linux/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 * Copyright (c) Nokia Corporation, 2007
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём),
   7 *         Frank Haverkamp
   8 */
   9
  10/*
  11 * This file includes UBI initialization and building of UBI devices.
  12 *
  13 * When UBI is initialized, it attaches all the MTD devices specified as the
  14 * module load parameters or the kernel boot parameters. If MTD devices were
  15 * specified, UBI does not attach any MTD device, but it is possible to do
  16 * later using the "UBI control device".
  17 */
  18
  19#include <linux/err.h>
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/stringify.h>
  23#include <linux/namei.h>
  24#include <linux/stat.h>
  25#include <linux/miscdevice.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/log2.h>
  28#include <linux/kthread.h>
  29#include <linux/kernel.h>
  30#include <linux/slab.h>
  31#include <linux/major.h>
  32#include "ubi.h"
  33
  34/* Maximum length of the 'mtd=' parameter */
  35#define MTD_PARAM_LEN_MAX 64
  36
  37/* Maximum number of comma-separated items in the 'mtd=' parameter */
  38#define MTD_PARAM_MAX_COUNT 4
  39
  40/* Maximum value for the number of bad PEBs per 1024 PEBs */
  41#define MAX_MTD_UBI_BEB_LIMIT 768
  42
  43#ifdef CONFIG_MTD_UBI_MODULE
  44#define ubi_is_module() 1
  45#else
  46#define ubi_is_module() 0
  47#endif
  48
  49/**
  50 * struct mtd_dev_param - MTD device parameter description data structure.
  51 * @name: MTD character device node path, MTD device name, or MTD device number
  52 *        string
  53 * @ubi_num: UBI number
  54 * @vid_hdr_offs: VID header offset
  55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  56 */
  57struct mtd_dev_param {
  58        char name[MTD_PARAM_LEN_MAX];
  59        int ubi_num;
  60        int vid_hdr_offs;
  61        int max_beb_per1024;
  62};
  63
  64/* Numbers of elements set in the @mtd_dev_param array */
  65static int mtd_devs;
  66
  67/* MTD devices specification parameters */
  68static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
  69#ifdef CONFIG_MTD_UBI_FASTMAP
  70/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  71static bool fm_autoconvert;
  72static bool fm_debug;
  73#endif
  74
  75/* Slab cache for wear-leveling entries */
  76struct kmem_cache *ubi_wl_entry_slab;
  77
  78/* UBI control character device */
  79static struct miscdevice ubi_ctrl_cdev = {
  80        .minor = MISC_DYNAMIC_MINOR,
  81        .name = "ubi_ctrl",
  82        .fops = &ubi_ctrl_cdev_operations,
  83};
  84
  85/* All UBI devices in system */
  86static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
  87
  88/* Serializes UBI devices creations and removals */
  89DEFINE_MUTEX(ubi_devices_mutex);
  90
  91/* Protects @ubi_devices and @ubi->ref_count */
  92static DEFINE_SPINLOCK(ubi_devices_lock);
  93
  94/* "Show" method for files in '/<sysfs>/class/ubi/' */
  95/* UBI version attribute ('/<sysfs>/class/ubi/version') */
  96static ssize_t version_show(struct class *class, struct class_attribute *attr,
  97                            char *buf)
  98{
  99        return sprintf(buf, "%d\n", UBI_VERSION);
 100}
 101static CLASS_ATTR_RO(version);
 102
 103static struct attribute *ubi_class_attrs[] = {
 104        &class_attr_version.attr,
 105        NULL,
 106};
 107ATTRIBUTE_GROUPS(ubi_class);
 108
 109/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 110struct class ubi_class = {
 111        .name           = UBI_NAME_STR,
 112        .owner          = THIS_MODULE,
 113        .class_groups   = ubi_class_groups,
 114};
 115
 116static ssize_t dev_attribute_show(struct device *dev,
 117                                  struct device_attribute *attr, char *buf);
 118
 119/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 120static struct device_attribute dev_eraseblock_size =
 121        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 122static struct device_attribute dev_avail_eraseblocks =
 123        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 124static struct device_attribute dev_total_eraseblocks =
 125        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 126static struct device_attribute dev_volumes_count =
 127        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 128static struct device_attribute dev_max_ec =
 129        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 130static struct device_attribute dev_reserved_for_bad =
 131        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 132static struct device_attribute dev_bad_peb_count =
 133        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 134static struct device_attribute dev_max_vol_count =
 135        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 136static struct device_attribute dev_min_io_size =
 137        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 138static struct device_attribute dev_bgt_enabled =
 139        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 140static struct device_attribute dev_mtd_num =
 141        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 142static struct device_attribute dev_ro_mode =
 143        __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
 144
 145/**
 146 * ubi_volume_notify - send a volume change notification.
 147 * @ubi: UBI device description object
 148 * @vol: volume description object of the changed volume
 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 150 *
 151 * This is a helper function which notifies all subscribers about a volume
 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 153 * zero in case of success and a negative error code in case of failure.
 154 */
 155int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 156{
 157        int ret;
 158        struct ubi_notification nt;
 159
 160        ubi_do_get_device_info(ubi, &nt.di);
 161        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 162
 163        switch (ntype) {
 164        case UBI_VOLUME_ADDED:
 165        case UBI_VOLUME_REMOVED:
 166        case UBI_VOLUME_RESIZED:
 167        case UBI_VOLUME_RENAMED:
 168                ret = ubi_update_fastmap(ubi);
 169                if (ret)
 170                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 171        }
 172
 173        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 174}
 175
 176/**
 177 * ubi_notify_all - send a notification to all volumes.
