linux/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * The UBI Eraseblock Association (EBA) sub-system.
  10 *
  11 * This sub-system is responsible for I/O to/from logical eraseblock.
  12 *
  13 * Although in this implementation the EBA table is fully kept and managed in
  14 * RAM, which assumes poor scalability, it might be (partially) maintained on
  15 * flash in future implementations.
  16 *
  17 * The EBA sub-system implements per-logical eraseblock locking. Before
  18 * accessing a logical eraseblock it is locked for reading or writing. The
  19 * per-logical eraseblock locking is implemented by means of the lock tree. The
  20 * lock tree is an RB-tree which refers all the currently locked logical
  21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  22 * They are indexed by (@vol_id, @lnum) pairs.
  23 *
  24 * EBA also maintains the global sequence counter which is incremented each
  25 * time a logical eraseblock is mapped to a physical eraseblock and it is
  26 * stored in the volume identifier header. This means that each VID header has
  27 * a unique sequence number. The sequence number is only increased an we assume
  28 * 64 bits is enough to never overflow.
  29 */
  30
  31#include <linux/slab.h>
  32#include <linux/crc32.h>
  33#include <linux/err.h>
  34#include "ubi.h"
  35
  36/* Number of physical eraseblocks reserved for atomic LEB change operation */
  37#define EBA_RESERVED_PEBS 1
  38
  39/**
  40 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
  41 * @pnum: the physical eraseblock number attached to the LEB
  42 *
  43 * This structure is encoding a LEB -> PEB association. Note that the LEB
  44 * number is not stored here, because it is the index used to access the
  45 * entries table.
  46 */
  47struct ubi_eba_entry {
  48        int pnum;
  49};
  50
  51/**
  52 * struct ubi_eba_table - LEB -> PEB association information
  53 * @entries: the LEB to PEB mapping (one entry per LEB).
  54 *
  55 * This structure is private to the EBA logic and should be kept here.
  56 * It is encoding the LEB to PEB association table, and is subject to
  57 * changes.
  58 */
  59struct ubi_eba_table {
  60        struct ubi_eba_entry *entries;
  61};
  62
  63/**
  64 * next_sqnum - get next sequence number.
  65 * @ubi: UBI device description object
  66 *
  67 * This function returns next sequence number to use, which is just the current
  68 * global sequence counter value. It also increases the global sequence
  69 * counter.
  70 */
  71unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  72{
  73        unsigned long long sqnum;
  74
  75        spin_lock(&ubi->ltree_lock);
  76        sqnum = ubi->global_sqnum++;
  77        spin_unlock(&ubi->ltree_lock);
  78
  79        return sqnum;
  80}
  81
  82/**
  83 * ubi_get_compat - get compatibility flags of a volume.
  84 * @ubi: UBI device description object
  85 * @vol_id: volume ID
  86 *
  87 * This function returns compatibility flags for an internal volume. User
  88 * volumes have no compatibility flags, so %0 is returned.
  89 */
  90static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  91{
  92        if (vol_id == UBI_LAYOUT_VOLUME_ID)
  93                return UBI_LAYOUT_VOLUME_COMPAT;
  94        return 0;
  95}
  96
  97/**
  98 * ubi_eba_get_ldesc - get information about a LEB
  99 * @vol: volume description object
 100 * @lnum: logical eraseblock number
 101 * @ldesc: the LEB descriptor to fill
 102 *
 103 * Used to query information about a specific LEB.
 104 * It is currently only returning the physical position of the LEB, but will be
 105 * extended to provide more information.
 106 */
 107void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
 108                       struct ubi_eba_leb_desc *ldesc)
 109{
 110        ldesc->lnum = lnum;
 111        ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
 112}
 113
 114/**
 115 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
 116 *                        LEBs unmapped
 117 * @vol: volume containing the EBA table to copy
 118 * @nentries: number of entries in the table
 119 *
 120 * Allocate a new EBA table and initialize it with all LEBs unmapped.
 121 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
 122 */
 123struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
 124                                           int nentries)
 125{
 126        struct ubi_eba_table *tbl;
 127        int err = -ENOMEM;
 128        int i;
 129
 130        tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
 131        if (!tbl)
 132                return ERR_PTR(-ENOMEM);
 133
 134        tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
 135                                     GFP_KERNEL);
 136        if (!tbl->entries)
 137                goto err;
 138
 139        for (i = 0; i < nentries; i++)
 140                tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
 141
 142        return tbl;
 143
 144err:
 145        kfree(tbl);
 146
 147        return ERR_PTR(err);
 148}
 149
 150/**
 151 * ubi_eba_destroy_table - destroy an EBA table
 152 * @tbl: the table to destroy
 153 *
 154 * Destroy an EBA table.
 155 */
 156void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
 157{
 158        if (!tbl)
 159                return;
 160
 161        kfree(tbl->entries);
 162        kfree(tbl);
 163}
 164
 165/**
 166 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
 167 * @vol: volume containing the EBA table to copy
 168 * @dst: destination
 169 * @nentries: number of entries to copy
 170 *
 171 * Copy the EBA table stored in vol into the one pointed by dst.
 172 */
 173void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
 174                        int nentries)
 175{
 176        struct ubi_eba_table *src;
 177        int i;
 178
 179        ubi_assert(dst && vol && vol->eba_tbl);
 180
 181        src = vol->eba_tbl;
 182
 183        for (i = 0; i < nentries; i++)
 184                dst->entries[i].pnum = src->entries[i].pnum;
 185}
 186
 187/**
 188 * ubi_eba_replace_table - assign a new EBA table to a volume
 189 * @vol: volume containing the EBA table to copy
 190 * @tbl: new EBA table
 191 *
 192 * Assign a new EBA table to the volume and release the old one.
 193 */
 194void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
 195{
 196        ubi_eba_destroy_table(vol->eba_tbl);
 197        vol->eba_tbl = tbl;
 198}
 199
 200/**
 201 * ltree_lookup - look up the lock tree.
 202 * @ubi: UBI device description object
 203 * @vol_id: volume ID
 204 * @lnum: logical eraseblock number
 205 *
 206 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
 207 * object if the logical eraseblock is locked and %NULL if it is not.
 208 * @ubi->ltree_lock has to be locked.
 209 */
 210static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 211                                            int lnum)
 212{
 213        struct rb_node *p;
 214
 215        p = ubi->ltree.rb_node;
 216        while (p) {
 217                struct ubi_ltree_entry *le;
 218
 219                le = rb_entry(p, struct ubi_ltree_entry, rb);
 220
 221                if (vol_id < le->vol_id)
 222                        p = p->rb_left;
 223                else if (vol_id > le->vol_id)
 224                        p = p->rb_right;
 225                else {
 226                        if (lnum < le->lnum)
 227                                p = p->rb_left;
 228                        else if (lnum > le->lnum)
 229                                p = p->rb_right;
 230                        else
 231                                return le;
 232                }
 233        }
 234
 235        return NULL;
 236}
 237
 238/**
 239 * ltree_add_entry - add new entry to the lock tree.
