linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6 */
   7
   8/*
   9 * UBI wear-leveling sub-system.
  10 *
  11 * This sub-system is responsible for wear-leveling. It works in terms of
  12 * physical eraseblocks and erase counters and knows nothing about logical
  13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17 *
  18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20 *
  21 * When physical eraseblocks are returned to the WL sub-system by means of the
  22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23 * done asynchronously in context of the per-UBI device background thread,
  24 * which is also managed by the WL sub-system.
  25 *
  26 * The wear-leveling is ensured by means of moving the contents of used
  27 * physical eraseblocks with low erase counter to free physical eraseblocks
  28 * with high erase counter.
  29 *
  30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31 * bad.
  32 *
  33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34 * in a physical eraseblock, it has to be moved. Technically this is the same
  35 * as moving it for wear-leveling reasons.
  36 *
  37 * As it was said, for the UBI sub-system all physical eraseblocks are either
  38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41 *
  42 * When the WL sub-system returns a physical eraseblock, the physical
  43 * eraseblock is protected from being moved for some "time". For this reason,
  44 * the physical eraseblock is not directly moved from the @wl->free tree to the
  45 * @wl->used tree. There is a protection queue in between where this
  46 * physical eraseblock is temporarily stored (@wl->pq).
  47 *
  48 * All this protection stuff is needed because:
  49 *  o we don't want to move physical eraseblocks just after we have given them
  50 *    to the user; instead, we first want to let users fill them up with data;
  51 *
  52 *  o there is a chance that the user will put the physical eraseblock very
  53 *    soon, so it makes sense not to move it for some time, but wait.
  54 *
  55 * Physical eraseblocks stay protected only for limited time. But the "time" is
  56 * measured in erase cycles in this case. This is implemented with help of the
  57 * protection queue. Eraseblocks are put to the tail of this queue when they
  58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59 * head of the queue on each erase operation (for any eraseblock). So the
  60 * length of the queue defines how may (global) erase cycles PEBs are protected.
  61 *
  62 * To put it differently, each physical eraseblock has 2 main states: free and
  63 * used. The former state corresponds to the @wl->free tree. The latter state
  64 * is split up on several sub-states:
  65 * o the WL movement is allowed (@wl->used tree);
  66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67 *   erroneous - e.g., there was a read error;
  68 * o the WL movement is temporarily prohibited (@wl->pq queue);
  69 * o scrubbing is needed (@wl->scrub tree).
  70 *
  71 * Depending on the sub-state, wear-leveling entries of the used physical
  72 * eraseblocks may be kept in one of those structures.
  73 *
  74 * Note, in this implementation, we keep a small in-RAM object for each physical
  75 * eraseblock. This is surely not a scalable solution. But it appears to be good
  76 * enough for moderately large flashes and it is simple. In future, one may
  77 * re-work this sub-system and make it more scalable.
  78 *
  79 * At the moment this sub-system does not utilize the sequence number, which
  80 * was introduced relatively recently. But it would be wise to do this because
  81 * the sequence number of a logical eraseblock characterizes how old is it. For
  82 * example, when we move a PEB with low erase counter, and we need to pick the
  83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84 * pick target PEB with an average EC if our PEB is not very "old". This is a
  85 * room for future re-works of the WL sub-system.
  86 */
  87
  88#include <linux/slab.h>
  89#include <linux/crc32.h>
  90#include <linux/freezer.h>
  91#include <linux/kthread.h>
  92#include "ubi.h"
  93#include "wl.h"
  94
  95/* Number of physical eraseblocks reserved for wear-leveling purposes */
  96#define WL_RESERVED_PEBS 1
  97
  98/*
  99 * Maximum difference between two erase counters. If this threshold is
 100 * exceeded, the WL sub-system starts moving data from used physical
 101 * eraseblocks with low erase counter to free physical eraseblocks with high
 102 * erase counter.
 103 */
 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 105
 106/*
 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 108 * physical eraseblock to move to. The simplest way would be just to pick the
 109 * one with the highest erase counter. But in certain workloads this could lead
 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 111 * situation when the picked physical eraseblock is constantly erased after the
 112 * data is written to it. So, we have a constant which limits the highest erase
 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 114 * does not pick eraseblocks with erase counter greater than the lowest erase
 115 * counter plus %WL_FREE_MAX_DIFF.
 116 */
 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 118
 119/*
 120 * Maximum number of consecutive background thread failures which is enough to
 121 * switch to read-only mode.
 122 */
 123#define WL_MAX_FAILURES 32
 124
 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 126static int self_check_in_wl_tree(const struct ubi_device *ubi,
 127                                 struct ubi_wl_entry *e, struct rb_root *root);
 128static int self_check_in_pq(const struct ubi_device *ubi,
 129                            struct ubi_wl_entry *e);
 130
 131/**
 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 133 * @e: the wear-leveling entry to add
 134 * @root: the root of the tree
 135 *
 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 137 * the @ubi->used and @ubi->free RB-trees.
 138 */
 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 140{
 141        struct rb_node **p, *parent = NULL;
 142
 143        p = &root->rb_node;
 144        while (*p) {
 145                struct ubi_wl_entry *e1;
 146
 147                parent = *p;
 148                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 149
 150                if (e->ec < e1->ec)
 151                        p = &(*p)->rb_left;
 152                else if (e->ec > e1->ec)
 153                        p = &(*p)->rb_right;
 154                else {
 155                        ubi_assert(e->pnum != e1->pnum);
 156                        if (e->pnum < e1->pnum)
 157                                p = &(*p)->rb_left;
 158                        else
 159                                p = &(*p)->rb_right;
 160                }
 161        }
 162
 163        rb_link_node(&e->u.rb, parent, p);
 164        rb_insert_color(&e->u.rb, root);
 165}
 166
 167/**
 168 * wl_tree_destroy - destroy a wear-leveling entry.
 169 * @ubi: UBI device description object
 170 * @e: the wear-leveling entry to add
 171 *
 172 * This function destroys a wear leveling entry and removes
 173 * the reference from the lookup table.
 174 */
 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 176{
 177        ubi->lookuptbl[e->pnum] = NULL;
 178        kmem_cache_free(ubi_wl_entry_slab, e);
 179}
 180
 181/**
 182 * do_work - do one pending work.
 183 * @ubi: UBI device description object
 184 *
 185 * This function returns zero in case of success and a negative error code in
 186 * case of failure.
 187 */
 188static int do_work(struct ubi_device *ubi)
 189{
 190        int err;
 191        struct ubi_work *wrk;
 192
 193        cond_resched();
 194
 195        /*
 196         * @ubi->work_sem is used to synchronize with the workers. Workers take
 197         * it in read mode, so many of them may be doing works at a time. But
 198         * the queue flush code has to be sure the whole queue of works is
 199         * done, and it takes the mutex in write mode.
 200         */
 201        down_read(&ubi->work_sem);
 202        spin_lock(&ubi->wl_lock);
 203        if (list_empty(&ubi->works)) {
 204                spin_unlock(&ubi->wl_lock);
 205                up_read(&ubi->work_sem);
 206                return 0;
 207        }
 208
 209        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 210        list_del(&wrk->list);
 211        ubi->works_count -= 1;
 212        ubi_assert(ubi->works_count >= 0);
 213        spin_unlock(&ubi->wl_lock);
 214
 215        /*
 216         * Call the worker function. Do not touch the work structure
 217         * after this call as it will have been freed or reused by that
 218         * time by the worker function.
 219         */
 220        err = wrk->func(ubi, wrk, 0);
 221        if (err)
 222                ubi_err(ubi, "work failed with error code %d", err);
 223        up_read(&ubi->work_sem);
 224
 225        return err;
 226}
 227
 228/**
 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 230 * @e: the wear-leveling entry to check
 231 * @root: the root of the tree
 232 *
 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 234 * is not.
 235 */
 236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 237{
 238        struct rb_node *p;
 239
 240        p = root->rb_node;
 241        while (p) {
 242                struct ubi_wl_entry *e1;
 243
 244                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 245
 246                if (e->pnum == e1->pnum) {
 247                        ubi_assert(e == e1);
 248                        return 1;
 249                }
 250
 251                if (e->ec < e1->ec)
 252                        p = p->rb_left;
 253                else if (e->ec > e1->ec)
 254                        p = p->rb_right;
 255                else {
 256                        ubi_assert(e->pnum != e1->pnum);
 257                        if (e->pnum < e1->pnum)
 258                                p = p->rb_left;
 259                        else
 260                                p = p->rb_right;
 261                }
 262        }
 263
 264        return 0;
 265}
 266
 267/**
 268 * in_pq - check if a wear-leveling entry is present in the protection queue.
