linux/drivers/net/can/m_can/m_can.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// CAN bus driver for Bosch M_CAN controller
   3// Copyright (C) 2014 Freescale Semiconductor, Inc.
   4//      Dong Aisheng <b29396@freescale.com>
   5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
   6
   7/* Bosch M_CAN user manual can be obtained from:
   8 * https://github.com/linux-can/can-doc/tree/master/m_can
   9 */
  10
  11#include <linux/bitfield.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/iopoll.h>
  22#include <linux/can/dev.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/phy/phy.h>
  25
  26#include "m_can.h"
  27
  28/* registers definition */
  29enum m_can_reg {
  30        M_CAN_CREL      = 0x0,
  31        M_CAN_ENDN      = 0x4,
  32        M_CAN_CUST      = 0x8,
  33        M_CAN_DBTP      = 0xc,
  34        M_CAN_TEST      = 0x10,
  35        M_CAN_RWD       = 0x14,
  36        M_CAN_CCCR      = 0x18,
  37        M_CAN_NBTP      = 0x1c,
  38        M_CAN_TSCC      = 0x20,
  39        M_CAN_TSCV      = 0x24,
  40        M_CAN_TOCC      = 0x28,
  41        M_CAN_TOCV      = 0x2c,
  42        M_CAN_ECR       = 0x40,
  43        M_CAN_PSR       = 0x44,
  44        /* TDCR Register only available for version >=3.1.x */
  45        M_CAN_TDCR      = 0x48,
  46        M_CAN_IR        = 0x50,
  47        M_CAN_IE        = 0x54,
  48        M_CAN_ILS       = 0x58,
  49        M_CAN_ILE       = 0x5c,
  50        M_CAN_GFC       = 0x80,
  51        M_CAN_SIDFC     = 0x84,
  52        M_CAN_XIDFC     = 0x88,
  53        M_CAN_XIDAM     = 0x90,
  54        M_CAN_HPMS      = 0x94,
  55        M_CAN_NDAT1     = 0x98,
  56        M_CAN_NDAT2     = 0x9c,
  57        M_CAN_RXF0C     = 0xa0,
  58        M_CAN_RXF0S     = 0xa4,
  59        M_CAN_RXF0A     = 0xa8,
  60        M_CAN_RXBC      = 0xac,
  61        M_CAN_RXF1C     = 0xb0,
  62        M_CAN_RXF1S     = 0xb4,
  63        M_CAN_RXF1A     = 0xb8,
  64        M_CAN_RXESC     = 0xbc,
  65        M_CAN_TXBC      = 0xc0,
  66        M_CAN_TXFQS     = 0xc4,
  67        M_CAN_TXESC     = 0xc8,
  68        M_CAN_TXBRP     = 0xcc,
  69        M_CAN_TXBAR     = 0xd0,
  70        M_CAN_TXBCR     = 0xd4,
  71        M_CAN_TXBTO     = 0xd8,
  72        M_CAN_TXBCF     = 0xdc,
  73        M_CAN_TXBTIE    = 0xe0,
  74        M_CAN_TXBCIE    = 0xe4,
  75        M_CAN_TXEFC     = 0xf0,
  76        M_CAN_TXEFS     = 0xf4,
  77        M_CAN_TXEFA     = 0xf8,
  78};
  79
  80/* napi related */
  81#define M_CAN_NAPI_WEIGHT       64
  82
  83/* message ram configuration data length */
  84#define MRAM_CFG_LEN    8
  85
  86/* Core Release Register (CREL) */
  87#define CREL_REL_MASK           GENMASK(31, 28)
  88#define CREL_STEP_MASK          GENMASK(27, 24)
  89#define CREL_SUBSTEP_MASK       GENMASK(23, 20)
  90
  91/* Data Bit Timing & Prescaler Register (DBTP) */
  92#define DBTP_TDC                BIT(23)
  93#define DBTP_DBRP_MASK          GENMASK(20, 16)
  94#define DBTP_DTSEG1_MASK        GENMASK(12, 8)
  95#define DBTP_DTSEG2_MASK        GENMASK(7, 4)
  96#define DBTP_DSJW_MASK          GENMASK(3, 0)
  97
  98/* Transmitter Delay Compensation Register (TDCR) */
  99#define TDCR_TDCO_MASK          GENMASK(14, 8)
 100#define TDCR_TDCF_MASK          GENMASK(6, 0)
 101
 102/* Test Register (TEST) */
 103#define TEST_LBCK               BIT(4)
 104
 105/* CC Control Register (CCCR) */
 106#define CCCR_TXP                BIT(14)
 107#define CCCR_TEST               BIT(7)
 108#define CCCR_DAR                BIT(6)
 109#define CCCR_MON                BIT(5)
 110#define CCCR_CSR                BIT(4)
 111#define CCCR_CSA                BIT(3)
 112#define CCCR_ASM                BIT(2)
 113#define CCCR_CCE                BIT(1)
 114#define CCCR_INIT               BIT(0)
 115/* for version 3.0.x */
 116#define CCCR_CMR_MASK           GENMASK(11, 10)
 117#define CCCR_CMR_CANFD          0x1
 118#define CCCR_CMR_CANFD_BRS      0x2
 119#define CCCR_CMR_CAN            0x3
 120#define CCCR_CME_MASK           GENMASK(9, 8)
 121#define CCCR_CME_CAN            0
 122#define CCCR_CME_CANFD          0x1
 123#define CCCR_CME_CANFD_BRS      0x2
 124/* for version >=3.1.x */
 125#define CCCR_EFBI               BIT(13)
 126#define CCCR_PXHD               BIT(12)
 127#define CCCR_BRSE               BIT(9)
 128#define CCCR_FDOE               BIT(8)
 129/* for version >=3.2.x */
 130#define CCCR_NISO               BIT(15)
 131/* for version >=3.3.x */
 132#define CCCR_WMM                BIT(11)
 133#define CCCR_UTSU               BIT(10)
 134
 135/* Nominal Bit Timing & Prescaler Register (NBTP) */
 136#define NBTP_NSJW_MASK          GENMASK(31, 25)
 137#define NBTP_NBRP_MASK          GENMASK(24, 16)
 138#define NBTP_NTSEG1_MASK        GENMASK(15, 8)
 139#define NBTP_NTSEG2_MASK        GENMASK(6, 0)
 140
 141/* Timestamp Counter Configuration Register (TSCC) */
 142#define TSCC_TCP_MASK           GENMASK(19, 16)
 143#define TSCC_TSS_MASK           GENMASK(1, 0)
 144#define TSCC_TSS_DISABLE        0x0
 145#define TSCC_TSS_INTERNAL       0x1
 146#define TSCC_TSS_EXTERNAL       0x2
 147
 148/* Timestamp Counter Value Register (TSCV) */
 149#define TSCV_TSC_MASK           GENMASK(15, 0)
 150
 151/* Error Counter Register (ECR) */
 152#define ECR_RP                  BIT(15)
 153#define ECR_REC_MASK            GENMASK(14, 8)
 154#define ECR_TEC_MASK            GENMASK(7, 0)
 155
 156/* Protocol Status Register (PSR) */
 157#define PSR_BO          BIT(7)
 158#define PSR_EW          BIT(6)
 159#define PSR_EP          BIT(5)
 160#define PSR_LEC_MASK    GENMASK(2, 0)
 161
 162/* Interrupt Register (IR) */
 163#define IR_ALL_INT      0xffffffff
 164
 165/* Renamed bits for versions > 3.1.x */
 166#define IR_ARA          BIT(29)
 167#define IR_PED          BIT(28)
 168#define IR_PEA          BIT(27)
 169
 170/* Bits for version 3.0.x */
 171#define IR_STE          BIT(31)
 172#define IR_FOE          BIT(30)
 173#define IR_ACKE         BIT(29)
 174#define IR_BE           BIT(28)
 175#define IR_CRCE         BIT(27)
 176#define IR_WDI          BIT(26)
 177#define IR_BO           BIT(25)
 178#define IR_EW           BIT(24)
 179#define IR_EP           BIT(23)
 180#define IR_ELO          BIT(22)
 181#define IR_BEU          BIT(21)
 182#define IR_BEC          BIT(20)
 183#define IR_DRX          BIT(19)
 184#define IR_TOO          BIT(18)
 185#define IR_MRAF         BIT(17)
 186#define IR_TSW          BIT(16)
 187#define IR_TEFL         BIT(15)
 188#define IR_TEFF         BIT(14)
 189#define IR_TEFW         BIT(13)
 190#define IR_TEFN         BIT(12)
 191#define IR_TFE          BIT(11)
 192#define IR_TCF          BIT(10)
 193#define IR_TC           BIT(9)
 194#define IR_HPM          BIT(8)
 195#define IR_RF1L         BIT(7)
 196#define IR_RF1F         BIT(6)
 197#define IR_RF1W         BIT(5)
 198#define IR_RF1N         BIT(4)
 199#define IR_RF0L         BIT(3)
 200#define IR_RF0F         BIT(2)
 201#define IR_RF0W         BIT(1)
 202#define IR_RF0N         BIT(0)
 203#define IR_ERR_STATE    (IR_BO | IR_EW | IR_EP)
 204
 205/* Interrupts for version 3.0.x */
 206#define IR_ERR_LEC_30X  (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 207#define IR_ERR_BUS_30X  (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
