linux/drivers/net/can/spi/mcp251xfd/mcp251xfd-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
   4//
   5// Copyright (c) 2019, 2020, 2021 Pengutronix,
   6//               Marc Kleine-Budde <kernel@pengutronix.de>
   7//
   8// Based on:
   9//
  10// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
  11//
  12// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
  13//
  14
  15#include <linux/bitfield.h>
  16#include <linux/clk.h>
  17#include <linux/device.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/module.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/property.h>
  22
  23#include <asm/unaligned.h>
  24
  25#include "mcp251xfd.h"
  26
  27#define DEVICE_NAME "mcp251xfd"
  28
  29static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2517fd = {
  30        .quirks = MCP251XFD_QUIRK_MAB_NO_WARN | MCP251XFD_QUIRK_CRC_REG |
  31                MCP251XFD_QUIRK_CRC_RX | MCP251XFD_QUIRK_CRC_TX |
  32                MCP251XFD_QUIRK_ECC,
  33        .model = MCP251XFD_MODEL_MCP2517FD,
  34};
  35
  36static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
  37        .quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
  38                MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
  39        .model = MCP251XFD_MODEL_MCP2518FD,
  40};
  41
  42/* Autodetect model, start with CRC enabled. */
  43static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
  44        .quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
  45                MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
  46        .model = MCP251XFD_MODEL_MCP251XFD,
  47};
  48
  49static const struct can_bittiming_const mcp251xfd_bittiming_const = {
  50        .name = DEVICE_NAME,
  51        .tseg1_min = 2,
  52        .tseg1_max = 256,
  53        .tseg2_min = 1,
  54        .tseg2_max = 128,
  55        .sjw_max = 128,
  56        .brp_min = 1,
  57        .brp_max = 256,
  58        .brp_inc = 1,
  59};
  60
  61static const struct can_bittiming_const mcp251xfd_data_bittiming_const = {
  62        .name = DEVICE_NAME,
  63        .tseg1_min = 1,
  64        .tseg1_max = 32,
  65        .tseg2_min = 1,
  66        .tseg2_max = 16,
  67        .sjw_max = 16,
  68        .brp_min = 1,
  69        .brp_max = 256,
  70        .brp_inc = 1,
  71};
  72
  73static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
  74{
  75        switch (model) {
  76        case MCP251XFD_MODEL_MCP2517FD:
  77                return "MCP2517FD";
  78        case MCP251XFD_MODEL_MCP2518FD:
  79                return "MCP2518FD";
  80        case MCP251XFD_MODEL_MCP251XFD:
  81                return "MCP251xFD";
  82        }
  83
  84        return "<unknown>";
  85}
  86
  87static inline const char *
  88mcp251xfd_get_model_str(const struct mcp251xfd_priv *priv)
  89{
  90        return __mcp251xfd_get_model_str(priv->devtype_data.model);
  91}
  92
  93static const char *mcp251xfd_get_mode_str(const u8 mode)
  94{
  95        switch (mode) {
  96        case MCP251XFD_REG_CON_MODE_MIXED:
  97                return "Mixed (CAN FD/CAN 2.0)";
  98        case MCP251XFD_REG_CON_MODE_SLEEP:
  99                return "Sleep";
 100        case MCP251XFD_REG_CON_MODE_INT_LOOPBACK:
 101                return "Internal Loopback";
 102        case MCP251XFD_REG_CON_MODE_LISTENONLY:
 103                return "Listen Only";
 104        case MCP251XFD_REG_CON_MODE_CONFIG:
 105                return "Configuration";
 106        case MCP251XFD_REG_CON_MODE_EXT_LOOPBACK:
 107                return "External Loopback";
 108        case MCP251XFD_REG_CON_MODE_CAN2_0:
 109                return "CAN 2.0";
 110        case MCP251XFD_REG_CON_MODE_RESTRICTED:
 111                return "Restricted Operation";
 112        }
 113
 114        return "<unknown>";
 115}
 116
 117static inline int mcp251xfd_vdd_enable(const struct mcp251xfd_priv *priv)
 118{
 119        if (!priv->reg_vdd)
 120                return 0;
 121
 122        return regulator_enable(priv->reg_vdd);
 123}
 124
 125static inline int mcp251xfd_vdd_disable(const struct mcp251xfd_priv *priv)
 126{
 127        if (!priv->reg_vdd)
 128                return 0;
 129
 130        return regulator_disable(priv->reg_vdd);
 131}
 132
 133static inline int
 134mcp251xfd_transceiver_enable(const struct mcp251xfd_priv *priv)
 135{
 136        if (!priv->reg_xceiver)
 137                return 0;
 138
 139        return regulator_enable(priv->reg_xceiver);
 140}
 141
 142static inline int
 143mcp251xfd_transceiver_disable(const struct mcp251xfd_priv *priv)
 144{
 145        if (!priv->reg_xceiver)
 146                return 0;
 147
 148        return regulator_disable(priv->reg_xceiver);
 149}
 150
 151static int mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv *priv)
 152{
 153        int err;
 154
 155        err = clk_prepare_enable(priv->clk);
 156        if (err)
 157                return err;
 158
 159        err = mcp251xfd_vdd_enable(priv);
 160        if (err)
 161                clk_disable_unprepare(priv->clk);
 162
 163        /* Wait for oscillator stabilisation time after power up */
 164        usleep_range(MCP251XFD_OSC_STAB_SLEEP_US,
 165                     2 * MCP251XFD_OSC_STAB_SLEEP_US);
 166
 167        return err;
 168}
 169
 170static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
 171{
 172        int err;
 173
 174        err = mcp251xfd_vdd_disable(priv);
 175        if (err)
 176                return err;
 177
 178        clk_disable_unprepare(priv->clk);
 179
 180        return 0;
 181}
 182
 183static inline u8
 184mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
 185                                union mcp251xfd_write_reg_buf *write_reg_buf,
 186                                const u16 reg, const u32 mask, const u32 val)
 187{
 188        u8 first_byte, last_byte, len;
 189        u8 *data;
 190        __le32 val_le32;
 191
 192        first_byte = mcp251xfd_first_byte_set(mask);
 193        last_byte = mcp251xfd_last_byte_set(mask);
 194        len = last_byte - first_byte + 1;
 195
 196        data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
 197        val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
 198        memcpy(data, &val_le32, len);
 199
 200        if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
 201                u16 crc;
 202
 203                mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
 204                                                     len);
 205                /* CRC */
 206                len += sizeof(write_reg_buf->crc.cmd);
 207                crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
 208                put_unaligned_be16(crc, (void *)write_reg_buf + len);
 209
 210                /* Total length */
 211                len += sizeof(write_reg_buf->crc.crc);
 212        } else {
 213                len += sizeof(write_reg_buf->nocrc.cmd);
 214        }
 215
 216        return len;
 217}
 218
 219static inline int
 220mcp251xfd_tef_tail_get_from_chip(const struct mcp251xfd_priv *priv,
 221                                 u8 *tef_tail)
 222{
 223        u32 tef_ua;
 224        int err;
 225
 226        err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFUA, &tef_ua);
 227        if (err)
 228                return err;
 229
 230        *tef_tail = tef_ua / sizeof(struct mcp251xfd_hw_tef_obj);
 231
 232        return 0;
 233}
 234
 235static inline int
 236mcp251xfd_tx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
 237                                u8 *tx_tail)
 238{
 239        u32 fifo_sta;
 240        int err;
 241
 242        err = regmap_read(priv->map_reg,
 243                          MCP251XFD_REG_FIFOSTA(MCP251XFD_TX_FIFO),
 244                          &fifo_sta);
 245        if (err)
 246                return err;
 247
 248        *tx_tail = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
 249
 250        return 0;
 251}
 252
 253static inline int
 254mcp251xfd_rx_head_get_from_chip(const struct mcp251xfd_priv *priv,
 255                                const struct mcp251xfd_rx_ring *ring,
 256                                u8 *rx_head)
 257{
 258        u32 fifo_sta;
 259        int err;
 260
 261        err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
 262                          &fifo_sta);
 263        if (err)
 264                return err;
 265
 266        *rx_head = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
 267
 268        return 0;
 269}
 270
 271static inline int
 272mcp251xfd_rx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
 273                                const struct mcp251xfd_rx_ring *ring,
 274                                u8 *rx_tail)
 275{
 276        u32 fifo_ua;
 277        int err;
 278
 279        err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOUA(ring->fifo_nr),
 280                          &fifo_ua);
 281        if (err)
 282                return err;
 283
 284        fifo_ua -= ring->base - MCP251XFD_RAM_START;
 285        *rx_tail = fifo_ua / ring->obj_size;
 286
 287        return 0;
 288}
 289
 290static void
 291mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
 292                              const struct mcp251xfd_tx_ring *ring,
 293                              struct mcp251xfd_tx_obj *tx_obj,
 294                              const u8 rts_buf_len,
 295                              const u8 n)
 296{
 297        struct spi_transfer *xfer;
 298        u16 addr;
 299
 300        /* FIFO load */
 301        addr = mcp251xfd_get_tx_obj_addr(ring, n);
 302        if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
 303                mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
 304                                                     addr);
 305        else
 306                mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
 307                                              addr);
 308
 309        xfer = &tx_obj->xfer[0];
 310        xfer->tx_buf = &tx_obj->buf;
 311        xfer->len = 0;  /* actual len is assigned on the fly */
 312        xfer->cs_change = 1;
 313        xfer->cs_change_delay.value = 0;
 314        xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
 315
 316        /* FIFO request to send */
 317        xfer = &tx_obj->xfer[1];
 318        xfer->tx_buf = &ring->rts_buf;
 319        xfer->len = rts_buf_len;
 320
 321        /* SPI message */
 322        spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
 323                                        ARRAY_SIZE(tx_obj->xfer));
 324}
 325
 326static void mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
 327{
 328        struct mcp251xfd_tef_ring *tef_ring;
 329        struct mcp251xfd_tx_ring *tx_ring;
 330        struct mcp251xfd_rx_ring *rx_ring, *prev_rx_ring = NULL;
 331        struct mcp251xfd_tx_obj *tx_obj;
 332        struct spi_transfer *xfer;
 333        u32 val;
 334        u16 addr;
 335        u8 len;
 336        int i, j;
 337
 338        netdev_reset_queue(priv->ndev);
 339
 340        /* TEF */
 341        tef_ring = priv->tef;
 342        tef_ring->head = 0;
 343        tef_ring->tail = 0;
 344
 345        /* FIFO increment TEF tail pointer */
 346        addr = MCP251XFD_REG_TEFCON;
 347        val = MCP251XFD_REG_TEFCON_UINC;
 348        len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
 349                                              addr, val, val);
 350
 351        for (j = 0; j < ARRAY_SIZE(tef_ring->uinc_xfer); j++) {
 352                xfer = &tef_ring->uinc_xfer[j];
 353                xfer->tx_buf = &tef_ring->uinc_buf;
 354                xfer->len = len;
 355                xfer->cs_change = 1;
 356                xfer->cs_change_delay.value = 0;
 357                xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
 358        }
 359
 360        /* "cs_change == 1" on the last transfer results in an active
 361         * chip select after the complete SPI message. This causes the
 362         * controller to interpret the next register access as
 363         * data. Set "cs_change" of the last transfer to "0" to
 364         * properly deactivate the chip select at the end of the
 365         * message.
