linux/drivers/mtd/nand/spi/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2016-2017 Micron Technology, Inc.
   4 *
   5 * Authors:
   6 *      Peter Pan <peterpandong@micron.com>
   7 *      Boris Brezillon <boris.brezillon@bootlin.com>
   8 */
   9
  10#define pr_fmt(fmt)     "spi-nand: " fmt
  11
  12#include <linux/device.h>
  13#include <linux/jiffies.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/mtd/spinand.h>
  17#include <linux/of.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/spi/spi.h>
  21#include <linux/spi/spi-mem.h>
  22
  23static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
  24{
  25        struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
  26                                                      spinand->scratchbuf);
  27        int ret;
  28
  29        ret = spi_mem_exec_op(spinand->spimem, &op);
  30        if (ret)
  31                return ret;
  32
  33        *val = *spinand->scratchbuf;
  34        return 0;
  35}
  36
  37static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
  38{
  39        struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
  40                                                      spinand->scratchbuf);
  41
  42        *spinand->scratchbuf = val;
  43        return spi_mem_exec_op(spinand->spimem, &op);
  44}
  45
  46static int spinand_read_status(struct spinand_device *spinand, u8 *status)
  47{
  48        return spinand_read_reg_op(spinand, REG_STATUS, status);
  49}
  50
  51static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
  52{
  53        struct nand_device *nand = spinand_to_nand(spinand);
  54
  55        if (WARN_ON(spinand->cur_target < 0 ||
  56                    spinand->cur_target >= nand->memorg.ntargets))
  57                return -EINVAL;
  58
  59        *cfg = spinand->cfg_cache[spinand->cur_target];
  60        return 0;
  61}
  62
  63static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
  64{
  65        struct nand_device *nand = spinand_to_nand(spinand);
  66        int ret;
  67
  68        if (WARN_ON(spinand->cur_target < 0 ||
  69                    spinand->cur_target >= nand->memorg.ntargets))
  70                return -EINVAL;
  71
  72        if (spinand->cfg_cache[spinand->cur_target] == cfg)
  73                return 0;
  74
  75        ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
  76        if (ret)
  77                return ret;
  78
  79        spinand->cfg_cache[spinand->cur_target] = cfg;
  80        return 0;
  81}
  82
  83/**
  84 * spinand_upd_cfg() - Update the configuration register
  85 * @spinand: the spinand device
  86 * @mask: the mask encoding the bits to update in the config reg
  87 * @val: the new value to apply
  88 *
  89 * Update the configuration register.
  90 *
  91 * Return: 0 on success, a negative error code otherwise.
  92 */
  93int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
  94{
  95        int ret;
  96        u8 cfg;
  97
  98        ret = spinand_get_cfg(spinand, &cfg);
  99        if (ret)
 100                return ret;
 101
 102        cfg &= ~mask;
 103        cfg |= val;
 104
 105        return spinand_set_cfg(spinand, cfg);
 106}
 107
 108/**
 109 * spinand_select_target() - Select a specific NAND target/die
 110 * @spinand: the spinand device
 111 * @target: the target/die to select
 112 *
 113 * Select a new target/die. If chip only has one die, this function is a NOOP.
 114 *
 115 * Return: 0 on success, a negative error code otherwise.
 116 */
 117int spinand_select_target(struct spinand_device *spinand, unsigned int target)
 118{
 119        struct nand_device *nand = spinand_to_nand(spinand);
 120        int ret;
 121
 122        if (WARN_ON(target >= nand->memorg.ntargets))
 123                return -EINVAL;
 124
 125        if (spinand->cur_target == target)
 126                return 0;
 127
 128        if (nand->memorg.ntargets == 1) {
 129                spinand->cur_target = target;
 130                return 0;
 131        }
 132
 133        ret = spinand->select_target(spinand, target);
 134        if (ret)
 135                return ret;
 136
 137        spinand->cur_target = target;
 138        return 0;
 139}
 140
 141static int spinand_read_cfg(struct spinand_device *spinand)
 142{
 143        struct nand_device *nand = spinand_to_nand(spinand);
 144        unsigned int target;
 145        int ret;
 146
 147        for (target = 0; target < nand->memorg.ntargets; target++) {
 148                ret = spinand_select_target(spinand, target);
 149                if (ret)
 150                        return ret;
 151
 152                /*
 153                 * We use spinand_read_reg_op() instead of spinand_get_cfg()
 154                 * here to bypass the config cache.