 269 * @ubi: UBI device description object
 270 * @e: the wear-leveling entry to check
 271 *
 272 * This function returns non-zero if @e is in the protection queue and zero
 273 * if it is not.
 274 */
 275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
 276{
 277        struct ubi_wl_entry *p;
 278        int i;
 279
 280        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
 281                list_for_each_entry(p, &ubi->pq[i], u.list)
 282                        if (p == e)
 283                                return 1;
 284
 285        return 0;
 286}
 287
 288/**
 289 * prot_queue_add - add physical eraseblock to the protection queue.
 290 * @ubi: UBI device description object
 291 * @e: the physical eraseblock to add
 292 *
 293 * This function adds @e to the tail of the protection queue @ubi->pq, where
 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 296 * be locked.
 297 */
 298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 299{
 300        int pq_tail = ubi->pq_head - 1;
 301
 302        if (pq_tail < 0)
 303                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 304        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 305        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 306        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 307}
 308
 309/**
 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 311 * @ubi: UBI device description object
 312 * @root: the RB-tree where to look for
 313 * @diff: maximum possible difference from the smallest erase counter
 314 *
 315 * This function looks for a wear leveling entry with erase counter closest to
 316 * min + @diff, where min is the smallest erase counter.
 317 */
 318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 319                                          struct rb_root *root, int diff)
 320{
 321        struct rb_node *p;
 322        struct ubi_wl_entry *e;
 323        int max;
 324
 325        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 326        max = e->ec + diff;
 327
 328        p = root->rb_node;
 329        while (p) {
 330                struct ubi_wl_entry *e1;
 331
 332                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 333                if (e1->ec >= max)
 334                        p = p->rb_left;
 335                else {
 336                        p = p->rb_right;
 337                        e = e1;
 338                }
 339        }
 340
 341        return e;
 342}
 343
 344/**
 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 346 * @ubi: UBI device description object
 347 * @root: the RB-tree where to look for
 348 *
 349 * This function looks for a wear leveling entry with medium erase counter,
 350 * but not greater or equivalent than the lowest erase counter plus
 351 * %WL_FREE_MAX_DIFF/2.
 352 */
 353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 354                                               struct rb_root *root)
 355{
 356        struct ubi_wl_entry *e, *first, *last;
 357
 358        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 359        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 360
 361        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 362                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 363
 364                /* If no fastmap has been written and this WL entry can be used
 365                 * as anchor PEB, hold it back and return the second best
 366                 * WL entry such that fastmap can use the anchor PEB later. */
 367                e = may_reserve_for_fm(ubi, e, root);
 368        } else
 369                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 370
 371        return e;
 372}
 373
 374/**
 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 376 * refill_wl_user_pool().
 377 * @ubi: UBI device description object
 378 *
 379 * This function returns a a wear leveling entry in case of success and
 380 * NULL in case of failure.
 381 */
 382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 383{
 384        struct ubi_wl_entry *e;
 385
 386        e = find_mean_wl_entry(ubi, &ubi->free);
 387        if (!e) {
 388                ubi_err(ubi, "no free eraseblocks");
 389                return NULL;
 390        }
 391
 392        self_check_in_wl_tree(ubi, e, &ubi->free);
 393
 394        /*
 395         * Move the physical eraseblock to the protection queue where it will
 396         * be protected from being moved for some time.
 397         */
 398        rb_erase(&e->u.rb, &ubi->free);
 399        ubi->free_count--;
 400        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 401
 402        return e;
 403}
 404
 405/**
 406 * prot_queue_del - remove a physical eraseblock from the protection queue.
 407 * @ubi: UBI device description object
 408 * @pnum: the physical eraseblock to remove
 409 *
 410 * This function deletes PEB @pnum from the protection queue and returns zero
 411 * in case of success and %-ENODEV if the PEB was not found.
 412 */
 413static int prot_queue_del(struct ubi_device *ubi, int pnum)
 414{
 415        struct ubi_wl_entry *e;
 416
 417        e = ubi->lookuptbl[pnum];
 418        if (!e)
 419                return -ENODEV;
 420
 421        if (self_check_in_pq(ubi, e))
 422                return -ENODEV;
 423
 424        list_del(&e->u.list);
 425        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 426        return 0;
 427}
 428
 429/**
 430 * sync_erase - synchronously erase a physical eraseblock.
 431 * @ubi: UBI device description object
 432 * @e: the the physical eraseblock to erase
 433 * @torture: if the physical eraseblock has to be tortured
 434 *
 435 * This function returns zero in case of success and a negative error code in
 436 * case of failure.
 437 */
 438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 439                      int torture)
 440{
 441        int err;
 442        struct ubi_ec_hdr *ec_hdr;
 443        unsigned long long ec = e->ec;
 444
 445        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 446
 447        err = self_check_ec(ubi, e->pnum, e->ec);
 448        if (err)
 449                return -EINVAL;
 450
 451        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 452        if (!ec_hdr)
 453                return -ENOMEM;
 454
 455        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 456        if (err < 0)
 457                goto out_free;
 458
 459        ec += err;
 460        if (ec > UBI_MAX_ERASECOUNTER) {
 461                /*
 462                 * Erase counter overflow. Upgrade UBI and use 64-bit
 463                 * erase counters internally.
 464                 */
 465                ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 466                        e->pnum, ec);
 467                err = -EINVAL;
 468                goto out_free;
 469        }
 470
 471        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 472
 473        ec_hdr->ec = cpu_to_be64(ec);
 474
 475        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 476        if (err)
 477                goto out_free;
 478
 479        e->ec = ec;
 480        spin_lock(&ubi->wl_lock);
 481        if (e->ec > ubi->max_ec)
 482                ubi->max_ec = e->ec;
 483        spin_unlock(&ubi->wl_lock);
 484
 485out_free:
 486        kfree(ec_hdr);
 487        return err;
 488}
 489
 490/**
 491 * serve_prot_queue - check if it is time to stop protecting PEBs.
 492 * @ubi: UBI device description object
 493 *
 494 * This function is called after each erase operation and removes PEBs from the
 495 * tail of the protection queue. These PEBs have been protected for long enough
 496 * and should be moved to the used tree.
 497 */
 498static void serve_prot_queue(struct ubi_device *ubi)
 499{
 500        struct ubi_wl_entry *e, *tmp;
 501        int count;
 502
 503        /*
 504         * There may be several protected physical eraseblock to remove,
 505         * process them all.
 506         */
 507repeat:
 508        count = 0;
 509        spin_lock(&ubi->wl_lock);
 510        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 511                dbg_wl("PEB %d EC %d protection over, move to used tree",
 512                        e->pnum, e->ec);
 513
 514                list_del(&e->u.list);
 515                wl_tree_add(e, &ubi->used);
 516                if (count++ > 32) {
 517                        /*
 518                         * Let's be nice and avoid holding the spinlock for
 519                         * too long.
 520                         */
 521                        spin_unlock(&ubi->wl_lock);
 522                        cond_resched();
 523                        goto repeat;
 524                }
 525        }
 526
 527        ubi->pq_head += 1;
 528        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 529                ubi->pq_head = 0;
 530        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 531        spin_unlock(&ubi->wl_lock);
 532}
 533
 534/**
 535 * __schedule_ubi_work - schedule a work.
 536 * @ubi: UBI device description object
 537 * @wrk: the work to schedule
 538 *
 539 * This function adds a work defined by @wrk to the tail of the pending works
 540 * list. Can only be used if ubi->work_sem is already held in read mode!
 541 */
 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 543{
 544        spin_lock(&ubi->wl_lock);
 545        list_add_tail(&wrk->list, &ubi->works);
 546        ubi_assert(ubi->works_count >= 0);
 547        ubi->works_count += 1;
 548        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 549                wake_up_process(ubi->bgt_thread);
 550        spin_unlock(&ubi->wl_lock);
 551}
 552
 553/**
 554 * schedule_ubi_work - schedule a work.
 555 * @ubi: UBI device description object
 556 * @wrk: the work to schedule
 557 *
 558 * This function adds a work defined by @wrk to the tail of the pending works
 559 * list.