 366         */
 367        xfer->cs_change = 0;
 368
 369        /* TX */
 370        tx_ring = priv->tx;
 371        tx_ring->head = 0;
 372        tx_ring->tail = 0;
 373        tx_ring->base = mcp251xfd_get_tef_obj_addr(tx_ring->obj_num);
 374
 375        /* FIFO request to send */
 376        addr = MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO);
 377        val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
 378        len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
 379                                              addr, val, val);
 380
 381        mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
 382                mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
 383
 384        /* RX */
 385        mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
 386                rx_ring->head = 0;
 387                rx_ring->tail = 0;
 388                rx_ring->nr = i;
 389                rx_ring->fifo_nr = MCP251XFD_RX_FIFO(i);
 390
 391                if (!prev_rx_ring)
 392                        rx_ring->base =
 393                                mcp251xfd_get_tx_obj_addr(tx_ring,
 394                                                          tx_ring->obj_num);
 395                else
 396                        rx_ring->base = prev_rx_ring->base +
 397                                prev_rx_ring->obj_size *
 398                                prev_rx_ring->obj_num;
 399
 400                prev_rx_ring = rx_ring;
 401
 402                /* FIFO increment RX tail pointer */
 403                addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
 404                val = MCP251XFD_REG_FIFOCON_UINC;
 405                len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
 406                                                      addr, val, val);
 407
 408                for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
 409                        xfer = &rx_ring->uinc_xfer[j];
 410                        xfer->tx_buf = &rx_ring->uinc_buf;
 411                        xfer->len = len;
 412                        xfer->cs_change = 1;
 413                        xfer->cs_change_delay.value = 0;
 414                        xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
 415                }
 416
 417                /* "cs_change == 1" on the last transfer results in an
 418                 * active chip select after the complete SPI
 419                 * message. This causes the controller to interpret
 420                 * the next register access as data. Set "cs_change"
 421                 * of the last transfer to "0" to properly deactivate
 422                 * the chip select at the end of the message.
 423                 */
 424                xfer->cs_change = 0;
 425        }
 426}
 427
 428static void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
 429{
 430        int i;
 431
 432        for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
 433                kfree(priv->rx[i]);
 434                priv->rx[i] = NULL;
 435        }
 436}
 437
 438static int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
 439{
 440        struct mcp251xfd_tx_ring *tx_ring;
 441        struct mcp251xfd_rx_ring *rx_ring;
 442        int tef_obj_size, tx_obj_size, rx_obj_size;
 443        int tx_obj_num;
 444        int ram_free, i;
 445
 446        tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
 447        /* listen-only mode works like FD mode */
 448        if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD)) {
 449                tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
 450                tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
 451                rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
 452        } else {
 453                tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
 454                tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
 455                rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
 456        }
 457
 458        tx_ring = priv->tx;
 459        tx_ring->obj_num = tx_obj_num;
 460        tx_ring->obj_size = tx_obj_size;
 461
 462        ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
 463                (tef_obj_size + tx_obj_size);
 464
 465        for (i = 0;
 466             i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
 467             i++) {
 468                int rx_obj_num;
 469
 470                rx_obj_num = ram_free / rx_obj_size;
 471                rx_obj_num = min(1 << (fls(rx_obj_num) - 1),
 472                                 MCP251XFD_RX_OBJ_NUM_MAX);
 473
 474                rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
 475                                  GFP_KERNEL);
 476                if (!rx_ring) {
 477                        mcp251xfd_ring_free(priv);
 478                        return -ENOMEM;
 479                }
 480                rx_ring->obj_num = rx_obj_num;
 481                rx_ring->obj_size = rx_obj_size;
 482                priv->rx[i] = rx_ring;
 483
 484                ram_free -= rx_ring->obj_num * rx_ring->obj_size;
 485        }
 486        priv->rx_ring_num = i;
 487
 488        netdev_dbg(priv->ndev,
 489                   "FIFO setup: TEF: %d*%d bytes = %d bytes, TX: %d*%d bytes = %d bytes\n",
 490                   tx_obj_num, tef_obj_size, tef_obj_size * tx_obj_num,
 491                   tx_obj_num, tx_obj_size, tx_obj_size * tx_obj_num);
 492
 493        mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
 494                netdev_dbg(priv->ndev,
 495                           "FIFO setup: RX-%d: %d*%d bytes = %d bytes\n",
 496                           i, rx_ring->obj_num, rx_ring->obj_size,
 497                           rx_ring->obj_size * rx_ring->obj_num);
 498        }
 499
 500        netdev_dbg(priv->ndev,
 501                   "FIFO setup: free: %d bytes\n",
 502                   ram_free);
 503
 504        return 0;
 505}
 506
 507static inline int
 508mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
 509{
 510        u32 val;
 511        int err;
 512
 513        err = regmap_read(priv->map_reg, MCP251XFD_REG_CON, &val);
 514        if (err)
 515                return err;
 516
 517        *mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, val);
 518
 519        return 0;
 520}
 521
 522static int
 523__mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
 524                          const u8 mode_req, bool nowait)
 525{
 526        u32 con, con_reqop;
 527        int err;
 528
 529        con_reqop = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, mode_req);
 530        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CON,
 531                                 MCP251XFD_REG_CON_REQOP_MASK, con_reqop);
 532        if (err)
 533                return err;
 534
 535        if (mode_req == MCP251XFD_REG_CON_MODE_SLEEP || nowait)
 536                return 0;
 537
 538        err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_CON, con,
 539                                       FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK,
 540                                                 con) == mode_req,
 541                                       MCP251XFD_POLL_SLEEP_US,
 542                                       MCP251XFD_POLL_TIMEOUT_US);
 543        if (err) {
 544                u8 mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, con);
 545
 546                netdev_err(priv->ndev,
 547                           "Controller failed to enter mode %s Mode (%u) and stays in %s Mode (%u).\n",
 548                           mcp251xfd_get_mode_str(mode_req), mode_req,
 549                           mcp251xfd_get_mode_str(mode), mode);
 550                return err;
 551        }
 552
 553        return 0;
 554}
 555
 556static inline int
 557mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
 558                        const u8 mode_req)
 559{
 560        return __mcp251xfd_chip_set_mode(priv, mode_req, false);
 561}
 562
 563static inline int __maybe_unused
 564mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv *priv,
 565                               const u8 mode_req)
 566{
 567        return __mcp251xfd_chip_set_mode(priv, mode_req, true);
 568}
 569
 570static inline bool mcp251xfd_osc_invalid(u32 reg)
 571{
 572        return reg == 0x0 || reg == 0xffffffff;
 573}
 574
 575static int mcp251xfd_chip_clock_enable(const struct mcp251xfd_priv *priv)
 576{
 577        u32 osc, osc_reference, osc_mask;
 578        int err;
 579
 580        /* Set Power On Defaults for "Clock Output Divisor" and remove
 581         * "Oscillator Disable" bit.
 582         */
 583        osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
 584                         MCP251XFD_REG_OSC_CLKODIV_10);
 585        osc_reference = MCP251XFD_REG_OSC_OSCRDY;
 586        osc_mask = MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY;
 587
 588        /* Note:
 589         *
 590         * If the controller is in Sleep Mode the following write only
 591         * removes the "Oscillator Disable" bit and powers it up. All
 592         * other bits are unaffected.
 593         */
 594        err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
 595        if (err)
 596                return err;
 597
 598        /* Wait for "Oscillator Ready" bit */
 599        err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_OSC, osc,
 600                                       (osc & osc_mask) == osc_reference,
 601                                       MCP251XFD_OSC_STAB_SLEEP_US,
 602                                       MCP251XFD_OSC_STAB_TIMEOUT_US);
 603        if (mcp251xfd_osc_invalid(osc)) {
 604                netdev_err(priv->ndev,
 605                           "Failed to detect %s (osc=0x%08x).\n",
 606                           mcp251xfd_get_model_str(priv), osc);
 607                return -ENODEV;
 608        } else if (err == -ETIMEDOUT) {
 609                netdev_err(priv->ndev,
 610                           "Timeout waiting for Oscillator Ready (osc=0x%08x, osc_reference=0x%08x)\n",
 611                           osc, osc_reference);
 612                return -ETIMEDOUT;
 613        }
 614
 615        return err;
 616}
 617
 618static int mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv *priv)
 619{
 620        const __be16 cmd = mcp251xfd_cmd_reset();
 621        int err;
 622
 623        /* The Set Mode and SPI Reset command only seems to works if
 624         * the controller is not in Sleep Mode.