 155                 */
 156                ret = spinand_read_reg_op(spinand, REG_CFG,
 157                                          &spinand->cfg_cache[target]);
 158                if (ret)
 159                        return ret;
 160        }
 161
 162        return 0;
 163}
 164
 165static int spinand_init_cfg_cache(struct spinand_device *spinand)
 166{
 167        struct nand_device *nand = spinand_to_nand(spinand);
 168        struct device *dev = &spinand->spimem->spi->dev;
 169
 170        spinand->cfg_cache = devm_kcalloc(dev,
 171                                          nand->memorg.ntargets,
 172                                          sizeof(*spinand->cfg_cache),
 173                                          GFP_KERNEL);
 174        if (!spinand->cfg_cache)
 175                return -ENOMEM;
 176
 177        return 0;
 178}
 179
 180static int spinand_init_quad_enable(struct spinand_device *spinand)
 181{
 182        bool enable = false;
 183
 184        if (!(spinand->flags & SPINAND_HAS_QE_BIT))
 185                return 0;
 186
 187        if (spinand->op_templates.read_cache->data.buswidth == 4 ||
 188            spinand->op_templates.write_cache->data.buswidth == 4 ||
 189            spinand->op_templates.update_cache->data.buswidth == 4)
 190                enable = true;
 191
 192        return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
 193                               enable ? CFG_QUAD_ENABLE : 0);
 194}
 195
 196static int spinand_ecc_enable(struct spinand_device *spinand,
 197                              bool enable)
 198{
 199        return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
 200                               enable ? CFG_ECC_ENABLE : 0);
 201}
 202
 203static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
 204{
 205        struct nand_device *nand = spinand_to_nand(spinand);
 206
 207        if (spinand->eccinfo.get_status)
 208                return spinand->eccinfo.get_status(spinand, status);
 209
 210        switch (status & STATUS_ECC_MASK) {
 211        case STATUS_ECC_NO_BITFLIPS:
 212                return 0;
 213
 214        case STATUS_ECC_HAS_BITFLIPS:
 215                /*
 216                 * We have no way to know exactly how many bitflips have been
 217                 * fixed, so let's return the maximum possible value so that
 218                 * wear-leveling layers move the data immediately.
 219                 */
 220                return nanddev_get_ecc_conf(nand)->strength;
 221
 222        case STATUS_ECC_UNCOR_ERROR:
 223                return -EBADMSG;
 224
 225        default:
 226                break;
 227        }
 228
 229        return -EINVAL;
 230}
 231
 232static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
 233                                       struct mtd_oob_region *region)
 234{
 235        return -ERANGE;
 236}
 237
 238static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
 239                                        struct mtd_oob_region *region)
 240{
 241        if (section)
 242                return -ERANGE;
 243
 244        /* Reserve 2 bytes for the BBM. */
 245        region->offset = 2;
 246        region->length = 62;
 247
 248        return 0;
 249}
 250
 251static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
 252        .ecc = spinand_noecc_ooblayout_ecc,
 253        .free = spinand_noecc_ooblayout_free,
 254};
 255
 256static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
 257{
 258        struct spinand_device *spinand = nand_to_spinand(nand);
 259        struct mtd_info *mtd = nanddev_to_mtd(nand);
 260        struct spinand_ondie_ecc_conf *engine_conf;
 261
 262        nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
 263        nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
 264        nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
 265
 266        engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
 267        if (!engine_conf)
 268                return -ENOMEM;
 269
 270        nand->ecc.ctx.priv = engine_conf;
 271
 272        if (spinand->eccinfo.ooblayout)
 273                mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
 274        else
 275                mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
 276
 277        return 0;
 278}
 279
 280static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
 281{
 282        kfree(nand->ecc.ctx.priv);
 283}
 284
 285static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
 286                                            struct nand_page_io_req *req)
 287{
 288        struct spinand_device *spinand = nand_to_spinand(nand);
 289        bool enable = (req->mode != MTD_OPS_RAW);
 290
 291        memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
 292
 293        /* Only enable or disable the engine */
 294        return spinand_ecc_enable(spinand, enable);
 295}
 296
 297static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
 298                                           struct nand_page_io_req *req)
 299{
 300        struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
 301        struct spinand_device *spinand = nand_to_spinand(nand);
 302        struct mtd_info *mtd = spinand_to_mtd(spinand);
 303        int ret;
 304
 305        if (req->mode == MTD_OPS_RAW)
 306                return 0;
 307
 308        /* Nothing to do when finishing a page write */
 309        if (req->type == NAND_PAGE_WRITE)
 310                return 0;
 311
 312        /* Finish a page read: check the status, report errors/bitflips */
 313        ret = spinand_check_ecc_status(spinand, engine_conf->status);
 314        if (ret == -EBADMSG)
 315                mtd->ecc_stats.failed++;
 316        else if (ret > 0)
 317                mtd->ecc_stats.corrected += ret;
 318
 319        return ret;
 320}
 321
 322static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
 323        .init_ctx = spinand_ondie_ecc_init_ctx,
 324        .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
 325        .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
 326        .finish_io_req = spinand_ondie_ecc_finish_io_req,