 208                         IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 209                         IR_RF1L | IR_RF0L)
 210#define IR_ERR_ALL_30X  (IR_ERR_STATE | IR_ERR_BUS_30X)
 211
 212/* Interrupts for version >= 3.1.x */
 213#define IR_ERR_LEC_31X  (IR_PED | IR_PEA)
 214#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
 215                         IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 216                         IR_RF1L | IR_RF0L)
 217#define IR_ERR_ALL_31X  (IR_ERR_STATE | IR_ERR_BUS_31X)
 218
 219/* Interrupt Line Select (ILS) */
 220#define ILS_ALL_INT0    0x0
 221#define ILS_ALL_INT1    0xFFFFFFFF
 222
 223/* Interrupt Line Enable (ILE) */
 224#define ILE_EINT1       BIT(1)
 225#define ILE_EINT0       BIT(0)
 226
 227/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 228#define RXFC_FWM_MASK   GENMASK(30, 24)
 229#define RXFC_FS_MASK    GENMASK(22, 16)
 230
 231/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 232#define RXFS_RFL        BIT(25)
 233#define RXFS_FF         BIT(24)
 234#define RXFS_FPI_MASK   GENMASK(21, 16)
 235#define RXFS_FGI_MASK   GENMASK(13, 8)
 236#define RXFS_FFL_MASK   GENMASK(6, 0)
 237
 238/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 239#define RXESC_RBDS_MASK         GENMASK(10, 8)
 240#define RXESC_F1DS_MASK         GENMASK(6, 4)
 241#define RXESC_F0DS_MASK         GENMASK(2, 0)
 242#define RXESC_64B               0x7
 243
 244/* Tx Buffer Configuration (TXBC) */
 245#define TXBC_TFQS_MASK          GENMASK(29, 24)
 246#define TXBC_NDTB_MASK          GENMASK(21, 16)
 247
 248/* Tx FIFO/Queue Status (TXFQS) */
 249#define TXFQS_TFQF              BIT(21)
 250#define TXFQS_TFQPI_MASK        GENMASK(20, 16)
 251#define TXFQS_TFGI_MASK         GENMASK(12, 8)
 252#define TXFQS_TFFL_MASK         GENMASK(5, 0)
 253
 254/* Tx Buffer Element Size Configuration (TXESC) */
 255#define TXESC_TBDS_MASK         GENMASK(2, 0)
 256#define TXESC_TBDS_64B          0x7
 257
 258/* Tx Event FIFO Configuration (TXEFC) */
 259#define TXEFC_EFS_MASK          GENMASK(21, 16)
 260
 261/* Tx Event FIFO Status (TXEFS) */
 262#define TXEFS_TEFL              BIT(25)
 263#define TXEFS_EFF               BIT(24)
 264#define TXEFS_EFGI_MASK         GENMASK(12, 8)
 265#define TXEFS_EFFL_MASK         GENMASK(5, 0)
 266
 267/* Tx Event FIFO Acknowledge (TXEFA) */
 268#define TXEFA_EFAI_MASK         GENMASK(4, 0)
 269
 270/* Message RAM Configuration (in bytes) */
 271#define SIDF_ELEMENT_SIZE       4
 272#define XIDF_ELEMENT_SIZE       8
 273#define RXF0_ELEMENT_SIZE       72
 274#define RXF1_ELEMENT_SIZE       72
 275#define RXB_ELEMENT_SIZE        72
 276#define TXE_ELEMENT_SIZE        8
 277#define TXB_ELEMENT_SIZE        72
 278
 279/* Message RAM Elements */
 280#define M_CAN_FIFO_ID           0x0
 281#define M_CAN_FIFO_DLC          0x4
 282#define M_CAN_FIFO_DATA         0x8
 283
 284/* Rx Buffer Element */
 285/* R0 */
 286#define RX_BUF_ESI              BIT(31)
 287#define RX_BUF_XTD              BIT(30)
 288#define RX_BUF_RTR              BIT(29)
 289/* R1 */
 290#define RX_BUF_ANMF             BIT(31)
 291#define RX_BUF_FDF              BIT(21)
 292#define RX_BUF_BRS              BIT(20)
 293#define RX_BUF_RXTS_MASK        GENMASK(15, 0)
 294
 295/* Tx Buffer Element */
 296/* T0 */
 297#define TX_BUF_ESI              BIT(31)
 298#define TX_BUF_XTD              BIT(30)
 299#define TX_BUF_RTR              BIT(29)
 300/* T1 */
 301#define TX_BUF_EFC              BIT(23)
 302#define TX_BUF_FDF              BIT(21)
 303#define TX_BUF_BRS              BIT(20)
 304#define TX_BUF_MM_MASK          GENMASK(31, 24)
 305#define TX_BUF_DLC_MASK         GENMASK(19, 16)
 306
 307/* Tx event FIFO Element */
 308/* E1 */
 309#define TX_EVENT_MM_MASK        GENMASK(31, 24)
 310#define TX_EVENT_TXTS_MASK      GENMASK(15, 0)
 311
 312/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
 313 * and we can save a (potentially slow) bus round trip by combining
 314 * reads and writes to them.
 315 */
 316struct id_and_dlc {
 317        u32 id;
 318        u32 dlc;
 319};
 320
 321static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
 322{
 323        return cdev->ops->read_reg(cdev, reg);
 324}
 325
 326static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
 327                               u32 val)
 328{
 329        cdev->ops->write_reg(cdev, reg, val);
 330}
 331
 332static int
 333m_can_fifo_read(struct m_can_classdev *cdev,
 334                u32 fgi, unsigned int offset, void *val, size_t val_count)
 335{
 336        u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
 337                offset;
 338
 339        return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
 340}
 341
 342static int
 343m_can_fifo_write(struct m_can_classdev *cdev,
 344                 u32 fpi, unsigned int offset, const void *val, size_t val_count)
 345{
 346        u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
 347                offset;
 348
 349        return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
 350}
 351
 352static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
 353                                          u32 fpi, u32 val)
 354{
 355        return cdev->ops->write_fifo(cdev, fpi, &val, 1);
 356}
 357
 358static int
 359m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
 360{
 361        u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
 362                offset;
 363
 364        return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
 365}
 366
 367static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
 368{
 369        return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
 370}
 371
 372static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
 373{
 374        u32 cccr = m_can_read(cdev, M_CAN_CCCR);
 375        u32 timeout = 10;
 376        u32 val = 0;
 377
 378        /* Clear the Clock stop request if it was set */
 379        if (cccr & CCCR_CSR)
 380                cccr &= ~CCCR_CSR;
 381
 382        if (enable) {
 383                /* enable m_can configuration */
 384                m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
 385                udelay(5);
 386                /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
 387                m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
 388        } else {
 389                m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
 390        }
 391
 392        /* there's a delay for module initialization */
 393        if (enable)
 394                val = CCCR_INIT | CCCR_CCE;
 395
 396        while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
 397                if (timeout == 0) {
 398                        netdev_warn(cdev->net, "Failed to init module\n");
 399                        return;
 400                }
 401                timeout--;
 402                udelay(1);
 403        }
 404}
 405
 406static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
 407{
 408        /* Only interrupt line 0 is used in this driver */
 409        m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
 410}
 411
 412static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
 413{
 414        m_can_write(cdev, M_CAN_ILE, 0x0);
 415}
 416
 417/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
 418 * width.