 625         */
 626        err = mcp251xfd_chip_clock_enable(priv);
 627        if (err)
 628                return err;
 629
 630        err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
 631        if (err)
 632                return err;
 633
 634        /* spi_write_then_read() works with non DMA-safe buffers */
 635        return spi_write_then_read(priv->spi, &cmd, sizeof(cmd), NULL, 0);
 636}
 637
 638static int mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv *priv)
 639{
 640        u32 osc, osc_reference;
 641        u8 mode;
 642        int err;
 643
 644        err = mcp251xfd_chip_get_mode(priv, &mode);
 645        if (err)
 646                return err;
 647
 648        if (mode != MCP251XFD_REG_CON_MODE_CONFIG) {
 649                netdev_info(priv->ndev,
 650                            "Controller not in Config Mode after reset, but in %s Mode (%u).\n",
 651                            mcp251xfd_get_mode_str(mode), mode);
 652                return -ETIMEDOUT;
 653        }
 654
 655        osc_reference = MCP251XFD_REG_OSC_OSCRDY |
 656                FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
 657                           MCP251XFD_REG_OSC_CLKODIV_10);
 658
 659        /* check reset defaults of OSC reg */
 660        err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
 661        if (err)
 662                return err;
 663
 664        if (osc != osc_reference) {
 665                netdev_info(priv->ndev,
 666                            "Controller failed to reset. osc=0x%08x, reference value=0x%08x.\n",
 667                            osc, osc_reference);
 668                return -ETIMEDOUT;
 669        }
 670
 671        return 0;
 672}
 673
 674static int mcp251xfd_chip_softreset(const struct mcp251xfd_priv *priv)
 675{
 676        int err, i;
 677
 678        for (i = 0; i < MCP251XFD_SOFTRESET_RETRIES_MAX; i++) {
 679                if (i)
 680                        netdev_info(priv->ndev,
 681                                    "Retrying to reset controller.\n");
 682
 683                err = mcp251xfd_chip_softreset_do(priv);
 684                if (err == -ETIMEDOUT)
 685                        continue;
 686                if (err)
 687                        return err;
 688
 689                err = mcp251xfd_chip_softreset_check(priv);
 690                if (err == -ETIMEDOUT)
 691                        continue;
 692                if (err)
 693                        return err;
 694
 695                return 0;
 696        }
 697
 698        return err;
 699}
 700
 701static int mcp251xfd_chip_clock_init(const struct mcp251xfd_priv *priv)
 702{
 703        u32 osc;
 704        int err;
 705
 706        /* Activate Low Power Mode on Oscillator Disable. This only
 707         * works on the MCP2518FD. The MCP2517FD will go into normal
 708         * Sleep Mode instead.
 709         */
 710        osc = MCP251XFD_REG_OSC_LPMEN |
 711                FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
 712                           MCP251XFD_REG_OSC_CLKODIV_10);
 713        err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
 714        if (err)
 715                return err;
 716
 717        /* Set Time Base Counter Prescaler to 1.
 718         *
 719         * This means an overflow of the 32 bit Time Base Counter
 720         * register at 40 MHz every 107 seconds.
 721         */
 722        return regmap_write(priv->map_reg, MCP251XFD_REG_TSCON,
 723                            MCP251XFD_REG_TSCON_TBCEN);
 724}
 725
 726static int mcp251xfd_set_bittiming(const struct mcp251xfd_priv *priv)
 727{
 728        const struct can_bittiming *bt = &priv->can.bittiming;
 729        const struct can_bittiming *dbt = &priv->can.data_bittiming;
 730        u32 val = 0;
 731        s8 tdco;
 732        int err;
 733
 734        /* CAN Control Register
 735         *
 736         * - no transmit bandwidth sharing
 737         * - config mode
 738         * - disable transmit queue
 739         * - store in transmit FIFO event
 740         * - transition to restricted operation mode on system error
 741         * - ESI is transmitted recessive when ESI of message is high or
 742         *   CAN controller error passive
 743         * - restricted retransmission attempts,
 744         *   use TQXCON_TXAT and FIFOCON_TXAT
 745         * - wake-up filter bits T11FILTER
 746         * - use CAN bus line filter for wakeup
 747         * - protocol exception is treated as a form error
 748         * - Do not compare data bytes
 749         */
 750        val = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK,
 751                         MCP251XFD_REG_CON_MODE_CONFIG) |
 752                MCP251XFD_REG_CON_STEF |
 753                MCP251XFD_REG_CON_ESIGM |
 754                MCP251XFD_REG_CON_RTXAT |
 755                FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK,
 756                           MCP251XFD_REG_CON_WFT_T11FILTER) |
 757                MCP251XFD_REG_CON_WAKFIL |
 758                MCP251XFD_REG_CON_PXEDIS;
 759
 760        if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
 761                val |= MCP251XFD_REG_CON_ISOCRCEN;
 762
 763        err = regmap_write(priv->map_reg, MCP251XFD_REG_CON, val);
 764        if (err)
 765                return err;
 766
 767        /* Nominal Bit Time */
 768        val = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, bt->brp - 1) |
 769                FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
 770                           bt->prop_seg + bt->phase_seg1 - 1) |
 771                FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK,
 772                           bt->phase_seg2 - 1) |
 773                FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, bt->sjw - 1);
 774
 775        err = regmap_write(priv->map_reg, MCP251XFD_REG_NBTCFG, val);
 776        if (err)
 777                return err;
 778
 779        if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
 780                return 0;
 781
 782        /* Data Bit Time */
 783        val = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, dbt->brp - 1) |
 784                FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
 785                           dbt->prop_seg + dbt->phase_seg1 - 1) |
 786                FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK,
 787                           dbt->phase_seg2 - 1) |
 788                FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, dbt->sjw - 1);
 789
 790        err = regmap_write(priv->map_reg, MCP251XFD_REG_DBTCFG, val);
 791        if (err)
 792                return err;
 793
 794        /* Transmitter Delay Compensation */
 795        tdco = clamp_t(int, dbt->brp * (dbt->prop_seg + dbt->phase_seg1),
 796                       -64, 63);
 797        val = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK,
 798                         MCP251XFD_REG_TDC_TDCMOD_AUTO) |
 799                FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, tdco);
 800
 801        return regmap_write(priv->map_reg, MCP251XFD_REG_TDC, val);
 802}
 803
 804static int mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv *priv)
 805{
 806        u32 val;
 807
 808        if (!priv->rx_int)
 809                return 0;
 810
 811        /* Configure GPIOs:
 812         * - PIN0: GPIO Input
 813         * - PIN1: GPIO Input/RX Interrupt
 814         *
 815         * PIN1 must be Input, otherwise there is a glitch on the
 816         * rx-INT line. It happens between setting the PIN as output
 817         * (in the first byte of the SPI transfer) and configuring the
 818         * PIN as interrupt (in the last byte of the SPI transfer).
 819         */
 820        val = MCP251XFD_REG_IOCON_PM0 | MCP251XFD_REG_IOCON_TRIS1 |
 821                MCP251XFD_REG_IOCON_TRIS0;
 822        return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
 823}
 824
 825static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
 826{
 827        u32 val;
 828
 829        if (!priv->rx_int)
 830                return 0;
 831
 832        /* Configure GPIOs:
 833         * - PIN0: GPIO Input
 834         * - PIN1: GPIO Input
 835         */
 836        val = MCP251XFD_REG_IOCON_PM1 | MCP251XFD_REG_IOCON_PM0 |
 837                MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_TRIS0;
 838        return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
 839}
 840
 841static int
 842mcp251xfd_chip_rx_fifo_init_one(const struct mcp251xfd_priv *priv,
 843                                const struct mcp251xfd_rx_ring *ring)
 844{
 845        u32 fifo_con;
 846
 847        /* Enable RXOVIE on _all_ RX FIFOs, not just the last one.
 848         *
 849         * FIFOs hit by a RX MAB overflow and RXOVIE enabled will
 850         * generate a RXOVIF, use this to properly detect RX MAB
 851         * overflows.
