linux/drivers/mtd/spi-nor/spansion.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2005, Intec Automation Inc.
   4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   5 */
   6
   7#include <linux/mtd/spi-nor.h>
   8
   9#include "core.h"
  10
  11#define SPINOR_OP_RD_ANY_REG                    0x65    /* Read any register */
  12#define SPINOR_OP_WR_ANY_REG                    0x71    /* Write any register */
  13#define SPINOR_REG_CYPRESS_CFR2V                0x00800003
  14#define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24   0xb
  15#define SPINOR_REG_CYPRESS_CFR3V                0x00800004
  16#define SPINOR_REG_CYPRESS_CFR3V_PGSZ           BIT(4) /* Page size. */
  17#define SPINOR_REG_CYPRESS_CFR5V                0x00800006
  18#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN     0x3
  19#define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS     0
  20#define SPINOR_OP_CYPRESS_RD_FAST               0xee
  21
  22/**
  23 * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
  24 * @nor:                pointer to a 'struct spi_nor'
  25 * @enable:              whether to enable or disable Octal DTR
  26 *
  27 * This also sets the memory access latency cycles to 24 to allow the flash to
  28 * run at up to 200MHz.
  29 *
  30 * Return: 0 on success, -errno otherwise.
  31 */
  32static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor, bool enable)
  33{
  34        struct spi_mem_op op;
  35        u8 *buf = nor->bouncebuf;
  36        int ret;
  37
  38        if (enable) {
  39                /* Use 24 dummy cycles for memory array reads. */
  40                ret = spi_nor_write_enable(nor);
  41                if (ret)
  42                        return ret;
  43
  44                *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
  45                op = (struct spi_mem_op)
  46                        SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
  47                                   SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V,
  48                                                   1),
  49                                   SPI_MEM_OP_NO_DUMMY,
  50                                   SPI_MEM_OP_DATA_OUT(1, buf, 1));
  51
  52                ret = spi_mem_exec_op(nor->spimem, &op);
  53                if (ret)
  54                        return ret;
  55
  56                ret = spi_nor_wait_till_ready(nor);
  57                if (ret)
  58                        return ret;
  59
  60                nor->read_dummy = 24;
  61        }
  62
  63        /* Set/unset the octal and DTR enable bits. */
  64        ret = spi_nor_write_enable(nor);
  65        if (ret)
  66                return ret;
  67
  68        if (enable)
  69                *buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
  70        else
  71                *buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
  72
  73        op = (struct spi_mem_op)
  74                SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
  75                           SPI_MEM_OP_ADDR(enable ? 3 : 4,
  76                                           SPINOR_REG_CYPRESS_CFR5V,
  77                                           1),
  78                           SPI_MEM_OP_NO_DUMMY,
  79                           SPI_MEM_OP_DATA_OUT(1, buf, 1));
  80
  81        if (!enable)
  82                spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
  83
  84        ret = spi_mem_exec_op(nor->spimem, &op);
  85        if (ret)
  86                return ret;
  87
  88        /* Read flash ID to make sure the switch was successful. */
  89        op = (struct spi_mem_op)
  90                SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
  91                           SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1),
  92                           SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1),
  93                           SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
  94                                              buf, 1));
  95
  96        if (enable)
  97                spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
  98
  99        ret = spi_mem_exec_op(nor->spimem, &op);
 100        if (ret)
 101                return ret;
 102
 103        if (memcmp(buf, nor->info->id, nor->info->id_len))
 104                return -EINVAL;
 105
 106        return 0;
 107}
 108
 109static void s28hs512t_default_init(struct spi_nor *nor)
 110{
 111        nor->params->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
 112        nor->params->writesize = 16;
 113}
 114
 115static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
 116{
 117        /*
 118         * On older versions of the flash the xSPI Profile 1.0 table has the
 119         * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
 120         */
 121        if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
 122                nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
 123                        SPINOR_OP_CYPRESS_RD_FAST;
 124
 125        /* This flash is also missing the 4-byte Page Program opcode bit. */
 126        spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
 127                                SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
 128        /*
 129         * Since xSPI Page Program opcode is backward compatible with
 130         * Legacy SPI, use Legacy SPI opcode there as well.
 131         */
 132        spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
 133                                SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
 134
 135        /*
 136         * The xSPI Profile 1.0 table advertises the number of additional
 137         * address bytes needed for Read Status Register command as 0 but the
 138         * actual value for that is 4.
 139         */
 140        nor->params->rdsr_addr_nbytes = 4;
 141}
 142
 143static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
 144                                     const struct sfdp_parameter_header *bfpt_header,
 145                                     const struct sfdp_bfpt *bfpt)
 146{
 147        /*
 148         * The BFPT table advertises a 512B page size but the page size is
 149         * actually configurable (with the default being 256B). Read from
 150         * CFR3V[4] and set the correct size.