 240 * @ubi: UBI device description object
 241 * @vol_id: volume ID
 242 * @lnum: logical eraseblock number
 243 *
 244 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 245 * lock tree. If such entry is already there, its usage counter is increased.
 246 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 247 * failed.
 248 */
 249static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 250                                               int vol_id, int lnum)
 251{
 252        struct ubi_ltree_entry *le, *le1, *le_free;
 253
 254        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 255        if (!le)
 256                return ERR_PTR(-ENOMEM);
 257
 258        le->users = 0;
 259        init_rwsem(&le->mutex);
 260        le->vol_id = vol_id;
 261        le->lnum = lnum;
 262
 263        spin_lock(&ubi->ltree_lock);
 264        le1 = ltree_lookup(ubi, vol_id, lnum);
 265
 266        if (le1) {
 267                /*
 268                 * This logical eraseblock is already locked. The newly
 269                 * allocated lock entry is not needed.
 270                 */
 271                le_free = le;
 272                le = le1;
 273        } else {
 274                struct rb_node **p, *parent = NULL;
 275
 276                /*
 277                 * No lock entry, add the newly allocated one to the
 278                 * @ubi->ltree RB-tree.
 279                 */
 280                le_free = NULL;
 281
 282                p = &ubi->ltree.rb_node;
 283                while (*p) {
 284                        parent = *p;
 285                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 286
 287                        if (vol_id < le1->vol_id)
 288                                p = &(*p)->rb_left;
 289                        else if (vol_id > le1->vol_id)
 290                                p = &(*p)->rb_right;
 291                        else {
 292                                ubi_assert(lnum != le1->lnum);
 293                                if (lnum < le1->lnum)
 294                                        p = &(*p)->rb_left;
 295                                else
 296                                        p = &(*p)->rb_right;
 297                        }
 298                }
 299
 300                rb_link_node(&le->rb, parent, p);
 301                rb_insert_color(&le->rb, &ubi->ltree);
 302        }
 303        le->users += 1;
 304        spin_unlock(&ubi->ltree_lock);
 305
 306        kfree(le_free);
 307        return le;
 308}
 309
 310/**
 311 * leb_read_lock - lock logical eraseblock for reading.
 312 * @ubi: UBI device description object
 313 * @vol_id: volume ID
 314 * @lnum: logical eraseblock number
 315 *
 316 * This function locks a logical eraseblock for reading. Returns zero in case
 317 * of success and a negative error code in case of failure.
 318 */
 319static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 320{
 321        struct ubi_ltree_entry *le;
 322
 323        le = ltree_add_entry(ubi, vol_id, lnum);
 324        if (IS_ERR(le))
 325                return PTR_ERR(le);
 326        down_read(&le->mutex);
 327        return 0;
 328}
 329
 330/**
 331 * leb_read_unlock - unlock logical eraseblock.
 332 * @ubi: UBI device description object
 333 * @vol_id: volume ID
 334 * @lnum: logical eraseblock number
 335 */
 336static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 337{
 338        struct ubi_ltree_entry *le;
 339
 340        spin_lock(&ubi->ltree_lock);
 341        le = ltree_lookup(ubi, vol_id, lnum);
 342        le->users -= 1;
 343        ubi_assert(le->users >= 0);
 344        up_read(&le->mutex);
 345        if (le->users == 0) {
 346                rb_erase(&le->rb, &ubi->ltree);
 347                kfree(le);
 348        }
 349        spin_unlock(&ubi->ltree_lock);
 350}
 351
 352/**
 353 * leb_write_lock - lock logical eraseblock for writing.
 354 * @ubi: UBI device description object
 355 * @vol_id: volume ID
 356 * @lnum: logical eraseblock number
 357 *
 358 * This function locks a logical eraseblock for writing. Returns zero in case
 359 * of success and a negative error code in case of failure.
 360 */
 361static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 362{
 363        struct ubi_ltree_entry *le;
 364
 365        le = ltree_add_entry(ubi, vol_id, lnum);
 366        if (IS_ERR(le))
 367                return PTR_ERR(le);
 368        down_write(&le->mutex);
 369        return 0;
 370}
 371
 372/**
 373 * leb_write_trylock - try to lock logical eraseblock for writing.
 374 * @ubi: UBI device description object
 375 * @vol_id: volume ID
 376 * @lnum: logical eraseblock number
 377 *
 378 * This function locks a logical eraseblock for writing if there is no
 379 * contention and does nothing if there is contention. Returns %0 in case of
 380 * success, %1 in case of contention, and and a negative error code in case of
 381 * failure.
 382 */
 383static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 384{
 385        struct ubi_ltree_entry *le;
 386
 387        le = ltree_add_entry(ubi, vol_id, lnum);
 388        if (IS_ERR(le))
 389                return PTR_ERR(le);
 390        if (down_write_trylock(&le->mutex))
 391                return 0;
 392
 393        /* Contention, cancel */
 394        spin_lock(&ubi->ltree_lock);
 395        le->users -= 1;
 396        ubi_assert(le->users >= 0);
 397        if (le->users == 0) {
 398                rb_erase(&le->rb, &ubi->ltree);
 399                kfree(le);
 400        }
 401        spin_unlock(&ubi->ltree_lock);
 402
 403        return 1;
 404}
 405
 406/**
 407 * leb_write_unlock - unlock logical eraseblock.
 408 * @ubi: UBI device description object
 409 * @vol_id: volume ID
 410 * @lnum: logical eraseblock number
 411 */
 412static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 413{
 414        struct ubi_ltree_entry *le;
 415
 416        spin_lock(&ubi->ltree_lock);
 417        le = ltree_lookup(ubi, vol_id, lnum);
 418        le->users -= 1;
 419        ubi_assert(le->users >= 0);
 420        up_write(&le->mutex);
 421        if (le->users == 0) {
 422                rb_erase(&le->rb, &ubi->ltree);
 423                kfree(le);
 424        }
 425        spin_unlock(&ubi->ltree_lock);
 426}
 427
 428/**
 429 * ubi_eba_is_mapped - check if a LEB is mapped.
 430 * @vol: volume description object
 431 * @lnum: logical eraseblock number
 432 *
 433 * This function returns true if the LEB is mapped, false otherwise.