 178 * @ubi: UBI device description object
 179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 180 * @nb: the notifier to call
 181 *
 182 * This function walks all volumes of UBI device @ubi and sends the @ntype
 183 * notification for each volume. If @nb is %NULL, then all registered notifiers
 184 * are called, otherwise only the @nb notifier is called. Returns the number of
 185 * sent notifications.
 186 */
 187int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 188{
 189        struct ubi_notification nt;
 190        int i, count = 0;
 191
 192        ubi_do_get_device_info(ubi, &nt.di);
 193
 194        mutex_lock(&ubi->device_mutex);
 195        for (i = 0; i < ubi->vtbl_slots; i++) {
 196                /*
 197                 * Since the @ubi->device is locked, and we are not going to
 198                 * change @ubi->volumes, we do not have to lock
 199                 * @ubi->volumes_lock.
 200                 */
 201                if (!ubi->volumes[i])
 202                        continue;
 203
 204                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 205                if (nb)
 206                        nb->notifier_call(nb, ntype, &nt);
 207                else
 208                        blocking_notifier_call_chain(&ubi_notifiers, ntype,
 209                                                     &nt);
 210                count += 1;
 211        }
 212        mutex_unlock(&ubi->device_mutex);
 213
 214        return count;
 215}
 216
 217/**
 218 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 219 * @nb: the notifier to call
 220 *
 221 * This function walks all UBI devices and volumes and sends the
 222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 223 * registered notifiers are called, otherwise only the @nb notifier is called.
 224 * Returns the number of sent notifications.
 225 */
 226int ubi_enumerate_volumes(struct notifier_block *nb)
 227{
 228        int i, count = 0;
 229
 230        /*
 231         * Since the @ubi_devices_mutex is locked, and we are not going to
 232         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 233         */
 234        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 235                struct ubi_device *ubi = ubi_devices[i];
 236
 237                if (!ubi)
 238                        continue;
 239                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 240        }
 241
 242        return count;
 243}
 244
 245/**
 246 * ubi_get_device - get UBI device.
 247 * @ubi_num: UBI device number
 248 *
 249 * This function returns UBI device description object for UBI device number
 250 * @ubi_num, or %NULL if the device does not exist. This function increases the
 251 * device reference count to prevent removal of the device. In other words, the
 252 * device cannot be removed if its reference count is not zero.
 253 */
 254struct ubi_device *ubi_get_device(int ubi_num)
 255{
 256        struct ubi_device *ubi;
 257
 258        spin_lock(&ubi_devices_lock);
 259        ubi = ubi_devices[ubi_num];
 260        if (ubi) {
 261                ubi_assert(ubi->ref_count >= 0);
 262                ubi->ref_count += 1;
 263                get_device(&ubi->dev);
 264        }
 265        spin_unlock(&ubi_devices_lock);
 266
 267        return ubi;
 268}
 269
 270/**
 271 * ubi_put_device - drop an UBI device reference.
 272 * @ubi: UBI device description object
 273 */
 274void ubi_put_device(struct ubi_device *ubi)
 275{
 276        spin_lock(&ubi_devices_lock);
 277        ubi->ref_count -= 1;
 278        put_device(&ubi->dev);
 279        spin_unlock(&ubi_devices_lock);
 280}
 281
 282/**
 283 * ubi_get_by_major - get UBI device by character device major number.
 284 * @major: major number
 285 *
 286 * This function is similar to 'ubi_get_device()', but it searches the device
 287 * by its major number.
 288 */
 289struct ubi_device *ubi_get_by_major(int major)
 290{
 291        int i;
 292        struct ubi_device *ubi;
 293
 294        spin_lock(&ubi_devices_lock);
 295        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 296                ubi = ubi_devices[i];
 297                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 298                        ubi_assert(ubi->ref_count >= 0);
 299                        ubi->ref_count += 1;
 300                        get_device(&ubi->dev);
 301                        spin_unlock(&ubi_devices_lock);
 302                        return ubi;
 303                }
 304        }
 305        spin_unlock(&ubi_devices_lock);
 306
 307        return NULL;
 308}
 309
 310/**
 311 * ubi_major2num - get UBI device number by character device major number.
 312 * @major: major number
 313 *
 314 * This function searches UBI device number object by its major number. If UBI
 315 * device was not found, this function returns -ENODEV, otherwise the UBI device
 316 * number is returned.
 317 */
 318int ubi_major2num(int major)
 319{
 320        int i, ubi_num = -ENODEV;
 321
 322        spin_lock(&ubi_devices_lock);
 323        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 324                struct ubi_device *ubi = ubi_devices[i];
 325
 326                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 327                        ubi_num = ubi->ubi_num;
 328                        break;
 329                }
 330        }
 331        spin_unlock(&ubi_devices_lock);
 332
 333        return ubi_num;
 334}
 335
 336/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 337static ssize_t dev_attribute_show(struct device *dev,
 338                                  struct device_attribute *attr, char *buf)
 339{
 340        ssize_t ret;
 341        struct ubi_device *ubi;
 342
 343        /*
 344         * The below code looks weird, but it actually makes sense. We get the
 345         * UBI device reference from the contained 'struct ubi_device'. But it
 346         * is unclear if the device was removed or not yet. Indeed, if the
 347         * device was removed before we increased its reference count,
 348         * 'ubi_get_device()' will return -ENODEV and we fail.
 349         *
 350         * Remember, 'struct ubi_device' is freed in the release function, so
 351         * we still can use 'ubi->ubi_num'.