 327};
 328
 329static struct nand_ecc_engine spinand_ondie_ecc_engine = {
 330        .ops = &spinand_ondie_ecc_engine_ops,
 331};
 332
 333static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
 334{
 335        struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
 336
 337        if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
 338            engine_conf)
 339                engine_conf->status = status;
 340}
 341
 342static int spinand_write_enable_op(struct spinand_device *spinand)
 343{
 344        struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
 345
 346        return spi_mem_exec_op(spinand->spimem, &op);
 347}
 348
 349static int spinand_load_page_op(struct spinand_device *spinand,
 350                                const struct nand_page_io_req *req)
 351{
 352        struct nand_device *nand = spinand_to_nand(spinand);
 353        unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 354        struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
 355
 356        return spi_mem_exec_op(spinand->spimem, &op);
 357}
 358
 359static int spinand_read_from_cache_op(struct spinand_device *spinand,
 360                                      const struct nand_page_io_req *req)
 361{
 362        struct nand_device *nand = spinand_to_nand(spinand);
 363        struct mtd_info *mtd = spinand_to_mtd(spinand);
 364        struct spi_mem_dirmap_desc *rdesc;
 365        unsigned int nbytes = 0;
 366        void *buf = NULL;
 367        u16 column = 0;
 368        ssize_t ret;
 369
 370        if (req->datalen) {
 371                buf = spinand->databuf;
 372                nbytes = nanddev_page_size(nand);
 373                column = 0;
 374        }
 375
 376        if (req->ooblen) {
 377                nbytes += nanddev_per_page_oobsize(nand);
 378                if (!buf) {
 379                        buf = spinand->oobbuf;
 380                        column = nanddev_page_size(nand);
 381                }
 382        }
 383
 384        rdesc = spinand->dirmaps[req->pos.plane].rdesc;
 385
 386        while (nbytes) {
 387                ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
 388                if (ret < 0)
 389                        return ret;
 390
 391                if (!ret || ret > nbytes)
 392                        return -EIO;
 393
 394                nbytes -= ret;
 395                column += ret;
 396                buf += ret;
 397        }
 398
 399        if (req->datalen)
 400                memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
 401                       req->datalen);
 402
 403        if (req->ooblen) {
 404                if (req->mode == MTD_OPS_AUTO_OOB)
 405                        mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
 406                                                    spinand->oobbuf,
 407                                                    req->ooboffs,
 408                                                    req->ooblen);
 409                else
 410                        memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
 411                               req->ooblen);
 412        }
 413
 414        return 0;
 415}
 416
 417static int spinand_write_to_cache_op(struct spinand_device *spinand,
 418                                     const struct nand_page_io_req *req)
 419{
 420        struct nand_device *nand = spinand_to_nand(spinand);
 421        struct mtd_info *mtd = spinand_to_mtd(spinand);
 422        struct spi_mem_dirmap_desc *wdesc;
 423        unsigned int nbytes, column = 0;
 424        void *buf = spinand->databuf;
 425        ssize_t ret;
 426
 427        /*
 428         * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
 429         * the cache content to 0xFF (depends on vendor implementation), so we
 430         * must fill the page cache entirely even if we only want to program
 431         * the data portion of the page, otherwise we might corrupt the BBM or
 432         * user data previously programmed in OOB area.
 433         *
 434         * Only reset the data buffer manually, the OOB buffer is prepared by
 435         * ECC engines ->prepare_io_req() callback.
 436         */
 437        nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
 438        memset(spinand->databuf, 0xff, nanddev_page_size(nand));
 439
 440        if (req->datalen)
 441                memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
 442                       req->datalen);
 443
 444        if (req->ooblen) {
 445                if (req->mode == MTD_OPS_AUTO_OOB)
 446                        mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
 447                                                    spinand->oobbuf,
 448                                                    req->ooboffs,
 449                                                    req->ooblen);
 450                else
 451                        memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
 452                               req->ooblen);
 453        }
 454
 455        wdesc = spinand->dirmaps[req->pos.plane].wdesc;
 456
 457        while (nbytes) {
 458                ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
 459                if (ret < 0)
 460                        return ret;
 461
 462                if (!ret || ret > nbytes)
 463                        return -EIO;
 464
 465                nbytes -= ret;
 466                column += ret;
 467                buf += ret;
 468        }
 469
 470        return 0;
 471}
 472
 473static int spinand_program_op(struct spinand_device *spinand,
 474                              const struct nand_page_io_req *req)
 475{
 476        struct nand_device *nand = spinand_to_nand(spinand);
 477        unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 478        struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
 479
 480        return spi_mem_exec_op(spinand->spimem, &op);
 481}
 482
 483static int spinand_erase_op(struct spinand_device *spinand,
 484                            const struct nand_pos *pos)
 485{