 434 */
 435bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
 436{
 437        return vol->eba_tbl->entries[lnum].pnum >= 0;
 438}
 439
 440/**
 441 * ubi_eba_unmap_leb - un-map logical eraseblock.
 442 * @ubi: UBI device description object
 443 * @vol: volume description object
 444 * @lnum: logical eraseblock number
 445 *
 446 * This function un-maps logical eraseblock @lnum and schedules corresponding
 447 * physical eraseblock for erasure. Returns zero in case of success and a
 448 * negative error code in case of failure.
 449 */
 450int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 451                      int lnum)
 452{
 453        int err, pnum, vol_id = vol->vol_id;
 454
 455        if (ubi->ro_mode)
 456                return -EROFS;
 457
 458        err = leb_write_lock(ubi, vol_id, lnum);
 459        if (err)
 460                return err;
 461
 462        pnum = vol->eba_tbl->entries[lnum].pnum;
 463        if (pnum < 0)
 464                /* This logical eraseblock is already unmapped */
 465                goto out_unlock;
 466
 467        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 468
 469        down_read(&ubi->fm_eba_sem);
 470        vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 471        up_read(&ubi->fm_eba_sem);
 472        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 473
 474out_unlock:
 475        leb_write_unlock(ubi, vol_id, lnum);
 476        return err;
 477}
 478
 479#ifdef CONFIG_MTD_UBI_FASTMAP
 480/**
 481 * check_mapping - check and fixup a mapping
 482 * @ubi: UBI device description object
 483 * @vol: volume description object
 484 * @lnum: logical eraseblock number
 485 * @pnum: physical eraseblock number
 486 *
 487 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
 488 * operations, if such an operation is interrupted the mapping still looks
 489 * good, but upon first read an ECC is reported to the upper layer.
 490 * Normaly during the full-scan at attach time this is fixed, for Fastmap
 491 * we have to deal with it while reading.
 492 * If the PEB behind a LEB shows this symthom we change the mapping to
 493 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
 494 *
 495 * Returns 0 on success, negative error code in case of failure.
 496 */
 497static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 498                         int *pnum)
 499{
 500        int err;
 501        struct ubi_vid_io_buf *vidb;
 502        struct ubi_vid_hdr *vid_hdr;
 503
 504        if (!ubi->fast_attach)
 505                return 0;
 506
 507        if (!vol->checkmap || test_bit(lnum, vol->checkmap))
 508                return 0;
 509
 510        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 511        if (!vidb)
 512                return -ENOMEM;
 513
 514        err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
 515        if (err > 0 && err != UBI_IO_BITFLIPS) {
 516                int torture = 0;
 517
 518                switch (err) {
 519                        case UBI_IO_FF:
 520                        case UBI_IO_FF_BITFLIPS:
 521                        case UBI_IO_BAD_HDR:
 522                        case UBI_IO_BAD_HDR_EBADMSG:
 523                                break;
 524                        default:
 525                                ubi_assert(0);
 526                }
 527
 528                if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
 529                        torture = 1;
 530
 531                down_read(&ubi->fm_eba_sem);
 532                vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 533                up_read(&ubi->fm_eba_sem);
 534                ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
 535
 536                *pnum = UBI_LEB_UNMAPPED;
 537        } else if (err < 0) {
 538                ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
 539                        *pnum, err);
 540
 541                goto out_free;
 542        } else {
 543                int found_vol_id, found_lnum;
 544
 545                ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
 546
 547                vid_hdr = ubi_get_vid_hdr(vidb);
 548                found_vol_id = be32_to_cpu(vid_hdr->vol_id);
 549                found_lnum = be32_to_cpu(vid_hdr->lnum);
 550
 551                if (found_lnum != lnum || found_vol_id != vol->vol_id) {
 552                        ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
 553                                *pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
 554                        ubi_ro_mode(ubi);
 555                        err = -EINVAL;
 556                        goto out_free;
 557                }
 558        }
 559
 560        set_bit(lnum, vol->checkmap);
 561        err = 0;
 562
 563out_free:
 564        ubi_free_vid_buf(vidb);
 565
 566        return err;
 567}
 568#else
 569static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 570                  int *pnum)
 571{
 572        return 0;
 573}
 574#endif
 575
 576/**
 577 * ubi_eba_read_leb - read data.
 578 * @ubi: UBI device description object
 579 * @vol: volume description object
 580 * @lnum: logical eraseblock number
 581 * @buf: buffer to store the read data
 582 * @offset: offset from where to read
 583 * @len: how many bytes to read
 584 * @check: data CRC check flag
 585 *
 586 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 587 * bytes. The @check flag only makes sense for static volumes and forces
 588 * eraseblock data CRC checking.
 589 *
 590 * In case of success this function returns zero. In case of a static volume,
 591 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 592 * returned for any volume type if an ECC error was detected by the MTD device
 593 * driver. Other negative error cored may be returned in case of other errors.
 594 */
 595int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 596                     void *buf, int offset, int len, int check)
 597{
 598        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 599        struct ubi_vid_io_buf *vidb;
 600        struct ubi_vid_hdr *vid_hdr;
 601        uint32_t crc;
 602
 603        err = leb_read_lock(ubi, vol_id, lnum);
 604        if (err)
 605                return err;
 606
 607        pnum = vol->eba_tbl->entries[lnum].pnum;
 608        if (pnum >= 0) {
 609                err = check_mapping(ubi, vol, lnum, &pnum);
 610                if (err < 0)
 611                        goto out_unlock;
 612        }
 613
 614        if (pnum == UBI_LEB_UNMAPPED) {
 615                /*
 616                 * The logical eraseblock is not mapped, fill the whole buffer
 617                 * with 0xFF bytes. The exception is static volumes for which
 618                 * it is an error to read unmapped logical eraseblocks.
 619                 */
 620                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 621                        len, offset, vol_id, lnum);
 622                leb_read_unlock(ubi, vol_id, lnum);
 623                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 624                memset(buf, 0xFF, len);
 625                return 0;
 626        }
 627
 628        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 629                len, offset, vol_id, lnum, pnum);
 630
 631        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 632                check = 0;
 633
 634retry:
 635        if (check) {
 636                vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 637                if (!vidb) {
 638                        err = -ENOMEM;
 639                        goto out_unlock;
 640                }
 641
 642                vid_hdr = ubi_get_vid_hdr(vidb);
 643
 644                err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 645                if (err && err != UBI_IO_BITFLIPS) {
 646                        if (err > 0) {
 647                                /*
 648                                 * The header is either absent or corrupted.
 649                                 * The former case means there is a bug -
 650                                 * switch to read-only mode just in case.