 352         */
 353        ubi = container_of(dev, struct ubi_device, dev);
 354        ubi = ubi_get_device(ubi->ubi_num);
 355        if (!ubi)
 356                return -ENODEV;
 357
 358        if (attr == &dev_eraseblock_size)
 359                ret = sprintf(buf, "%d\n", ubi->leb_size);
 360        else if (attr == &dev_avail_eraseblocks)
 361                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 362        else if (attr == &dev_total_eraseblocks)
 363                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 364        else if (attr == &dev_volumes_count)
 365                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 366        else if (attr == &dev_max_ec)
 367                ret = sprintf(buf, "%d\n", ubi->max_ec);
 368        else if (attr == &dev_reserved_for_bad)
 369                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 370        else if (attr == &dev_bad_peb_count)
 371                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 372        else if (attr == &dev_max_vol_count)
 373                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 374        else if (attr == &dev_min_io_size)
 375                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 376        else if (attr == &dev_bgt_enabled)
 377                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 378        else if (attr == &dev_mtd_num)
 379                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 380        else if (attr == &dev_ro_mode)
 381                ret = sprintf(buf, "%d\n", ubi->ro_mode);
 382        else
 383                ret = -EINVAL;
 384
 385        ubi_put_device(ubi);
 386        return ret;
 387}
 388
 389static struct attribute *ubi_dev_attrs[] = {
 390        &dev_eraseblock_size.attr,
 391        &dev_avail_eraseblocks.attr,
 392        &dev_total_eraseblocks.attr,
 393        &dev_volumes_count.attr,
 394        &dev_max_ec.attr,
 395        &dev_reserved_for_bad.attr,
 396        &dev_bad_peb_count.attr,
 397        &dev_max_vol_count.attr,
 398        &dev_min_io_size.attr,
 399        &dev_bgt_enabled.attr,
 400        &dev_mtd_num.attr,
 401        &dev_ro_mode.attr,
 402        NULL
 403};
 404ATTRIBUTE_GROUPS(ubi_dev);
 405
 406static void dev_release(struct device *dev)
 407{
 408        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 409
 410        kfree(ubi);
 411}
 412
 413/**
 414 * kill_volumes - destroy all user volumes.
 415 * @ubi: UBI device description object
 416 */
 417static void kill_volumes(struct ubi_device *ubi)
 418{
 419        int i;
 420
 421        for (i = 0; i < ubi->vtbl_slots; i++)
 422                if (ubi->volumes[i])
 423                        ubi_free_volume(ubi, ubi->volumes[i]);
 424}
 425
 426/**
 427 * uif_init - initialize user interfaces for an UBI device.
 428 * @ubi: UBI device description object
 429 *
 430 * This function initializes various user interfaces for an UBI device. If the
 431 * initialization fails at an early stage, this function frees all the
 432 * resources it allocated, returns an error.
 433 *
 434 * This function returns zero in case of success and a negative error code in
 435 * case of failure.
 436 */
 437static int uif_init(struct ubi_device *ubi)
 438{
 439        int i, err;
 440        dev_t dev;
 441
 442        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 443
 444        /*
 445         * Major numbers for the UBI character devices are allocated
 446         * dynamically. Major numbers of volume character devices are
 447         * equivalent to ones of the corresponding UBI character device. Minor
 448         * numbers of UBI character devices are 0, while minor numbers of
 449         * volume character devices start from 1. Thus, we allocate one major
 450         * number and ubi->vtbl_slots + 1 minor numbers.
 451         */
 452        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 453        if (err) {
 454                ubi_err(ubi, "cannot register UBI character devices");
 455                return err;
 456        }
 457
 458        ubi->dev.devt = dev;
 459
 460        ubi_assert(MINOR(dev) == 0);
 461        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 462        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 463        ubi->cdev.owner = THIS_MODULE;
 464
 465        dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
 466        err = cdev_device_add(&ubi->cdev, &ubi->dev);
 467        if (err)
 468                goto out_unreg;
 469
 470        for (i = 0; i < ubi->vtbl_slots; i++)
 471                if (ubi->volumes[i]) {
 472                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 473                        if (err) {
 474                                ubi_err(ubi, "cannot add volume %d", i);
 475                                goto out_volumes;
 476                        }
 477                }
 478
 479        return 0;
 480
 481out_volumes:
 482        kill_volumes(ubi);
 483        cdev_device_del(&ubi->cdev, &ubi->dev);
 484out_unreg:
 485        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 486        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 487                ubi->ubi_name, err);
 488        return err;
 489}
 490
 491/**
 492 * uif_close - close user interfaces for an UBI device.
 493 * @ubi: UBI device description object
 494 *
 495 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 496 * the memory allocated voe the volumes is freed as well (in the release
 497 * function).
 498 */
 499static void uif_close(struct ubi_device *ubi)
 500{
 501        kill_volumes(ubi);
 502        cdev_device_del(&ubi->cdev, &ubi->dev);
 503        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 504}
 505
 506/**
 507 * ubi_free_volumes_from - free volumes from specific index.
 508 * @ubi: UBI device description object
 509 * @from: the start index used for volume free.
 510 */
 511static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
 512{
 513        int i;
 514
 515        for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 516                if (!ubi->volumes[i])
 517                        continue;
 518                ubi_eba_replace_table(ubi->volumes[i], NULL);
 519                ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
 520                kfree(ubi->volumes[i]);
 521                ubi->volumes[i] = NULL;
 522        }
 523}
 524
 525/**
 526 * ubi_free_all_volumes - free all volumes.
 527 * @ubi: UBI device description object
 528 */
 529void ubi_free_all_volumes(struct ubi_device *ubi)
 530{
 531        ubi_free_volumes_from(ubi, 0);
 532}
 533
 534/**
 535 * ubi_free_internal_volumes - free internal volumes.
 536 * @ubi: UBI device description object
 537 */
 538void ubi_free_internal_volumes(struct ubi_device *ubi)
 539{
 540        ubi_free_volumes_from(ubi, ubi->vtbl_slots);
 541}
 542
 543static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 544{
 545        int limit, device_pebs;
 546        uint64_t device_size;
 547
 548        if (!max_beb_per1024) {
 549                /*
 550                 * Since max_beb_per1024 has not been set by the user in either
 551                 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
 552                 * limit if it is supported by the device.