 419 */
 420static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
 421{
 422        u32 tscv;
 423        u32 tsc;
 424
 425        tscv = m_can_read(cdev, M_CAN_TSCV);
 426        tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
 427
 428        return (tsc << 16);
 429}
 430
 431static void m_can_clean(struct net_device *net)
 432{
 433        struct m_can_classdev *cdev = netdev_priv(net);
 434
 435        if (cdev->tx_skb) {
 436                int putidx = 0;
 437
 438                net->stats.tx_errors++;
 439                if (cdev->version > 30)
 440                        putidx = FIELD_GET(TXFQS_TFQPI_MASK,
 441                                           m_can_read(cdev, M_CAN_TXFQS));
 442
 443                can_free_echo_skb(cdev->net, putidx, NULL);
 444                cdev->tx_skb = NULL;
 445        }
 446}
 447
 448/* For peripherals, pass skb to rx-offload, which will push skb from
 449 * napi. For non-peripherals, RX is done in napi already, so push
 450 * directly. timestamp is used to ensure good skb ordering in
 451 * rx-offload and is ignored for non-peripherals.
 452 */
 453static void m_can_receive_skb(struct m_can_classdev *cdev,
 454                              struct sk_buff *skb,
 455                              u32 timestamp)
 456{
 457        if (cdev->is_peripheral) {
 458                struct net_device_stats *stats = &cdev->net->stats;
 459                int err;
 460
 461                err = can_rx_offload_queue_sorted(&cdev->offload, skb,
 462                                                  timestamp);
 463                if (err)
 464                        stats->rx_fifo_errors++;
 465        } else {
 466                netif_receive_skb(skb);
 467        }
 468}
 469
 470static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
 471{
 472        struct net_device_stats *stats = &dev->stats;
 473        struct m_can_classdev *cdev = netdev_priv(dev);
 474        struct canfd_frame *cf;
 475        struct sk_buff *skb;
 476        struct id_and_dlc fifo_header;
 477        u32 fgi;
 478        u32 timestamp = 0;
 479        int err;
 480
 481        /* calculate the fifo get index for where to read data */
 482        fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
 483        err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
 484        if (err)
 485                goto out_fail;
 486
 487        if (fifo_header.dlc & RX_BUF_FDF)
 488                skb = alloc_canfd_skb(dev, &cf);
 489        else
 490                skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 491        if (!skb) {
 492                stats->rx_dropped++;
 493                return 0;
 494        }
 495
 496        if (fifo_header.dlc & RX_BUF_FDF)
 497                cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
 498        else
 499                cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
 500
 501        if (fifo_header.id & RX_BUF_XTD)
 502                cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 503        else
 504                cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
 505
 506        if (fifo_header.id & RX_BUF_ESI) {
 507                cf->flags |= CANFD_ESI;
 508                netdev_dbg(dev, "ESI Error\n");
 509        }
 510
 511        if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
 512                cf->can_id |= CAN_RTR_FLAG;
 513        } else {
 514                if (fifo_header.dlc & RX_BUF_BRS)
 515                        cf->flags |= CANFD_BRS;
 516
 517                err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
 518                                      cf->data, DIV_ROUND_UP(cf->len, 4));
 519                if (err)
 520                        goto out_fail;
 521        }
 522
 523        /* acknowledge rx fifo 0 */
 524        m_can_write(cdev, M_CAN_RXF0A, fgi);
 525
 526        stats->rx_packets++;
 527        stats->rx_bytes += cf->len;
 528
 529        timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc);
 530
 531        m_can_receive_skb(cdev, skb, timestamp);
 532
 533        return 0;
 534
 535out_fail:
 536        netdev_err(dev, "FIFO read returned %d\n", err);
 537        return err;
 538}
 539
 540static int m_can_do_rx_poll(struct net_device *dev, int quota)
 541{
 542        struct m_can_classdev *cdev = netdev_priv(dev);
 543        u32 pkts = 0;
 544        u32 rxfs;
 545        int err;
 546
 547        rxfs = m_can_read(cdev, M_CAN_RXF0S);
 548        if (!(rxfs & RXFS_FFL_MASK)) {
 549                netdev_dbg(dev, "no messages in fifo0\n");
 550                return 0;
 551        }
 552
 553        while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
 554                err = m_can_read_fifo(dev, rxfs);
 555                if (err)
 556                        return err;
 557
 558                quota--;
 559                pkts++;
 560                rxfs = m_can_read(cdev, M_CAN_RXF0S);
 561        }
 562
 563        if (pkts)
 564                can_led_event(dev, CAN_LED_EVENT_RX);
 565
 566        return pkts;
 567}
 568
 569static int m_can_handle_lost_msg(struct net_device *dev)
 570{
 571        struct m_can_classdev *cdev = netdev_priv(dev);
 572        struct net_device_stats *stats = &dev->stats;
 573        struct sk_buff *skb;
 574        struct can_frame *frame;
 575        u32 timestamp = 0;
 576
 577        netdev_err(dev, "msg lost in rxf0\n");
 578
 579        stats->rx_errors++;
 580        stats->rx_over_errors++;
 581
 582        skb = alloc_can_err_skb(dev, &frame);
 583        if (unlikely(!skb))
 584                return 0;
 585
 586        frame->can_id |= CAN_ERR_CRTL;
 587        frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 588
 589        if (cdev->is_peripheral)
 590                timestamp = m_can_get_timestamp(cdev);
 591
 592        m_can_receive_skb(cdev, skb, timestamp);
 593
 594        return 1;
 595}
 596
 597static int m_can_handle_lec_err(struct net_device *dev,
 598                                enum m_can_lec_type lec_type)
 599{
 600        struct m_can_classdev *cdev = netdev_priv(dev);
 601        struct net_device_stats *stats = &dev->stats;
 602        struct can_frame *cf;
 603        struct sk_buff *skb;
 604        u32 timestamp = 0;
 605
 606        cdev->can.can_stats.bus_error++;
 607        stats->rx_errors++;
 608
 609        /* propagate the error condition to the CAN stack */
 610        skb = alloc_can_err_skb(dev, &cf);
 611        if (unlikely(!skb))
 612                return 0;
 613
 614        /* check for 'last error code' which tells us the
 615         * type of the last error to occur on the CAN bus
 616         */
 617        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 618
 619        switch (lec_type) {
 620        case LEC_STUFF_ERROR:
 621                netdev_dbg(dev, "stuff error\n");
 622                cf->data[2] |= CAN_ERR_PROT_STUFF;
 623                break;
 624        case LEC_FORM_ERROR:
 625                netdev_dbg(dev, "form error\n");
 626                cf->data[2] |= CAN_ERR_PROT_FORM;
 627                break;
 628        case LEC_ACK_ERROR:
 629                netdev_dbg(dev, "ack error\n");
 630                cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 631                break;
 632        case LEC_BIT1_ERROR:
 633                netdev_dbg(dev, "bit1 error\n");
 634                cf->data[2] |= CAN_ERR_PROT_BIT1;
 635                break;
 636        case LEC_BIT0_ERROR:
 637                netdev_dbg(dev, "bit0 error\n");
 638                cf->data[2] |= CAN_ERR_PROT_BIT0;
 639                break;
 640        case LEC_CRC_ERROR:
 641                netdev_dbg(dev, "CRC error\n");
 642                cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 643                break;
 644        default:
 645                break;
 646        }
 647
 648        stats->rx_packets++;
 649        stats->rx_bytes += cf->len;
 650
 651        if (cdev->is_peripheral)
 652                timestamp = m_can_get_timestamp(cdev);
 653
 654        m_can_receive_skb(cdev, skb, timestamp);
 655
 656        return 1;
 657}
 658
 659static int __m_can_get_berr_counter(const struct net_device *dev,
 660                                    struct can_berr_counter *bec)
 661{
 662        struct m_can_classdev *cdev = netdev_priv(dev);
 663        unsigned int ecr;
 664
 665        ecr = m_can_read(cdev, M_CAN_ECR);
 666        bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
 667        bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
 668
 669        return 0;
 670}
 671
 672static int m_can_clk_start(struct m_can_classdev *cdev)
 673{
 674        if (cdev->pm_clock_support == 0)
 675                return 0;
 676
 677        return pm_runtime_resume_and_get(cdev->dev);
 678}
 679
 680static void m_can_clk_stop(struct m_can_classdev *cdev)
 681{
 682        if (cdev->pm_clock_support)
 683                pm_runtime_put_sync(cdev->dev);
 684}
 685
 686static int m_can_get_berr_counter(const struct net_device *dev,
 687                                  struct can_berr_counter *bec)
 688{
 689        struct m_can_classdev *cdev = netdev_priv(dev);
 690        int err;
 691
 692        err = m_can_clk_start(cdev);
 693        if (err)
 694                return err;
 695
 696        __m_can_get_berr_counter(dev, bec);
 697
 698        m_can_clk_stop(cdev);
 699
 700        return 0;
 701}
 702
 703static int m_can_handle_state_change(struct net_device *dev,
 704                                     enum can_state new_state)
 705{
 706        struct m_can_classdev *cdev = netdev_priv(dev);
 707        struct net_device_stats *stats = &dev->stats;
 708        struct can_frame *cf;
 709        struct sk_buff *skb;
 710        struct can_berr_counter bec;
 711        unsigned int ecr;
 712        u32 timestamp = 0;
 713
 714        switch (new_state) {
 715        case CAN_STATE_ERROR_WARNING:
 716                /* error warning state */
 717                cdev->can.can_stats.error_warning++;
 718                cdev->can.state = CAN_STATE_ERROR_WARNING;
 719                break;
 720        case CAN_STATE_ERROR_PASSIVE:
 721                /* error passive state */
 722                cdev->can.can_stats.error_passive++;
 723                cdev->can.state = CAN_STATE_ERROR_PASSIVE;
 724                break;
 725        case CAN_STATE_BUS_OFF:
 726                /* bus-off state */
 727                cdev->can.state = CAN_STATE_BUS_OFF;
 728                m_can_disable_all_interrupts(cdev);
 729                cdev->can.can_stats.bus_off++;
 730                can_bus_off(dev);
 731                break;
 732        default:
 733                break;
 734        }
 735
 736        /* propagate the error condition to the CAN stack */
 737        skb = alloc_can_err_skb(dev, &cf);
 738        if (unlikely(!skb))
 739                return 0;
 740
 741        __m_can_get_berr_counter(dev, &bec);
 742
 743        switch (new_state) {
 744        case CAN_STATE_ERROR_WARNING:
 745                /* error warning state */
 746                cf->can_id |= CAN_ERR_CRTL;
 747                cf->data[1] = (bec.txerr > bec.rxerr) ?