 651                                 * The latter case means a real corruption - we
 652                                 * may try to recover data. FIXME: but this is
 653                                 * not implemented.
 654                                 */
 655                                if (err == UBI_IO_BAD_HDR_EBADMSG ||
 656                                    err == UBI_IO_BAD_HDR) {
 657                                        ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
 658                                                 pnum, vol_id, lnum);
 659                                        err = -EBADMSG;
 660                                } else {
 661                                        /*
 662                                         * Ending up here in the non-Fastmap case
 663                                         * is a clear bug as the VID header had to
 664                                         * be present at scan time to have it referenced.
 665                                         * With fastmap the story is more complicated.
 666                                         * Fastmap has the mapping info without the need
 667                                         * of a full scan. So the LEB could have been
 668                                         * unmapped, Fastmap cannot know this and keeps
 669                                         * the LEB referenced.
 670                                         * This is valid and works as the layer above UBI
 671                                         * has to do bookkeeping about used/referenced
 672                                         * LEBs in any case.
 673                                         */
 674                                        if (ubi->fast_attach) {
 675                                                err = -EBADMSG;
 676                                        } else {
 677                                                err = -EINVAL;
 678                                                ubi_ro_mode(ubi);
 679                                        }
 680                                }
 681                        }
 682                        goto out_free;
 683                } else if (err == UBI_IO_BITFLIPS)
 684                        scrub = 1;
 685
 686                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 687                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 688
 689                crc = be32_to_cpu(vid_hdr->data_crc);
 690                ubi_free_vid_buf(vidb);
 691        }
 692
 693        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 694        if (err) {
 695                if (err == UBI_IO_BITFLIPS)
 696                        scrub = 1;
 697                else if (mtd_is_eccerr(err)) {
 698                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 699                                goto out_unlock;
 700                        scrub = 1;
 701                        if (!check) {
 702                                ubi_msg(ubi, "force data checking");
 703                                check = 1;
 704                                goto retry;
 705                        }
 706                } else
 707                        goto out_unlock;
 708        }
 709
 710        if (check) {
 711                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 712                if (crc1 != crc) {
 713                        ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
 714                                 crc1, crc);
 715                        err = -EBADMSG;
 716                        goto out_unlock;
 717                }
 718        }
 719
 720        if (scrub)
 721                err = ubi_wl_scrub_peb(ubi, pnum);
 722
 723        leb_read_unlock(ubi, vol_id, lnum);
 724        return err;
 725
 726out_free:
 727        ubi_free_vid_buf(vidb);
 728out_unlock:
 729        leb_read_unlock(ubi, vol_id, lnum);
 730        return err;
 731}
 732
 733/**
 734 * ubi_eba_read_leb_sg - read data into a scatter gather list.
 735 * @ubi: UBI device description object
 736 * @vol: volume description object
 737 * @lnum: logical eraseblock number
 738 * @sgl: UBI scatter gather list to store the read data
 739 * @offset: offset from where to read
 740 * @len: how many bytes to read
 741 * @check: data CRC check flag
 742 *
 743 * This function works exactly like ubi_eba_read_leb(). But instead of
 744 * storing the read data into a buffer it writes to an UBI scatter gather
 745 * list.
 746 */
 747int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
 748                        struct ubi_sgl *sgl, int lnum, int offset, int len,
 749                        int check)
 750{
 751        int to_read;
 752        int ret;
 753        struct scatterlist *sg;
 754
 755        for (;;) {
 756                ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
 757                sg = &sgl->sg[sgl->list_pos];
 758                if (len < sg->length - sgl->page_pos)
 759                        to_read = len;
 760                else
 761                        to_read = sg->length - sgl->page_pos;
 762
 763                ret = ubi_eba_read_leb(ubi, vol, lnum,
 764                                       sg_virt(sg) + sgl->page_pos, offset,
 765                                       to_read, check);
 766                if (ret < 0)
 767                        return ret;
 768
 769                offset += to_read;
 770                len -= to_read;
 771                if (!len) {
 772                        sgl->page_pos += to_read;
 773                        if (sgl->page_pos == sg->length) {
 774                                sgl->list_pos++;
 775                                sgl->page_pos = 0;
 776                        }
 777
 778                        break;
 779                }
 780
 781                sgl->list_pos++;
 782                sgl->page_pos = 0;
 783        }
 784
 785        return ret;
 786}
 787
 788/**
 789 * try_recover_peb - try to recover from write failure.
 790 * @vol: volume description object
 791 * @pnum: the physical eraseblock to recover
 792 * @lnum: logical eraseblock number
 793 * @buf: data which was not written because of the write failure
 794 * @offset: offset of the failed write
 795 * @len: how many bytes should have been written
 796 * @vidb: VID buffer
 797 * @retry: whether the caller should retry in case of failure
 798 *
 799 * This function is called in case of a write failure and moves all good data
 800 * from the potentially bad physical eraseblock to a good physical eraseblock.
 801 * This function also writes the data which was not written due to the failure.
 802 * Returns 0 in case of success, and a negative error code in case of failure.
 803 * In case of failure, the %retry parameter is set to false if this is a fatal
 804 * error (retrying won't help), and true otherwise.
 805 */
 806static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
 807                           const void *buf, int offset, int len,
 808                           struct ubi_vid_io_buf *vidb, bool *retry)
 809{
 810        struct ubi_device *ubi = vol->ubi;
 811        struct ubi_vid_hdr *vid_hdr;
 812        int new_pnum, err, vol_id = vol->vol_id, data_size;
 813        uint32_t crc;
 814
 815        *retry = false;
 816
 817        new_pnum = ubi_wl_get_peb(ubi);
 818        if (new_pnum < 0) {
 819                err = new_pnum;
 820                goto out_put;
 821        }
 822
 823        ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
 824                pnum, new_pnum);
 825
 826        err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 827        if (err && err != UBI_IO_BITFLIPS) {
 828                if (err > 0)
 829                        err = -EIO;
 830                goto out_put;
 831        }
 832
 833        vid_hdr = ubi_get_vid_hdr(vidb);
 834        ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
 835
 836        mutex_lock(&ubi->buf_mutex);
 837        memset(ubi->peb_buf + offset, 0xFF, len);
 838
 839        /* Read everything before the area where the write failure happened */
 840        if (offset > 0) {
 841                err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 842                if (err && err != UBI_IO_BITFLIPS)
 843                        goto out_unlock;
 844        }
 845
 846        *retry = true;
 847
 848        memcpy(ubi->peb_buf + offset, buf, len);
 849
 850        data_size = offset + len;
 851        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
 852        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 853        vid_hdr->copy_flag = 1;
 854        vid_hdr->data_size = cpu_to_be32(data_size);
 855        vid_hdr->data_crc = cpu_to_be32(crc);
 856        err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
 857        if (err)
 858                goto out_unlock;
 859
 860        err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 861
 862out_unlock:
 863        mutex_unlock(&ubi->buf_mutex);
 864
 865        if (!err)
 866                vol->eba_tbl->entries[lnum].pnum = new_pnum;
 867
 868out_put:
 869        up_read(&ubi->fm_eba_sem);
 870
 871        if (!err) {
 872                ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 873                ubi_msg(ubi, "data was successfully recovered");
 874        } else if (new_pnum >= 0) {
 875                /*
 876                 * Bad luck? This physical eraseblock is bad too? Crud. Let's
 877                 * try to get another one.