 553                 */
 554                limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
 555                if (limit < 0)
 556                        return 0;
 557                return limit;
 558        }
 559
 560        /*
 561         * Here we are using size of the entire flash chip and
 562         * not just the MTD partition size because the maximum
 563         * number of bad eraseblocks is a percentage of the
 564         * whole device and bad eraseblocks are not fairly
 565         * distributed over the flash chip. So the worst case
 566         * is that all the bad eraseblocks of the chip are in
 567         * the MTD partition we are attaching (ubi->mtd).
 568         */
 569        device_size = mtd_get_device_size(ubi->mtd);
 570        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 571        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 572
 573        /* Round it up */
 574        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 575                limit += 1;
 576
 577        return limit;
 578}
 579
 580/**
 581 * io_init - initialize I/O sub-system for a given UBI device.
 582 * @ubi: UBI device description object
 583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 584 *
 585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 586 * assumed:
 587 *   o EC header is always at offset zero - this cannot be changed;
 588 *   o VID header starts just after the EC header at the closest address
 589 *     aligned to @io->hdrs_min_io_size;
 590 *   o data starts just after the VID header at the closest address aligned to
 591 *     @io->min_io_size
 592 *
 593 * This function returns zero in case of success and a negative error code in
 594 * case of failure.
 595 */
 596static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 597{
 598        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 599        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 600
 601        if (ubi->mtd->numeraseregions != 0) {
 602                /*
 603                 * Some flashes have several erase regions. Different regions
 604                 * may have different eraseblock size and other
 605                 * characteristics. It looks like mostly multi-region flashes
 606                 * have one "main" region and one or more small regions to
 607                 * store boot loader code or boot parameters or whatever. I
 608                 * guess we should just pick the largest region. But this is
 609                 * not implemented.
 610                 */
 611                ubi_err(ubi, "multiple regions, not implemented");
 612                return -EINVAL;
 613        }
 614
 615        if (ubi->vid_hdr_offset < 0)
 616                return -EINVAL;
 617
 618        /*
 619         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 620         * physical eraseblocks maximum.
 621         */
 622
 623        ubi->peb_size   = ubi->mtd->erasesize;
 624        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 625        ubi->flash_size = ubi->mtd->size;
 626
 627        if (mtd_can_have_bb(ubi->mtd)) {
 628                ubi->bad_allowed = 1;
 629                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 630        }
 631
 632        if (ubi->mtd->type == MTD_NORFLASH)
 633                ubi->nor_flash = 1;
 634
 635        ubi->min_io_size = ubi->mtd->writesize;
 636        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 637
 638        /*
 639         * Make sure minimal I/O unit is power of 2. Note, there is no
 640         * fundamental reason for this assumption. It is just an optimization
 641         * which allows us to avoid costly division operations.
 642         */
 643        if (!is_power_of_2(ubi->min_io_size)) {
 644                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 645                        ubi->min_io_size);
 646                return -EINVAL;
 647        }
 648
 649        ubi_assert(ubi->hdrs_min_io_size > 0);
 650        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 651        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 652
 653        ubi->max_write_size = ubi->mtd->writebufsize;
 654        /*
 655         * Maximum write size has to be greater or equivalent to min. I/O
 656         * size, and be multiple of min. I/O size.
 657         */
 658        if (ubi->max_write_size < ubi->min_io_size ||
 659            ubi->max_write_size % ubi->min_io_size ||
 660            !is_power_of_2(ubi->max_write_size)) {
 661                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 662                        ubi->max_write_size, ubi->min_io_size);
 663                return -EINVAL;
 664        }
 665
 666        /* Calculate default aligned sizes of EC and VID headers */
 667        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 668        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 669
 670        dbg_gen("min_io_size      %d", ubi->min_io_size);
 671        dbg_gen("max_write_size   %d", ubi->max_write_size);
 672        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 673        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 674        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 675
 676        if (ubi->vid_hdr_offset == 0)
 677                /* Default offset */
 678                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 679                                      ubi->ec_hdr_alsize;
 680        else {
 681                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 682                                                ~(ubi->hdrs_min_io_size - 1);
 683                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 684                                                ubi->vid_hdr_aloffset;
 685        }
 686
 687        /* Similar for the data offset */
 688        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 689        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 690
 691        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 692        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 693        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 694        dbg_gen("leb_start        %d", ubi->leb_start);
 695
 696        /* The shift must be aligned to 32-bit boundary */
 697        if (ubi->vid_hdr_shift % 4) {
 698                ubi_err(ubi, "unaligned VID header shift %d",
 699                        ubi->vid_hdr_shift);
 700                return -EINVAL;
 701        }
 702
 703        /* Check sanity */
 704        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 705            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 706            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 707            ubi->leb_start & (ubi->min_io_size - 1)) {
 708                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 709                        ubi->vid_hdr_offset, ubi->leb_start);
 710                return -EINVAL;
 711        }
 712
 713        /*
 714         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 715         * Erroneous PEB are those which have read errors.
 716         */
 717        ubi->max_erroneous = ubi->peb_count / 10;
 718        if (ubi->max_erroneous < 16)
 719                ubi->max_erroneous = 16;
 720        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 721
 722        /*
 723         * It may happen that EC and VID headers are situated in one minimal
 724         * I/O unit. In this case we can only accept this UBI image in
 725         * read-only mode.
 726         */
 727        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 728                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 729                ubi->ro_mode = 1;
 730        }
 731
 732        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 733
 734        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 735                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 736                        ubi->mtd->index);
 737                ubi->ro_mode = 1;
 738        }
 739
 740        /*
 741         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 742         * unfortunately, MTD does not provide this information. We should loop
 743         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 744         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 745         * uninitialized so far.