 560 */
 561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 562{
 563        down_read(&ubi->work_sem);
 564        __schedule_ubi_work(ubi, wrk);
 565        up_read(&ubi->work_sem);
 566}
 567
 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 569                        int shutdown);
 570
 571/**
 572 * schedule_erase - schedule an erase work.
 573 * @ubi: UBI device description object
 574 * @e: the WL entry of the physical eraseblock to erase
 575 * @vol_id: the volume ID that last used this PEB
 576 * @lnum: the last used logical eraseblock number for the PEB
 577 * @torture: if the physical eraseblock has to be tortured
 578 * @nested: denotes whether the work_sem is already held in read mode
 579 *
 580 * This function returns zero in case of success and a %-ENOMEM in case of
 581 * failure.
 582 */
 583static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 584                          int vol_id, int lnum, int torture, bool nested)
 585{
 586        struct ubi_work *wl_wrk;
 587
 588        ubi_assert(e);
 589
 590        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 591               e->pnum, e->ec, torture);
 592
 593        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 594        if (!wl_wrk)
 595                return -ENOMEM;
 596
 597        wl_wrk->func = &erase_worker;
 598        wl_wrk->e = e;
 599        wl_wrk->vol_id = vol_id;
 600        wl_wrk->lnum = lnum;
 601        wl_wrk->torture = torture;
 602
 603        if (nested)
 604                __schedule_ubi_work(ubi, wl_wrk);
 605        else
 606                schedule_ubi_work(ubi, wl_wrk);
 607        return 0;
 608}
 609
 610static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 611/**
 612 * do_sync_erase - run the erase worker synchronously.
 613 * @ubi: UBI device description object
 614 * @e: the WL entry of the physical eraseblock to erase
 615 * @vol_id: the volume ID that last used this PEB
 616 * @lnum: the last used logical eraseblock number for the PEB
 617 * @torture: if the physical eraseblock has to be tortured
 618 *
 619 */
 620static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 621                         int vol_id, int lnum, int torture)
 622{
 623        struct ubi_work wl_wrk;
 624
 625        dbg_wl("sync erase of PEB %i", e->pnum);
 626
 627        wl_wrk.e = e;
 628        wl_wrk.vol_id = vol_id;
 629        wl_wrk.lnum = lnum;
 630        wl_wrk.torture = torture;
 631
 632        return __erase_worker(ubi, &wl_wrk);
 633}
 634
 635static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 636/**
 637 * wear_leveling_worker - wear-leveling worker function.
 638 * @ubi: UBI device description object
 639 * @wrk: the work object
 640 * @shutdown: non-zero if the worker has to free memory and exit
 641 * because the WL-subsystem is shutting down
 642 *
 643 * This function copies a more worn out physical eraseblock to a less worn out
 644 * one. Returns zero in case of success and a negative error code in case of
 645 * failure.
 646 */
 647static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 648                                int shutdown)
 649{
 650        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 651        int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 652        struct ubi_wl_entry *e1, *e2;
 653        struct ubi_vid_io_buf *vidb;
 654        struct ubi_vid_hdr *vid_hdr;
 655        int dst_leb_clean = 0;
 656
 657        kfree(wrk);
 658        if (shutdown)
 659                return 0;
 660
 661        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 662        if (!vidb)
 663                return -ENOMEM;
 664
 665        vid_hdr = ubi_get_vid_hdr(vidb);
 666
 667        down_read(&ubi->fm_eba_sem);
 668        mutex_lock(&ubi->move_mutex);
 669        spin_lock(&ubi->wl_lock);
 670        ubi_assert(!ubi->move_from && !ubi->move_to);
 671        ubi_assert(!ubi->move_to_put);
 672
 673        if (!ubi->free.rb_node ||
 674            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 675                /*
 676                 * No free physical eraseblocks? Well, they must be waiting in
 677                 * the queue to be erased. Cancel movement - it will be
 678                 * triggered again when a free physical eraseblock appears.
 679                 *
 680                 * No used physical eraseblocks? They must be temporarily
 681                 * protected from being moved. They will be moved to the
 682                 * @ubi->used tree later and the wear-leveling will be
 683                 * triggered again.
 684                 */
 685                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 686                       !ubi->free.rb_node, !ubi->used.rb_node);
 687                goto out_cancel;
 688        }
 689
 690#ifdef CONFIG_MTD_UBI_FASTMAP
 691        e1 = find_anchor_wl_entry(&ubi->used);
 692        if (e1 && ubi->fm_next_anchor &&
 693            (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 694                ubi->fm_do_produce_anchor = 1;
 695                /* fm_next_anchor is no longer considered a good anchor
 696                 * candidate.
 697                 * NULL assignment also prevents multiple wear level checks
 698                 * of this PEB.
 699                 */
 700                wl_tree_add(ubi->fm_next_anchor, &ubi->free);
 701                ubi->fm_next_anchor = NULL;
 702                ubi->free_count++;
 703        }
 704
 705        if (ubi->fm_do_produce_anchor) {
 706                if (!e1)
 707                        goto out_cancel;
 708                e2 = get_peb_for_wl(ubi);
 709                if (!e2)
 710                        goto out_cancel;
 711
 712                self_check_in_wl_tree(ubi, e1, &ubi->used);
 713                rb_erase(&e1->u.rb, &ubi->used);
 714                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 715                ubi->fm_do_produce_anchor = 0;
 716        } else if (!ubi->scrub.rb_node) {
 717#else
 718        if (!ubi->scrub.rb_node) {
 719#endif
 720                /*
 721                 * Now pick the least worn-out used physical eraseblock and a
 722                 * highly worn-out free physical eraseblock. If the erase
 723                 * counters differ much enough, start wear-leveling.
 724                 */
 725                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 726                e2 = get_peb_for_wl(ubi);
 727                if (!e2)
 728                        goto out_cancel;
 729
 730                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 731                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 732                               e1->ec, e2->ec);
 733
 734                        /* Give the unused PEB back */
 735                        wl_tree_add(e2, &ubi->free);
 736                        ubi->free_count++;
 737                        goto out_cancel;
 738                }
 739                self_check_in_wl_tree(ubi, e1, &ubi->used);
 740                rb_erase(&e1->u.rb, &ubi->used);
 741                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 742                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 743        } else {
 744                /* Perform scrubbing */
 745                scrubbing = 1;
 746                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 747                e2 = get_peb_for_wl(ubi);
 748                if (!e2)
 749                        goto out_cancel;
 750
 751                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 752                rb_erase(&e1->u.rb, &ubi->scrub);
 753                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 754        }
 755
 756        ubi->move_from = e1;
 757        ubi->move_to = e2;
 758        spin_unlock(&ubi->wl_lock);
 759
 760        /*
 761         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 762         * We so far do not know which logical eraseblock our physical
 763         * eraseblock (@e1) belongs to. We have to read the volume identifier
 764         * header first.
 765         *
 766         * Note, we are protected from this PEB being unmapped and erased. The
 767         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 768         * which is being moved was unmapped.
 769         */
 770
 771        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 772        if (err && err != UBI_IO_BITFLIPS) {
 773                dst_leb_clean = 1;
 774                if (err == UBI_IO_FF) {
 775                        /*
 776                         * We are trying to move PEB without a VID header. UBI
 777                         * always write VID headers shortly after the PEB was
 778                         * given, so we have a situation when it has not yet
 779                         * had a chance to write it, because it was preempted.
 780                         * So add this PEB to the protection queue so far,
 781                         * because presumably more data will be written there
 782                         * (including the missing VID header), and then we'll
 783                         * move it.
 784                         */
 785                        dbg_wl("PEB %d has no VID header", e1->pnum);
 786                        protect = 1;
 787                        goto out_not_moved;
 788                } else if (err == UBI_IO_FF_BITFLIPS) {
 789                        /*
 790                         * The same situation as %UBI_IO_FF, but bit-flips were
 791                         * detected. It is better to schedule this PEB for
 792                         * scrubbing.
 793                         */
 794                        dbg_wl("PEB %d has no VID header but has bit-flips",
 795                               e1->pnum);
 796                        scrubbing = 1;
 797                        goto out_not_moved;
 798                } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 799                        /*
 800                         * While a full scan would detect interrupted erasures
 801                         * at attach time we can face them here when attached from
 802                         * Fastmap.
