645        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 646
 647        return 0;
 648}
 649
 650static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
 651                                      const u_char *dat, u_char *ecc_code)
 652{
 653        struct mtd_info *mtd = nand_to_mtd(chip);
 654        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 655        unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
 656
 657        ecc_code[0] = ecc;
 658        ecc_code[1] = ecc >> 8;
 659        ecc_code[2] = ecc >> 16;
 660
 661        pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
 662
 663        return 0;
 664}
 665
 666/* over-ride the standard functions for a little more speed. We can
 667 * use read/write block to move the data buffers to/from the controller
 668*/
 669
 670static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 671{
 672        readsb(this->legacy.IO_ADDR_R, buf, len);
 673}
 674
 675static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 676{
 677        struct mtd_info *mtd = nand_to_mtd(this);
 678        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 679
 680        readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 681
 682        /* cleanup if we've got less than a word to do */
 683        if (len & 3) {
 684                buf += len & ~3;
 685
 686                for (; len & 3; len--)
 687                        *buf++ = readb(info->regs + S3C2440_NFDATA);
 688        }
 689}
 690
 691static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
 692                                   int len)
 693{
 694        writesb(this->legacy.IO_ADDR_W, buf, len);
 695}
 696
 697static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
 698                                   int len)
 699{
 700        struct mtd_info *mtd = nand_to_mtd(this);
 701        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 702
 703        writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 704
 705        /* cleanup any fractional write */
 706        if (len & 3) {
 707                buf += len & ~3;
 708
 709                for (; len & 3; len--, buf++)
 710                        writeb(*buf, info->regs + S3C2440_NFDATA);
 711        }
 712}
 713
 714/* cpufreq driver support */
 715
 716#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 717
 718static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
 719                                          unsigned long val, void *data)
 720{
 721        struct s3c2410_nand_info *info;
 722        unsigned long newclk;
 723
 724        info = container_of(nb, struct s3c2410_nand_info, freq_transition);
 725        newclk = clk_get_rate(info->clk);
 726
 727        if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
 728            (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
 729                s3c2410_nand_setrate(info);
 730        }
 731
 732        return 0;
 733}
 734
 735static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 736{
 737        info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
 738
 739        return cpufreq_register_notifier(&info->freq_transition,
 740                                         CPUFREQ_TRANSITION_NOTIFIER);
 741}
 742
 743static inline void
 744s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 745{
 746        cpufreq_unregister_notifier(&info->freq_transition,
 747                                    CPUFREQ_TRANSITION_NOTIFIER);
 748}
 749
 750#else
 751static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 752{
 753        return 0;
 754}
 755
 756static inline void
 757s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 758{
 759}
 760#endif
 761
 762/* device management functions */
 763
 764static int s3c24xx_nand_remove(struct platform_device *pdev)
 765{
 766        struct s3c2410_nand_info *info = to_nand_info(pdev);
 767
 768        if (info == NULL)
 769                return 0;
 770
 771        s3c2410_nand_cpufreq_deregister(info);
 772
 773        /* Release all our mtds  and their partitions, then go through
 774         * freeing the resources used
 775         */
 776
 777        if (info->mtds != NULL) {
 778                struct s3c2410_nand_mtd *ptr = info->mtds;
 779                int mtdno;
 780
 781                for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
 782                        pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
 783                        WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
 784                        nand_cleanup(&ptr->chip);
 785                }
 786        }
 787
 788        /* free the common resources */
 789
 790        if (!IS_ERR(info->clk))
 791                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
 792
 793        return 0;
 794}
 795
 796static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
 797                                      struct s3c2410_nand_mtd *mtd,
 798                                      struct s3c2410_nand_set *set)
 799{
 800        if (set) {
 801                struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
 802
 803                mtdinfo->name = set->name;
 804
 805                return mtd_device_register(mtdinfo, set->partitions,
 806                                           set->nr_partitions);
 807        }
 808
 809        return -ENODEV;
 810}
 811
 812static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
 813                                        const struct nand_interface_config *conf)
 814{
 815        struct mtd_info *mtd = nand_to_mtd(chip);
 816        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 817        struct s3c2410_platform_nand *pdata = info->platform;
 818        const struct nand_sdr_timings *timings;
 819        int tacls;
 820
 821        timings = nand_get_sdr_timings(conf);
 822        if (IS_ERR(timings))
 823                return -ENOTSUPP;
 824
 825        tacls = timings->tCLS_min - timings->tWP_min;
 826        if (tacls < 0)
 827                tacls = 0;
 828
 829        pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
 830        pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
 831        pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
 832
 833        return s3c2410_nand_setrate(info);
 834}
 835
 836/**
 837 * s3c2410_nand_init_chip - initialise a single instance of an chip
 838 * @info: The base NAND controller the chip is on.