 878                 */
 879                ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 880                ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
 881        }
 882
 883        return err;
 884}
 885
 886/**
 887 * recover_peb - recover from write failure.
 888 * @ubi: UBI device description object
 889 * @pnum: the physical eraseblock to recover
 890 * @vol_id: volume ID
 891 * @lnum: logical eraseblock number
 892 * @buf: data which was not written because of the write failure
 893 * @offset: offset of the failed write
 894 * @len: how many bytes should have been written
 895 *
 896 * This function is called in case of a write failure and moves all good data
 897 * from the potentially bad physical eraseblock to a good physical eraseblock.
 898 * This function also writes the data which was not written due to the failure.
 899 * Returns 0 in case of success, and a negative error code in case of failure.
 900 * This function tries %UBI_IO_RETRIES before giving up.
 901 */
 902static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 903                       const void *buf, int offset, int len)
 904{
 905        int err, idx = vol_id2idx(ubi, vol_id), tries;
 906        struct ubi_volume *vol = ubi->volumes[idx];
 907        struct ubi_vid_io_buf *vidb;
 908
 909        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 910        if (!vidb)
 911                return -ENOMEM;
 912
 913        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
 914                bool retry;
 915
 916                err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
 917                                      &retry);
 918                if (!err || !retry)
 919                        break;
 920
 921                ubi_msg(ubi, "try again");
 922        }
 923
 924        ubi_free_vid_buf(vidb);
 925
 926        return err;
 927}
 928
 929/**
 930 * try_write_vid_and_data - try to write VID header and data to a new PEB.
 931 * @vol: volume description object
 932 * @lnum: logical eraseblock number
 933 * @vidb: the VID buffer to write
 934 * @buf: buffer containing the data
 935 * @offset: where to start writing data
 936 * @len: how many bytes should be written
 937 *
 938 * This function tries to write VID header and data belonging to logical
 939 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
 940 * in case of success and a negative error code in case of failure.
 941 * In case of error, it is possible that something was still written to the
 942 * flash media, but may be some garbage.
 943 */
 944static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
 945                                  struct ubi_vid_io_buf *vidb, const void *buf,
 946                                  int offset, int len)
 947{
 948        struct ubi_device *ubi = vol->ubi;
 949        int pnum, opnum, err, vol_id = vol->vol_id;
 950
 951        pnum = ubi_wl_get_peb(ubi);
 952        if (pnum < 0) {
 953                err = pnum;
 954                goto out_put;
 955        }
 956
 957        opnum = vol->eba_tbl->entries[lnum].pnum;
 958
 959        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 960                len, offset, vol_id, lnum, pnum);
 961
 962        err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
 963        if (err) {
 964                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 965                         vol_id, lnum, pnum);
 966                goto out_put;
 967        }
 968
 969        if (len) {
 970                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 971                if (err) {
 972                        ubi_warn(ubi,
 973                                 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 974                                 len, offset, vol_id, lnum, pnum);
 975                        goto out_put;
 976                }
 977        }
 978
 979        vol->eba_tbl->entries[lnum].pnum = pnum;
 980
 981out_put:
 982        up_read(&ubi->fm_eba_sem);
 983
 984        if (err && pnum >= 0)
 985                err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 986        else if (!err && opnum >= 0)
 987                err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
 988
 989        return err;
 990}
 991
 992/**
 993 * ubi_eba_write_leb - write data to dynamic volume.
 994 * @ubi: UBI device description object
 995 * @vol: volume description object
 996 * @lnum: logical eraseblock number
 997 * @buf: the data to write
 998 * @offset: offset within the logical eraseblock where to write
 999 * @len: how many bytes to write
1000 *
1001 * This function writes data to logical eraseblock @lnum of a dynamic volume
1002 * @vol. Returns zero in case of success and a negative error code in case
1003 * of failure. In case of error, it is possible that something was still
1004 * written to the flash media, but may be some garbage.
1005 * This function retries %UBI_IO_RETRIES times before giving up.
1006 */
1007int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1008                      const void *buf, int offset, int len)
1009{
1010        int err, pnum, tries, vol_id = vol->vol_id;
1011        struct ubi_vid_io_buf *vidb;
1012        struct ubi_vid_hdr *vid_hdr;
1013
1014        if (ubi->ro_mode)
1015                return -EROFS;
1016
1017        err = leb_write_lock(ubi, vol_id, lnum);
1018        if (err)
1019                return err;
1020
1021        pnum = vol->eba_tbl->entries[lnum].pnum;
1022        if (pnum >= 0) {
1023                err = check_mapping(ubi, vol, lnum, &pnum);
1024                if (err < 0)
1025                        goto out;
1026        }
1027
1028        if (pnum >= 0) {
1029                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1030                        len, offset, vol_id, lnum, pnum);
1031
1032                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1033                if (err) {
1034                        ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1035                        if (err == -EIO && ubi->bad_allowed)
1036                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1037                                                  offset, len);
1038                }
1039
1040                goto out;
1041        }
1042
1043        /*
1044         * The logical eraseblock is not mapped. We have to get a free physical
1045         * eraseblock and write the volume identifier header there first.
1046         */
1047        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1048        if (!vidb) {
1049                leb_write_unlock(ubi, vol_id, lnum);
1050                return -ENOMEM;
1051        }
1052
1053        vid_hdr = ubi_get_vid_hdr(vidb);
1054
1055        vid_hdr->vol_type = UBI_VID_DYNAMIC;
1056        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1057        vid_hdr->vol_id = cpu_to_be32(vol_id);
1058        vid_hdr->lnum = cpu_to_be32(lnum);
1059        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1060        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1061
1062        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1063                err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1064                if (err != -EIO || !ubi->bad_allowed)
1065                        break;
1066
1067                /*
1068                 * Fortunately, this is the first write operation to this
1069                 * physical eraseblock, so just put it and request a new one.
1070                 * We assume that if this physical eraseblock went bad, the
1071                 * erase code will handle that.