 486        struct nand_device *nand = spinand_to_nand(spinand);
 487        unsigned int row = nanddev_pos_to_row(nand, pos);
 488        struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
 489
 490        return spi_mem_exec_op(spinand->spimem, &op);
 491}
 492
 493static int spinand_wait(struct spinand_device *spinand,
 494                        unsigned long initial_delay_us,
 495                        unsigned long poll_delay_us,
 496                        u8 *s)
 497{
 498        struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
 499                                                      spinand->scratchbuf);
 500        u8 status;
 501        int ret;
 502
 503        ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
 504                                  initial_delay_us,
 505                                  poll_delay_us,
 506                                  SPINAND_WAITRDY_TIMEOUT_MS);
 507        if (ret)
 508                return ret;
 509
 510        status = *spinand->scratchbuf;
 511        if (!(status & STATUS_BUSY))
 512                goto out;
 513
 514        /*
 515         * Extra read, just in case the STATUS_READY bit has changed
 516         * since our last check
 517         */
 518        ret = spinand_read_status(spinand, &status);
 519        if (ret)
 520                return ret;
 521
 522out:
 523        if (s)
 524                *s = status;
 525
 526        return status & STATUS_BUSY ? -ETIMEDOUT : 0;
 527}
 528
 529static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
 530                              u8 ndummy, u8 *buf)
 531{
 532        struct spi_mem_op op = SPINAND_READID_OP(
 533                naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
 534        int ret;
 535
 536        ret = spi_mem_exec_op(spinand->spimem, &op);
 537        if (!ret)
 538                memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
 539
 540        return ret;
 541}
 542
 543static int spinand_reset_op(struct spinand_device *spinand)
 544{
 545        struct spi_mem_op op = SPINAND_RESET_OP;
 546        int ret;
 547
 548        ret = spi_mem_exec_op(spinand->spimem, &op);
 549        if (ret)
 550                return ret;
 551
 552        return spinand_wait(spinand,
 553                            SPINAND_RESET_INITIAL_DELAY_US,
 554                            SPINAND_RESET_POLL_DELAY_US,
 555                            NULL);
 556}
 557
 558static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
 559{
 560        return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
 561}
 562
 563static int spinand_read_page(struct spinand_device *spinand,
 564                             const struct nand_page_io_req *req)
 565{
 566        struct nand_device *nand = spinand_to_nand(spinand);
 567        u8 status;
 568        int ret;
 569
 570        ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
 571        if (ret)
 572                return ret;
 573
 574        ret = spinand_load_page_op(spinand, req);
 575        if (ret)
 576                return ret;
 577
 578        ret = spinand_wait(spinand,
 579                           SPINAND_READ_INITIAL_DELAY_US,
 580                           SPINAND_READ_POLL_DELAY_US,
 581                           &status);
 582        if (ret < 0)
 583                return ret;
 584
 585        spinand_ondie_ecc_save_status(nand, status);
 586
 587        ret = spinand_read_from_cache_op(spinand, req);
 588        if (ret)
 589                return ret;
 590
 591        return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
 592}
 593
 594static int spinand_write_page(struct spinand_device *spinand,
 595                              const struct nand_page_io_req *req)
 596{
 597        struct nand_device *nand = spinand_to_nand(spinand);
 598        u8 status;
 599        int ret;
 600
 601        ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
 602        if (ret)
 603                return ret;
 604
 605        ret = spinand_write_enable_op(spinand);
 606        if (ret)
 607                return ret;
 608
 609        ret = spinand_write_to_cache_op(spinand, req);
 610        if (ret)
 611                return ret;
 612
 613        ret = spinand_program_op(spinand, req);
 614        if (ret)
 615                return ret;
 616
 617        ret = spinand_wait(spinand,
 618                           SPINAND_WRITE_INITIAL_DELAY_US,
 619                           SPINAND_WRITE_POLL_DELAY_US,
 620                           &status);
 621        if (!ret && (status & STATUS_PROG_FAILED))
 622                return -EIO;
 623
 624        return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
 625}
 626
 627static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
 628                            struct mtd_oob_ops *ops)
 629{
 630        struct spinand_device *spinand = mtd_to_spinand(mtd);
 631        struct nand_device *nand = mtd_to_nanddev(mtd);
 632        unsigned int max_bitflips = 0;
 633        struct nand_io_iter iter;
 634        bool disable_ecc = false;
 635        bool ecc_failed = false;
 636        int ret = 0;
 637
 638        if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
 639                disable_ecc = true;
 640
 641        mutex_lock(&spinand->lock);
 642
 643        nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
 644                if (disable_ecc)
 645                        iter.req.mode = MTD_OPS_RAW;
 646
 647                ret = spinand_select_target(spinand, iter.req.pos.target);
 648                if (ret)
 649                        break;
 650
 651                ret = spinand_read_page(spinand, &iter.req);
 652                if (ret < 0 && ret != -EBADMSG)
 653                        break;
 654
 655                if (ret == -EBADMSG)
 656                        ecc_failed = true;
 657                else
 658                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
 659
 660                ret = 0;
 661                ops->retlen += iter.req.datalen;
 662                ops->oobretlen += iter.req.ooblen;
 663        }
 664
 665        mutex_unlock(&spinand->lock);
 666