 748                        CAN_ERR_CRTL_TX_WARNING :
 749                        CAN_ERR_CRTL_RX_WARNING;
 750                cf->data[6] = bec.txerr;
 751                cf->data[7] = bec.rxerr;
 752                break;
 753        case CAN_STATE_ERROR_PASSIVE:
 754                /* error passive state */
 755                cf->can_id |= CAN_ERR_CRTL;
 756                ecr = m_can_read(cdev, M_CAN_ECR);
 757                if (ecr & ECR_RP)
 758                        cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 759                if (bec.txerr > 127)
 760                        cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 761                cf->data[6] = bec.txerr;
 762                cf->data[7] = bec.rxerr;
 763                break;
 764        case CAN_STATE_BUS_OFF:
 765                /* bus-off state */
 766                cf->can_id |= CAN_ERR_BUSOFF;
 767                break;
 768        default:
 769                break;
 770        }
 771
 772        stats->rx_packets++;
 773        stats->rx_bytes += cf->len;
 774
 775        if (cdev->is_peripheral)
 776                timestamp = m_can_get_timestamp(cdev);
 777
 778        m_can_receive_skb(cdev, skb, timestamp);
 779
 780        return 1;
 781}
 782
 783static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 784{
 785        struct m_can_classdev *cdev = netdev_priv(dev);
 786        int work_done = 0;
 787
 788        if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
 789                netdev_dbg(dev, "entered error warning state\n");
 790                work_done += m_can_handle_state_change(dev,
 791                                                       CAN_STATE_ERROR_WARNING);
 792        }
 793
 794        if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
 795                netdev_dbg(dev, "entered error passive state\n");
 796                work_done += m_can_handle_state_change(dev,
 797                                                       CAN_STATE_ERROR_PASSIVE);
 798        }
 799
 800        if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
 801                netdev_dbg(dev, "entered error bus off state\n");
 802                work_done += m_can_handle_state_change(dev,
 803                                                       CAN_STATE_BUS_OFF);
 804        }
 805
 806        return work_done;
 807}
 808
 809static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 810{
 811        if (irqstatus & IR_WDI)
 812                netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 813        if (irqstatus & IR_ELO)
 814                netdev_err(dev, "Error Logging Overflow\n");
 815        if (irqstatus & IR_BEU)
 816                netdev_err(dev, "Bit Error Uncorrected\n");
 817        if (irqstatus & IR_BEC)
 818                netdev_err(dev, "Bit Error Corrected\n");
 819        if (irqstatus & IR_TOO)
 820                netdev_err(dev, "Timeout reached\n");
 821        if (irqstatus & IR_MRAF)
 822                netdev_err(dev, "Message RAM access failure occurred\n");
 823}
 824
 825static inline bool is_lec_err(u32 psr)
 826{
 827        psr &= LEC_UNUSED;
 828
 829        return psr && (psr != LEC_UNUSED);
 830}
 831
 832static inline bool m_can_is_protocol_err(u32 irqstatus)
 833{
 834        return irqstatus & IR_ERR_LEC_31X;
 835}
 836
 837static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
 838{
 839        struct net_device_stats *stats = &dev->stats;
 840        struct m_can_classdev *cdev = netdev_priv(dev);
 841        struct can_frame *cf;
 842        struct sk_buff *skb;
 843        u32 timestamp = 0;
 844
 845        /* propagate the error condition to the CAN stack */
 846        skb = alloc_can_err_skb(dev, &cf);
 847
 848        /* update tx error stats since there is protocol error */
 849        stats->tx_errors++;
 850
 851        /* update arbitration lost status */
 852        if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
 853                netdev_dbg(dev, "Protocol error in Arbitration fail\n");
 854                cdev->can.can_stats.arbitration_lost++;
 855                if (skb) {
 856                        cf->can_id |= CAN_ERR_LOSTARB;
 857                        cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
 858                }
 859        }
 860
 861        if (unlikely(!skb)) {
 862                netdev_dbg(dev, "allocation of skb failed\n");
 863                return 0;
 864        }
 865
 866        if (cdev->is_peripheral)
 867                timestamp = m_can_get_timestamp(cdev);
 868
 869        m_can_receive_skb(cdev, skb, timestamp);
 870
 871        return 1;
 872}
 873
 874static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 875                                   u32 psr)
 876{
 877        struct m_can_classdev *cdev = netdev_priv(dev);
 878        int work_done = 0;
 879
 880        if (irqstatus & IR_RF0L)
 881                work_done += m_can_handle_lost_msg(dev);
 882
 883        /* handle lec errors on the bus */
 884        if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 885            is_lec_err(psr))
 886                work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
 887
 888        /* handle protocol errors in arbitration phase */
 889        if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 890            m_can_is_protocol_err(irqstatus))
 891                work_done += m_can_handle_protocol_error(dev, irqstatus);
 892
 893        /* other unproccessed error interrupts */
 894        m_can_handle_other_err(dev, irqstatus);
 895
 896        return work_done;
 897}
 898
 899static int m_can_rx_handler(struct net_device *dev, int quota)
 900{
 901        struct m_can_classdev *cdev = netdev_priv(dev);
 902        int rx_work_or_err;
 903        int work_done = 0;
 904        u32 irqstatus, psr;
 905
 906        irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
 907        if (!irqstatus)
 908                goto end;
 909
 910        /* Errata workaround for issue "Needless activation of MRAF irq"
 911         * During frame reception while the MCAN is in Error Passive state
 912         * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
 913         * it may happen that MCAN_IR.MRAF is set although there was no
 914         * Message RAM access failure.
 915         * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
 916         * The Message RAM Access Failure interrupt routine needs to check
 917         * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
 918         * In this case, reset MCAN_IR.MRAF. No further action is required.
 919         */
 920        if (cdev->version <= 31 && irqstatus & IR_MRAF &&
 921            m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
 922                struct can_berr_counter bec;
 923
 924                __m_can_get_berr_counter(dev, &bec);
 925                if (bec.rxerr == 127) {
 926                        m_can_write(cdev, M_CAN_IR, IR_MRAF);
 927                        irqstatus &= ~IR_MRAF;
 928                }
 929        }
 930
 931        psr = m_can_read(cdev, M_CAN_PSR);
 932
 933        if (irqstatus & IR_ERR_STATE)
 934                work_done += m_can_handle_state_errors(dev, psr);
 935
 936        if (irqstatus & IR_ERR_BUS_30X)
 937                work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
 938
 939        if (irqstatus & IR_RF0N) {
 940                rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
 941                if (rx_work_or_err < 0)
 942                        return rx_work_or_err;
 943
 944                work_done += rx_work_or_err;
 945        }
 946end:
 947        return work_done;
 948}
 949
 950static int m_can_rx_peripheral(struct net_device *dev)
 951{
 952        struct m_can_classdev *cdev = netdev_priv(dev);
 953        int work_done;
 954
 955        work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
 956
 957        /* Don't re-enable interrupts if the driver had a fatal error
 958         * (e.g., FIFO read failure).