 746         */
 747
 748        return 0;
 749}
 750
 751/**
 752 * autoresize - re-size the volume which has the "auto-resize" flag set.
 753 * @ubi: UBI device description object
 754 * @vol_id: ID of the volume to re-size
 755 *
 756 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 757 * the volume table to the largest possible size. See comments in ubi-header.h
 758 * for more description of the flag. Returns zero in case of success and a
 759 * negative error code in case of failure.
 760 */
 761static int autoresize(struct ubi_device *ubi, int vol_id)
 762{
 763        struct ubi_volume_desc desc;
 764        struct ubi_volume *vol = ubi->volumes[vol_id];
 765        int err, old_reserved_pebs = vol->reserved_pebs;
 766
 767        if (ubi->ro_mode) {
 768                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 769                return 0;
 770        }
 771
 772        /*
 773         * Clear the auto-resize flag in the volume in-memory copy of the
 774         * volume table, and 'ubi_resize_volume()' will propagate this change
 775         * to the flash.
 776         */
 777        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 778
 779        if (ubi->avail_pebs == 0) {
 780                struct ubi_vtbl_record vtbl_rec;
 781
 782                /*
 783                 * No available PEBs to re-size the volume, clear the flag on
 784                 * flash and exit.
 785                 */
 786                vtbl_rec = ubi->vtbl[vol_id];
 787                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 788                if (err)
 789                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 790                                vol_id);
 791        } else {
 792                desc.vol = vol;
 793                err = ubi_resize_volume(&desc,
 794                                        old_reserved_pebs + ubi->avail_pebs);
 795                if (err)
 796                        ubi_err(ubi, "cannot auto-resize volume %d",
 797                                vol_id);
 798        }
 799
 800        if (err)
 801                return err;
 802
 803        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 804                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 805        return 0;
 806}
 807
 808/**
 809 * ubi_attach_mtd_dev - attach an MTD device.
 810 * @mtd: MTD device description object
 811 * @ubi_num: number to assign to the new UBI device
 812 * @vid_hdr_offset: VID header offset
 813 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 814 *
 815 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 816 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 817 * which case this function finds a vacant device number and assigns it
 818 * automatically. Returns the new UBI device number in case of success and a
 819 * negative error code in case of failure.
 820 *
 821 * Note, the invocations of this function has to be serialized by the
 822 * @ubi_devices_mutex.
 823 */
 824int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 825                       int vid_hdr_offset, int max_beb_per1024)
 826{
 827        struct ubi_device *ubi;
 828        int i, err;
 829
 830        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 831                return -EINVAL;
 832
 833        if (!max_beb_per1024)
 834                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 835
 836        /*
 837         * Check if we already have the same MTD device attached.
 838         *
 839         * Note, this function assumes that UBI devices creations and deletions
 840         * are serialized, so it does not take the &ubi_devices_lock.
 841         */
 842        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 843                ubi = ubi_devices[i];
 844                if (ubi && mtd->index == ubi->mtd->index) {
 845                        pr_err("ubi: mtd%d is already attached to ubi%d\n",
 846                                mtd->index, i);
 847                        return -EEXIST;
 848                }
 849        }
 850
 851        /*
 852         * Make sure this MTD device is not emulated on top of an UBI volume
 853         * already. Well, generally this recursion works fine, but there are
 854         * different problems like the UBI module takes a reference to itself
 855         * by attaching (and thus, opening) the emulated MTD device. This
 856         * results in inability to unload the module. And in general it makes
 857         * no sense to attach emulated MTD devices, so we prohibit this.
 858         */
 859        if (mtd->type == MTD_UBIVOLUME) {
 860                pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
 861                        mtd->index);
 862                return -EINVAL;
 863        }
 864
 865        /*
 866         * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
 867         * MLC NAND is different and needs special care, otherwise UBI or UBIFS
 868         * will die soon and you will lose all your data.
 869         * Relax this rule if the partition we're attaching to operates in SLC
 870         * mode.