 667        if (ecc_failed && !ret)
 668                ret = -EBADMSG;
 669
 670        return ret ? ret : max_bitflips;
 671}
 672
 673static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
 674                             struct mtd_oob_ops *ops)
 675{
 676        struct spinand_device *spinand = mtd_to_spinand(mtd);
 677        struct nand_device *nand = mtd_to_nanddev(mtd);
 678        struct nand_io_iter iter;
 679        bool disable_ecc = false;
 680        int ret = 0;
 681
 682        if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
 683                disable_ecc = true;
 684
 685        mutex_lock(&spinand->lock);
 686
 687        nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
 688                if (disable_ecc)
 689                        iter.req.mode = MTD_OPS_RAW;
 690
 691                ret = spinand_select_target(spinand, iter.req.pos.target);
 692                if (ret)
 693                        break;
 694
 695                ret = spinand_write_page(spinand, &iter.req);
 696                if (ret)
 697                        break;
 698
 699                ops->retlen += iter.req.datalen;
 700                ops->oobretlen += iter.req.ooblen;
 701        }
 702
 703        mutex_unlock(&spinand->lock);
 704
 705        return ret;
 706}
 707
 708static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
 709{
 710        struct spinand_device *spinand = nand_to_spinand(nand);
 711        u8 marker[2] = { };
 712        struct nand_page_io_req req = {
 713                .pos = *pos,
 714                .ooblen = sizeof(marker),
 715                .ooboffs = 0,
 716                .oobbuf.in = marker,
 717                .mode = MTD_OPS_RAW,
 718        };
 719
 720        spinand_select_target(spinand, pos->target);
 721        spinand_read_page(spinand, &req);
 722        if (marker[0] != 0xff || marker[1] != 0xff)
 723                return true;
 724
 725        return false;
 726}
 727
 728static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
 729{
 730        struct nand_device *nand = mtd_to_nanddev(mtd);
 731        struct spinand_device *spinand = nand_to_spinand(nand);
 732        struct nand_pos pos;
 733        int ret;
 734
 735        nanddev_offs_to_pos(nand, offs, &pos);
 736        mutex_lock(&spinand->lock);
 737        ret = nanddev_isbad(nand, &pos);
 738        mutex_unlock(&spinand->lock);
 739
 740        return ret;
 741}
 742
 743static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
 744{
 745        struct spinand_device *spinand = nand_to_spinand(nand);
 746        u8 marker[2] = { };
 747        struct nand_page_io_req req = {
 748                .pos = *pos,
 749                .ooboffs = 0,
 750                .ooblen = sizeof(marker),
 751                .oobbuf.out = marker,
 752                .mode = MTD_OPS_RAW,
 753        };
 754        int ret;
 755
 756        ret = spinand_select_target(spinand, pos->target);
 757        if (ret)
 758                return ret;
 759
 760        ret = spinand_write_enable_op(spinand);
 761        if (ret)
 762                return ret;
 763
 764        return spinand_write_page(spinand, &req);
 765}
 766
 767static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
 768{
 769        struct nand_device *nand = mtd_to_nanddev(mtd);
 770        struct spinand_device *spinand = nand_to_spinand(nand);
 771        struct nand_pos pos;
 772        int ret;
 773
 774        nanddev_offs_to_pos(nand, offs, &pos);
 775        mutex_lock(&spinand->lock);
 776        ret = nanddev_markbad(nand, &pos);
 777        mutex_unlock(&spinand->lock);
 778
 779        return ret;
 780}
 781
 782static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
 783{
 784        struct spinand_device *spinand = nand_to_spinand(nand);
 785        u8 status;
 786        int ret;
 787
 788        ret = spinand_select_target(spinand, pos->target);
 789        if (ret)
 790                return ret;
 791
 792        ret = spinand_write_enable_op(spinand);
 793        if (ret)
 794                return ret;
 795
 796        ret = spinand_erase_op(spinand, pos);
 797        if (ret)
 798                return ret;
 799
 800        ret = spinand_wait(spinand,
 801                           SPINAND_ERASE_INITIAL_DELAY_US,
 802                           SPINAND_ERASE_POLL_DELAY_US,
 803                           &status);
 804
 805        if (!ret && (status & STATUS_ERASE_FAILED))
 806                ret = -EIO;
 807
 808        return ret;
 809}
 810
 811static int spinand_mtd_erase(struct mtd_info *mtd,
 812                             struct erase_info *einfo)
 813{
 814        struct spinand_device *spinand = mtd_to_spinand(mtd);
 815        int ret;
 816
 817        mutex_lock(&spinand->lock);
 818        ret = nanddev_mtd_erase(mtd, einfo);
 819        mutex_unlock(&spinand->lock);
 820
 821        return ret;
 822}
 823
 824static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
 825{
 826        struct spinand_device *spinand = mtd_to_spinand(mtd);
 827        struct nand_device *nand = mtd_to_nanddev(mtd);
 828        struct nand_pos pos;
 829        int ret;
 830
 831        nanddev_offs_to_pos(nand, offs, &pos);
 832        mutex_lock(&spinand->lock);
 833        ret = nanddev_isreserved(nand, &pos);
 834        mutex_unlock(&spinand->lock);
 835
 836        return ret;
 837}
 838
 839static int spinand_create_dirmap(struct spinand_device *spinand,
 840                                 unsigned int plane)
 841{
 842        struct nand_device *nand = spinand_to_nand(spinand);
 843        struct spi_mem_dirmap_info info = {
 844                .length = nanddev_page_size(nand) +
 845                          nanddev_per_page_oobsize(nand),
 846        };
 847        struct spi_mem_dirmap_desc *desc;
 848
 849        /* The plane number is passed in MSB just above the column address */
 850        info.offset = plane << fls(nand->memorg.pagesize);
 851
 852        info.op_tmpl = *spinand->op_templates.update_cache;
 853        desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
 854                                          spinand->spimem, &info);