 959         */
 960        if (work_done >= 0)
 961                m_can_enable_all_interrupts(cdev);
 962
 963        return work_done;
 964}
 965
 966static int m_can_poll(struct napi_struct *napi, int quota)
 967{
 968        struct net_device *dev = napi->dev;
 969        struct m_can_classdev *cdev = netdev_priv(dev);
 970        int work_done;
 971
 972        work_done = m_can_rx_handler(dev, quota);
 973
 974        /* Don't re-enable interrupts if the driver had a fatal error
 975         * (e.g., FIFO read failure).
 976         */
 977        if (work_done >= 0 && work_done < quota) {
 978                napi_complete_done(napi, work_done);
 979                m_can_enable_all_interrupts(cdev);
 980        }
 981
 982        return work_done;
 983}
 984
 985/* Echo tx skb and update net stats. Peripherals use rx-offload for
 986 * echo. timestamp is used for peripherals to ensure correct ordering
 987 * by rx-offload, and is ignored for non-peripherals.
 988 */
 989static void m_can_tx_update_stats(struct m_can_classdev *cdev,
 990                                  unsigned int msg_mark,
 991                                  u32 timestamp)
 992{
 993        struct net_device *dev = cdev->net;
 994        struct net_device_stats *stats = &dev->stats;
 995
 996        if (cdev->is_peripheral)
 997                stats->tx_bytes +=
 998                        can_rx_offload_get_echo_skb(&cdev->offload,
 999                                                    msg_mark,
1000                                                    timestamp,
1001                                                    NULL);
1002        else
1003                stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1004
1005        stats->tx_packets++;
1006}
1007
1008static int m_can_echo_tx_event(struct net_device *dev)
1009{
1010        u32 txe_count = 0;
1011        u32 m_can_txefs;
1012        u32 fgi = 0;
1013        int i = 0;
1014        unsigned int msg_mark;
1015
1016        struct m_can_classdev *cdev = netdev_priv(dev);
1017
1018        /* read tx event fifo status */
1019        m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1020
1021        /* Get Tx Event fifo element count */
1022        txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1023
1024        /* Get and process all sent elements */
1025        for (i = 0; i < txe_count; i++) {
1026                u32 txe, timestamp = 0;
1027                int err;
1028
1029                /* retrieve get index */
1030                fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1031
1032                /* get message marker, timestamp */
1033                err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1034                if (err) {
1035                        netdev_err(dev, "TXE FIFO read returned %d\n", err);
1036                        return err;
1037                }
1038
1039                msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1040                timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
1041
1042                /* ack txe element */
1043                m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1044                                                          fgi));
1045
1046                /* update stats */
1047                m_can_tx_update_stats(cdev, msg_mark, timestamp);
1048        }
1049
1050        return 0;
1051}
1052
1053static irqreturn_t m_can_isr(int irq, void *dev_id)
1054{
1055        struct net_device *dev = (struct net_device *)dev_id;
1056        struct m_can_classdev *cdev = netdev_priv(dev);
1057        u32 ir;
1058
1059        if (pm_runtime_suspended(cdev->dev))
1060                return IRQ_NONE;
1061        ir = m_can_read(cdev, M_CAN_IR);
1062        if (!ir)
1063                return IRQ_NONE;
1064
1065        /* ACK all irqs */
1066        if (ir & IR_ALL_INT)
1067                m_can_write(cdev, M_CAN_IR, ir);
1068
1069        if (cdev->ops->clear_interrupts)
1070                cdev->ops->clear_interrupts(cdev);
1071
1072        /* schedule NAPI in case of
1073         * - rx IRQ
1074         * - state change IRQ
1075         * - bus error IRQ and bus error reporting
1076         */
1077        if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1078                cdev->irqstatus = ir;
1079                m_can_disable_all_interrupts(cdev);
1080                if (!cdev->is_peripheral)
1081                        napi_schedule(&cdev->napi);
1082                else if (m_can_rx_peripheral(dev) < 0)
1083                        goto out_fail;
1084        }
1085
1086        if (cdev->version == 30) {
1087                if (ir & IR_TC) {
1088                        /* Transmission Complete Interrupt*/
1089                        u32 timestamp = 0;
1090
1091                        if (cdev->is_peripheral)
1092                                timestamp = m_can_get_timestamp(cdev);
1093                        m_can_tx_update_stats(cdev, 0, timestamp);
1094
1095                        can_led_event(dev, CAN_LED_EVENT_TX);
1096                        netif_wake_queue(dev);
1097                }
1098        } else  {
1099                if (ir & IR_TEFN) {
1100                        /* New TX FIFO Element arrived */
1101                        if (m_can_echo_tx_event(dev) != 0)
1102                                goto out_fail;
1103
1104                        can_led_event(dev, CAN_LED_EVENT_TX);
1105                        if (netif_queue_stopped(dev) &&
1106                            !m_can_tx_fifo_full(cdev))
1107                                netif_wake_queue(dev);
1108                }
1109        }
1110
1111        if (cdev->is_peripheral)
1112                can_rx_offload_threaded_irq_finish(&cdev->offload);
1113
1114        return IRQ_HANDLED;
1115
1116out_fail:
1117        m_can_disable_all_interrupts(cdev);
1118        return IRQ_HANDLED;
1119}
1120
1121static const struct can_bittiming_const m_can_bittiming_const_30X = {
1122        .name = KBUILD_MODNAME,
1123        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
1124        .tseg1_max = 64,
1125        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
1126        .tseg2_max = 16,
1127        .sjw_max = 16,
1128        .brp_min = 1,
1129        .brp_max = 1024,
1130        .brp_inc = 1,
1131};
1132
1133static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1134        .name = KBUILD_MODNAME,
1135        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
1136        .tseg1_max = 16,
1137        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
1138        .tseg2_max = 8,
1139        .sjw_max = 4,
1140        .brp_min = 1,
1141        .brp_max = 32,
1142        .brp_inc = 1,
1143};
1144
1145static const struct can_bittiming_const m_can_bittiming_const_31X = {
1146        .name = KBUILD_MODNAME,
1147        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
1148        .tseg1_max = 256,
1149        .tseg2_min = 2,         /* Time segment 2 = phase_seg2 */
1150        .tseg2_max = 128,
1151        .sjw_max = 128,
1152        .brp_min = 1,
1153        .brp_max = 512,
1154        .brp_inc = 1,
1155};
1156
1157static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1158        .name = KBUILD_MODNAME,
1159        .tseg1_min = 1,         /* Time segment 1 = prop_seg + phase_seg1 */
1160        .tseg1_max = 32,
1161        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
1162        .tseg2_max = 16,
1163        .sjw_max = 16,
1164        .brp_min = 1,
1165        .brp_max = 32,
1166        .brp_inc = 1,
1167};
1168
1169static int m_can_set_bittiming(struct net_device *dev)
1170{
1171        struct m_can_classdev *cdev = netdev_priv(dev);
1172        const struct can_bittiming *bt = &cdev->can.bittiming;
1173        const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1174        u16 brp, sjw, tseg1, tseg2;
1175        u32 reg_btp;
1176
1177        brp = bt->brp - 1;
1178        sjw = bt->sjw - 1;
1179        tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1180        tseg2 = bt->phase_seg2 - 1;
1181        reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1182                  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1183                  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1184                  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1185        m_can_write(cdev, M_CAN_NBTP, reg_btp);
1186
1187        if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1188                reg_btp = 0;
1189                brp = dbt->brp - 1;
1190                sjw = dbt->sjw - 1;
1191                tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1192                tseg2 = dbt->phase_seg2 - 1;
1193
1194                /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1195                 * This is mentioned in the "Bit Time Requirements for CAN FD"
1196                 * paper presented at the International CAN Conference 2013
1197                 */
1198                if (dbt->bitrate > 2500000) {
1199                        u32 tdco, ssp;
1200
1201                        /* Use the same value of secondary sampling point
1202                         * as the data sampling point
1203                         */
1204                        ssp = dbt->sample_point;
1205
1206                        /* Equation based on Bosch's M_CAN User Manual's
1207                         * Transmitter Delay Compensation Section
1208                         */
1209                        tdco = (cdev->can.clock.freq / 1000) *
1210                                ssp / dbt->bitrate;
1211
1212                        /* Max valid TDCO value is 127 */
1213                        if (tdco > 127) {
1214                                netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1215                                            tdco);
1216                                tdco = 127;
1217                        }
1218
1219                        reg_btp |= DBTP_TDC;
1220                        m_can_write(cdev, M_CAN_TDCR,
1221                                    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1222                }
1223
1224                reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1225                        FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1226                        FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1227                        FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1228
1229                m_can_write(cdev, M_CAN_DBTP, reg_btp);
1230        }
1231
1232        return 0;
1233}
1234
1235/* Configure M_CAN chip:
1236 * - set rx buffer/fifo element size
1237 * - configure rx fifo
1238 * - accept non-matching frame into fifo 0
1239 * - configure tx buffer