 852         */
 853        fifo_con = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
 854                              ring->obj_num - 1) |
 855                MCP251XFD_REG_FIFOCON_RXTSEN |
 856                MCP251XFD_REG_FIFOCON_RXOVIE |
 857                MCP251XFD_REG_FIFOCON_TFNRFNIE;
 858
 859        if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
 860                fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
 861                                       MCP251XFD_REG_FIFOCON_PLSIZE_64);
 862        else
 863                fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
 864                                       MCP251XFD_REG_FIFOCON_PLSIZE_8);
 865
 866        return regmap_write(priv->map_reg,
 867                            MCP251XFD_REG_FIFOCON(ring->fifo_nr), fifo_con);
 868}
 869
 870static int
 871mcp251xfd_chip_rx_filter_init_one(const struct mcp251xfd_priv *priv,
 872                                  const struct mcp251xfd_rx_ring *ring)
 873{
 874        u32 fltcon;
 875
 876        fltcon = MCP251XFD_REG_FLTCON_FLTEN(ring->nr) |
 877                MCP251XFD_REG_FLTCON_FBP(ring->nr, ring->fifo_nr);
 878
 879        return regmap_update_bits(priv->map_reg,
 880                                  MCP251XFD_REG_FLTCON(ring->nr >> 2),
 881                                  MCP251XFD_REG_FLTCON_FLT_MASK(ring->nr),
 882                                  fltcon);
 883}
 884
 885static int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv)
 886{
 887        const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
 888        const struct mcp251xfd_rx_ring *rx_ring;
 889        u32 val;
 890        int err, n;
 891
 892        /* TEF */
 893        val = FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK,
 894                         tx_ring->obj_num - 1) |
 895                MCP251XFD_REG_TEFCON_TEFTSEN |
 896                MCP251XFD_REG_TEFCON_TEFOVIE |
 897                MCP251XFD_REG_TEFCON_TEFNEIE;
 898
 899        err = regmap_write(priv->map_reg, MCP251XFD_REG_TEFCON, val);
 900        if (err)
 901                return err;
 902
 903        /* FIFO 1 - TX */
 904        val = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
 905                         tx_ring->obj_num - 1) |
 906                MCP251XFD_REG_FIFOCON_TXEN |
 907                MCP251XFD_REG_FIFOCON_TXATIE;
 908
 909        if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
 910                val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
 911                                  MCP251XFD_REG_FIFOCON_PLSIZE_64);
 912        else
 913                val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
 914                                  MCP251XFD_REG_FIFOCON_PLSIZE_8);
 915
 916        if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
 917                val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
 918                                  MCP251XFD_REG_FIFOCON_TXAT_ONE_SHOT);
 919        else
 920                val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
 921                                  MCP251XFD_REG_FIFOCON_TXAT_UNLIMITED);
 922
 923        err = regmap_write(priv->map_reg,
 924                           MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO),
 925                           val);
 926        if (err)
 927                return err;
 928
 929        /* RX FIFOs */
 930        mcp251xfd_for_each_rx_ring(priv, rx_ring, n) {
 931                err = mcp251xfd_chip_rx_fifo_init_one(priv, rx_ring);
 932                if (err)
 933                        return err;
 934
 935                err = mcp251xfd_chip_rx_filter_init_one(priv, rx_ring);
 936                if (err)
 937                        return err;
 938        }
 939
 940        return 0;
 941}
 942
 943static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
 944{
 945        struct mcp251xfd_ecc *ecc = &priv->ecc;
 946        void *ram;
 947        u32 val = 0;
 948        int err;
 949
 950        ecc->ecc_stat = 0;
 951
 952        if (priv->devtype_data.quirks & MCP251XFD_QUIRK_ECC)
 953                val = MCP251XFD_REG_ECCCON_ECCEN;
 954
 955        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
 956                                 MCP251XFD_REG_ECCCON_ECCEN, val);
 957        if (err)
 958                return err;
 959
 960        ram = kzalloc(MCP251XFD_RAM_SIZE, GFP_KERNEL);
 961        if (!ram)
 962                return -ENOMEM;
 963
 964        err = regmap_raw_write(priv->map_reg, MCP251XFD_RAM_START, ram,
 965                               MCP251XFD_RAM_SIZE);
 966        kfree(ram);
 967
 968        return err;
 969}
 970
 971static inline void mcp251xfd_ecc_tefif_successful(struct mcp251xfd_priv *priv)
 972{
 973        struct mcp251xfd_ecc *ecc = &priv->ecc;
 974
 975        ecc->ecc_stat = 0;
 976}
 977
 978static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
 979{
 980        u8 mode;
 981
 982
 983        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 984                mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK;
 985        else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
 986                mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
 987        else if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
 988                mode = MCP251XFD_REG_CON_MODE_MIXED;
 989        else
 990                mode = MCP251XFD_REG_CON_MODE_CAN2_0;
 991
 992        return mode;
 993}
 994
 995static int
 996__mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv,
 997                                 bool nowait)
 998{
 999        u8 mode;
1000
1001        mode = mcp251xfd_get_normal_mode(priv);
1002
1003        return __mcp251xfd_chip_set_mode(priv, mode, nowait);
1004}
1005
1006static inline int
1007mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv)
1008{
1009        return __mcp251xfd_chip_set_normal_mode(priv, false);
1010}
1011
1012static inline int
1013mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv *priv)
1014{
1015        return __mcp251xfd_chip_set_normal_mode(priv, true);
1016}
1017
1018static int mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv *priv)
1019{
1020        u32 val;
1021        int err;
1022
1023        val = MCP251XFD_REG_CRC_FERRIE | MCP251XFD_REG_CRC_CRCERRIE;
1024        err = regmap_write(priv->map_reg, MCP251XFD_REG_CRC, val);
1025        if (err)
1026                return err;
1027
1028        val = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
1029        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON, val, val);
1030        if (err)
1031                return err;
1032
1033        val = MCP251XFD_REG_INT_CERRIE |
1034                MCP251XFD_REG_INT_SERRIE |
1035                MCP251XFD_REG_INT_RXOVIE |
1036                MCP251XFD_REG_INT_TXATIE |
1037                MCP251XFD_REG_INT_SPICRCIE |
1038                MCP251XFD_REG_INT_ECCIE |
1039                MCP251XFD_REG_INT_TEFIE |
1040                MCP251XFD_REG_INT_MODIE |
1041                MCP251XFD_REG_INT_RXIE;
1042
1043        if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
1044                val |= MCP251XFD_REG_INT_IVMIE;
1045
1046        return regmap_write(priv->map_reg, MCP251XFD_REG_INT, val);
1047}
1048
1049static int mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv *priv)
1050{
1051        int err;
1052        u32 mask;
1053
1054        err = regmap_write(priv->map_reg, MCP251XFD_REG_INT, 0);
1055        if (err)
1056                return err;
1057
1058        mask = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
1059        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
1060                                 mask, 0x0);
1061        if (err)
1062                return err;
1063
1064        return regmap_write(priv->map_reg, MCP251XFD_REG_CRC, 0);
1065}
1066
1067static int mcp251xfd_chip_stop(struct mcp251xfd_priv *priv,
1068                               const enum can_state state)
1069{
1070        priv->can.state = state;
1071
1072        mcp251xfd_chip_interrupts_disable(priv);
1073        mcp251xfd_chip_rx_int_disable(priv);
1074        return mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
1075}
1076
1077static int mcp251xfd_chip_start(struct mcp251xfd_priv *priv)
1078{
1079        int err;
1080
1081        err = mcp251xfd_chip_softreset(priv);
1082        if (err)
1083                goto out_chip_stop;
1084
1085        err = mcp251xfd_chip_clock_init(priv);
1086        if (err)
1087                goto out_chip_stop;
1088
1089        err = mcp251xfd_set_bittiming(priv);
1090        if (err)
1091                goto out_chip_stop;
1092
1093        err = mcp251xfd_chip_rx_int_enable(priv);
1094        if (err)
1095                return err;
1096
1097        err = mcp251xfd_chip_ecc_init(priv);
1098        if (err)
1099                goto out_chip_stop;
1100
1101        mcp251xfd_ring_init(priv);
1102
1103        err = mcp251xfd_chip_fifo_init(priv);
1104        if (err)
1105                goto out_chip_stop;
1106
1107        priv->can.state = CAN_STATE_ERROR_ACTIVE;
1108
1109        err = mcp251xfd_chip_set_normal_mode(priv);
1110        if (err)
1111                goto out_chip_stop;
1112
1113        return 0;
1114
1115 out_chip_stop:
1116        mcp251xfd_dump(priv);
1117        mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1118
1119        return err;
1120}
1121
1122static int mcp251xfd_set_mode(struct net_device *ndev, enum can_mode mode)
1123{
1124        struct mcp251xfd_priv *priv = netdev_priv(ndev);
1125        int err;
1126
1127        switch (mode) {
1128        case CAN_MODE_START:
1129                err = mcp251xfd_chip_start(priv);
1130                if (err)
1131                        return err;
1132
1133                err = mcp251xfd_chip_interrupts_enable(priv);
1134                if (err) {
1135                        mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1136                        return err;
1137                }
1138
1139                netif_wake_queue(ndev);
1140                break;
1141
1142        default:
1143                return -EOPNOTSUPP;
1144        }
1145
1146        return 0;
1147}
1148
1149static int __mcp251xfd_get_berr_counter(const struct net_device *ndev,
1150                                        struct can_berr_counter *bec)
1151{
1152        const struct mcp251xfd_priv *priv = netdev_priv(ndev);
1153        u32 trec;
1154        int err;
1155
1156        err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1157        if (err)
1158                return err;
1159
1160        if (trec & MCP251XFD_REG_TREC_TXBO)
1161                bec->txerr = 256;
1162        else
1163                bec->txerr = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, trec);
1164        bec->rxerr = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, trec);
1165
1166        return 0;
1167}
1168
1169static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
1170                                      struct can_berr_counter *bec)
1171{
1172        const struct mcp251xfd_priv *priv = netdev_priv(ndev);
1173
1174        /* Avoid waking up the controller if the interface is down */
1175        if (!(ndev->flags & IFF_UP))
1176                return 0;
1177
1178        /* The controller is powered down during Bus Off, use saved
1179         * bec values.