 803                         */
 804                        dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 805                               e1->pnum);
 806                        erase = 1;
 807                        goto out_not_moved;
 808                }
 809
 810                ubi_err(ubi, "error %d while reading VID header from PEB %d",
 811                        err, e1->pnum);
 812                goto out_error;
 813        }
 814
 815        vol_id = be32_to_cpu(vid_hdr->vol_id);
 816        lnum = be32_to_cpu(vid_hdr->lnum);
 817
 818        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 819        if (err) {
 820                if (err == MOVE_CANCEL_RACE) {
 821                        /*
 822                         * The LEB has not been moved because the volume is
 823                         * being deleted or the PEB has been put meanwhile. We
 824                         * should prevent this PEB from being selected for
 825                         * wear-leveling movement again, so put it to the
 826                         * protection queue.
 827                         */
 828                        protect = 1;
 829                        dst_leb_clean = 1;
 830                        goto out_not_moved;
 831                }
 832                if (err == MOVE_RETRY) {
 833                        scrubbing = 1;
 834                        dst_leb_clean = 1;
 835                        goto out_not_moved;
 836                }
 837                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 838                    err == MOVE_TARGET_RD_ERR) {
 839                        /*
 840                         * Target PEB had bit-flips or write error - torture it.
 841                         */
 842                        torture = 1;
 843                        keep = 1;
 844                        goto out_not_moved;
 845                }
 846
 847                if (err == MOVE_SOURCE_RD_ERR) {
 848                        /*
 849                         * An error happened while reading the source PEB. Do
 850                         * not switch to R/O mode in this case, and give the
 851                         * upper layers a possibility to recover from this,
 852                         * e.g. by unmapping corresponding LEB. Instead, just
 853                         * put this PEB to the @ubi->erroneous list to prevent
 854                         * UBI from trying to move it over and over again.
 855                         */
 856                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 857                                ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 858                                        ubi->erroneous_peb_count);
 859                                goto out_error;
 860                        }
 861                        dst_leb_clean = 1;
 862                        erroneous = 1;
 863                        goto out_not_moved;
 864                }
 865
 866                if (err < 0)
 867                        goto out_error;
 868
 869                ubi_assert(0);
 870        }
 871
 872        /* The PEB has been successfully moved */
 873        if (scrubbing)
 874                ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 875                        e1->pnum, vol_id, lnum, e2->pnum);
 876        ubi_free_vid_buf(vidb);
 877
 878        spin_lock(&ubi->wl_lock);
 879        if (!ubi->move_to_put) {
 880                wl_tree_add(e2, &ubi->used);
 881                e2 = NULL;
 882        }
 883        ubi->move_from = ubi->move_to = NULL;
 884        ubi->move_to_put = ubi->wl_scheduled = 0;
 885        spin_unlock(&ubi->wl_lock);
 886
 887        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 888        if (err) {
 889                if (e2)
 890                        wl_entry_destroy(ubi, e2);
 891                goto out_ro;
 892        }
 893
 894        if (e2) {
 895                /*
 896                 * Well, the target PEB was put meanwhile, schedule it for
 897                 * erasure.
 898                 */
 899                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 900                       e2->pnum, vol_id, lnum);
 901                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 902                if (err)
 903                        goto out_ro;
 904        }
 905
 906        dbg_wl("done");
 907        mutex_unlock(&ubi->move_mutex);
 908        up_read(&ubi->fm_eba_sem);
 909        return 0;
 910
 911        /*
 912         * For some reasons the LEB was not moved, might be an error, might be
 913         * something else. @e1 was not changed, so return it back. @e2 might
 914         * have been changed, schedule it for erasure.
 915         */
 916out_not_moved:
 917        if (vol_id != -1)
 918                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 919                       e1->pnum, vol_id, lnum, e2->pnum, err);
 920        else
 921                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 922                       e1->pnum, e2->pnum, err);
 923        spin_lock(&ubi->wl_lock);
 924        if (protect)
 925                prot_queue_add(ubi, e1);
 926        else if (erroneous) {
 927                wl_tree_add(e1, &ubi->erroneous);
 928                ubi->erroneous_peb_count += 1;
 929        } else if (scrubbing)
 930                wl_tree_add(e1, &ubi->scrub);
 931        else if (keep)
 932                wl_tree_add(e1, &ubi->used);
 933        if (dst_leb_clean) {
 934                wl_tree_add(e2, &ubi->free);
 935                ubi->free_count++;
 936        }
 937
 938        ubi_assert(!ubi->move_to_put);
 939        ubi->move_from = ubi->move_to = NULL;
 940        ubi->wl_scheduled = 0;
 941        spin_unlock(&ubi->wl_lock);
 942
 943        ubi_free_vid_buf(vidb);
 944        if (dst_leb_clean) {
 945                ensure_wear_leveling(ubi, 1);
 946        } else {
 947                err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 948                if (err)
 949                        goto out_ro;
 950        }
 951
 952        if (erase) {
 953                err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 954                if (err)
 955                        goto out_ro;
 956        }
 957
 958        mutex_unlock(&ubi->move_mutex);
 959        up_read(&ubi->fm_eba_sem);
 960        return 0;
 961
 962out_error:
 963        if (vol_id != -1)
 964                ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 965                        err, e1->pnum, e2->pnum);
 966        else
 967                ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 968                        err, e1->pnum, vol_id, lnum, e2->pnum);
 969        spin_lock(&ubi->wl_lock);
 970        ubi->move_from = ubi->move_to = NULL;
 971        ubi->move_to_put = ubi->wl_scheduled = 0;
 972        spin_unlock(&ubi->wl_lock);
 973
 974        ubi_free_vid_buf(vidb);
 975        wl_entry_destroy(ubi, e1);
 976        wl_entry_destroy(ubi, e2);
 977
 978out_ro:
 979        ubi_ro_mode(ubi);
 980        mutex_unlock(&ubi->move_mutex);
 981        up_read(&ubi->fm_eba_sem);
 982        ubi_assert(err != 0);
 983        return err < 0 ? err : -EIO;
 984
 985out_cancel:
 986        ubi->wl_scheduled = 0;
 987        spin_unlock(&ubi->wl_lock);
 988        mutex_unlock(&ubi->move_mutex);
 989        up_read(&ubi->fm_eba_sem);
 990        ubi_free_vid_buf(vidb);
 991        return 0;
 992}
 993
 994/**
 995 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 996 * @ubi: UBI device description object
 997 * @nested: set to non-zero if this function is called from UBI worker
 998 *
 999 * This function checks if it is time to start wear-leveling and schedules it
1000 * if yes. This function returns zero in case of success and a negative error
1001 * code in case of failure.
1002 */
1003static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1004{
1005        int err = 0;
1006        struct ubi_wl_entry *e1;
1007        struct ubi_wl_entry *e2;
1008        struct ubi_work *wrk;
1009
1010        spin_lock(&ubi->wl_lock);
1011        if (ubi->wl_scheduled)
1012                /* Wear-leveling is already in the work queue */
1013                goto out_unlock;
1014
1015        /*
1016         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1017         * the WL worker has to be scheduled anyway.
1018         */
1019        if (!ubi->scrub.rb_node) {
1020                if (!ubi->used.rb_node || !ubi->free.rb_node)
1021                        /* No physical eraseblocks - no deal */
1022                        goto out_unlock;
1023
1024                /*
1025                 * We schedule wear-leveling only if the difference between the
1026                 * lowest erase counter of used physical eraseblocks and a high
1027                 * erase counter of free physical eraseblocks is greater than
1028                 * %UBI_WL_THRESHOLD.
1029                 */
1030                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1031                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1032
1033                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1034                        goto out_unlock;
1035                dbg_wl("schedule wear-leveling");
1036        } else
1037                dbg_wl("schedule scrubbing");
1038
1039        ubi->wl_scheduled = 1;
1040        spin_unlock(&ubi->wl_lock);
1041
1042        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1043        if (!wrk) {
1044                err = -ENOMEM;
1045                goto out_cancel;
1046        }
1047
1048        wrk->func = &wear_leveling_worker;
1049        if (nested)
1050                __schedule_ubi_work(ubi, wrk);
1051        else
1052                schedule_ubi_work(ubi, wrk);
1053        return err;
1054
1055out_cancel:
1056        spin_lock(&ubi->wl_lock);
1057        ubi->wl_scheduled = 0;
1058out_unlock:
1059        spin_unlock(&ubi->wl_lock);
1060        return err;
1061}
1062
1063/**
1064 * __erase_worker - physical eraseblock erase worker function.