 855        if (IS_ERR(desc))
 856                return PTR_ERR(desc);
 857
 858        spinand->dirmaps[plane].wdesc = desc;
 859
 860        info.op_tmpl = *spinand->op_templates.read_cache;
 861        desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
 862                                          spinand->spimem, &info);
 863        if (IS_ERR(desc))
 864                return PTR_ERR(desc);
 865
 866        spinand->dirmaps[plane].rdesc = desc;
 867
 868        return 0;
 869}
 870
 871static int spinand_create_dirmaps(struct spinand_device *spinand)
 872{
 873        struct nand_device *nand = spinand_to_nand(spinand);
 874        int i, ret;
 875
 876        spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
 877                                        sizeof(*spinand->dirmaps) *
 878                                        nand->memorg.planes_per_lun,
 879                                        GFP_KERNEL);
 880        if (!spinand->dirmaps)
 881                return -ENOMEM;
 882
 883        for (i = 0; i < nand->memorg.planes_per_lun; i++) {
 884                ret = spinand_create_dirmap(spinand, i);
 885                if (ret)
 886                        return ret;
 887        }
 888
 889        return 0;
 890}
 891
 892static const struct nand_ops spinand_ops = {
 893        .erase = spinand_erase,
 894        .markbad = spinand_markbad,
 895        .isbad = spinand_isbad,
 896};
 897
 898static const struct spinand_manufacturer *spinand_manufacturers[] = {
 899        &gigadevice_spinand_manufacturer,
 900        &macronix_spinand_manufacturer,
 901        &micron_spinand_manufacturer,
 902        &paragon_spinand_manufacturer,
 903        &toshiba_spinand_manufacturer,
 904        &winbond_spinand_manufacturer,
 905};
 906
 907static int spinand_manufacturer_match(struct spinand_device *spinand,
 908                                      enum spinand_readid_method rdid_method)
 909{
 910        u8 *id = spinand->id.data;
 911        unsigned int i;
 912        int ret;
 913
 914        for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
 915                const struct spinand_manufacturer *manufacturer =
 916                        spinand_manufacturers[i];
 917
 918                if (id[0] != manufacturer->id)
 919                        continue;
 920
 921                ret = spinand_match_and_init(spinand,
 922                                             manufacturer->chips,
 923                                             manufacturer->nchips,
 924                                             rdid_method);
 925                if (ret < 0)
 926                        continue;
 927
 928                spinand->manufacturer = manufacturer;
 929                return 0;
 930        }
 931        return -ENOTSUPP;
 932}
 933
 934static int spinand_id_detect(struct spinand_device *spinand)
 935{
 936        u8 *id = spinand->id.data;
 937        int ret;
 938
 939        ret = spinand_read_id_op(spinand, 0, 0, id);
 940        if (ret)
 941                return ret;
 942        ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
 943        if (!ret)
 944                return 0;
 945
 946        ret = spinand_read_id_op(spinand, 1, 0, id);
 947        if (ret)
 948                return ret;
 949        ret = spinand_manufacturer_match(spinand,
 950                                         SPINAND_READID_METHOD_OPCODE_ADDR);
 951        if (!ret)
 952                return 0;
 953
 954        ret = spinand_read_id_op(spinand, 0, 1, id);
 955        if (ret)
 956                return ret;
 957        ret = spinand_manufacturer_match(spinand,
 958                                         SPINAND_READID_METHOD_OPCODE_DUMMY);
 959
 960        return ret;
 961}
 962
 963static int spinand_manufacturer_init(struct spinand_device *spinand)
 964{
 965        if (spinand->manufacturer->ops->init)
 966                return spinand->manufacturer->ops->init(spinand);
 967
 968        return 0;
 969}
 970
 971static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
 972{
 973        /* Release manufacturer private data */
 974        if (spinand->manufacturer->ops->cleanup)
 975                return spinand->manufacturer->ops->cleanup(spinand);
 976}
 977
 978static const struct spi_mem_op *
 979spinand_select_op_variant(struct spinand_device *spinand,
 980                          const struct spinand_op_variants *variants)
 981{
 982        struct nand_device *nand = spinand_to_nand(spinand);
 983        unsigned int i;
 984
 985        for (i = 0; i < variants->nops; i++) {
 986                struct spi_mem_op op = variants->ops[i];
 987                unsigned int nbytes;
 988                int ret;
 989
 990                nbytes = nanddev_per_page_oobsize(nand) +
 991                         nanddev_page_size(nand);
 992
 993                while (nbytes) {
 994                        op.data.nbytes = nbytes;
 995                        ret = spi_mem_adjust_op_size(spinand->spimem, &op);
 996                        if (ret)
 997                                break;
 998
 999                        if (!spi_mem_supports_op(spinand->spimem, &op))
1000                                break;
1001
1002                        nbytes -= op.data.nbytes;
1003                }
1004
1005                if (!nbytes)
1006                        return &variants->ops[i];
1007        }
1008
1009        return NULL;
1010}
1011
1012/**
1013 * spinand_match_and_init() - Try to find a match between a device ID and an
1014 *                            entry in a spinand_info table
1015 * @spinand: SPI NAND object
1016 * @table: SPI NAND device description table
1017 * @table_size: size of the device description table
1018 * @rdid_method: read id method to match
1019 *
1020 * Match between a device ID retrieved through the READ_ID command and an
1021 * entry in the SPI NAND description table. If a match is found, the spinand
1022 * object will be initialized with information provided by the matching
1023 * spinand_info entry.
1024 *
1025 * Return: 0 on success, a negative error code otherwise.