 839 * @nmtd: The new controller MTD instance to fill in.
 840 * @set: The information passed from the board specific platform data.
 841 *
 842 * Initialise the given @nmtd from the information in @info and @set. This
 843 * readies the structure for use with the MTD layer functions by ensuring
 844 * all pointers are setup and the necessary control routines selected.
 845 */
 846static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
 847                                   struct s3c2410_nand_mtd *nmtd,
 848                                   struct s3c2410_nand_set *set)
 849{
 850        struct device_node *np = info->device->of_node;
 851        struct nand_chip *chip = &nmtd->chip;
 852        void __iomem *regs = info->regs;
 853
 854        nand_set_flash_node(chip, set->of_node);
 855
 856        chip->legacy.write_buf    = s3c2410_nand_write_buf;
 857        chip->legacy.read_buf     = s3c2410_nand_read_buf;
 858        chip->legacy.select_chip  = s3c2410_nand_select_chip;
 859        chip->legacy.chip_delay   = 50;
 860        nand_set_controller_data(chip, nmtd);
 861        chip->options      = set->options;
 862        chip->controller   = &info->controller;
 863
 864        /*
 865         * let's keep behavior unchanged for legacy boards booting via pdata and
 866         * auto-detect timings only when booting with a device tree.
 867         */
 868        if (!np)
 869                chip->options |= NAND_KEEP_TIMINGS;
 870
 871        switch (info->cpu_type) {
 872        case TYPE_S3C2410:
 873                chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
 874                info->sel_reg   = regs + S3C2410_NFCONF;
 875                info->sel_bit   = S3C2410_NFCONF_nFCE;
 876                chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
 877                chip->legacy.dev_ready = s3c2410_nand_devready;
 878                break;
 879
 880        case TYPE_S3C2440:
 881                chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 882                info->sel_reg   = regs + S3C2440_NFCONT;
 883                info->sel_bit   = S3C2440_NFCONT_nFCE;
 884                chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
 885                chip->legacy.dev_ready = s3c2440_nand_devready;
 886                chip->legacy.read_buf  = s3c2440_nand_read_buf;
 887                chip->legacy.write_buf  = s3c2440_nand_write_buf;
 888                break;
 889
 890        case TYPE_S3C2412:
 891                chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 892                info->sel_reg   = regs + S3C2440_NFCONT;
 893                info->sel_bit   = S3C2412_NFCONT_nFCE0;
 894                chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
 895                chip->legacy.dev_ready = s3c2412_nand_devready;
 896
 897                if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
 898                        dev_info(info->device, "System booted from NAND\n");
 899
 900                break;
 901        }
 902
 903        chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
 904
 905        nmtd->info         = info;
 906        nmtd->set          = set;
 907
 908        chip->ecc.engine_type = info->platform->engine_type;
 909
 910        /*
 911         * If you use u-boot BBT creation code, specifying this flag will
 912         * let the kernel fish out the BBT from the NAND.
 913         */
 914        if (set->flash_bbt)
 915                chip->bbt_options |= NAND_BBT_USE_FLASH;
 916}
 917
 918/**
 919 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
 920 * @chip: The NAND chip
 921 *
 922 * This hook is called by the core after the identification of the NAND chip,
 923 * once the relevant per-chip information is up to date.. This call ensure that
 924 * we update the internal state accordingly.
 925 *
 926 * The internal state is currently limited to the ECC state information.
 927*/
 928static int s3c2410_nand_attach_chip(struct nand_chip *chip)
 929{
 930        struct mtd_info *mtd = nand_to_mtd(chip);
 931        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 932
 933        switch (chip->ecc.engine_type) {
 934
 935        case NAND_ECC_ENGINE_TYPE_NONE:
 936                dev_info(info->device, "ECC disabled\n");
 937                break;
 938
 939        case NAND_ECC_ENGINE_TYPE_SOFT:
 940                /*
 941                 * This driver expects Hamming based ECC when engine_type is set
 942                 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
 943                 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
 944                 * to s3c2410_platform_nand.