1065 * @ubi: UBI device description object
1066 * @wl_wrk: the work object
1067 *
1068 * This function erases a physical eraseblock and perform torture testing if
1069 * needed. It also takes care about marking the physical eraseblock bad if
1070 * needed. Returns zero in case of success and a negative error code in case of
1071 * failure.
1072 */
1073static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1074{
1075        struct ubi_wl_entry *e = wl_wrk->e;
1076        int pnum = e->pnum;
1077        int vol_id = wl_wrk->vol_id;
1078        int lnum = wl_wrk->lnum;
1079        int err, available_consumed = 0;
1080
1081        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1082               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1083
1084        err = sync_erase(ubi, e, wl_wrk->torture);
1085        if (!err) {
1086                spin_lock(&ubi->wl_lock);
1087
1088                if (!ubi->fm_disabled && !ubi->fm_next_anchor &&
1089                    e->pnum < UBI_FM_MAX_START) {
1090                        /* Abort anchor production, if needed it will be
1091                         * enabled again in the wear leveling started below.
1092                         */
1093                        ubi->fm_next_anchor = e;
1094                        ubi->fm_do_produce_anchor = 0;
1095                } else {
1096                        wl_tree_add(e, &ubi->free);
1097                        ubi->free_count++;
1098                }
1099
1100                spin_unlock(&ubi->wl_lock);
1101
1102                /*
1103                 * One more erase operation has happened, take care about
1104                 * protected physical eraseblocks.
1105                 */
1106                serve_prot_queue(ubi);
1107
1108                /* And take care about wear-leveling */
1109                err = ensure_wear_leveling(ubi, 1);
1110                return err;
1111        }
1112
1113        ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1114
1115        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1116            err == -EBUSY) {
1117                int err1;
1118
1119                /* Re-schedule the LEB for erasure */
1120                err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1121                if (err1) {
1122                        wl_entry_destroy(ubi, e);
1123                        err = err1;
1124                        goto out_ro;
1125                }
1126                return err;
1127        }
1128
1129        wl_entry_destroy(ubi, e);
1130        if (err != -EIO)
1131                /*
1132                 * If this is not %-EIO, we have no idea what to do. Scheduling
1133                 * this physical eraseblock for erasure again would cause
1134                 * errors again and again. Well, lets switch to R/O mode.
1135                 */
1136                goto out_ro;
1137
1138        /* It is %-EIO, the PEB went bad */
1139
1140        if (!ubi->bad_allowed) {
1141                ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1142                goto out_ro;
1143        }
1144
1145        spin_lock(&ubi->volumes_lock);
1146        if (ubi->beb_rsvd_pebs == 0) {
1147                if (ubi->avail_pebs == 0) {
1148                        spin_unlock(&ubi->volumes_lock);
1149                        ubi_err(ubi, "no reserved/available physical eraseblocks");
1150                        goto out_ro;
1151                }
1152                ubi->avail_pebs -= 1;
1153                available_consumed = 1;
1154        }
1155        spin_unlock(&ubi->volumes_lock);
1156
1157        ubi_msg(ubi, "mark PEB %d as bad", pnum);
1158        err = ubi_io_mark_bad(ubi, pnum);
1159        if (err)
1160                goto out_ro;
1161
1162        spin_lock(&ubi->volumes_lock);
1163        if (ubi->beb_rsvd_pebs > 0) {
1164                if (available_consumed) {
1165                        /*
1166                         * The amount of reserved PEBs increased since we last
1167                         * checked.
1168                         */
1169                        ubi->avail_pebs += 1;
1170                        available_consumed = 0;
1171                }
1172                ubi->beb_rsvd_pebs -= 1;
1173        }
1174        ubi->bad_peb_count += 1;
1175        ubi->good_peb_count -= 1;
1176        ubi_calculate_reserved(ubi);
1177        if (available_consumed)
1178                ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1179        else if (ubi->beb_rsvd_pebs)
1180                ubi_msg(ubi, "%d PEBs left in the reserve",
1181                        ubi->beb_rsvd_pebs);
1182        else
1183                ubi_warn(ubi, "last PEB from the reserve was used");
1184        spin_unlock(&ubi->volumes_lock);
1185
1186        return err;
1187
1188out_ro:
1189        if (available_consumed) {
1190                spin_lock(&ubi->volumes_lock);
1191                ubi->avail_pebs += 1;
1192                spin_unlock(&ubi->volumes_lock);
1193        }
1194        ubi_ro_mode(ubi);
1195        return err;
1196}
1197
1198static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1199                          int shutdown)
1200{
1201        int ret;
1202
1203        if (shutdown) {
1204                struct ubi_wl_entry *e = wl_wrk->e;
1205
1206                dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1207                kfree(wl_wrk);
1208                wl_entry_destroy(ubi, e);
1209                return 0;
1210        }
1211
1212        ret = __erase_worker(ubi, wl_wrk);
1213        kfree(wl_wrk);
1214        return ret;
1215}
1216
1217/**
1218 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1219 * @ubi: UBI device description object
1220 * @vol_id: the volume ID that last used this PEB
1221 * @lnum: the last used logical eraseblock number for the PEB
1222 * @pnum: physical eraseblock to return
1223 * @torture: if this physical eraseblock has to be tortured
1224 *
1225 * This function is called to return physical eraseblock @pnum to the pool of
1226 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1227 * occurred to this @pnum and it has to be tested. This function returns zero
1228 * in case of success, and a negative error code in case of failure.
1229 */
1230int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1231                   int pnum, int torture)
1232{
1233        int err;
1234        struct ubi_wl_entry *e;
1235
1236        dbg_wl("PEB %d", pnum);
1237        ubi_assert(pnum >= 0);
1238        ubi_assert(pnum < ubi->peb_count);
1239
1240        down_read(&ubi->fm_protect);
1241
1242retry:
1243        spin_lock(&ubi->wl_lock);
1244        e = ubi->lookuptbl[pnum];
1245        if (e == ubi->move_from) {
1246                /*
1247                 * User is putting the physical eraseblock which was selected to
1248                 * be moved. It will be scheduled for erasure in the
1249                 * wear-leveling worker.
1250                 */
1251                dbg_wl("PEB %d is being moved, wait", pnum);
1252                spin_unlock(&ubi->wl_lock);
1253
1254                /* Wait for the WL worker by taking the @ubi->move_mutex */
1255                mutex_lock(&ubi->move_mutex);
1256                mutex_unlock(&ubi->move_mutex);
1257                goto retry;
1258        } else if (e == ubi->move_to) {
1259                /*
1260                 * User is putting the physical eraseblock which was selected
1261                 * as the target the data is moved to. It may happen if the EBA
1262                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1263                 * but the WL sub-system has not put the PEB to the "used" tree
1264                 * yet, but it is about to do this. So we just set a flag which
1265                 * will tell the WL worker that the PEB is not needed anymore
1266                 * and should be scheduled for erasure.
1267                 */
1268                dbg_wl("PEB %d is the target of data moving", pnum);
1269                ubi_assert(!ubi->move_to_put);
1270                ubi->move_to_put = 1;
1271                spin_unlock(&ubi->wl_lock);
1272                up_read(&ubi->fm_protect);
1273                return 0;
1274        } else {
1275                if (in_wl_tree(e, &ubi->used)) {
1276                        self_check_in_wl_tree(ubi, e, &ubi->used);
1277                        rb_erase(&e->u.rb, &ubi->used);
1278                } else if (in_wl_tree(e, &ubi->scrub)) {
1279                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1280                        rb_erase(&e->u.rb, &ubi->scrub);
1281                } else if (in_wl_tree(e, &ubi->erroneous)) {
1282                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1283                        rb_erase(&e->u.rb, &ubi->erroneous);
1284                        ubi->erroneous_peb_count -= 1;
1285                        ubi_assert(ubi->erroneous_peb_count >= 0);
1286                        /* Erroneous PEBs should be tortured */
1287                        torture = 1;
1288                } else {
1289                        err = prot_queue_del(ubi, e->pnum);
1290                        if (err) {
1291                                ubi_err(ubi, "PEB %d not found", pnum);
1292                                ubi_ro_mode(ubi);
1293                                spin_unlock(&ubi->wl_lock);
1294                                up_read(&ubi->fm_protect);
1295                                return err;
1296                        }
1297                }
1298        }
1299        spin_unlock(&ubi->wl_lock);
1300
1301        err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1302        if (err) {
1303                spin_lock(&ubi->wl_lock);
1304                wl_tree_add(e, &ubi->used);
1305                spin_unlock(&ubi->wl_lock);
1306        }
1307
1308        up_read(&ubi->fm_protect);
1309        return err;
1310}
1311
1312/**
1313 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1314 * @ubi: UBI device description object
1315 * @pnum: the physical eraseblock to schedule
1316 *
1317 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1318 * needs scrubbing. This function schedules a physical eraseblock for
1319 * scrubbing which is done in background. This function returns zero in case of
1320 * success and a negative error code in case of failure.