1180         */
1181        if (priv->can.state == CAN_STATE_BUS_OFF) {
1182                *bec = priv->bec;
1183                return 0;
1184        }
1185
1186        return __mcp251xfd_get_berr_counter(ndev, bec);
1187}
1188
1189static int mcp251xfd_check_tef_tail(const struct mcp251xfd_priv *priv)
1190{
1191        u8 tef_tail_chip, tef_tail;
1192        int err;
1193
1194        if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
1195                return 0;
1196
1197        err = mcp251xfd_tef_tail_get_from_chip(priv, &tef_tail_chip);
1198        if (err)
1199                return err;
1200
1201        tef_tail = mcp251xfd_get_tef_tail(priv);
1202        if (tef_tail_chip != tef_tail) {
1203                netdev_err(priv->ndev,
1204                           "TEF tail of chip (0x%02x) and ours (0x%08x) inconsistent.\n",
1205                           tef_tail_chip, tef_tail);
1206                return -EILSEQ;
1207        }
1208
1209        return 0;
1210}
1211
1212static int
1213mcp251xfd_check_rx_tail(const struct mcp251xfd_priv *priv,
1214                        const struct mcp251xfd_rx_ring *ring)
1215{
1216        u8 rx_tail_chip, rx_tail;
1217        int err;
1218
1219        if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
1220                return 0;
1221
1222        err = mcp251xfd_rx_tail_get_from_chip(priv, ring, &rx_tail_chip);
1223        if (err)
1224                return err;
1225
1226        rx_tail = mcp251xfd_get_rx_tail(ring);
1227        if (rx_tail_chip != rx_tail) {
1228                netdev_err(priv->ndev,
1229                           "RX tail of chip (%d) and ours (%d) inconsistent.\n",
1230                           rx_tail_chip, rx_tail);
1231                return -EILSEQ;
1232        }
1233
1234        return 0;
1235}
1236
1237static int
1238mcp251xfd_handle_tefif_recover(const struct mcp251xfd_priv *priv, const u32 seq)
1239{
1240        const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1241        u32 tef_sta;
1242        int err;
1243
1244        err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFSTA, &tef_sta);
1245        if (err)
1246                return err;
1247
1248        if (tef_sta & MCP251XFD_REG_TEFSTA_TEFOVIF) {
1249                netdev_err(priv->ndev,
1250                           "Transmit Event FIFO buffer overflow.\n");
1251                return -ENOBUFS;
1252        }
1253
1254        netdev_info(priv->ndev,
1255                    "Transmit Event FIFO buffer %s. (seq=0x%08x, tef_tail=0x%08x, tef_head=0x%08x, tx_head=0x%08x).\n",
1256                    tef_sta & MCP251XFD_REG_TEFSTA_TEFFIF ?
1257                    "full" : tef_sta & MCP251XFD_REG_TEFSTA_TEFNEIF ?
1258                    "not empty" : "empty",
1259                    seq, priv->tef->tail, priv->tef->head, tx_ring->head);
1260
1261        /* The Sequence Number in the TEF doesn't match our tef_tail. */
1262        return -EAGAIN;
1263}
1264
1265static int
1266mcp251xfd_handle_tefif_one(struct mcp251xfd_priv *priv,
1267                           const struct mcp251xfd_hw_tef_obj *hw_tef_obj,
1268                           unsigned int *frame_len_ptr)
1269{
1270        struct net_device_stats *stats = &priv->ndev->stats;
1271        struct sk_buff *skb;
1272        u32 seq, seq_masked, tef_tail_masked, tef_tail;
1273
1274        seq = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK,
1275                        hw_tef_obj->flags);
1276
1277        /* Use the MCP2517FD mask on the MCP2518FD, too. We only
1278         * compare 7 bits, this should be enough to detect
1279         * net-yet-completed, i.e. old TEF objects.
1280         */
1281        seq_masked = seq &
1282                field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
1283        tef_tail_masked = priv->tef->tail &
1284                field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
1285        if (seq_masked != tef_tail_masked)
1286                return mcp251xfd_handle_tefif_recover(priv, seq);
1287
1288        tef_tail = mcp251xfd_get_tef_tail(priv);
1289        skb = priv->can.echo_skb[tef_tail];
1290        if (skb)
1291                mcp251xfd_skb_set_timestamp(priv, skb, hw_tef_obj->ts);
1292        stats->tx_bytes +=
1293                can_rx_offload_get_echo_skb(&priv->offload,
1294                                            tef_tail, hw_tef_obj->ts,
1295                                            frame_len_ptr);
1296        stats->tx_packets++;
1297        priv->tef->tail++;
1298
1299        return 0;
1300}
1301
1302static int mcp251xfd_tef_ring_update(struct mcp251xfd_priv *priv)
1303{
1304        const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1305        unsigned int new_head;
1306        u8 chip_tx_tail;
1307        int err;
1308
1309        err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
1310        if (err)
1311                return err;
1312
1313        /* chip_tx_tail, is the next TX-Object send by the HW.
1314         * The new TEF head must be >= the old head, ...
1315         */
1316        new_head = round_down(priv->tef->head, tx_ring->obj_num) + chip_tx_tail;
1317        if (new_head <= priv->tef->head)
1318                new_head += tx_ring->obj_num;
1319
1320        /* ... but it cannot exceed the TX head. */
1321        priv->tef->head = min(new_head, tx_ring->head);
1322
1323        return mcp251xfd_check_tef_tail(priv);
1324}
1325
1326static inline int
1327mcp251xfd_tef_obj_read(const struct mcp251xfd_priv *priv,
1328                       struct mcp251xfd_hw_tef_obj *hw_tef_obj,
1329                       const u8 offset, const u8 len)
1330{
1331        const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1332        const int val_bytes = regmap_get_val_bytes(priv->map_rx);
1333
1334        if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
1335            (offset > tx_ring->obj_num ||
1336             len > tx_ring->obj_num ||
1337             offset + len > tx_ring->obj_num)) {
1338                netdev_err(priv->ndev,
1339                           "Trying to read to many TEF objects (max=%d, offset=%d, len=%d).\n",
1340                           tx_ring->obj_num, offset, len);
1341                return -ERANGE;
1342        }
1343
1344        return regmap_bulk_read(priv->map_rx,
1345                                mcp251xfd_get_tef_obj_addr(offset),
1346                                hw_tef_obj,
1347                                sizeof(*hw_tef_obj) / val_bytes * len);
1348}
1349
1350static int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv)
1351{
1352        struct mcp251xfd_hw_tef_obj hw_tef_obj[MCP251XFD_TX_OBJ_NUM_MAX];
1353        unsigned int total_frame_len = 0;
1354        u8 tef_tail, len, l;
1355        int err, i;
1356
1357        err = mcp251xfd_tef_ring_update(priv);
1358        if (err)
1359                return err;
1360
1361        tef_tail = mcp251xfd_get_tef_tail(priv);
1362        len = mcp251xfd_get_tef_len(priv);
1363        l = mcp251xfd_get_tef_linear_len(priv);
1364        err = mcp251xfd_tef_obj_read(priv, hw_tef_obj, tef_tail, l);
1365        if (err)
1366                return err;
1367
1368        if (l < len) {
1369                err = mcp251xfd_tef_obj_read(priv, &hw_tef_obj[l], 0, len - l);
1370                if (err)
1371                        return err;
1372        }
1373
1374        for (i = 0; i < len; i++) {
1375                unsigned int frame_len = 0;
1376
1377                err = mcp251xfd_handle_tefif_one(priv, &hw_tef_obj[i], &frame_len);
1378                /* -EAGAIN means the Sequence Number in the TEF
1379                 * doesn't match our tef_tail. This can happen if we
1380                 * read the TEF objects too early. Leave loop let the
1381                 * interrupt handler call us again.
1382                 */
1383                if (err == -EAGAIN)
1384                        goto out_netif_wake_queue;
1385                if (err)
1386                        return err;
1387
1388                total_frame_len += frame_len;
1389        }
1390
1391 out_netif_wake_queue:
1392        len = i;        /* number of handled goods TEFs */
1393        if (len) {
1394                struct mcp251xfd_tef_ring *ring = priv->tef;
1395                struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1396                int offset;
1397
1398                /* Increment the TEF FIFO tail pointer 'len' times in
1399                 * a single SPI message.
1400                 *
1401                 * Note:
1402                 * Calculate offset, so that the SPI transfer ends on
1403                 * the last message of the uinc_xfer array, which has
1404                 * "cs_change == 0", to properly deactivate the chip
1405                 * select.
1406                 */
1407                offset = ARRAY_SIZE(ring->uinc_xfer) - len;
1408                err = spi_sync_transfer(priv->spi,
1409                                        ring->uinc_xfer + offset, len);
1410                if (err)
1411                        return err;
1412
1413                tx_ring->tail += len;
1414                netdev_completed_queue(priv->ndev, len, total_frame_len);
1415
1416                err = mcp251xfd_check_tef_tail(priv);
1417                if (err)
1418                        return err;
1419        }
1420
1421        mcp251xfd_ecc_tefif_successful(priv);
1422
1423        if (mcp251xfd_get_tx_free(priv->tx)) {
1424                /* Make sure that anybody stopping the queue after
1425                 * this sees the new tx_ring->tail.
1426                 */
1427                smp_mb();
1428                netif_wake_queue(priv->ndev);
1429        }
1430
1431        return 0;
1432}
1433
1434static int
1435mcp251xfd_rx_ring_update(const struct mcp251xfd_priv *priv,
1436                         struct mcp251xfd_rx_ring *ring)
1437{
1438        u32 new_head;
1439        u8 chip_rx_head;
1440        int err;
1441
1442        err = mcp251xfd_rx_head_get_from_chip(priv, ring, &chip_rx_head);
1443        if (err)
1444                return err;
1445
1446        /* chip_rx_head, is the next RX-Object filled by the HW.
1447         * The new RX head must be >= the old head.