1026 */
1027int spinand_match_and_init(struct spinand_device *spinand,
1028                           const struct spinand_info *table,
1029                           unsigned int table_size,
1030                           enum spinand_readid_method rdid_method)
1031{
1032        u8 *id = spinand->id.data;
1033        struct nand_device *nand = spinand_to_nand(spinand);
1034        unsigned int i;
1035
1036        for (i = 0; i < table_size; i++) {
1037                const struct spinand_info *info = &table[i];
1038                const struct spi_mem_op *op;
1039
1040                if (rdid_method != info->devid.method)
1041                        continue;
1042
1043                if (memcmp(id + 1, info->devid.id, info->devid.len))
1044                        continue;
1045
1046                nand->memorg = table[i].memorg;
1047                nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1048                spinand->eccinfo = table[i].eccinfo;
1049                spinand->flags = table[i].flags;
1050                spinand->id.len = 1 + table[i].devid.len;
1051                spinand->select_target = table[i].select_target;
1052
1053                op = spinand_select_op_variant(spinand,
1054                                               info->op_variants.read_cache);
1055                if (!op)
1056                        return -ENOTSUPP;
1057
1058                spinand->op_templates.read_cache = op;
1059
1060                op = spinand_select_op_variant(spinand,
1061                                               info->op_variants.write_cache);
1062                if (!op)
1063                        return -ENOTSUPP;
1064
1065                spinand->op_templates.write_cache = op;
1066
1067                op = spinand_select_op_variant(spinand,
1068                                               info->op_variants.update_cache);
1069                spinand->op_templates.update_cache = op;
1070
1071                return 0;
1072        }
1073
1074        return -ENOTSUPP;
1075}
1076
1077static int spinand_detect(struct spinand_device *spinand)
1078{
1079        struct device *dev = &spinand->spimem->spi->dev;
1080        struct nand_device *nand = spinand_to_nand(spinand);
1081        int ret;
1082
1083        ret = spinand_reset_op(spinand);
1084        if (ret)
1085                return ret;
1086
1087        ret = spinand_id_detect(spinand);
1088        if (ret) {
1089                dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1090                        spinand->id.data);
1091                return ret;
1092        }
1093
1094        if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1095                dev_err(dev,
1096                        "SPI NANDs with more than one die must implement ->select_target()\n");
1097                return -EINVAL;
1098        }
1099
1100        dev_info(&spinand->spimem->spi->dev,
1101                 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1102        dev_info(&spinand->spimem->spi->dev,
1103                 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1104                 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1105                 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1106
1107        return 0;
1108}
1109
1110static int spinand_init_flash(struct spinand_device *spinand)
1111{
1112        struct device *dev = &spinand->spimem->spi->dev;
1113        struct nand_device *nand = spinand_to_nand(spinand);
1114        int ret, i;
1115
1116        ret = spinand_read_cfg(spinand);
1117        if (ret)
1118                return ret;
1119
1120        ret = spinand_init_quad_enable(spinand);
1121        if (ret)
1122                return ret;
1123
1124        ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1125        if (ret)
1126                return ret;
1127
1128        ret = spinand_manufacturer_init(spinand);
1129        if (ret) {
1130                dev_err(dev,
1131                "Failed to initialize the SPI NAND chip (err = %d)\n",
1132                ret);
1133                return ret;
1134        }
1135
1136        /* After power up, all blocks are locked, so unlock them here. */
1137        for (i = 0; i < nand->memorg.ntargets; i++) {
1138                ret = spinand_select_target(spinand, i);
1139                if (ret)
1140                        break;
1141
1142                ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1143                if (ret)
1144                        break;
1145        }
1146
1147        if (ret)
1148                spinand_manufacturer_cleanup(spinand);
1149
1150        return ret;
1151}
1152
1153static void spinand_mtd_resume(struct mtd_info *mtd)
1154{
1155        struct spinand_device *spinand = mtd_to_spinand(mtd);
1156        int ret;
1157
1158        ret = spinand_reset_op(spinand);
1159        if (ret)
1160                return;
1161
1162        ret = spinand_init_flash(spinand);
1163        if (ret)
1164                return;
1165
1166        spinand_ecc_enable(spinand, false);
1167}
1168
1169static int spinand_init(struct spinand_device *spinand)
1170{
1171        struct device *dev = &spinand->spimem->spi->dev;
1172        struct mtd_info *mtd = spinand_to_mtd(spinand);
1173        struct nand_device *nand = mtd_to_nanddev(mtd);
1174        int ret;
1175
1176        /*
1177         * We need a scratch buffer because the spi_mem interface requires that
1178         * buf passed in spi_mem_op->data.buf be DMA-able.
1179         */
1180        spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1181        if (!spinand->scratchbuf)
1182                return -ENOMEM;
1183
1184        ret = spinand_detect(spinand);
1185        if (ret)
1186                goto err_free_bufs;
1187
1188        /*
1189         * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1190         * may use this buffer for DMA access.