1321 */
1322int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1323{
1324        struct ubi_wl_entry *e;
1325
1326        ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1327
1328retry:
1329        spin_lock(&ubi->wl_lock);
1330        e = ubi->lookuptbl[pnum];
1331        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1332                                   in_wl_tree(e, &ubi->erroneous)) {
1333                spin_unlock(&ubi->wl_lock);
1334                return 0;
1335        }
1336
1337        if (e == ubi->move_to) {
1338                /*
1339                 * This physical eraseblock was used to move data to. The data
1340                 * was moved but the PEB was not yet inserted to the proper
1341                 * tree. We should just wait a little and let the WL worker
1342                 * proceed.
1343                 */
1344                spin_unlock(&ubi->wl_lock);
1345                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1346                yield();
1347                goto retry;
1348        }
1349
1350        if (in_wl_tree(e, &ubi->used)) {
1351                self_check_in_wl_tree(ubi, e, &ubi->used);
1352                rb_erase(&e->u.rb, &ubi->used);
1353        } else {
1354                int err;
1355
1356                err = prot_queue_del(ubi, e->pnum);
1357                if (err) {
1358                        ubi_err(ubi, "PEB %d not found", pnum);
1359                        ubi_ro_mode(ubi);
1360                        spin_unlock(&ubi->wl_lock);
1361                        return err;
1362                }
1363        }
1364
1365        wl_tree_add(e, &ubi->scrub);
1366        spin_unlock(&ubi->wl_lock);
1367
1368        /*
1369         * Technically scrubbing is the same as wear-leveling, so it is done
1370         * by the WL worker.
1371         */
1372        return ensure_wear_leveling(ubi, 0);
1373}
1374
1375/**
1376 * ubi_wl_flush - flush all pending works.
1377 * @ubi: UBI device description object
1378 * @vol_id: the volume id to flush for
1379 * @lnum: the logical eraseblock number to flush for
1380 *
1381 * This function executes all pending works for a particular volume id /
1382 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1383 * acts as a wildcard for all of the corresponding volume numbers or logical
1384 * eraseblock numbers. It returns zero in case of success and a negative error
1385 * code in case of failure.
1386 */
1387int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1388{
1389        int err = 0;
1390        int found = 1;
1391
1392        /*
1393         * Erase while the pending works queue is not empty, but not more than
1394         * the number of currently pending works.
1395         */
1396        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1397               vol_id, lnum, ubi->works_count);
1398
1399        while (found) {
1400                struct ubi_work *wrk, *tmp;
1401                found = 0;
1402
1403                down_read(&ubi->work_sem);
1404                spin_lock(&ubi->wl_lock);
1405                list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1406                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1407                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1408                                list_del(&wrk->list);
1409                                ubi->works_count -= 1;
1410                                ubi_assert(ubi->works_count >= 0);
1411                                spin_unlock(&ubi->wl_lock);
1412
1413                                err = wrk->func(ubi, wrk, 0);
1414                                if (err) {
1415                                        up_read(&ubi->work_sem);
1416                                        return err;
1417                                }
1418
1419                                spin_lock(&ubi->wl_lock);
1420                                found = 1;
1421                                break;
1422                        }
1423                }
1424                spin_unlock(&ubi->wl_lock);
1425                up_read(&ubi->work_sem);
1426        }
1427
1428        /*
1429         * Make sure all the works which have been done in parallel are
1430         * finished.
1431         */
1432        down_write(&ubi->work_sem);
1433        up_write(&ubi->work_sem);
1434
1435        return err;
1436}
1437
1438static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1439{
1440        if (in_wl_tree(e, &ubi->scrub))
1441                return false;
1442        else if (in_wl_tree(e, &ubi->erroneous))
1443                return false;
1444        else if (ubi->move_from == e)
1445                return false;
1446        else if (ubi->move_to == e)
1447                return false;
1448
1449        return true;
1450}
1451
1452/**
1453 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1454 * @ubi: UBI device description object
1455 * @pnum: the physical eraseblock to schedule
1456 * @force: dont't read the block, assume bitflips happened and take action.
1457 *
1458 * This function reads the given eraseblock and checks if bitflips occured.
1459 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1460 * If scrubbing is forced with @force, the eraseblock is not read,
1461 * but scheduled for scrubbing right away.
1462 *
1463 * Returns:
1464 * %EINVAL, PEB is out of range
1465 * %ENOENT, PEB is no longer used by UBI
1466 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1467 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1468 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1469 * %0, no bit flips detected
1470 */
1471int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1472{
1473        int err = 0;
1474        struct ubi_wl_entry *e;
1475
1476        if (pnum < 0 || pnum >= ubi->peb_count) {
1477                err = -EINVAL;
1478                goto out;
1479        }
1480
1481        /*
1482         * Pause all parallel work, otherwise it can happen that the
1483         * erase worker frees a wl entry under us.
1484         */
1485        down_write(&ubi->work_sem);
1486
1487        /*
1488         * Make sure that the wl entry does not change state while
1489         * inspecting it.
1490         */
1491        spin_lock(&ubi->wl_lock);
1492        e = ubi->lookuptbl[pnum];
1493        if (!e) {
1494                spin_unlock(&ubi->wl_lock);
1495                err = -ENOENT;
1496                goto out_resume;
1497        }
1498
1499        /*
1500         * Does it make sense to check this PEB?
1501         */
1502        if (!scrub_possible(ubi, e)) {
1503                spin_unlock(&ubi->wl_lock);
1504                err = -EBUSY;
1505                goto out_resume;
1506        }
1507        spin_unlock(&ubi->wl_lock);
1508
1509        if (!force) {
1510                mutex_lock(&ubi->buf_mutex);
1511                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1512                mutex_unlock(&ubi->buf_mutex);
1513        }
1514
1515        if (force || err == UBI_IO_BITFLIPS) {
1516                /*
1517                 * Okay, bit flip happened, let's figure out what we can do.
1518                 */
1519                spin_lock(&ubi->wl_lock);
1520
1521                /*
1522                 * Recheck. We released wl_lock, UBI might have killed the
1523                 * wl entry under us.
1524                 */
1525                e = ubi->lookuptbl[pnum];
1526                if (!e) {
1527                        spin_unlock(&ubi->wl_lock);
1528                        err = -ENOENT;
1529                        goto out_resume;
1530                }
1531
1532                /*
1533                 * Need to re-check state
1534                 */
1535                if (!scrub_possible(ubi, e)) {
1536                        spin_unlock(&ubi->wl_lock);
1537                        err = -EBUSY;
1538                        goto out_resume;
1539                }
1540
1541                if (in_pq(ubi, e)) {
1542                        prot_queue_del(ubi, e->pnum);
1543                        wl_tree_add(e, &ubi->scrub);
1544                        spin_unlock(&ubi->wl_lock);
1545
1546                        err = ensure_wear_leveling(ubi, 1);
1547                } else if (in_wl_tree(e, &ubi->used)) {
1548                        rb_erase(&e->u.rb, &ubi->used);
1549                        wl_tree_add(e, &ubi->scrub);
1550                        spin_unlock(&ubi->wl_lock);
1551
1552                        err = ensure_wear_leveling(ubi, 1);
1553                } else if (in_wl_tree(e, &ubi->free)) {
1554                        rb_erase(&e->u.rb, &ubi->free);
1555                        ubi->free_count--;
1556                        spin_unlock(&ubi->wl_lock);
1557
1558                        /*
1559                         * This PEB is empty we can schedule it for
1560                         * erasure right away. No wear leveling needed.