1448         */
1449        new_head = round_down(ring->head, ring->obj_num) + chip_rx_head;
1450        if (new_head <= ring->head)
1451                new_head += ring->obj_num;
1452
1453        ring->head = new_head;
1454
1455        return mcp251xfd_check_rx_tail(priv, ring);
1456}
1457
1458static void
1459mcp251xfd_hw_rx_obj_to_skb(const struct mcp251xfd_priv *priv,
1460                           const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
1461                           struct sk_buff *skb)
1462{
1463        struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
1464        u8 dlc;
1465
1466        if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_IDE) {
1467                u32 sid, eid;
1468
1469                eid = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, hw_rx_obj->id);
1470                sid = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, hw_rx_obj->id);
1471
1472                cfd->can_id = CAN_EFF_FLAG |
1473                        FIELD_PREP(MCP251XFD_REG_FRAME_EFF_EID_MASK, eid) |
1474                        FIELD_PREP(MCP251XFD_REG_FRAME_EFF_SID_MASK, sid);
1475        } else {
1476                cfd->can_id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK,
1477                                        hw_rx_obj->id);
1478        }
1479
1480        dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC_MASK, hw_rx_obj->flags);
1481
1482        /* CANFD */
1483        if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF) {
1484
1485                if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_ESI)
1486                        cfd->flags |= CANFD_ESI;
1487
1488                if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_BRS)
1489                        cfd->flags |= CANFD_BRS;
1490
1491                cfd->len = can_fd_dlc2len(dlc);
1492        } else {
1493                if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR)
1494                        cfd->can_id |= CAN_RTR_FLAG;
1495
1496                can_frame_set_cc_len((struct can_frame *)cfd, dlc,
1497                                     priv->can.ctrlmode);
1498        }
1499
1500        if (!(hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR))
1501                memcpy(cfd->data, hw_rx_obj->data, cfd->len);
1502
1503        mcp251xfd_skb_set_timestamp(priv, skb, hw_rx_obj->ts);
1504}
1505
1506static int
1507mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
1508                          struct mcp251xfd_rx_ring *ring,
1509                          const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj)
1510{
1511        struct net_device_stats *stats = &priv->ndev->stats;
1512        struct sk_buff *skb;
1513        struct canfd_frame *cfd;
1514        int err;
1515
1516        if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF)
1517                skb = alloc_canfd_skb(priv->ndev, &cfd);
1518        else
1519                skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cfd);
1520
1521        if (!skb) {
1522                stats->rx_dropped++;
1523                return 0;
1524        }
1525
1526        mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
1527        err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
1528        if (err)
1529                stats->rx_fifo_errors++;
1530
1531        return 0;
1532}
1533
1534static inline int
1535mcp251xfd_rx_obj_read(const struct mcp251xfd_priv *priv,
1536                      const struct mcp251xfd_rx_ring *ring,
1537                      struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
1538                      const u8 offset, const u8 len)
1539{
1540        const int val_bytes = regmap_get_val_bytes(priv->map_rx);
1541        int err;
1542
1543        err = regmap_bulk_read(priv->map_rx,
1544                               mcp251xfd_get_rx_obj_addr(ring, offset),
1545                               hw_rx_obj,
1546                               len * ring->obj_size / val_bytes);
1547
1548        return err;
1549}
1550
1551static int
1552mcp251xfd_handle_rxif_ring(struct mcp251xfd_priv *priv,
1553                           struct mcp251xfd_rx_ring *ring)
1554{
1555        struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj = ring->obj;
1556        u8 rx_tail, len;
1557        int err, i;
1558
1559        err = mcp251xfd_rx_ring_update(priv, ring);
1560        if (err)
1561                return err;
1562
1563        while ((len = mcp251xfd_get_rx_linear_len(ring))) {
1564                int offset;
1565
1566                rx_tail = mcp251xfd_get_rx_tail(ring);
1567
1568                err = mcp251xfd_rx_obj_read(priv, ring, hw_rx_obj,
1569                                            rx_tail, len);
1570                if (err)
1571                        return err;
1572
1573                for (i = 0; i < len; i++) {
1574                        err = mcp251xfd_handle_rxif_one(priv, ring,
1575                                                        (void *)hw_rx_obj +
1576                                                        i * ring->obj_size);
1577                        if (err)
1578                                return err;
1579                }
1580
1581                /* Increment the RX FIFO tail pointer 'len' times in a
1582                 * single SPI message.
1583                 *
1584                 * Note:
1585                 * Calculate offset, so that the SPI transfer ends on
1586                 * the last message of the uinc_xfer array, which has
1587                 * "cs_change == 0", to properly deactivate the chip
1588                 * select.
1589                 */
1590                offset = ARRAY_SIZE(ring->uinc_xfer) - len;
1591                err = spi_sync_transfer(priv->spi,
1592                                        ring->uinc_xfer + offset, len);
1593                if (err)
1594                        return err;
1595
1596                ring->tail += len;
1597        }
1598
1599        return 0;
1600}
1601
1602static int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv)
1603{
1604        struct mcp251xfd_rx_ring *ring;
1605        int err, n;
1606
1607        mcp251xfd_for_each_rx_ring(priv, ring, n) {
1608                err = mcp251xfd_handle_rxif_ring(priv, ring);
1609                if (err)
1610                        return err;
1611        }
1612
1613        return 0;
1614}
1615
1616static struct sk_buff *
1617mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv *priv,
1618                            struct can_frame **cf, u32 *timestamp)
1619{
1620        struct sk_buff *skb;
1621        int err;
1622
1623        err = mcp251xfd_get_timestamp(priv, timestamp);
1624        if (err)
1625                return NULL;
1626
1627        skb = alloc_can_err_skb(priv->ndev, cf);
1628        if (skb)
1629                mcp251xfd_skb_set_timestamp(priv, skb, *timestamp);
1630
1631        return skb;
1632}
1633
1634static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
1635{
1636        struct net_device_stats *stats = &priv->ndev->stats;
1637        struct mcp251xfd_rx_ring *ring;
1638        struct sk_buff *skb;
1639        struct can_frame *cf;
1640        u32 timestamp, rxovif;
1641        int err, i;
1642
1643        stats->rx_over_errors++;
1644        stats->rx_errors++;
1645
1646        err = regmap_read(priv->map_reg, MCP251XFD_REG_RXOVIF, &rxovif);
1647        if (err)
1648                return err;
1649
1650        mcp251xfd_for_each_rx_ring(priv, ring, i) {
1651                if (!(rxovif & BIT(ring->fifo_nr)))
1652                        continue;
1653
1654                /* If SERRIF is active, there was a RX MAB overflow. */
1655                if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
1656                        netdev_info(priv->ndev,
1657                                    "RX-%d: MAB overflow detected.\n",
1658                                    ring->nr);
1659                } else {
1660                        netdev_info(priv->ndev,
1661                                    "RX-%d: FIFO overflow.\n", ring->nr);
1662                }
1663
1664                err = regmap_update_bits(priv->map_reg,
1665                                         MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
1666                                         MCP251XFD_REG_FIFOSTA_RXOVIF,
1667                                         0x0);
1668                if (err)
1669                        return err;
1670        }
1671
1672        skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
1673        if (!skb)
1674                return 0;
1675
1676        cf->can_id |= CAN_ERR_CRTL;
1677        cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
1678
1679        err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
1680        if (err)
1681                stats->rx_fifo_errors++;
1682
1683        return 0;
1684}
1685
1686static int mcp251xfd_handle_txatif(struct mcp251xfd_priv *priv)
1687{
1688        netdev_info(priv->ndev, "%s\n", __func__);
1689
1690        return 0;
1691}
1692
1693static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
1694{
1695        struct net_device_stats *stats = &priv->ndev->stats;
1696        u32 bdiag1, timestamp;
1697        struct sk_buff *skb;
1698        struct can_frame *cf = NULL;
1699        int err;
1700
1701        err = mcp251xfd_get_timestamp(priv, &timestamp);
1702        if (err)
1703                return err;
1704
1705        err = regmap_read(priv->map_reg, MCP251XFD_REG_BDIAG1, &bdiag1);
1706        if (err)
1707                return err;
1708
1709        /* Write 0s to clear error bits, don't write 1s to non active
1710         * bits, as they will be set.