 945                 */
 946                chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
 947                dev_info(info->device, "soft ECC\n");
 948                break;
 949
 950        case NAND_ECC_ENGINE_TYPE_ON_HOST:
 951                chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 952                chip->ecc.correct   = s3c2410_nand_correct_data;
 953                chip->ecc.strength  = 1;
 954
 955                switch (info->cpu_type) {
 956                case TYPE_S3C2410:
 957                        chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
 958                        chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 959                        break;
 960
 961                case TYPE_S3C2412:
 962                        chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
 963                        chip->ecc.calculate = s3c2412_nand_calculate_ecc;
 964                        break;
 965
 966                case TYPE_S3C2440:
 967                        chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
 968                        chip->ecc.calculate = s3c2440_nand_calculate_ecc;
 969                        break;
 970                }
 971
 972                dev_dbg(info->device, "chip %p => page shift %d\n",
 973                        chip, chip->page_shift);
 974
 975                /* change the behaviour depending on whether we are using
 976                 * the large or small page nand device */
 977                if (chip->page_shift > 10) {
 978                        chip->ecc.size      = 256;
 979                        chip->ecc.bytes     = 3;
 980                } else {
 981                        chip->ecc.size      = 512;
 982                        chip->ecc.bytes     = 3;
 983                        mtd_set_ooblayout(nand_to_mtd(chip),
 984                                          &s3c2410_ooblayout_ops);
 985                }
 986
 987                dev_info(info->device, "hardware ECC\n");
 988                break;
 989
 990        default:
 991                dev_err(info->device, "invalid ECC mode!\n");
 992                return -EINVAL;
 993        }
 994
 995        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 996                chip->options |= NAND_SKIP_BBTSCAN;
 997
 998        return 0;
 999}
1000
1001static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1002        .attach_chip = s3c2410_nand_attach_chip,
1003        .setup_interface = s3c2410_nand_setup_interface,
1004};
1005
1006static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1007        {
1008                .compatible = "samsung,s3c2410-nand",
1009                .data = &s3c2410_nand_devtype_data,
1010        }, {
1011                /* also compatible with s3c6400 */
1012                .compatible = "samsung,s3c2412-nand",
1013                .data = &s3c2412_nand_devtype_data,
1014        }, {
1015                .compatible = "samsung,s3c2440-nand",
1016                .data = &s3c2440_nand_devtype_data,
1017        },
1018        { /* sentinel */ }
1019};
1020MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1021
1022static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1023{
1024        const struct s3c24XX_nand_devtype_data *devtype_data;
1025        struct s3c2410_platform_nand *pdata;
1026        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1027        struct device_node *np = pdev->dev.of_node, *child;
1028        struct s3c2410_nand_set *sets;
1029
1030        devtype_data = of_device_get_match_data(&pdev->dev);
1031        if (!devtype_data)
1032                return -ENODEV;
1033
1034        info->cpu_type = devtype_data->type;
1035
1036        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1037        if (!pdata)
1038                return -ENOMEM;
1039
1040        pdev->dev.platform_data = pdata;
1041
1042        pdata->nr_sets = of_get_child_count(np);
1043        if (!pdata->nr_sets)
1044                return 0;
1045
1046        sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1047                            GFP_KERNEL);
1048        if (!sets)
1049                return -ENOMEM;
1050
1051        pdata->sets = sets;
1052
1053        for_each_available_child_of_node(np, child) {
1054                sets->name = (char *)child->name;
1055                sets->of_node = child;
1056                sets->nr_chips = 1;
1057
1058                of_node_get(child);
1059
1060                sets++;
1061        }
1062
1063        return 0;
1064}
1065
1066static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1067{
1068        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1069
1070        info->cpu_type = platform_get_device_id(pdev)->driver_data;
1071
1072        return 0;
1073}
1074
1075/* s3c24xx_nand_probe
1076 *
1077 * called by device layer when it finds a device matching
1078 * one our driver can handled. This code checks to see if
1079 * it can allocate all necessary resources then calls the
1080 * nand layer to look for devices
1081*/
1082static int s3c24xx_nand_probe(struct platform_device *pdev)
1083{
1084        struct s3c2410_platform_nand *plat;
1085        struct s3c2410_nand_info *info;
1086        struct s3c2410_nand_mtd *nmtd;
1087        struct s3c2410_nand_set *sets;
1088        struct resource *res;
1089        int err = 0;
1090        int size;
1091        int nr_sets;
1092        int setno;
1093
1094        info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1095        if (info == NULL) {
1096                err = -ENOMEM;
1097                goto exit_error;
1098        }
1099
1100        platform_set_drvdata(pdev, info);
1101
1102        nand_controller_init(&info->controller);
1103        info->controller.ops = &s3c24xx_nand_controller_ops;
1104
1105        /* get the clock source and enable it */
1106
1107        info->clk = devm_clk_get(&pdev->dev, "nand");
1108        if (IS_ERR(info->clk)) {