1240 *              - >= v3.1.x: TX FIFO is used
1241 * - configure mode
1242 * - setup bittiming
1243 * - configure timestamp generation
1244 */
1245static void m_can_chip_config(struct net_device *dev)
1246{
1247        struct m_can_classdev *cdev = netdev_priv(dev);
1248        u32 cccr, test;
1249
1250        m_can_config_endisable(cdev, true);
1251
1252        /* RX Buffer/FIFO Element Size 64 bytes data field */
1253        m_can_write(cdev, M_CAN_RXESC,
1254                    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1255                    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1256                    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1257
1258        /* Accept Non-matching Frames Into FIFO 0 */
1259        m_can_write(cdev, M_CAN_GFC, 0x0);
1260
1261        if (cdev->version == 30) {
1262                /* only support one Tx Buffer currently */
1263                m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1264                            cdev->mcfg[MRAM_TXB].off);
1265        } else {
1266                /* TX FIFO is used for newer IP Core versions */
1267                m_can_write(cdev, M_CAN_TXBC,
1268                            FIELD_PREP(TXBC_TFQS_MASK,
1269                                       cdev->mcfg[MRAM_TXB].num) |
1270                            cdev->mcfg[MRAM_TXB].off);
1271        }
1272
1273        /* support 64 bytes payload */
1274        m_can_write(cdev, M_CAN_TXESC,
1275                    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1276
1277        /* TX Event FIFO */
1278        if (cdev->version == 30) {
1279                m_can_write(cdev, M_CAN_TXEFC,
1280                            FIELD_PREP(TXEFC_EFS_MASK, 1) |
1281                            cdev->mcfg[MRAM_TXE].off);
1282        } else {
1283                /* Full TX Event FIFO is used */
1284                m_can_write(cdev, M_CAN_TXEFC,
1285                            FIELD_PREP(TXEFC_EFS_MASK,
1286                                       cdev->mcfg[MRAM_TXE].num) |
1287                            cdev->mcfg[MRAM_TXE].off);
1288        }
1289
1290        /* rx fifo configuration, blocking mode, fifo size 1 */
1291        m_can_write(cdev, M_CAN_RXF0C,
1292                    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1293                    cdev->mcfg[MRAM_RXF0].off);
1294
1295        m_can_write(cdev, M_CAN_RXF1C,
1296                    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1297                    cdev->mcfg[MRAM_RXF1].off);
1298
1299        cccr = m_can_read(cdev, M_CAN_CCCR);
1300        test = m_can_read(cdev, M_CAN_TEST);
1301        test &= ~TEST_LBCK;
1302        if (cdev->version == 30) {
1303                /* Version 3.0.x */
1304
1305                cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1306                          FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1307                          FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1308
1309                if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1310                        cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1311
1312        } else {
1313                /* Version 3.1.x or 3.2.x */
1314                cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1315                          CCCR_NISO | CCCR_DAR);
1316
1317                /* Only 3.2.x has NISO Bit implemented */
1318                if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1319                        cccr |= CCCR_NISO;
1320
1321                if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1322                        cccr |= (CCCR_BRSE | CCCR_FDOE);
1323        }
1324
1325        /* Loopback Mode */
1326        if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1327                cccr |= CCCR_TEST | CCCR_MON;
1328                test |= TEST_LBCK;
1329        }
1330
1331        /* Enable Monitoring (all versions) */
1332        if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1333                cccr |= CCCR_MON;
1334
1335        /* Disable Auto Retransmission (all versions) */
1336        if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1337                cccr |= CCCR_DAR;
1338
1339        /* Write config */
1340        m_can_write(cdev, M_CAN_CCCR, cccr);
1341        m_can_write(cdev, M_CAN_TEST, test);
1342
1343        /* Enable interrupts */
1344        m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1345        if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1346                if (cdev->version == 30)
1347                        m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1348                                    ~(IR_ERR_LEC_30X));
1349                else
1350                        m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1351                                    ~(IR_ERR_LEC_31X));
1352        else
1353                m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1354
1355        /* route all interrupts to INT0 */
1356        m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1357
1358        /* set bittiming params */
1359        m_can_set_bittiming(dev);
1360
1361        /* enable internal timestamp generation, with a prescalar of 16. The
1362         * prescalar is applied to the nominal bit timing
1363         */
1364        m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1365
1366        m_can_config_endisable(cdev, false);
1367
1368        if (cdev->ops->init)
1369                cdev->ops->init(cdev);
1370}
1371
1372static void m_can_start(struct net_device *dev)
1373{
1374        struct m_can_classdev *cdev = netdev_priv(dev);
1375
1376        /* basic m_can configuration */
1377        m_can_chip_config(dev);
1378
1379        cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1380
1381        m_can_enable_all_interrupts(cdev);
1382}
1383
1384static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1385{
1386        switch (mode) {
1387        case CAN_MODE_START:
1388                m_can_clean(dev);
1389                m_can_start(dev);
1390                netif_wake_queue(dev);
1391                break;
1392        default:
1393                return -EOPNOTSUPP;
1394        }
1395
1396        return 0;
1397}
1398
1399/* Checks core release number of M_CAN
1400 * returns 0 if an unsupported device is detected
1401 * else it returns the release and step coded as:
1402 * return value = 10 * <release> + 1 * <step>
1403 */
1404static int m_can_check_core_release(struct m_can_classdev *cdev)
1405{
1406        u32 crel_reg;
1407        u8 rel;
1408        u8 step;
1409        int res;
1410
1411        /* Read Core Release Version and split into version number
1412         * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1413         */
1414        crel_reg = m_can_read(cdev, M_CAN_CREL);
1415        rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1416        step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1417
1418        if (rel == 3) {
1419                /* M_CAN v3.x.y: create return value */
1420                res = 30 + step;
1421        } else {
1422                /* Unsupported M_CAN version */
1423                res = 0;
1424        }
1425
1426        return res;
1427}
1428
1429/* Selectable Non ISO support only in version 3.2.x
1430 * This function checks if the bit is writable.
1431 */
1432static bool m_can_niso_supported(struct m_can_classdev *cdev)
1433{
1434        u32 cccr_reg, cccr_poll = 0;
1435        int niso_timeout = -ETIMEDOUT;
1436        int i;
1437
1438        m_can_config_endisable(cdev, true);
1439        cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1440        cccr_reg |= CCCR_NISO;
1441        m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1442
1443        for (i = 0; i <= 10; i++) {
1444                cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1445                if (cccr_poll == cccr_reg) {
1446                        niso_timeout = 0;
1447                        break;
1448                }
1449
1450                usleep_range(1, 5);
1451        }
1452
1453        /* Clear NISO */
1454        cccr_reg &= ~(CCCR_NISO);
1455        m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1456
1457        m_can_config_endisable(cdev, false);
1458
1459        /* return false if time out (-ETIMEDOUT), else return true */
1460        return !niso_timeout;
1461}
1462
1463static int m_can_dev_setup(struct m_can_classdev *cdev)
1464{
1465        struct net_device *dev = cdev->net;
1466        int m_can_version;
1467
1468        m_can_version = m_can_check_core_release(cdev);
1469        /* return if unsupported version */
1470        if (!m_can_version) {
1471                dev_err(cdev->dev, "Unsupported version number: %2d",
1472                        m_can_version);
1473                return -EINVAL;
1474        }
1475
1476        if (!cdev->is_peripheral)
1477                netif_napi_add(dev, &cdev->napi,
1478                               m_can_poll, M_CAN_NAPI_WEIGHT);
1479
1480        /* Shared properties of all M_CAN versions */
1481        cdev->version = m_can_version;
1482        cdev->can.do_set_mode = m_can_set_mode;
1483        cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1484
1485        /* Set M_CAN supported operations */
1486        cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1487                CAN_CTRLMODE_LISTENONLY |
1488                CAN_CTRLMODE_BERR_REPORTING |
1489                CAN_CTRLMODE_FD |
1490                CAN_CTRLMODE_ONE_SHOT;
1491
1492        /* Set properties depending on M_CAN version */
1493        switch (cdev->version) {
1494        case 30:
1495                /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1496                can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1497                cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1498                cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1499                break;
1500        case 31:
1501                /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1502                can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1503                cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1504                cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1505                break;
1506        case 32:
1507        case 33:
1508                /* Support both MCAN version v3.2.x and v3.3.0 */
1509                cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1510                cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1511
1512                cdev->can.ctrlmode_supported |=
1513                        (m_can_niso_supported(cdev) ?