1072                 */
1073                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1074                ubi_msg(ubi, "try another PEB");
1075        }
1076
1077        ubi_free_vid_buf(vidb);
1078
1079out:
1080        if (err)
1081                ubi_ro_mode(ubi);
1082
1083        leb_write_unlock(ubi, vol_id, lnum);
1084
1085        return err;
1086}
1087
1088/**
1089 * ubi_eba_write_leb_st - write data to static volume.
1090 * @ubi: UBI device description object
1091 * @vol: volume description object
1092 * @lnum: logical eraseblock number
1093 * @buf: data to write
1094 * @len: how many bytes to write
1095 * @used_ebs: how many logical eraseblocks will this volume contain
1096 *
1097 * This function writes data to logical eraseblock @lnum of static volume
1098 * @vol. The @used_ebs argument should contain total number of logical
1099 * eraseblock in this static volume.
1100 *
1101 * When writing to the last logical eraseblock, the @len argument doesn't have
1102 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1103 * to the real data size, although the @buf buffer has to contain the
1104 * alignment. In all other cases, @len has to be aligned.
1105 *
1106 * It is prohibited to write more than once to logical eraseblocks of static
1107 * volumes. This function returns zero in case of success and a negative error
1108 * code in case of failure.
1109 */
1110int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1111                         int lnum, const void *buf, int len, int used_ebs)
1112{
1113        int err, tries, data_size = len, vol_id = vol->vol_id;
1114        struct ubi_vid_io_buf *vidb;
1115        struct ubi_vid_hdr *vid_hdr;
1116        uint32_t crc;
1117
1118        if (ubi->ro_mode)
1119                return -EROFS;
1120
1121        if (lnum == used_ebs - 1)
1122                /* If this is the last LEB @len may be unaligned */
1123                len = ALIGN(data_size, ubi->min_io_size);
1124        else
1125                ubi_assert(!(len & (ubi->min_io_size - 1)));
1126
1127        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1128        if (!vidb)
1129                return -ENOMEM;
1130
1131        vid_hdr = ubi_get_vid_hdr(vidb);
1132
1133        err = leb_write_lock(ubi, vol_id, lnum);
1134        if (err)
1135                goto out;
1136
1137        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1138        vid_hdr->vol_id = cpu_to_be32(vol_id);
1139        vid_hdr->lnum = cpu_to_be32(lnum);
1140        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1141        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1142
1143        crc = crc32(UBI_CRC32_INIT, buf, data_size);
1144        vid_hdr->vol_type = UBI_VID_STATIC;
1145        vid_hdr->data_size = cpu_to_be32(data_size);
1146        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1147        vid_hdr->data_crc = cpu_to_be32(crc);
1148
1149        ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1150
1151        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1152                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1153                if (err != -EIO || !ubi->bad_allowed)
1154                        break;
1155
1156                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1157                ubi_msg(ubi, "try another PEB");
1158        }
1159
1160        if (err)
1161                ubi_ro_mode(ubi);
1162
1163        leb_write_unlock(ubi, vol_id, lnum);
1164
1165out:
1166        ubi_free_vid_buf(vidb);
1167
1168        return err;
1169}
1170
1171/*
1172 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1173 * @ubi: UBI device description object
1174 * @vol: volume description object
1175 * @lnum: logical eraseblock number
1176 * @buf: data to write
1177 * @len: how many bytes to write
1178 *
1179 * This function changes the contents of a logical eraseblock atomically. @buf
1180 * has to contain new logical eraseblock data, and @len - the length of the
1181 * data, which has to be aligned. This function guarantees that in case of an
1182 * unclean reboot the old contents is preserved. Returns zero in case of
1183 * success and a negative error code in case of failure.
1184 *
1185 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1186 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1187 */
1188int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1189                              int lnum, const void *buf, int len)
1190{
1191        int err, tries, vol_id = vol->vol_id;
1192        struct ubi_vid_io_buf *vidb;
1193        struct ubi_vid_hdr *vid_hdr;
1194        uint32_t crc;
1195
1196        if (ubi->ro_mode)
1197                return -EROFS;
1198
1199        if (len == 0) {
1200                /*
1201                 * Special case when data length is zero. In this case the LEB
1202                 * has to be unmapped and mapped somewhere else.
1203                 */
1204                err = ubi_eba_unmap_leb(ubi, vol, lnum);
1205                if (err)
1206                        return err;
1207                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1208        }
1209
1210        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1211        if (!vidb)
1212                return -ENOMEM;
1213
1214        vid_hdr = ubi_get_vid_hdr(vidb);
1215
1216        mutex_lock(&ubi->alc_mutex);
1217        err = leb_write_lock(ubi, vol_id, lnum);
1218        if (err)
1219                goto out_mutex;
1220
1221        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1222        vid_hdr->vol_id = cpu_to_be32(vol_id);
1223        vid_hdr->lnum = cpu_to_be32(lnum);
1224        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1225        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1226
1227        crc = crc32(UBI_CRC32_INIT, buf, len);
1228        vid_hdr->vol_type = UBI_VID_DYNAMIC;
1229        vid_hdr->data_size = cpu_to_be32(len);
1230        vid_hdr->copy_flag = 1;
1231        vid_hdr->data_crc = cpu_to_be32(crc);
1232
1233        dbg_eba("change LEB %d:%d", vol_id, lnum);
1234
1235        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1236                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1237                if (err != -EIO || !ubi->bad_allowed)
1238                        break;
1239
1240                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1241                ubi_msg(ubi, "try another PEB");
1242        }
1243
1244        /*
1245         * This flash device does not admit of bad eraseblocks or
1246         * something nasty and unexpected happened. Switch to read-only
1247         * mode just in case.
1248         */
1249        if (err)
1250                ubi_ro_mode(ubi);
1251
1252        leb_write_unlock(ubi, vol_id, lnum);
1253
1254out_mutex:
1255        mutex_unlock(&ubi->alc_mutex);
1256        ubi_free_vid_buf(vidb);
1257        return err;
1258}
1259
1260/**
1261 * is_error_sane - check whether a read error is sane.
1262 * @err: code of the error happened during reading
1263 *
1264 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1265 * cannot read data from the target PEB (an error @err happened). If the error
1266 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1267 * fatal and UBI will be switched to R/O mode later.
1268 *
1269 * The idea is that we try not to switch to R/O mode if the read error is
1270 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1271 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1272 * mode, simply because we do not know what happened at the MTD level, and we
1273 * cannot handle this. E.g., the underlying driver may have become crazy, and
1274 * it is safer to switch to R/O mode to preserve the data.