1109                dev_err(&pdev->dev, "failed to get clock\n");
1110                err = -ENOENT;
1111                goto exit_error;
1112        }
1113
1114        s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1115
1116        if (pdev->dev.of_node)
1117                err = s3c24xx_nand_probe_dt(pdev);
1118        else
1119                err = s3c24xx_nand_probe_pdata(pdev);
1120
1121        if (err)
1122                goto exit_error;
1123
1124        plat = to_nand_plat(pdev);
1125
1126        /* allocate and map the resource */
1127
1128        /* currently we assume we have the one resource */
1129        res = pdev->resource;
1130        size = resource_size(res);
1131
1132        info->device    = &pdev->dev;
1133        info->platform  = plat;
1134
1135        info->regs = devm_ioremap_resource(&pdev->dev, res);
1136        if (IS_ERR(info->regs)) {
1137                err = PTR_ERR(info->regs);
1138                goto exit_error;
1139        }
1140
1141        dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1142
1143        if (!plat->sets || plat->nr_sets < 1) {
1144                err = -EINVAL;
1145                goto exit_error;
1146        }
1147
1148        sets = plat->sets;
1149        nr_sets = plat->nr_sets;
1150
1151        info->mtd_count = nr_sets;
1152
1153        /* allocate our information */
1154
1155        size = nr_sets * sizeof(*info->mtds);
1156        info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1157        if (info->mtds == NULL) {
1158                err = -ENOMEM;
1159                goto exit_error;
1160        }
1161
1162        /* initialise all possible chips */
1163
1164        nmtd = info->mtds;
1165
1166        for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1167                struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1168
1169                pr_debug("initialising set %d (%p, info %p)\n",
1170                         setno, nmtd, info);
1171
1172                mtd->dev.parent = &pdev->dev;
1173                s3c2410_nand_init_chip(info, nmtd, sets);
1174
1175                err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1176                if (err)
1177                        goto exit_error;
1178
1179                s3c2410_nand_add_partition(info, nmtd, sets);
1180        }
1181
1182        /* initialise the hardware */
1183        err = s3c2410_nand_inithw(info);
1184        if (err != 0)
1185                goto exit_error;
1186
1187        err = s3c2410_nand_cpufreq_register(info);
1188        if (err < 0) {
1189                dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190                goto exit_error;
1191        }
1192
1193        if (allow_clk_suspend(info)) {
1194                dev_info(&pdev->dev, "clock idle support enabled\n");
1195                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196        }
1197
1198        return 0;
1199
1200 exit_error:
1201        s3c24xx_nand_remove(pdev);
1202
1203        if (err == 0)
1204                err = -EINVAL;
1205        return err;
1206}
1207
1208/* PM Support */
1209#ifdef CONFIG_PM
1210
1211static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212{
1213        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214
1215        if (info) {
1216                info->save_sel = readl(info->sel_reg);
1217
1218                /* For the moment, we must ensure nFCE is high during
1219                 * the time we are suspended. This really should be
1220                 * handled by suspending the MTDs we are using, but
1221                 * that is currently not the case. */
1222
1223                writel(info->save_sel | info->sel_bit, info->sel_reg);
1224
1225                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226        }
1227
1228        return 0;
1229}
1230
1231static int s3c24xx_nand_resume(struct platform_device *dev)
1232{
1233        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1234        unsigned long sel;
1235
1236        if (info) {
1237                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1238                s3c2410_nand_inithw(info);
1239
1240                /* Restore the state of the nFCE line. */
1241
1242                sel = readl(info->sel_reg);
1243                sel &= ~info->sel_bit;
1244                sel |= info->save_sel & info->sel_bit;
1245                writel(sel, info->sel_reg);
1246
1247                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248        }
1249
1250        return 0;
1251}
1252
1253#else
1254#define s3c24xx_nand_suspend NULL
1255#define s3c24xx_nand_resume NULL
1256#endif
1257
1258/* driver device registration */
1259
1260static const struct platform_device_id s3c24xx_driver_ids[] = {
1261        {
1262                .name           = "s3c2410-nand",
1263                .driver_data    = TYPE_S3C2410,
1264        }, {
1265                .name           = "s3c2440-nand",
1266                .driver_data    = TYPE_S3C2440,
1267        }, {
1268                .name           = "s3c2412-nand",
1269                .driver_data    = TYPE_S3C2412,
1270        }, {
1271                .name           = "s3c6400-nand",
1272                .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1273        },
1274        { }
1275};
1276
1277MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278
1279static struct platform_driver s3c24xx_nand_driver = {
1280        .probe          = s3c24xx_nand_probe,
1281        .remove         = s3c24xx_nand_remove,
1282        .suspend        = s3c24xx_nand_suspend,
1283        .resume         = s3c24xx_nand_resume,
1284        .id_table       = s3c24xx_driver_ids,
1285        .driver         = {
1286                .name   = "s3c24xx-nand",
1287                .of_match_table = s3c24xx_nand_dt_ids,
1288        },
1289};
1290
1291module_platform_driver(s3c24xx_nand_driver);
1292
1293MODULE_LICENSE("GPL");
1294MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1296