 151         */
 152        struct spi_mem_op op =
 153                SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
 154                           SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1),
 155                           SPI_MEM_OP_NO_DUMMY,
 156                           SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
 157        int ret;
 158
 159        ret = spi_mem_exec_op(nor->spimem, &op);
 160        if (ret)
 161                return ret;
 162
 163        if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
 164                nor->params->page_size = 512;
 165        else
 166                nor->params->page_size = 256;
 167
 168        return 0;
 169}
 170
 171static struct spi_nor_fixups s28hs512t_fixups = {
 172        .default_init = s28hs512t_default_init,
 173        .post_sfdp = s28hs512t_post_sfdp_fixup,
 174        .post_bfpt = s28hs512t_post_bfpt_fixup,
 175};
 176
 177static int
 178s25fs_s_post_bfpt_fixups(struct spi_nor *nor,
 179                         const struct sfdp_parameter_header *bfpt_header,
 180                         const struct sfdp_bfpt *bfpt)
 181{
 182        /*
 183         * The S25FS-S chip family reports 512-byte pages in BFPT but
 184         * in reality the write buffer still wraps at the safe default
 185         * of 256 bytes.  Overwrite the page size advertised by BFPT
 186         * to get the writes working.
 187         */
 188        nor->params->page_size = 256;
 189
 190        return 0;
 191}
 192
 193static struct spi_nor_fixups s25fs_s_fixups = {
 194        .post_bfpt = s25fs_s_post_bfpt_fixups,
 195};
 196
 197static const struct flash_info spansion_parts[] = {
 198        /* Spansion/Cypress -- single (large) sector size only, at least
 199         * for the chips listed here (without boot sectors).
 200         */
 201        { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64,
 202                             SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 203        { "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128,
 204                             SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 205        { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
 206                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 207                              USE_CLSR) },
 208        { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
 209                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 210                              USE_CLSR) },
 211        { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128,
 212                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 213                              USE_CLSR) },
 214        { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512,
 215                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 216                              USE_CLSR) },
 217        { "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
 218                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 219                              SPI_NOR_HAS_LOCK | USE_CLSR) },
 220        { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256,
 221                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
 222          .fixups = &s25fs_s_fixups, },
 223        { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128,
 224                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 225                              USE_CLSR) },
 226        { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512,
 227                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 228                              USE_CLSR) },
 229        { "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256,
 230                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
 231          .fixups = &s25fs_s_fixups, },
 232        { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
 233        { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
 234        { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64,
 235                             SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 236                             USE_CLSR) },
 237        { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256,
 238                             SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 239                             USE_CLSR) },
 240        { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
 241        { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
 242        { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
 243        { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
 244        { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
 245        { "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8,
 246                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 247        { "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16,
 248                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 249        { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32,
 250                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 251        { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128,
 252                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 253        { "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32,
 254                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 255        { "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
 256        { "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
 257        { "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8,
 258                             SECT_4K | SPI_NOR_DUAL_READ) },
 259        { "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16,
 260                             SECT_4K | SPI_NOR_DUAL_READ) },
 261        { "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128,
 262                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 263                             SPI_NOR_4B_OPCODES) },
 264        { "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256,
 265                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 266                             SPI_NOR_4B_OPCODES) },
 267        { "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512,
 268                             SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
 269                             SPI_NOR_4B_OPCODES) },
 270        { "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1,
 271                              SPI_NOR_NO_ERASE) },
 272        { "s28hs512t",   INFO(0x345b1a,      0, 256 * 1024, 256,
 273                             SECT_4K | SPI_NOR_OCTAL_DTR_READ |
 274                              SPI_NOR_OCTAL_DTR_PP)
 275          .fixups = &s28hs512t_fixups,
 276        },
 277};
 278
 279static void spansion_post_sfdp_fixups(struct spi_nor *nor)
 280{
 281        if (nor->params->size <= SZ_16M)
 282                return;
 283
 284        nor->flags |= SNOR_F_4B_OPCODES;
 285        /* No small sector erase for 4-byte command set */
 286        nor->erase_opcode = SPINOR_OP_SE;
 287        nor->mtd.erasesize = nor->info->sector_size;
 288}
 289
 290static const struct spi_nor_fixups spansion_fixups = {
 291        .post_sfdp = spansion_post_sfdp_fixups,
 292};
 293
 294const struct spi_nor_manufacturer spi_nor_spansion = {
 295        .name = "spansion",
 296        .parts = spansion_parts,
 297        .nparts = ARRAY_SIZE(spansion_parts),
 298        .fixups = &spansion_fixups,
 299};
 300