1514                         CAN_CTRLMODE_FD_NON_ISO : 0);
1515                break;
1516        default:
1517                dev_err(cdev->dev, "Unsupported version number: %2d",
1518                        cdev->version);
1519                return -EINVAL;
1520        }
1521
1522        if (cdev->ops->init)
1523                cdev->ops->init(cdev);
1524
1525        return 0;
1526}
1527
1528static void m_can_stop(struct net_device *dev)
1529{
1530        struct m_can_classdev *cdev = netdev_priv(dev);
1531
1532        /* disable all interrupts */
1533        m_can_disable_all_interrupts(cdev);
1534
1535        /* Set init mode to disengage from the network */
1536        m_can_config_endisable(cdev, true);
1537
1538        /* set the state as STOPPED */
1539        cdev->can.state = CAN_STATE_STOPPED;
1540}
1541
1542static int m_can_close(struct net_device *dev)
1543{
1544        struct m_can_classdev *cdev = netdev_priv(dev);
1545
1546        netif_stop_queue(dev);
1547
1548        if (!cdev->is_peripheral)
1549                napi_disable(&cdev->napi);
1550
1551        m_can_stop(dev);
1552        m_can_clk_stop(cdev);
1553        free_irq(dev->irq, dev);
1554
1555        if (cdev->is_peripheral) {
1556                cdev->tx_skb = NULL;
1557                destroy_workqueue(cdev->tx_wq);
1558                cdev->tx_wq = NULL;
1559        }
1560
1561        if (cdev->is_peripheral)
1562                can_rx_offload_disable(&cdev->offload);
1563
1564        close_candev(dev);
1565        can_led_event(dev, CAN_LED_EVENT_STOP);
1566
1567        phy_power_off(cdev->transceiver);
1568
1569        return 0;
1570}
1571
1572static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1573{
1574        struct m_can_classdev *cdev = netdev_priv(dev);
1575        /*get wrap around for loopback skb index */
1576        unsigned int wrap = cdev->can.echo_skb_max;
1577        int next_idx;
1578
1579        /* calculate next index */
1580        next_idx = (++putidx >= wrap ? 0 : putidx);
1581
1582        /* check if occupied */
1583        return !!cdev->can.echo_skb[next_idx];
1584}
1585
1586static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1587{
1588        struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1589        struct net_device *dev = cdev->net;
1590        struct sk_buff *skb = cdev->tx_skb;
1591        struct id_and_dlc fifo_header;
1592        u32 cccr, fdflags;
1593        int err;
1594        int putidx;
1595
1596        cdev->tx_skb = NULL;
1597
1598        /* Generate ID field for TX buffer Element */
1599        /* Common to all supported M_CAN versions */
1600        if (cf->can_id & CAN_EFF_FLAG) {
1601                fifo_header.id = cf->can_id & CAN_EFF_MASK;
1602                fifo_header.id |= TX_BUF_XTD;
1603        } else {
1604                fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1605        }
1606
1607        if (cf->can_id & CAN_RTR_FLAG)
1608                fifo_header.id |= TX_BUF_RTR;
1609
1610        if (cdev->version == 30) {
1611                netif_stop_queue(dev);
1612
1613                fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1614
1615                /* Write the frame ID, DLC, and payload to the FIFO element. */
1616                err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1617                if (err)
1618                        goto out_fail;
1619
1620                err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1621                                       cf->data, DIV_ROUND_UP(cf->len, 4));
1622                if (err)
1623                        goto out_fail;
1624
1625                can_put_echo_skb(skb, dev, 0, 0);
1626
1627                if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1628                        cccr = m_can_read(cdev, M_CAN_CCCR);
1629                        cccr &= ~CCCR_CMR_MASK;
1630                        if (can_is_canfd_skb(skb)) {
1631                                if (cf->flags & CANFD_BRS)
1632                                        cccr |= FIELD_PREP(CCCR_CMR_MASK,
1633                                                           CCCR_CMR_CANFD_BRS);
1634                                else
1635                                        cccr |= FIELD_PREP(CCCR_CMR_MASK,
1636                                                           CCCR_CMR_CANFD);
1637                        } else {
1638                                cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1639                        }
1640                        m_can_write(cdev, M_CAN_CCCR, cccr);
1641                }
1642                m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1643                m_can_write(cdev, M_CAN_TXBAR, 0x1);
1644                /* End of xmit function for version 3.0.x */
1645        } else {
1646                /* Transmit routine for version >= v3.1.x */
1647
1648                /* Check if FIFO full */
1649                if (m_can_tx_fifo_full(cdev)) {
1650                        /* This shouldn't happen */
1651                        netif_stop_queue(dev);
1652                        netdev_warn(dev,
1653                                    "TX queue active although FIFO is full.");
1654
1655                        if (cdev->is_peripheral) {
1656                                kfree_skb(skb);
1657                                dev->stats.tx_dropped++;
1658                                return NETDEV_TX_OK;
1659                        } else {
1660                                return NETDEV_TX_BUSY;
1661                        }
1662                }
1663
1664                /* get put index for frame */
1665                putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1666                                   m_can_read(cdev, M_CAN_TXFQS));
1667
1668                /* Construct DLC Field, with CAN-FD configuration.
1669                 * Use the put index of the fifo as the message marker,
1670                 * used in the TX interrupt for sending the correct echo frame.
1671                 */
1672
1673                /* get CAN FD configuration of frame */
1674                fdflags = 0;
1675                if (can_is_canfd_skb(skb)) {
1676                        fdflags |= TX_BUF_FDF;
1677                        if (cf->flags & CANFD_BRS)
1678                                fdflags |= TX_BUF_BRS;
1679                }
1680
1681                fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1682                        FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1683                        fdflags | TX_BUF_EFC;
1684                err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1685                if (err)
1686                        goto out_fail;
1687
1688                err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1689                                       cf->data, DIV_ROUND_UP(cf->len, 4));
1690                if (err)
1691                        goto out_fail;
1692
1693                /* Push loopback echo.
1694                 * Will be looped back on TX interrupt based on message marker
1695                 */
1696                can_put_echo_skb(skb, dev, putidx, 0);
1697
1698                /* Enable TX FIFO element to start transfer  */
1699                m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1700
1701                /* stop network queue if fifo full */
1702                if (m_can_tx_fifo_full(cdev) ||
1703                    m_can_next_echo_skb_occupied(dev, putidx))
1704                        netif_stop_queue(dev);
1705        }
1706
1707        return NETDEV_TX_OK;
1708
1709out_fail:
1710        netdev_err(dev, "FIFO write returned %d\n", err);
1711        m_can_disable_all_interrupts(cdev);
1712        return NETDEV_TX_BUSY;
1713}
1714
1715static void m_can_tx_work_queue(struct work_struct *ws)
1716{
1717        struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1718                                                   tx_work);
1719
1720        m_can_tx_handler(cdev);
1721}
1722
1723static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1724                                    struct net_device *dev)
1725{
1726        struct m_can_classdev *cdev = netdev_priv(dev);
1727
1728        if (can_dropped_invalid_skb(dev, skb))
1729                return NETDEV_TX_OK;
1730
1731        if (cdev->is_peripheral) {
1732                if (cdev->tx_skb) {
1733                        netdev_err(dev, "hard_xmit called while tx busy\n");
1734                        return NETDEV_TX_BUSY;
1735                }
1736
1737                if (cdev->can.state == CAN_STATE_BUS_OFF) {
1738                        m_can_clean(dev);
1739                } else {
1740                        /* Need to stop the queue to avoid numerous requests
1741                         * from being sent.  Suggested improvement is to create
1742                         * a queueing mechanism that will queue the skbs and
1743                         * process them in order.