 871         */
 872        if (mtd->type == MTD_MLCNANDFLASH &&
 873            !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
 874                pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
 875                        mtd->index);
 876                return -EINVAL;
 877        }
 878
 879        if (ubi_num == UBI_DEV_NUM_AUTO) {
 880                /* Search for an empty slot in the @ubi_devices array */
 881                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 882                        if (!ubi_devices[ubi_num])
 883                                break;
 884                if (ubi_num == UBI_MAX_DEVICES) {
 885                        pr_err("ubi: only %d UBI devices may be created\n",
 886                                UBI_MAX_DEVICES);
 887                        return -ENFILE;
 888                }
 889        } else {
 890                if (ubi_num >= UBI_MAX_DEVICES)
 891                        return -EINVAL;
 892
 893                /* Make sure ubi_num is not busy */
 894                if (ubi_devices[ubi_num]) {
 895                        pr_err("ubi: ubi%i already exists\n", ubi_num);
 896                        return -EEXIST;
 897                }
 898        }
 899
 900        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 901        if (!ubi)
 902                return -ENOMEM;
 903
 904        device_initialize(&ubi->dev);
 905        ubi->dev.release = dev_release;
 906        ubi->dev.class = &ubi_class;
 907        ubi->dev.groups = ubi_dev_groups;
 908
 909        ubi->mtd = mtd;
 910        ubi->ubi_num = ubi_num;
 911        ubi->vid_hdr_offset = vid_hdr_offset;
 912        ubi->autoresize_vol_id = -1;
 913
 914#ifdef CONFIG_MTD_UBI_FASTMAP
 915        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 916        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 917
 918        /*
 919         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 920         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 921         */
 922        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 923                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 924        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 925                UBI_FM_MIN_POOL_SIZE);
 926
 927        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 928        ubi->fm_disabled = !fm_autoconvert;
 929        if (fm_debug)
 930                ubi_enable_dbg_chk_fastmap(ubi);
 931
 932        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 933            <= UBI_FM_MAX_START) {
 934                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 935                        UBI_FM_MAX_START);
 936                ubi->fm_disabled = 1;
 937        }
 938
 939        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 940        ubi_msg(ubi, "default fastmap WL pool size: %d",
 941                ubi->fm_wl_pool.max_size);
 942#else
 943        ubi->fm_disabled = 1;
 944#endif
 945        mutex_init(&ubi->buf_mutex);
 946        mutex_init(&ubi->ckvol_mutex);
 947        mutex_init(&ubi->device_mutex);
 948        spin_lock_init(&ubi->volumes_lock);
 949        init_rwsem(&ubi->fm_protect);
 950        init_rwsem(&ubi->fm_eba_sem);
 951
 952        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 953
 954        err = io_init(ubi, max_beb_per1024);
 955        if (err)
 956                goto out_free;
 957
 958        err = -ENOMEM;
 959        ubi->peb_buf = vmalloc(ubi->peb_size);
 960        if (!ubi->peb_buf)
 961                goto out_free;
 962
 963#ifdef CONFIG_MTD_UBI_FASTMAP
 964        ubi->fm_size = ubi_calc_fm_size(ubi);
 965        ubi->fm_buf = vzalloc(ubi->fm_size);
 966        if (!ubi->fm_buf)
 967                goto out_free;
 968#endif
 969        err = ubi_attach(ubi, 0);
 970        if (err) {
 971                ubi_err(ubi, "failed to attach mtd%d, error %d",
 972                        mtd->index, err);
 973                goto out_free;
 974        }
 975
 976        if (ubi->autoresize_vol_id != -1) {
 977                err = autoresize(ubi, ubi->autoresize_vol_id);
 978                if (err)
 979                        goto out_detach;
 980        }
 981
 982        /* Make device "available" before it becomes accessible via sysfs */
 983        ubi_devices[ubi_num] = ubi;
 984
 985        err = uif_init(ubi);
 986        if (err)
 987                goto out_detach;
 988
 989        err = ubi_debugfs_init_dev(ubi);
 990        if (err)
 991                goto out_uif;
 992
 993        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
 994        if (IS_ERR(ubi->bgt_thread)) {
 995                err = PTR_ERR(ubi->bgt_thread);
 996                ubi_err(ubi, "cannot spawn \"%s\", error %d",
 997                        ubi->bgt_name, err);
 998                goto out_debugfs;
 999        }
1000
1001        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1002                mtd->index, mtd->name, ubi->flash_size >> 20);
1003        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1004                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1005        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1006                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1007        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1008                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1009        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1010                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1011        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1012                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1013                ubi->vtbl_slots);
1014        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1015                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1016                ubi->image_seq);
1017        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1018                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1019
1020        /*
1021         * The below lock makes sure we do not race with 'ubi_thread()' which
1022         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1023         */
1024        spin_lock(&ubi->wl_lock);
1025        ubi->thread_enabled = 1;
1026        wake_up_process(ubi->bgt_thread);
1027        spin_unlock(&ubi->wl_lock);
1028
1029        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1030        return ubi_num;
1031
1032out_debugfs:
1033        ubi_debugfs_exit_dev(ubi);
1034out_uif:
1035        uif_close(ubi);
1036out_detach:
1037        ubi_devices[ubi_num] = NULL;
1038        ubi_wl_close(ubi);
1039        ubi_free_all_volumes(ubi);
1040        vfree(ubi->vtbl);
1041out_free:
1042        vfree(ubi->peb_buf);
1043        vfree(ubi->fm_buf);
1044        put_device(&ubi->dev);
1045        return err;
1046}
1047
1048/**
1049 * ubi_detach_mtd_dev - detach an MTD device.
1050 * @ubi_num: UBI device number to detach from
1051 * @anyway: detach MTD even if device reference count is not zero
1052 *
1053 * This function destroys an UBI device number @ubi_num and detaches the
1054 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1055 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1056 * exist.
1057 *
1058 * Note, the invocations of this function has to be serialized by the
1059 * @ubi_devices_mutex.
1060 */
1061int ubi_detach_mtd_dev(int ubi_num, int anyway)
1062{
1063        struct ubi_device *ubi;
1064
1065        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1066                return -EINVAL;
1067
1068        ubi = ubi_get_device(ubi_num);
1069        if (!ubi)
1070                return -EINVAL;
1071
1072        spin_lock(&ubi_devices_lock);
1073        put_device(&ubi->dev);
1074        ubi->ref_count -= 1;
1075        if (ubi->ref_count) {
1076                if (!anyway) {
1077                        spin_unlock(&ubi_devices_lock);
1078                        return -EBUSY;
1079                }
1080                /* This may only happen if there is a bug */
1081                ubi_err(ubi, "%s reference count %d, destroy anyway",
1082                        ubi->ubi_name, ubi->ref_count);
1083        }
1084        ubi_devices[ubi_num] = NULL;
1085        spin_unlock(&ubi_devices_lock);
1086
1087        ubi_assert(ubi_num == ubi->ubi_num);
1088        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1089        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1090#ifdef CONFIG_MTD_UBI_FASTMAP
1091        /* If we don't write a new fastmap at detach time we lose all
1092         * EC updates that have been made since the last written fastmap.