1275 *
1276 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1277 * which we have just written.
1278 */
1279static int is_error_sane(int err)
1280{
1281        if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1282            err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1283                return 0;
1284        return 1;
1285}
1286
1287/**
1288 * ubi_eba_copy_leb - copy logical eraseblock.
1289 * @ubi: UBI device description object
1290 * @from: physical eraseblock number from where to copy
1291 * @to: physical eraseblock number where to copy
1292 * @vidb: data structure from where the VID header is derived
1293 *
1294 * This function copies logical eraseblock from physical eraseblock @from to
1295 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1296 * function. Returns:
1297 *   o %0 in case of success;
1298 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1299 *   o a negative error code in case of failure.
1300 */
1301int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1302                     struct ubi_vid_io_buf *vidb)
1303{
1304        int err, vol_id, lnum, data_size, aldata_size, idx;
1305        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1306        struct ubi_volume *vol;
1307        uint32_t crc;
1308
1309        ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1310
1311        vol_id = be32_to_cpu(vid_hdr->vol_id);
1312        lnum = be32_to_cpu(vid_hdr->lnum);
1313
1314        dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1315
1316        if (vid_hdr->vol_type == UBI_VID_STATIC) {
1317                data_size = be32_to_cpu(vid_hdr->data_size);
1318                aldata_size = ALIGN(data_size, ubi->min_io_size);
1319        } else
1320                data_size = aldata_size =
1321                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1322
1323        idx = vol_id2idx(ubi, vol_id);
1324        spin_lock(&ubi->volumes_lock);
1325        /*
1326         * Note, we may race with volume deletion, which means that the volume
1327         * this logical eraseblock belongs to might be being deleted. Since the
1328         * volume deletion un-maps all the volume's logical eraseblocks, it will
1329         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1330         */
1331        vol = ubi->volumes[idx];
1332        spin_unlock(&ubi->volumes_lock);
1333        if (!vol) {
1334                /* No need to do further work, cancel */
1335                dbg_wl("volume %d is being removed, cancel", vol_id);
1336                return MOVE_CANCEL_RACE;
1337        }
1338
1339        /*
1340         * We do not want anybody to write to this logical eraseblock while we
1341         * are moving it, so lock it.
1342         *
1343         * Note, we are using non-waiting locking here, because we cannot sleep
1344         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1345         * unmapping the LEB which is mapped to the PEB we are going to move
1346         * (@from). This task locks the LEB and goes sleep in the
1347         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1348         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1349         * LEB is already locked, we just do not move it and return
1350         * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1351         * we do not know the reasons of the contention - it may be just a
1352         * normal I/O on this LEB, so we want to re-try.
1353         */
1354        err = leb_write_trylock(ubi, vol_id, lnum);
1355        if (err) {
1356                dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1357                return MOVE_RETRY;
1358        }
1359
1360        /*
1361         * The LEB might have been put meanwhile, and the task which put it is
1362         * probably waiting on @ubi->move_mutex. No need to continue the work,
1363         * cancel it.
1364         */
1365        if (vol->eba_tbl->entries[lnum].pnum != from) {
1366                dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1367                       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1368                err = MOVE_CANCEL_RACE;
1369                goto out_unlock_leb;
1370        }
1371
1372        /*
1373         * OK, now the LEB is locked and we can safely start moving it. Since
1374         * this function utilizes the @ubi->peb_buf buffer which is shared
1375         * with some other functions - we lock the buffer by taking the
1376         * @ubi->buf_mutex.
1377         */
1378        mutex_lock(&ubi->buf_mutex);
1379        dbg_wl("read %d bytes of data", aldata_size);
1380        err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1381        if (err && err != UBI_IO_BITFLIPS) {
1382                ubi_warn(ubi, "error %d while reading data from PEB %d",
1383                         err, from);
1384                err = MOVE_SOURCE_RD_ERR;
1385                goto out_unlock_buf;
1386        }
1387
1388        /*
1389         * Now we have got to calculate how much data we have to copy. In
1390         * case of a static volume it is fairly easy - the VID header contains
1391         * the data size. In case of a dynamic volume it is more difficult - we
1392         * have to read the contents, cut 0xFF bytes from the end and copy only
1393         * the first part. We must do this to avoid writing 0xFF bytes as it
1394         * may have some side-effects. And not only this. It is important not
1395         * to include those 0xFFs to CRC because later the they may be filled
1396         * by data.
1397         */
1398        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1399                aldata_size = data_size =
1400                        ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1401
1402        cond_resched();
1403        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1404        cond_resched();
1405
1406        /*
1407         * It may turn out to be that the whole @from physical eraseblock
1408         * contains only 0xFF bytes. Then we have to only write the VID header
1409         * and do not write any data. This also means we should not set
1410         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1411         */
1412        if (data_size > 0) {
1413                vid_hdr->copy_flag = 1;
1414                vid_hdr->data_size = cpu_to_be32(data_size);
1415                vid_hdr->data_crc = cpu_to_be32(crc);
1416        }
1417        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1418
1419        err = ubi_io_write_vid_hdr(ubi, to, vidb);
1420        if (err) {
1421                if (err == -EIO)
1422                        err = MOVE_TARGET_WR_ERR;
1423                goto out_unlock_buf;
1424        }
1425
1426        cond_resched();
1427
1428        /* Read the VID header back and check if it was written correctly */
1429        err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1430        if (err) {
1431                if (err != UBI_IO_BITFLIPS) {
1432                        ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1433                                 err, to);
1434                        if (is_error_sane(err))
1435                                err = MOVE_TARGET_RD_ERR;
1436                } else
1437                        err = MOVE_TARGET_BITFLIPS;
1438                goto out_unlock_buf;
1439        }
1440
1441        if (data_size > 0) {
1442                err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1443                if (err) {
1444                        if (err == -EIO)
1445                                err = MOVE_TARGET_WR_ERR;
1446                        goto out_unlock_buf;
1447                }
1448
1449                cond_resched();
1450        }
1451
1452        ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1453        vol->eba_tbl->entries[lnum].pnum = to;
1454
1455out_unlock_buf:
1456        mutex_unlock(&ubi->buf_mutex);
1457out_unlock_leb:
1458        leb_write_unlock(ubi, vol_id, lnum);
1459        return err;
1460}
1461
1462/**
1463 * print_rsvd_warning - warn about not having enough reserved PEBs.
1464 * @ubi: UBI device description object
1465 * @ai: UBI attach info object
1466 *
1467 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1468 * cannot reserve enough PEBs for bad block handling. This function makes a
1469 * decision whether we have to print a warning or not. The algorithm is as
1470 * follows:
1471 *   o if this is a new UBI image, then just print the warning
1472 *   o if this is an UBI image which has already been used for some time, print
1473 *     a warning only if we can reserve less than 10% of the expected amount of
1474 *     the reserved PEB.