1711         */
1712        err = regmap_write(priv->map_reg, MCP251XFD_REG_BDIAG1, 0x0);
1713        if (err)
1714                return err;
1715
1716        priv->can.can_stats.bus_error++;
1717
1718        skb = alloc_can_err_skb(priv->ndev, &cf);
1719        if (cf)
1720                cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1721
1722        /* Controller misconfiguration */
1723        if (WARN_ON(bdiag1 & MCP251XFD_REG_BDIAG1_DLCMM))
1724                netdev_err(priv->ndev,
1725                           "recv'd DLC is larger than PLSIZE of FIFO element.");
1726
1727        /* RX errors */
1728        if (bdiag1 & (MCP251XFD_REG_BDIAG1_DCRCERR |
1729                      MCP251XFD_REG_BDIAG1_NCRCERR)) {
1730                netdev_dbg(priv->ndev, "CRC error\n");
1731
1732                stats->rx_errors++;
1733                if (cf)
1734                        cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1735        }
1736        if (bdiag1 & (MCP251XFD_REG_BDIAG1_DSTUFERR |
1737                      MCP251XFD_REG_BDIAG1_NSTUFERR)) {
1738                netdev_dbg(priv->ndev, "Stuff error\n");
1739
1740                stats->rx_errors++;
1741                if (cf)
1742                        cf->data[2] |= CAN_ERR_PROT_STUFF;
1743        }
1744        if (bdiag1 & (MCP251XFD_REG_BDIAG1_DFORMERR |
1745                      MCP251XFD_REG_BDIAG1_NFORMERR)) {
1746                netdev_dbg(priv->ndev, "Format error\n");
1747
1748                stats->rx_errors++;
1749                if (cf)
1750                        cf->data[2] |= CAN_ERR_PROT_FORM;
1751        }
1752
1753        /* TX errors */
1754        if (bdiag1 & MCP251XFD_REG_BDIAG1_NACKERR) {
1755                netdev_dbg(priv->ndev, "NACK error\n");
1756
1757                stats->tx_errors++;
1758                if (cf) {
1759                        cf->can_id |= CAN_ERR_ACK;
1760                        cf->data[2] |= CAN_ERR_PROT_TX;
1761                }
1762        }
1763        if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT1ERR |
1764                      MCP251XFD_REG_BDIAG1_NBIT1ERR)) {
1765                netdev_dbg(priv->ndev, "Bit1 error\n");
1766
1767                stats->tx_errors++;
1768                if (cf)
1769                        cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT1;
1770        }
1771        if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT0ERR |
1772                      MCP251XFD_REG_BDIAG1_NBIT0ERR)) {
1773                netdev_dbg(priv->ndev, "Bit0 error\n");
1774
1775                stats->tx_errors++;
1776                if (cf)
1777                        cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT0;
1778        }
1779
1780        if (!cf)
1781                return 0;
1782
1783        mcp251xfd_skb_set_timestamp(priv, skb, timestamp);
1784        err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
1785        if (err)
1786                stats->rx_fifo_errors++;
1787
1788        return 0;
1789}
1790
1791static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
1792{
1793        struct net_device_stats *stats = &priv->ndev->stats;
1794        struct sk_buff *skb;
1795        struct can_frame *cf = NULL;
1796        enum can_state new_state, rx_state, tx_state;
1797        u32 trec, timestamp;
1798        int err;
1799
1800        err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1801        if (err)
1802                return err;
1803
1804        if (trec & MCP251XFD_REG_TREC_TXBO)
1805                tx_state = CAN_STATE_BUS_OFF;
1806        else if (trec & MCP251XFD_REG_TREC_TXBP)
1807                tx_state = CAN_STATE_ERROR_PASSIVE;
1808        else if (trec & MCP251XFD_REG_TREC_TXWARN)
1809                tx_state = CAN_STATE_ERROR_WARNING;
1810        else
1811                tx_state = CAN_STATE_ERROR_ACTIVE;
1812
1813        if (trec & MCP251XFD_REG_TREC_RXBP)
1814                rx_state = CAN_STATE_ERROR_PASSIVE;
1815        else if (trec & MCP251XFD_REG_TREC_RXWARN)
1816                rx_state = CAN_STATE_ERROR_WARNING;
1817        else
1818                rx_state = CAN_STATE_ERROR_ACTIVE;
1819
1820        new_state = max(tx_state, rx_state);
1821        if (new_state == priv->can.state)
1822                return 0;
1823
1824        /* The skb allocation might fail, but can_change_state()
1825         * handles cf == NULL.
1826         */
1827        skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
1828        can_change_state(priv->ndev, cf, tx_state, rx_state);
1829
1830        if (new_state == CAN_STATE_BUS_OFF) {
1831                /* As we're going to switch off the chip now, let's
1832                 * save the error counters and return them to
1833                 * userspace, if do_get_berr_counter() is called while
1834                 * the chip is in Bus Off.
1835                 */
1836                err = __mcp251xfd_get_berr_counter(priv->ndev, &priv->bec);
1837                if (err)
1838                        return err;
1839
1840                mcp251xfd_chip_stop(priv, CAN_STATE_BUS_OFF);
1841                can_bus_off(priv->ndev);
1842        }
1843
1844        if (!skb)
1845                return 0;
1846
1847        if (new_state != CAN_STATE_BUS_OFF) {
1848                struct can_berr_counter bec;
1849
1850                err = mcp251xfd_get_berr_counter(priv->ndev, &bec);
1851                if (err)
1852                        return err;
1853                cf->data[6] = bec.txerr;
1854                cf->data[7] = bec.rxerr;
1855        }
1856
1857        err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
1858        if (err)
1859                stats->rx_fifo_errors++;
1860
1861        return 0;
1862}
1863
1864static int
1865mcp251xfd_handle_modif(const struct mcp251xfd_priv *priv, bool *set_normal_mode)
1866{
1867        const u8 mode_reference = mcp251xfd_get_normal_mode(priv);
1868        u8 mode;
1869        int err;
1870
1871        err = mcp251xfd_chip_get_mode(priv, &mode);
1872        if (err)
1873                return err;
1874
1875        if (mode == mode_reference) {
1876                netdev_dbg(priv->ndev,
1877                           "Controller changed into %s Mode (%u).\n",
1878                           mcp251xfd_get_mode_str(mode), mode);
1879                return 0;
1880        }
1881
1882        /* According to MCP2517FD errata DS80000792B 1., during a TX
1883         * MAB underflow, the controller will transition to Restricted
1884         * Operation Mode or Listen Only Mode (depending on SERR2LOM).
1885         *
1886         * However this is not always the case. If SERR2LOM is
1887         * configured for Restricted Operation Mode (SERR2LOM not set)
1888         * the MCP2517FD will sometimes transition to Listen Only Mode
1889         * first. When polling this bit we see that it will transition
1890         * to Restricted Operation Mode shortly after.
1891         */
1892        if ((priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN) &&
1893            (mode == MCP251XFD_REG_CON_MODE_RESTRICTED ||
1894             mode == MCP251XFD_REG_CON_MODE_LISTENONLY))
1895                netdev_dbg(priv->ndev,
1896                           "Controller changed into %s Mode (%u).\n",
1897                           mcp251xfd_get_mode_str(mode), mode);
1898        else
1899                netdev_err(priv->ndev,
1900                           "Controller changed into %s Mode (%u).\n",
1901                           mcp251xfd_get_mode_str(mode), mode);
1902
1903        /* After the application requests Normal mode, the controller
1904         * will automatically attempt to retransmit the message that
1905         * caused the TX MAB underflow.
1906         *
1907         * However, if there is an ECC error in the TX-RAM, we first
1908         * have to reload the tx-object before requesting Normal
1909         * mode. This is done later in mcp251xfd_handle_eccif().
1910         */
1911        if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF) {
1912                *set_normal_mode = true;
1913                return 0;
1914        }
1915
1916        return mcp251xfd_chip_set_normal_mode_nowait(priv);
1917}
1918
1919static int mcp251xfd_handle_serrif(struct mcp251xfd_priv *priv)
1920{
1921        struct mcp251xfd_ecc *ecc = &priv->ecc;
1922        struct net_device_stats *stats = &priv->ndev->stats;
1923        bool handled = false;
1924
1925        /* TX MAB underflow
1926         *
1927         * According to MCP2517FD Errata DS80000792B 1. a TX MAB
1928         * underflow is indicated by SERRIF and MODIF.
1929         *
1930         * In addition to the effects mentioned in the Errata, there
1931         * are Bus Errors due to the aborted CAN frame, so a IVMIF
1932         * will be seen as well.
1933         *
1934         * Sometimes there is an ECC error in the TX-RAM, which leads
1935         * to a TX MAB underflow.
1936         *
1937         * However, probably due to a race condition, there is no
1938         * associated MODIF pending.
1939         *
1940         * Further, there are situations, where the SERRIF is caused
1941         * by an ECC error in the TX-RAM, but not even the ECCIF is
1942         * set. This only seems to happen _after_ the first occurrence
1943         * of a ECCIF (which is tracked in ecc->cnt).
1944         *
1945         * Treat all as a known system errors..
1946         */
1947        if ((priv->regs_status.intf & MCP251XFD_REG_INT_MODIF &&
1948             priv->regs_status.intf & MCP251XFD_REG_INT_IVMIF) ||
1949            priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1950            ecc->cnt) {
1951                const char *msg;
1952
1953                if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1954                    ecc->cnt)
1955                        msg = "TX MAB underflow due to ECC error detected.";
1956                else
1957                        msg = "TX MAB underflow detected.";
1958
1959                if (priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN)
1960                        netdev_dbg(priv->ndev, "%s\n", msg);
1961                else
1962                        netdev_info(priv->ndev, "%s\n", msg);
1963
1964                stats->tx_aborted_errors++;
1965                stats->tx_errors++;
1966                handled = true;
1967        }
1968
1969        /* RX MAB overflow
1970         *
1971         * According to MCP2517FD Errata DS80000792B 1. a RX MAB
1972         * overflow is indicated by SERRIF.
1973         *
1974         * In addition to the effects mentioned in the Errata, (most
1975         * of the times) a RXOVIF is raised, if the FIFO that is being
1976         * received into has the RXOVIE activated (and we have enabled
1977         * RXOVIE on all FIFOs).
1978         *
1979         * Sometimes there is no RXOVIF just a RXIF is pending.
1980         *
1981         * Treat all as a known system errors..
1982         */
1983        if (priv->regs_status.intf & MCP251XFD_REG_INT_RXOVIF ||
1984            priv->regs_status.intf & MCP251XFD_REG_INT_RXIF) {
1985                stats->rx_dropped++;
1986                handled = true;
1987        }
1988
1989        if (!handled)
1990                netdev_err(priv->ndev,
1991                           "Unhandled System Error Interrupt (intf=0x%08x)!\n",
1992                           priv->regs_status.intf);
1993
1994        return 0;
1995}
1996
1997static int
1998mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
1999{
2000        struct mcp251xfd_tx_ring *tx_ring = priv->tx;
2001        struct mcp251xfd_ecc *ecc = &priv->ecc;
2002        struct mcp251xfd_tx_obj *tx_obj;
2003        u8 chip_tx_tail, tx_tail, offset;
2004        u16 addr;
2005        int err;
2006
2007        addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc->ecc_stat);
2008
2009        err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
2010        if (err)
2011                return err;
2012
2013        tx_tail = mcp251xfd_get_tx_tail(tx_ring);
2014        offset = (nr - chip_tx_tail) & (tx_ring->obj_num - 1);
2015
2016        /* Bail out if one of the following is met:
2017         * - tx_tail information is inconsistent
2018         * - for mcp2517fd: offset not 0
2019         * - for mcp2518fd: offset not 0 or 1
2020         */
2021        if (chip_tx_tail != tx_tail ||
2022            !(offset == 0 || (offset == 1 && mcp251xfd_is_2518(priv)))) {
2023                netdev_err(priv->ndev,
2024                           "ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
2025                           addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
2026                           offset);
2027                return -EINVAL;
2028        }
2029
2030        netdev_info(priv->ndev,
2031                    "Recovering %s ECC Error at address 0x%04x (in TX-RAM, tx_obj=%d, tx_tail=0x%08x(%d), offset=%d).\n",
2032                    ecc->ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF ?