1561                         */
1562                        err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1563                                             force ? 0 : 1, true);
1564                } else {
1565                        spin_unlock(&ubi->wl_lock);
1566                        err = -EAGAIN;
1567                }
1568
1569                if (!err && !force)
1570                        err = -EUCLEAN;
1571        } else {
1572                err = 0;
1573        }
1574
1575out_resume:
1576        up_write(&ubi->work_sem);
1577out:
1578
1579        return err;
1580}
1581
1582/**
1583 * tree_destroy - destroy an RB-tree.
1584 * @ubi: UBI device description object
1585 * @root: the root of the tree to destroy
1586 */
1587static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1588{
1589        struct rb_node *rb;
1590        struct ubi_wl_entry *e;
1591
1592        rb = root->rb_node;
1593        while (rb) {
1594                if (rb->rb_left)
1595                        rb = rb->rb_left;
1596                else if (rb->rb_right)
1597                        rb = rb->rb_right;
1598                else {
1599                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1600
1601                        rb = rb_parent(rb);
1602                        if (rb) {
1603                                if (rb->rb_left == &e->u.rb)
1604                                        rb->rb_left = NULL;
1605                                else
1606                                        rb->rb_right = NULL;
1607                        }
1608
1609                        wl_entry_destroy(ubi, e);
1610                }
1611        }
1612}
1613
1614/**
1615 * ubi_thread - UBI background thread.
1616 * @u: the UBI device description object pointer
1617 */
1618int ubi_thread(void *u)
1619{
1620        int failures = 0;
1621        struct ubi_device *ubi = u;
1622
1623        ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1624                ubi->bgt_name, task_pid_nr(current));
1625
1626        set_freezable();
1627        for (;;) {
1628                int err;
1629
1630                if (kthread_should_stop())
1631                        break;
1632
1633                if (try_to_freeze())
1634                        continue;
1635
1636                spin_lock(&ubi->wl_lock);
1637                if (list_empty(&ubi->works) || ubi->ro_mode ||
1638                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1639                        set_current_state(TASK_INTERRUPTIBLE);
1640                        spin_unlock(&ubi->wl_lock);
1641
1642                        /*
1643                         * Check kthread_should_stop() after we set the task
1644                         * state to guarantee that we either see the stop bit
1645                         * and exit or the task state is reset to runnable such
1646                         * that it's not scheduled out indefinitely and detects
1647                         * the stop bit at kthread_should_stop().
1648                         */
1649                        if (kthread_should_stop()) {
1650                                set_current_state(TASK_RUNNING);
1651                                break;
1652                        }
1653
1654                        schedule();
1655                        continue;
1656                }
1657                spin_unlock(&ubi->wl_lock);
1658
1659                err = do_work(ubi);
1660                if (err) {
1661                        ubi_err(ubi, "%s: work failed with error code %d",
1662                                ubi->bgt_name, err);
1663                        if (failures++ > WL_MAX_FAILURES) {
1664                                /*
1665                                 * Too many failures, disable the thread and
1666                                 * switch to read-only mode.
1667                                 */
1668                                ubi_msg(ubi, "%s: %d consecutive failures",
1669                                        ubi->bgt_name, WL_MAX_FAILURES);
1670                                ubi_ro_mode(ubi);
1671                                ubi->thread_enabled = 0;
1672                                continue;
1673                        }
1674                } else
1675                        failures = 0;
1676
1677                cond_resched();
1678        }
1679
1680        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1681        ubi->thread_enabled = 0;
1682        return 0;
1683}
1684
1685/**
1686 * shutdown_work - shutdown all pending works.
1687 * @ubi: UBI device description object
1688 */
1689static void shutdown_work(struct ubi_device *ubi)
1690{
1691        while (!list_empty(&ubi->works)) {
1692                struct ubi_work *wrk;
1693
1694                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1695                list_del(&wrk->list);
1696                wrk->func(ubi, wrk, 1);
1697                ubi->works_count -= 1;
1698                ubi_assert(ubi->works_count >= 0);
1699        }
1700}
1701
1702/**
1703 * erase_aeb - erase a PEB given in UBI attach info PEB
1704 * @ubi: UBI device description object
1705 * @aeb: UBI attach info PEB
1706 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1707 */
1708static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1709{
1710        struct ubi_wl_entry *e;
1711        int err;
1712
1713        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1714        if (!e)
1715                return -ENOMEM;
1716
1717        e->pnum = aeb->pnum;
1718        e->ec = aeb->ec;
1719        ubi->lookuptbl[e->pnum] = e;
1720
1721        if (sync) {
1722                err = sync_erase(ubi, e, false);
1723                if (err)
1724                        goto out_free;
1725
1726                wl_tree_add(e, &ubi->free);
1727                ubi->free_count++;
1728        } else {
1729                err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1730                if (err)
1731                        goto out_free;
1732        }
1733
1734        return 0;
1735
1736out_free:
1737        wl_entry_destroy(ubi, e);
1738
1739        return err;
1740}
1741
1742/**
1743 * ubi_wl_init - initialize the WL sub-system using attaching information.
1744 * @ubi: UBI device description object
1745 * @ai: attaching information
1746 *
1747 * This function returns zero in case of success, and a negative error code in
1748 * case of failure.
1749 */
1750int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1751{
1752        int err, i, reserved_pebs, found_pebs = 0;
1753        struct rb_node *rb1, *rb2;
1754        struct ubi_ainf_volume *av;
1755        struct ubi_ainf_peb *aeb, *tmp;
1756        struct ubi_wl_entry *e;
1757
1758        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1759        spin_lock_init(&ubi->wl_lock);
1760        mutex_init(&ubi->move_mutex);
1761        init_rwsem(&ubi->work_sem);
1762        ubi->max_ec = ai->max_ec;
1763        INIT_LIST_HEAD(&ubi->works);
1764
1765        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1766
1767        err = -ENOMEM;
1768        ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1769        if (!ubi->lookuptbl)
1770                return err;
1771
1772        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1773                INIT_LIST_HEAD(&ubi->pq[i]);
1774        ubi->pq_head = 0;
1775
1776        ubi->free_count = 0;
1777        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1778                cond_resched();
1779
1780                err = erase_aeb(ubi, aeb, false);
1781                if (err)
1782                        goto out_free;
1783
1784                found_pebs++;
1785        }
1786
1787        list_for_each_entry(aeb, &ai->free, u.list) {
1788                cond_resched();
1789
1790                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1791                if (!e) {
1792                        err = -ENOMEM;
1793                        goto out_free;
1794                }
1795
1796                e->pnum = aeb->pnum;
1797                e->ec = aeb->ec;
1798                ubi_assert(e->ec >= 0);
1799
1800                wl_tree_add(e, &ubi->free);
1801                ubi->free_count++;
1802
1803                ubi->lookuptbl[e->pnum] = e;
1804
1805                found_pebs++;
1806        }
1807
1808        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1809                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1810                        cond_resched();
1811
1812                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1813                        if (!e) {
1814                                err = -ENOMEM;
1815                                goto out_free;
1816                        }
1817
1818                        e->pnum = aeb->pnum;
1819                        e->ec = aeb->ec;
1820                        ubi->lookuptbl[e->pnum] = e;
1821
1822                        if (!aeb->scrub) {
1823                                dbg_wl("add PEB %d EC %d to the used tree",
1824                                       e->pnum, e->ec);
1825                                wl_tree_add(e, &ubi->used);
1826                        } else {
1827                                dbg_wl("add PEB %d EC %d to the scrub tree",
1828                                       e->pnum, e->ec);
1829                                wl_tree_add(e, &ubi->scrub);
1830                        }
1831
1832                        found_pebs++;
1833                }
1834        }
1835
1836        list_for_each_entry(aeb, &ai->fastmap, u.list) {
1837                cond_resched();
1838
1839                e = ubi_find_fm_block(ubi, aeb->pnum);
1840
1841                if (e) {
1842                        ubi_assert(!ubi->lookuptbl[e->pnum]);
1843                        ubi->lookuptbl[e->pnum] = e;
1844                } else {
1845                        bool sync = false;
1846
1847                        /*
1848                         * Usually old Fastmap PEBs are scheduled for erasure
1849                         * and we don't have to care about them but if we face
1850                         * an power cut before scheduling them we need to
1851                         * take care of them here.
1852                         */
1853                        if (ubi->lookuptbl[aeb->pnum])
1854                                continue;
1855
1856                        /*
1857                         * The fastmap update code might not find a free PEB for
1858                         * writing the fastmap anchor to and then reuses the
1859                         * current fastmap anchor PEB. When this PEB gets erased
1860                         * and a power cut happens before it is written again we
1861                         * must make sure that the fastmap attach code doesn't
1862                         * find any outdated fastmap anchors, hence we erase the
1863                         * outdated fastmap anchor PEBs synchronously here.