1475 *
1476 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1477 * of PEBs becomes smaller, which is normal and we do not want to scare users
1478 * with a warning every time they attach the MTD device. This was an issue
1479 * reported by real users.
1480 */
1481static void print_rsvd_warning(struct ubi_device *ubi,
1482                               struct ubi_attach_info *ai)
1483{
1484        /*
1485         * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1486         * large number to distinguish between newly flashed and used images.
1487         */
1488        if (ai->max_sqnum > (1 << 18)) {
1489                int min = ubi->beb_rsvd_level / 10;
1490
1491                if (!min)
1492                        min = 1;
1493                if (ubi->beb_rsvd_pebs > min)
1494                        return;
1495        }
1496
1497        ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1498                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1499        if (ubi->corr_peb_count)
1500                ubi_warn(ubi, "%d PEBs are corrupted and not used",
1501                         ubi->corr_peb_count);
1502}
1503
1504/**
1505 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1506 * @ubi: UBI device description object
1507 * @ai_fastmap: UBI attach info object created by fastmap
1508 * @ai_scan: UBI attach info object created by scanning
1509 *
1510 * Returns < 0 in case of an internal error, 0 otherwise.
1511 * If a bad EBA table entry was found it will be printed out and
1512 * ubi_assert() triggers.
1513 */
1514int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1515                   struct ubi_attach_info *ai_scan)
1516{
1517        int i, j, num_volumes, ret = 0;
1518        int **scan_eba, **fm_eba;
1519        struct ubi_ainf_volume *av;
1520        struct ubi_volume *vol;
1521        struct ubi_ainf_peb *aeb;
1522        struct rb_node *rb;
1523
1524        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1525
1526        scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1527        if (!scan_eba)
1528                return -ENOMEM;
1529
1530        fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1531        if (!fm_eba) {
1532                kfree(scan_eba);
1533                return -ENOMEM;
1534        }
1535
1536        for (i = 0; i < num_volumes; i++) {
1537                vol = ubi->volumes[i];
1538                if (!vol)
1539                        continue;
1540
1541                scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1542                                            sizeof(**scan_eba),
1543                                            GFP_KERNEL);
1544                if (!scan_eba[i]) {
1545                        ret = -ENOMEM;
1546                        goto out_free;
1547                }
1548
1549                fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1550                                          sizeof(**fm_eba),
1551                                          GFP_KERNEL);
1552                if (!fm_eba[i]) {
1553                        ret = -ENOMEM;
1554                        goto out_free;
1555                }
1556
1557                for (j = 0; j < vol->reserved_pebs; j++)
1558                        scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1559
1560                av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1561                if (!av)
1562                        continue;
1563
1564                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1565                        scan_eba[i][aeb->lnum] = aeb->pnum;
1566
1567                av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1568                if (!av)
1569                        continue;
1570
1571                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1572                        fm_eba[i][aeb->lnum] = aeb->pnum;
1573
1574                for (j = 0; j < vol->reserved_pebs; j++) {
1575                        if (scan_eba[i][j] != fm_eba[i][j]) {
1576                                if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1577                                        fm_eba[i][j] == UBI_LEB_UNMAPPED)
1578                                        continue;
1579
1580                                ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1581                                        vol->vol_id, j, fm_eba[i][j],
1582                                        scan_eba[i][j]);
1583                                ubi_assert(0);
1584                        }
1585                }
1586        }
1587
1588out_free:
1589        for (i = 0; i < num_volumes; i++) {
1590                if (!ubi->volumes[i])
1591                        continue;
1592
1593                kfree(scan_eba[i]);
1594                kfree(fm_eba[i]);
1595        }
1596
1597        kfree(scan_eba);
1598        kfree(fm_eba);
1599        return ret;
1600}
1601
1602/**
1603 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1604 * @ubi: UBI device description object
1605 * @ai: attaching information
1606 *
1607 * This function returns zero in case of success and a negative error code in
1608 * case of failure.
1609 */
1610int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1611{
1612        int i, err, num_volumes;
1613        struct ubi_ainf_volume *av;
1614        struct ubi_volume *vol;
1615        struct ubi_ainf_peb *aeb;
1616        struct rb_node *rb;
1617
1618        dbg_eba("initialize EBA sub-system");
1619
1620        spin_lock_init(&ubi->ltree_lock);
1621        mutex_init(&ubi->alc_mutex);
1622        ubi->ltree = RB_ROOT;
1623
1624        ubi->global_sqnum = ai->max_sqnum + 1;
1625        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1626
1627        for (i = 0; i < num_volumes; i++) {
1628                struct ubi_eba_table *tbl;
1629
1630                vol = ubi->volumes[i];
1631                if (!vol)
1632                        continue;
1633
1634                cond_resched();
1635
1636                tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1637                if (IS_ERR(tbl)) {
1638                        err = PTR_ERR(tbl);
1639                        goto out_free;
1640                }
1641
1642                ubi_eba_replace_table(vol, tbl);
1643
1644                av = ubi_find_av(ai, idx2vol_id(ubi, i));
1645                if (!av)
1646                        continue;
1647
1648                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1649                        if (aeb->lnum >= vol->reserved_pebs) {
1650                                /*
1651                                 * This may happen in case of an unclean reboot
1652                                 * during re-size.
1653                                 */
1654                                ubi_move_aeb_to_list(av, aeb, &ai->erase);
1655                        } else {
1656                                struct ubi_eba_entry *entry;
1657
1658                                entry = &vol->eba_tbl->entries[aeb->lnum];
1659                                entry->pnum = aeb->pnum;
1660                        }
1661                }
1662        }
1663
1664        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1665                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1666                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1667                if (ubi->corr_peb_count)
1668                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1669                                ubi->corr_peb_count);
1670                err = -ENOSPC;
1671                goto out_free;
1672        }
1673        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1674        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1675
1676        if (ubi->bad_allowed) {
1677                ubi_calculate_reserved(ubi);
1678
1679                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1680                        /* No enough free physical eraseblocks */
1681                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1682                        print_rsvd_warning(ubi, ai);
1683                } else
1684                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1685
1686                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1687                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1688        }
1689
1690        dbg_eba("EBA sub-system is initialized");
1691        return 0;
1692
1693out_free:
1694        for (i = 0; i < num_volumes; i++) {
1695                if (!ubi->volumes[i])
1696                        continue;
1697                ubi_eba_replace_table(ubi->volumes[i], NULL);
1698        }
1699        return err;
1700}
1701