1093         * In case of fastmap debugging we omit the update to simulate an
1094         * unclean shutdown. */
1095        if (!ubi_dbg_chk_fastmap(ubi))
1096                ubi_update_fastmap(ubi);
1097#endif
1098        /*
1099         * Before freeing anything, we have to stop the background thread to
1100         * prevent it from doing anything on this device while we are freeing.
1101         */
1102        if (ubi->bgt_thread)
1103                kthread_stop(ubi->bgt_thread);
1104
1105#ifdef CONFIG_MTD_UBI_FASTMAP
1106        cancel_work_sync(&ubi->fm_work);
1107#endif
1108        ubi_debugfs_exit_dev(ubi);
1109        uif_close(ubi);
1110
1111        ubi_wl_close(ubi);
1112        ubi_free_internal_volumes(ubi);
1113        vfree(ubi->vtbl);
1114        vfree(ubi->peb_buf);
1115        vfree(ubi->fm_buf);
1116        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1117        put_mtd_device(ubi->mtd);
1118        put_device(&ubi->dev);
1119        return 0;
1120}
1121
1122/**
1123 * open_mtd_by_chdev - open an MTD device by its character device node path.
1124 * @mtd_dev: MTD character device node path
1125 *
1126 * This helper function opens an MTD device by its character node device path.
1127 * Returns MTD device description object in case of success and a negative
1128 * error code in case of failure.
1129 */
1130static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1131{
1132        int err, minor;
1133        struct path path;
1134        struct kstat stat;
1135
1136        /* Probably this is an MTD character device node path */
1137        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1138        if (err)
1139                return ERR_PTR(err);
1140
1141        err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1142        path_put(&path);
1143        if (err)
1144                return ERR_PTR(err);
1145
1146        /* MTD device number is defined by the major / minor numbers */
1147        if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1148                return ERR_PTR(-EINVAL);
1149
1150        minor = MINOR(stat.rdev);
1151
1152        if (minor & 1)
1153                /*
1154                 * Just do not think the "/dev/mtdrX" devices support is need,
1155                 * so do not support them to avoid doing extra work.
1156                 */
1157                return ERR_PTR(-EINVAL);
1158
1159        return get_mtd_device(NULL, minor / 2);
1160}
1161
1162/**
1163 * open_mtd_device - open MTD device by name, character device path, or number.
1164 * @mtd_dev: name, character device node path, or MTD device device number
1165 *
1166 * This function tries to open and MTD device described by @mtd_dev string,
1167 * which is first treated as ASCII MTD device number, and if it is not true, it
1168 * is treated as MTD device name, and if that is also not true, it is treated
1169 * as MTD character device node path. Returns MTD device description object in
1170 * case of success and a negative error code in case of failure.
1171 */
1172static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1173{
1174        struct mtd_info *mtd;
1175        int mtd_num;
1176        char *endp;
1177
1178        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1179        if (*endp != '\0' || mtd_dev == endp) {
1180                /*
1181                 * This does not look like an ASCII integer, probably this is
1182                 * MTD device name.
1183                 */
1184                mtd = get_mtd_device_nm(mtd_dev);
1185                if (PTR_ERR(mtd) == -ENODEV)
1186                        /* Probably this is an MTD character device node path */
1187                        mtd = open_mtd_by_chdev(mtd_dev);
1188        } else
1189                mtd = get_mtd_device(NULL, mtd_num);
1190
1191        return mtd;
1192}
1193
1194static int __init ubi_init(void)
1195{
1196        int err, i, k;
1197
1198        /* Ensure that EC and VID headers have correct size */
1199        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1200        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1201
1202        if (mtd_devs > UBI_MAX_DEVICES) {
1203                pr_err("UBI error: too many MTD devices, maximum is %d\n",
1204                       UBI_MAX_DEVICES);
1205                return -EINVAL;
1206        }
1207
1208        /* Create base sysfs directory and sysfs files */
1209        err = class_register(&ubi_class);
1210        if (err < 0)
1211                return err;
1212
1213        err = misc_register(&ubi_ctrl_cdev);
1214        if (err) {
1215                pr_err("UBI error: cannot register device\n");
1216                goto out;
1217        }
1218
1219        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1220                                              sizeof(struct ubi_wl_entry),
1221                                              0, 0, NULL);
1222        if (!ubi_wl_entry_slab) {
1223                err = -ENOMEM;
1224                goto out_dev_unreg;
1225        }
1226
1227        err = ubi_debugfs_init();
1228        if (err)
1229                goto out_slab;
1230
1231
1232        /* Attach MTD devices */
1233        for (i = 0; i < mtd_devs; i++) {
1234                struct mtd_dev_param *p = &mtd_dev_param[i];
1235                struct mtd_info *mtd;
1236
1237                cond_resched();
1238
1239                mtd = open_mtd_device(p->name);
1240                if (IS_ERR(mtd)) {
1241                        err = PTR_ERR(mtd);
1242                        pr_err("UBI error: cannot open mtd %s, error %d\n",
1243                               p->name, err);
1244                        /* See comment below re-ubi_is_module(). */
1245                        if (ubi_is_module())
1246                                goto out_detach;
1247                        continue;
1248                }
1249
1250                mutex_lock(&ubi_devices_mutex);
1251                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1252                                         p->vid_hdr_offs, p->max_beb_per1024);
1253                mutex_unlock(&ubi_devices_mutex);
1254                if (err < 0) {
1255                        pr_err("UBI error: cannot attach mtd%d\n",
1256                               mtd->index);
1257                        put_mtd_device(mtd);
1258
1259                        /*
1260                         * Originally UBI stopped initializing on any error.
1261                         * However, later on it was found out that this
1262                         * behavior is not very good when UBI is compiled into
1263                         * the kernel and the MTD devices to attach are passed
1264                         * through the command line. Indeed, UBI failure
1265                         * stopped whole boot sequence.