1864                         */
1865                        if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1866                                sync = true;
1867
1868                        err = erase_aeb(ubi, aeb, sync);
1869                        if (err)
1870                                goto out_free;
1871                }
1872
1873                found_pebs++;
1874        }
1875
1876        dbg_wl("found %i PEBs", found_pebs);
1877
1878        ubi_assert(ubi->good_peb_count == found_pebs);
1879
1880        reserved_pebs = WL_RESERVED_PEBS;
1881        ubi_fastmap_init(ubi, &reserved_pebs);
1882
1883        if (ubi->avail_pebs < reserved_pebs) {
1884                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1885                        ubi->avail_pebs, reserved_pebs);
1886                if (ubi->corr_peb_count)
1887                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1888                                ubi->corr_peb_count);
1889                err = -ENOSPC;
1890                goto out_free;
1891        }
1892        ubi->avail_pebs -= reserved_pebs;
1893        ubi->rsvd_pebs += reserved_pebs;
1894
1895        /* Schedule wear-leveling if needed */
1896        err = ensure_wear_leveling(ubi, 0);
1897        if (err)
1898                goto out_free;
1899
1900#ifdef CONFIG_MTD_UBI_FASTMAP
1901        if (!ubi->ro_mode && !ubi->fm_disabled)
1902                ubi_ensure_anchor_pebs(ubi);
1903#endif
1904        return 0;
1905
1906out_free:
1907        shutdown_work(ubi);
1908        tree_destroy(ubi, &ubi->used);
1909        tree_destroy(ubi, &ubi->free);
1910        tree_destroy(ubi, &ubi->scrub);
1911        kfree(ubi->lookuptbl);
1912        return err;
1913}
1914
1915/**
1916 * protection_queue_destroy - destroy the protection queue.
1917 * @ubi: UBI device description object
1918 */
1919static void protection_queue_destroy(struct ubi_device *ubi)
1920{
1921        int i;
1922        struct ubi_wl_entry *e, *tmp;
1923
1924        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1925                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1926                        list_del(&e->u.list);
1927                        wl_entry_destroy(ubi, e);
1928                }
1929        }
1930}
1931
1932/**
1933 * ubi_wl_close - close the wear-leveling sub-system.
1934 * @ubi: UBI device description object
1935 */
1936void ubi_wl_close(struct ubi_device *ubi)
1937{
1938        dbg_wl("close the WL sub-system");
1939        ubi_fastmap_close(ubi);
1940        shutdown_work(ubi);
1941        protection_queue_destroy(ubi);
1942        tree_destroy(ubi, &ubi->used);
1943        tree_destroy(ubi, &ubi->erroneous);
1944        tree_destroy(ubi, &ubi->free);
1945        tree_destroy(ubi, &ubi->scrub);
1946        kfree(ubi->lookuptbl);
1947}
1948
1949/**
1950 * self_check_ec - make sure that the erase counter of a PEB is correct.
1951 * @ubi: UBI device description object
1952 * @pnum: the physical eraseblock number to check
1953 * @ec: the erase counter to check
1954 *
1955 * This function returns zero if the erase counter of physical eraseblock @pnum
1956 * is equivalent to @ec, and a negative error code if not or if an error
1957 * occurred.
1958 */
1959static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1960{
1961        int err;
1962        long long read_ec;
1963        struct ubi_ec_hdr *ec_hdr;
1964
1965        if (!ubi_dbg_chk_gen(ubi))
1966                return 0;
1967
1968        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1969        if (!ec_hdr)
1970                return -ENOMEM;
1971
1972        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1973        if (err && err != UBI_IO_BITFLIPS) {
1974                /* The header does not have to exist */
1975                err = 0;
1976                goto out_free;
1977        }
1978
1979        read_ec = be64_to_cpu(ec_hdr->ec);
1980        if (ec != read_ec && read_ec - ec > 1) {
1981                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1982                ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1983                dump_stack();
1984                err = 1;
1985        } else
1986                err = 0;
1987
1988out_free:
1989        kfree(ec_hdr);
1990        return err;
1991}
1992
1993/**
1994 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1995 * @ubi: UBI device description object
1996 * @e: the wear-leveling entry to check
1997 * @root: the root of the tree
1998 *
1999 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2000 * is not.
2001 */
2002static int self_check_in_wl_tree(const struct ubi_device *ubi,
2003                                 struct ubi_wl_entry *e, struct rb_root *root)
2004{
2005        if (!ubi_dbg_chk_gen(ubi))
2006                return 0;
2007
2008        if (in_wl_tree(e, root))
2009                return 0;
2010
2011        ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2012                e->pnum, e->ec, root);
2013        dump_stack();
2014        return -EINVAL;
2015}
2016
2017/**
2018 * self_check_in_pq - check if wear-leveling entry is in the protection
2019 *                        queue.
2020 * @ubi: UBI device description object
2021 * @e: the wear-leveling entry to check
2022 *
2023 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2024 */
2025static int self_check_in_pq(const struct ubi_device *ubi,
2026                            struct ubi_wl_entry *e)
2027{
2028        if (!ubi_dbg_chk_gen(ubi))
2029                return 0;
2030
2031        if (in_pq(ubi, e))
2032                return 0;
2033
2034        ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2035                e->pnum, e->ec);
2036        dump_stack();
2037        return -EINVAL;
2038}
2039#ifndef CONFIG_MTD_UBI_FASTMAP
2040static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2041{
2042        struct ubi_wl_entry *e;
2043
2044        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2045        self_check_in_wl_tree(ubi, e, &ubi->free);
2046        ubi->free_count--;
2047        ubi_assert(ubi->free_count >= 0);
2048        rb_erase(&e->u.rb, &ubi->free);
2049
2050        return e;
2051}
2052
2053/**
2054 * produce_free_peb - produce a free physical eraseblock.
2055 * @ubi: UBI device description object
2056 *
2057 * This function tries to make a free PEB by means of synchronous execution of
2058 * pending works. This may be needed if, for example the background thread is
2059 * disabled. Returns zero in case of success and a negative error code in case
2060 * of failure.
2061 */
2062static int produce_free_peb(struct ubi_device *ubi)
2063{
2064        int err;
2065
2066        while (!ubi->free.rb_node && ubi->works_count) {
2067                spin_unlock(&ubi->wl_lock);
2068
2069                dbg_wl("do one work synchronously");
2070                err = do_work(ubi);
2071
2072                spin_lock(&ubi->wl_lock);
2073                if (err)
2074                        return err;
2075        }
2076
2077        return 0;
2078}
2079
2080/**
2081 * ubi_wl_get_peb - get a physical eraseblock.
2082 * @ubi: UBI device description object
2083 *
2084 * This function returns a physical eraseblock in case of success and a
2085 * negative error code in case of failure.
2086 * Returns with ubi->fm_eba_sem held in read mode!
2087 */
2088int ubi_wl_get_peb(struct ubi_device *ubi)
2089{
2090        int err;
2091        struct ubi_wl_entry *e;
2092
2093retry:
2094        down_read(&ubi->fm_eba_sem);
2095        spin_lock(&ubi->wl_lock);
2096        if (!ubi->free.rb_node) {
2097                if (ubi->works_count == 0) {
2098                        ubi_err(ubi, "no free eraseblocks");
2099                        ubi_assert(list_empty(&ubi->works));
2100                        spin_unlock(&ubi->wl_lock);
2101                        return -ENOSPC;
2102                }
2103
2104                err = produce_free_peb(ubi);
2105                if (err < 0) {
2106                        spin_unlock(&ubi->wl_lock);
2107                        return err;
2108                }
2109                spin_unlock(&ubi->wl_lock);
2110                up_read(&ubi->fm_eba_sem);
2111                goto retry;
2112
2113        }
2114        e = wl_get_wle(ubi);
2115        prot_queue_add(ubi, e);
2116        spin_unlock(&ubi->wl_lock);
2117
2118        err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2119                                    ubi->peb_size - ubi->vid_hdr_aloffset);
2120        if (err) {
2121                ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2122                return err;
2123        }
2124
2125        return e->pnum;
2126}
2127#else
2128#include "fastmap-wl.c"
2129#endif
2130