1744                         */
1745                        cdev->tx_skb = skb;
1746                        netif_stop_queue(cdev->net);
1747                        queue_work(cdev->tx_wq, &cdev->tx_work);
1748                }
1749        } else {
1750                cdev->tx_skb = skb;
1751                return m_can_tx_handler(cdev);
1752        }
1753
1754        return NETDEV_TX_OK;
1755}
1756
1757static int m_can_open(struct net_device *dev)
1758{
1759        struct m_can_classdev *cdev = netdev_priv(dev);
1760        int err;
1761
1762        err = phy_power_on(cdev->transceiver);
1763        if (err)
1764                return err;
1765
1766        err = m_can_clk_start(cdev);
1767        if (err)
1768                goto out_phy_power_off;
1769
1770        /* open the can device */
1771        err = open_candev(dev);
1772        if (err) {
1773                netdev_err(dev, "failed to open can device\n");
1774                goto exit_disable_clks;
1775        }
1776
1777        if (cdev->is_peripheral)
1778                can_rx_offload_enable(&cdev->offload);
1779
1780        /* register interrupt handler */
1781        if (cdev->is_peripheral) {
1782                cdev->tx_skb = NULL;
1783                cdev->tx_wq = alloc_workqueue("mcan_wq",
1784                                              WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1785                if (!cdev->tx_wq) {
1786                        err = -ENOMEM;
1787                        goto out_wq_fail;
1788                }
1789
1790                INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1791
1792                err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1793                                           IRQF_ONESHOT,
1794                                           dev->name, dev);
1795        } else {
1796                err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1797                                  dev);
1798        }
1799
1800        if (err < 0) {
1801                netdev_err(dev, "failed to request interrupt\n");
1802                goto exit_irq_fail;
1803        }
1804
1805        /* start the m_can controller */
1806        m_can_start(dev);
1807
1808        can_led_event(dev, CAN_LED_EVENT_OPEN);
1809
1810        if (!cdev->is_peripheral)
1811                napi_enable(&cdev->napi);
1812
1813        netif_start_queue(dev);
1814
1815        return 0;
1816
1817exit_irq_fail:
1818        if (cdev->is_peripheral)
1819                destroy_workqueue(cdev->tx_wq);
1820out_wq_fail:
1821        if (cdev->is_peripheral)
1822                can_rx_offload_disable(&cdev->offload);
1823        close_candev(dev);
1824exit_disable_clks:
1825        m_can_clk_stop(cdev);
1826out_phy_power_off:
1827        phy_power_off(cdev->transceiver);
1828        return err;
1829}
1830
1831static const struct net_device_ops m_can_netdev_ops = {
1832        .ndo_open = m_can_open,
1833        .ndo_stop = m_can_close,
1834        .ndo_start_xmit = m_can_start_xmit,
1835        .ndo_change_mtu = can_change_mtu,
1836};
1837
1838static int register_m_can_dev(struct net_device *dev)
1839{
1840        dev->flags |= IFF_ECHO; /* we support local echo */
1841        dev->netdev_ops = &m_can_netdev_ops;
1842
1843        return register_candev(dev);
1844}
1845
1846static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1847                                const u32 *mram_config_vals)
1848{
1849        cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1850        cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1851        cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1852                cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1853        cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1854        cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1855                cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1856        cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1857                FIELD_MAX(RXFC_FS_MASK);
1858        cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1859                cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1860        cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1861                FIELD_MAX(RXFC_FS_MASK);
1862        cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1863                cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1864        cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1865        cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1866                cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1867        cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1868        cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1869                cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1870        cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1871                FIELD_MAX(TXBC_NDTB_MASK);
1872
1873        dev_dbg(cdev->dev,
1874                "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1875                cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1876                cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1877                cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1878                cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1879                cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1880                cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1881                cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1882}
1883
1884int m_can_init_ram(struct m_can_classdev *cdev)
1885{
1886        int end, i, start;
1887        int err = 0;
1888
1889        /* initialize the entire Message RAM in use to avoid possible
1890         * ECC/parity checksum errors when reading an uninitialized buffer
1891         */
1892        start = cdev->mcfg[MRAM_SIDF].off;
1893        end = cdev->mcfg[MRAM_TXB].off +
1894                cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1895
1896        for (i = start; i < end; i += 4) {
1897                err = m_can_fifo_write_no_off(cdev, i, 0x0);
1898                if (err)
1899                        break;
1900        }
1901
1902        return err;
1903}
1904EXPORT_SYMBOL_GPL(m_can_init_ram);
1905
1906int m_can_class_get_clocks(struct m_can_classdev *cdev)
1907{
1908        int ret = 0;
1909
1910        cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1911        cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1912
1913        if (IS_ERR(cdev->cclk)) {
1914                dev_err(cdev->dev, "no clock found\n");
1915                ret = -ENODEV;
1916        }
1917
1918        return ret;
1919}
1920EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1921
1922struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1923                                                int sizeof_priv)
1924{
1925        struct m_can_classdev *class_dev = NULL;
1926        u32 mram_config_vals[MRAM_CFG_LEN];
1927        struct net_device *net_dev;
1928        u32 tx_fifo_size;
1929        int ret;
1930
1931        ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1932                                             "bosch,mram-cfg",
1933                                             mram_config_vals,
1934                                             sizeof(mram_config_vals) / 4);
1935        if (ret) {
1936                dev_err(dev, "Could not get Message RAM configuration.");
1937                goto out;
1938        }
1939
1940        /* Get TX FIFO size
1941         * Defines the total amount of echo buffers for loopback
1942         */
1943        tx_fifo_size = mram_config_vals[7];
1944
1945        /* allocate the m_can device */
1946        net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1947        if (!net_dev) {
1948                dev_err(dev, "Failed to allocate CAN device");
1949                goto out;
1950        }
1951
1952        class_dev = netdev_priv(net_dev);
1953        class_dev->net = net_dev;
1954        class_dev->dev = dev;
1955        SET_NETDEV_DEV(net_dev, dev);
1956
1957        m_can_of_parse_mram(class_dev, mram_config_vals);
1958out:
1959        return class_dev;
1960}
1961EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1962
1963void m_can_class_free_dev(struct net_device *net)
1964{
1965        free_candev(net);
1966}
1967EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1968
1969int m_can_class_register(struct m_can_classdev *cdev)
1970{
1971        int ret;
1972
1973        if (cdev->pm_clock_support) {
1974                ret = m_can_clk_start(cdev);
1975                if (ret)
1976                        return ret;
1977        }
1978
1979        if (cdev->is_peripheral) {
1980                ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1981                                                M_CAN_NAPI_WEIGHT);
1982                if (ret)
1983                        goto clk_disable;
1984        }
1985
1986        ret = m_can_dev_setup(cdev);
1987        if (ret)
1988                goto rx_offload_del;
1989
1990        ret = register_m_can_dev(cdev->net);
1991        if (ret) {
1992                dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1993                        cdev->net->name, ret);
1994                goto rx_offload_del;
1995        }
1996
1997        devm_can_led_init(cdev->net);
1998
1999        of_can_transceiver(cdev->net);
2000
2001        dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2002                 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2003
2004        /* Probe finished
2005         * Stop clocks. They will be reactivated once the M_CAN device is opened
2006         */
2007        m_can_clk_stop(cdev);
2008
2009        return 0;
2010
2011rx_offload_del:
2012        if (cdev->is_peripheral)
2013                can_rx_offload_del(&cdev->offload);
2014clk_disable:
2015        m_can_clk_stop(cdev);
2016
2017        return ret;
2018}
2019EXPORT_SYMBOL_GPL(m_can_class_register);
2020
2021void m_can_class_unregister(struct m_can_classdev *cdev)
2022{
2023        if (cdev->is_peripheral)
2024                can_rx_offload_del(&cdev->offload);
2025        unregister_candev(cdev->net);
2026}
2027EXPORT_SYMBOL_GPL(m_can_class_unregister);
2028
2029int m_can_class_suspend(struct device *dev)
2030{
2031        struct m_can_classdev *cdev = dev_get_drvdata(dev);
2032        struct net_device *ndev = cdev->net;
2033
2034        if (netif_running(ndev)) {
2035                netif_stop_queue(ndev);
2036                netif_device_detach(ndev);
2037                m_can_stop(ndev);
2038                m_can_clk_stop(cdev);
2039        }
2040
2041        pinctrl_pm_select_sleep_state(dev);
2042
2043        cdev->can.state = CAN_STATE_SLEEPING;
2044
2045        return 0;
2046}
2047EXPORT_SYMBOL_GPL(m_can_class_suspend);
2048
2049int m_can_class_resume(struct device *dev)
2050{
2051        struct m_can_classdev *cdev = dev_get_drvdata(dev);
2052        struct net_device *ndev = cdev->net;
2053
2054        pinctrl_pm_select_default_state(dev);
2055
2056        cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2057
2058        if (netif_running(ndev)) {
2059                int ret;
2060
2061                ret = m_can_clk_start(cdev);
2062                if (ret)
2063                        return ret;
2064
2065                m_can_init_ram(cdev);
2066                m_can_start(ndev);
2067                netif_device_attach(ndev);
2068                netif_start_queue(ndev);
2069        }
2070
2071        return 0;
2072}
2073EXPORT_SYMBOL_GPL(m_can_class_resume);
2074
2075MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2076MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2077MODULE_LICENSE("GPL v2");
2078MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2079