1266                         *
1267                         * To fix this, we changed the behavior for the
1268                         * non-module case, but preserved the old behavior for
1269                         * the module case, just for compatibility. This is a
1270                         * little inconsistent, though.
1271                         */
1272                        if (ubi_is_module())
1273                                goto out_detach;
1274                }
1275        }
1276
1277        err = ubiblock_init();
1278        if (err) {
1279                pr_err("UBI error: block: cannot initialize, error %d\n", err);
1280
1281                /* See comment above re-ubi_is_module(). */
1282                if (ubi_is_module())
1283                        goto out_detach;
1284        }
1285
1286        return 0;
1287
1288out_detach:
1289        for (k = 0; k < i; k++)
1290                if (ubi_devices[k]) {
1291                        mutex_lock(&ubi_devices_mutex);
1292                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1293                        mutex_unlock(&ubi_devices_mutex);
1294                }
1295        ubi_debugfs_exit();
1296out_slab:
1297        kmem_cache_destroy(ubi_wl_entry_slab);
1298out_dev_unreg:
1299        misc_deregister(&ubi_ctrl_cdev);
1300out:
1301        class_unregister(&ubi_class);
1302        pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1303        return err;
1304}
1305late_initcall(ubi_init);
1306
1307static void __exit ubi_exit(void)
1308{
1309        int i;
1310
1311        ubiblock_exit();
1312
1313        for (i = 0; i < UBI_MAX_DEVICES; i++)
1314                if (ubi_devices[i]) {
1315                        mutex_lock(&ubi_devices_mutex);
1316                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1317                        mutex_unlock(&ubi_devices_mutex);
1318                }
1319        ubi_debugfs_exit();
1320        kmem_cache_destroy(ubi_wl_entry_slab);
1321        misc_deregister(&ubi_ctrl_cdev);
1322        class_unregister(&ubi_class);
1323}
1324module_exit(ubi_exit);
1325
1326/**
1327 * bytes_str_to_int - convert a number of bytes string into an integer.
1328 * @str: the string to convert
1329 *
1330 * This function returns positive resulting integer in case of success and a
1331 * negative error code in case of failure.
1332 */
1333static int bytes_str_to_int(const char *str)
1334{
1335        char *endp;
1336        unsigned long result;
1337
1338        result = simple_strtoul(str, &endp, 0);
1339        if (str == endp || result >= INT_MAX) {
1340                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1341                return -EINVAL;
1342        }
1343
1344        switch (*endp) {
1345        case 'G':
1346                result *= 1024;
1347                fallthrough;
1348        case 'M':
1349                result *= 1024;
1350                fallthrough;
1351        case 'K':
1352                result *= 1024;
1353                break;
1354        case '\0':
1355                break;
1356        default:
1357                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1358                return -EINVAL;
1359        }
1360
1361        return result;
1362}
1363
1364/**
1365 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1366 * @val: the parameter value to parse
1367 * @kp: not used
1368 *
1369 * This function returns zero in case of success and a negative error code in
1370 * case of error.
1371 */
1372static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1373{
1374        int i, len;
1375        struct mtd_dev_param *p;
1376        char buf[MTD_PARAM_LEN_MAX];
1377        char *pbuf = &buf[0];
1378        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1379
1380        if (!val)
1381                return -EINVAL;
1382
1383        if (mtd_devs == UBI_MAX_DEVICES) {
1384                pr_err("UBI error: too many parameters, max. is %d\n",
1385                       UBI_MAX_DEVICES);
1386                return -EINVAL;
1387        }
1388
1389        len = strnlen(val, MTD_PARAM_LEN_MAX);
1390        if (len == MTD_PARAM_LEN_MAX) {
1391                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1392                       val, MTD_PARAM_LEN_MAX);
1393                return -EINVAL;
1394        }
1395
1396        if (len == 0) {
1397                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1398                return 0;
1399        }
1400
1401        strcpy(buf, val);
1402
1403        /* Get rid of the final newline */
1404        if (buf[len - 1] == '\n')
1405                buf[len - 1] = '\0';
1406
1407        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1408                tokens[i] = strsep(&pbuf, ",");
1409
1410        if (pbuf) {
1411                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1412                return -EINVAL;
1413        }
1414
1415        p = &mtd_dev_param[mtd_devs];
1416        strcpy(&p->name[0], tokens[0]);
1417
1418        token = tokens[1];
1419        if (token) {
1420                p->vid_hdr_offs = bytes_str_to_int(token);
1421
1422                if (p->vid_hdr_offs < 0)
1423                        return p->vid_hdr_offs;
1424        }
1425
1426        token = tokens[2];
1427        if (token) {
1428                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1429
1430                if (err) {
1431                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1432                               token);
1433                        return -EINVAL;
1434                }
1435        }
1436
1437        token = tokens[3];
1438        if (token) {
1439                int err = kstrtoint(token, 10, &p->ubi_num);
1440
1441                if (err) {
1442                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1443                               token);
1444                        return -EINVAL;
1445                }
1446        } else
1447                p->ubi_num = UBI_DEV_NUM_AUTO;
1448
1449        mtd_devs += 1;
1450        return 0;
1451}
1452
1453module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1454MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1455                      "Multiple \"mtd\" parameters may be specified.\n"
1456                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1457                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1458                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1459                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1460                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1461                      "\n"
1462                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1463                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1464                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1465                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1466                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1467#ifdef CONFIG_MTD_UBI_FASTMAP
1468module_param(fm_autoconvert, bool, 0644);
1469MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1470module_param(fm_debug, bool, 0);
1471MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1472#endif
1473MODULE_VERSION(__stringify(UBI_VERSION));
1474MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1475MODULE_AUTHOR("Artem Bityutskiy");
1476MODULE_LICENSE("GPL");
1477