1191         * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1192         */
1193        spinand->databuf = kzalloc(nanddev_page_size(nand) +
1194                               nanddev_per_page_oobsize(nand),
1195                               GFP_KERNEL);
1196        if (!spinand->databuf) {
1197                ret = -ENOMEM;
1198                goto err_free_bufs;
1199        }
1200
1201        spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1202
1203        ret = spinand_init_cfg_cache(spinand);
1204        if (ret)
1205                goto err_free_bufs;
1206
1207        ret = spinand_init_flash(spinand);
1208        if (ret)
1209                goto err_free_bufs;
1210
1211        ret = spinand_create_dirmaps(spinand);
1212        if (ret) {
1213                dev_err(dev,
1214                        "Failed to create direct mappings for read/write operations (err = %d)\n",
1215                        ret);
1216                goto err_manuf_cleanup;
1217        }
1218
1219        ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1220        if (ret)
1221                goto err_manuf_cleanup;
1222
1223        /* SPI-NAND default ECC engine is on-die */
1224        nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1225        nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1226
1227        spinand_ecc_enable(spinand, false);
1228        ret = nanddev_ecc_engine_init(nand);
1229        if (ret)
1230                goto err_cleanup_nanddev;
1231
1232        mtd->_read_oob = spinand_mtd_read;
1233        mtd->_write_oob = spinand_mtd_write;
1234        mtd->_block_isbad = spinand_mtd_block_isbad;
1235        mtd->_block_markbad = spinand_mtd_block_markbad;
1236        mtd->_block_isreserved = spinand_mtd_block_isreserved;
1237        mtd->_erase = spinand_mtd_erase;
1238        mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1239        mtd->_resume = spinand_mtd_resume;
1240
1241        if (nand->ecc.engine) {
1242                ret = mtd_ooblayout_count_freebytes(mtd);
1243                if (ret < 0)
1244                        goto err_cleanup_ecc_engine;
1245        }
1246
1247        mtd->oobavail = ret;
1248
1249        /* Propagate ECC information to mtd_info */
1250        mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1251        mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1252
1253        return 0;
1254
1255err_cleanup_ecc_engine:
1256        nanddev_ecc_engine_cleanup(nand);
1257
1258err_cleanup_nanddev:
1259        nanddev_cleanup(nand);
1260
1261err_manuf_cleanup:
1262        spinand_manufacturer_cleanup(spinand);
1263
1264err_free_bufs:
1265        kfree(spinand->databuf);
1266        kfree(spinand->scratchbuf);
1267        return ret;
1268}
1269
1270static void spinand_cleanup(struct spinand_device *spinand)
1271{
1272        struct nand_device *nand = spinand_to_nand(spinand);
1273
1274        nanddev_cleanup(nand);
1275        spinand_manufacturer_cleanup(spinand);
1276        kfree(spinand->databuf);
1277        kfree(spinand->scratchbuf);
1278}
1279
1280static int spinand_probe(struct spi_mem *mem)
1281{
1282        struct spinand_device *spinand;
1283        struct mtd_info *mtd;
1284        int ret;
1285
1286        spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1287                               GFP_KERNEL);
1288        if (!spinand)
1289                return -ENOMEM;
1290
1291        spinand->spimem = mem;
1292        spi_mem_set_drvdata(mem, spinand);
1293        spinand_set_of_node(spinand, mem->spi->dev.of_node);
1294        mutex_init(&spinand->lock);
1295        mtd = spinand_to_mtd(spinand);
1296        mtd->dev.parent = &mem->spi->dev;
1297
1298        ret = spinand_init(spinand);
1299        if (ret)
1300                return ret;
1301
1302        ret = mtd_device_register(mtd, NULL, 0);
1303        if (ret)
1304                goto err_spinand_cleanup;
1305
1306        return 0;
1307
1308err_spinand_cleanup:
1309        spinand_cleanup(spinand);
1310
1311        return ret;
1312}
1313
1314static int spinand_remove(struct spi_mem *mem)
1315{
1316        struct spinand_device *spinand;
1317        struct mtd_info *mtd;
1318        int ret;
1319
1320        spinand = spi_mem_get_drvdata(mem);
1321        mtd = spinand_to_mtd(spinand);
1322
1323        ret = mtd_device_unregister(mtd);
1324        if (ret)
1325                return ret;
1326
1327        spinand_cleanup(spinand);
1328
1329        return 0;
1330}
1331
1332static const struct spi_device_id spinand_ids[] = {
1333        { .name = "spi-nand" },
1334        { /* sentinel */ },
1335};
1336MODULE_DEVICE_TABLE(spi, spinand_ids);
1337
1338#ifdef CONFIG_OF
1339static const struct of_device_id spinand_of_ids[] = {
1340        { .compatible = "spi-nand" },
1341        { /* sentinel */ },
1342};
1343MODULE_DEVICE_TABLE(of, spinand_of_ids);
1344#endif
1345
1346static struct spi_mem_driver spinand_drv = {
1347        .spidrv = {
1348                .id_table = spinand_ids,
1349                .driver = {
1350                        .name = "spi-nand",
1351                        .of_match_table = of_match_ptr(spinand_of_ids),
1352                },
1353        },
1354        .probe = spinand_probe,
1355        .remove = spinand_remove,
1356};
1357module_spi_mem_driver(spinand_drv);
1358
1359MODULE_DESCRIPTION("SPI NAND framework");
1360MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1361MODULE_LICENSE("GPL v2");
1362