2033                    "Single" : "Double",
2034                    addr, nr, tx_ring->tail, tx_tail, offset);
2035
2036        /* reload tx_obj into controller RAM ... */
2037        tx_obj = &tx_ring->obj[nr];
2038        err = spi_sync_transfer(priv->spi, tx_obj->xfer, 1);
2039        if (err)
2040                return err;
2041
2042        /* ... and trigger retransmit */
2043        return mcp251xfd_chip_set_normal_mode(priv);
2044}
2045
2046static int
2047mcp251xfd_handle_eccif(struct mcp251xfd_priv *priv, bool set_normal_mode)
2048{
2049        struct mcp251xfd_ecc *ecc = &priv->ecc;
2050        const char *msg;
2051        bool in_tx_ram;
2052        u32 ecc_stat;
2053        u16 addr;
2054        u8 nr;
2055        int err;
2056
2057        err = regmap_read(priv->map_reg, MCP251XFD_REG_ECCSTAT, &ecc_stat);
2058        if (err)
2059                return err;
2060
2061        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCSTAT,
2062                                 MCP251XFD_REG_ECCSTAT_IF_MASK, ~ecc_stat);
2063        if (err)
2064                return err;
2065
2066        /* Check if ECC error occurred in TX-RAM */
2067        addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc_stat);
2068        err = mcp251xfd_get_tx_nr_by_addr(priv->tx, &nr, addr);
2069        if (!err)
2070                in_tx_ram = true;
2071        else if (err == -ENOENT)
2072                in_tx_ram = false;
2073        else
2074                return err;
2075
2076        /* Errata Reference:
2077         * mcp2517fd: DS80000789B, mcp2518fd: DS80000792C 2.
2078         *
2079         * ECC single error correction does not work in all cases:
2080         *
2081         * Fix/Work Around:
2082         * Enable single error correction and double error detection
2083         * interrupts by setting SECIE and DEDIE. Handle SECIF as a
2084         * detection interrupt and do not rely on the error
2085         * correction. Instead, handle both interrupts as a
2086         * notification that the RAM word at ERRADDR was corrupted.
2087         */
2088        if (ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF)
2089                msg = "Single ECC Error detected at address";
2090        else if (ecc_stat & MCP251XFD_REG_ECCSTAT_DEDIF)
2091                msg = "Double ECC Error detected at address";
2092        else
2093                return -EINVAL;
2094
2095        if (!in_tx_ram) {
2096                ecc->ecc_stat = 0;
2097
2098                netdev_notice(priv->ndev, "%s 0x%04x.\n", msg, addr);
2099        } else {
2100                /* Re-occurring error? */
2101                if (ecc->ecc_stat == ecc_stat) {
2102                        ecc->cnt++;
2103                } else {
2104                        ecc->ecc_stat = ecc_stat;
2105                        ecc->cnt = 1;
2106                }
2107
2108                netdev_info(priv->ndev,
2109                            "%s 0x%04x (in TX-RAM, tx_obj=%d), occurred %d time%s.\n",
2110                            msg, addr, nr, ecc->cnt, ecc->cnt > 1 ? "s" : "");
2111
2112                if (ecc->cnt >= MCP251XFD_ECC_CNT_MAX)
2113                        return mcp251xfd_handle_eccif_recover(priv, nr);
2114        }
2115
2116        if (set_normal_mode)
2117                return mcp251xfd_chip_set_normal_mode_nowait(priv);
2118
2119        return 0;
2120}
2121
2122static int mcp251xfd_handle_spicrcif(struct mcp251xfd_priv *priv)
2123{
2124        int err;
2125        u32 crc;
2126
2127        err = regmap_read(priv->map_reg, MCP251XFD_REG_CRC, &crc);
2128        if (err)
2129                return err;
2130
2131        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CRC,
2132                                 MCP251XFD_REG_CRC_IF_MASK,
2133                                 ~crc);
2134        if (err)
2135                return err;
2136
2137        if (crc & MCP251XFD_REG_CRC_FERRIF)
2138                netdev_notice(priv->ndev, "CRC write command format error.\n");
2139        else if (crc & MCP251XFD_REG_CRC_CRCERRIF)
2140                netdev_notice(priv->ndev,
2141                              "CRC write error detected. CRC=0x%04lx.\n",
2142                              FIELD_GET(MCP251XFD_REG_CRC_MASK, crc));
2143
2144        return 0;
2145}
2146
2147#define mcp251xfd_handle(priv, irq, ...) \
2148({ \
2149        struct mcp251xfd_priv *_priv = (priv); \
2150        int err; \
2151\
2152        err = mcp251xfd_handle_##irq(_priv, ## __VA_ARGS__); \
2153        if (err) \
2154                netdev_err(_priv->ndev, \
2155                        "IRQ handler mcp251xfd_handle_%s() returned %d.\n", \
2156                        __stringify(irq), err); \
2157        err; \
2158})
2159
2160static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
2161{
2162        struct mcp251xfd_priv *priv = dev_id;
2163        const int val_bytes = regmap_get_val_bytes(priv->map_reg);
2164        irqreturn_t handled = IRQ_NONE;
2165        int err;
2166
2167        if (priv->rx_int)
2168                do {
2169                        int rx_pending;
2170
2171                        rx_pending = gpiod_get_value_cansleep(priv->rx_int);
2172                        if (!rx_pending)
2173                                break;
2174
2175                        err = mcp251xfd_handle(priv, rxif);
2176                        if (err)
2177                                goto out_fail;
2178
2179                        handled = IRQ_HANDLED;
2180                } while (1);
2181
2182        do {
2183                u32 intf_pending, intf_pending_clearable;
2184                bool set_normal_mode = false;
2185
2186                err = regmap_bulk_read(priv->map_reg, MCP251XFD_REG_INT,
2187                                       &priv->regs_status,
2188                                       sizeof(priv->regs_status) /
2189                                       val_bytes);
2190                if (err)
2191                        goto out_fail;
2192
2193                intf_pending = FIELD_GET(MCP251XFD_REG_INT_IF_MASK,
2194                                         priv->regs_status.intf) &
2195                        FIELD_GET(MCP251XFD_REG_INT_IE_MASK,
2196                                  priv->regs_status.intf);
2197
2198                if (!(intf_pending)) {
2199                        can_rx_offload_threaded_irq_finish(&priv->offload);
2200                        return handled;
2201                }
2202
2203                /* Some interrupts must be ACKed in the
2204                 * MCP251XFD_REG_INT register.
2205                 * - First ACK then handle, to avoid lost-IRQ race
2206                 *   condition on fast re-occurring interrupts.
2207                 * - Write "0" to clear active IRQs, "1" to all other,
2208                 *   to avoid r/m/w race condition on the
2209                 *   MCP251XFD_REG_INT register.
2210                 */
2211                intf_pending_clearable = intf_pending &
2212                        MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
2213                if (intf_pending_clearable) {
2214                        err = regmap_update_bits(priv->map_reg,
2215                                                 MCP251XFD_REG_INT,
2216                                                 MCP251XFD_REG_INT_IF_MASK,
2217                                                 ~intf_pending_clearable);
2218                        if (err)
2219                                goto out_fail;
2220                }
2221
2222                if (intf_pending & MCP251XFD_REG_INT_MODIF) {
2223                        err = mcp251xfd_handle(priv, modif, &set_normal_mode);
2224                        if (err)
2225                                goto out_fail;
2226                }
2227
2228                if (intf_pending & MCP251XFD_REG_INT_RXIF) {
2229                        err = mcp251xfd_handle(priv, rxif);
2230                        if (err)
2231                                goto out_fail;
2232                }
2233
2234                if (intf_pending & MCP251XFD_REG_INT_TEFIF) {
2235                        err = mcp251xfd_handle(priv, tefif);
2236                        if (err)
2237                                goto out_fail;
2238                }
2239
2240                if (intf_pending & MCP251XFD_REG_INT_RXOVIF) {
2241                        err = mcp251xfd_handle(priv, rxovif);
2242                        if (err)
2243                                goto out_fail;
2244                }
2245
2246                if (intf_pending & MCP251XFD_REG_INT_TXATIF) {
2247                        err = mcp251xfd_handle(priv, txatif);
2248                        if (err)
2249                                goto out_fail;
2250                }
2251
2252                if (intf_pending & MCP251XFD_REG_INT_IVMIF) {
2253                        err = mcp251xfd_handle(priv, ivmif);
2254                        if (err)
2255                                goto out_fail;
2256                }
2257
2258                if (intf_pending & MCP251XFD_REG_INT_SERRIF) {
2259                        err = mcp251xfd_handle(priv, serrif);
2260                        if (err)
2261                                goto out_fail;
2262                }
2263
2264                if (intf_pending & MCP251XFD_REG_INT_ECCIF) {
2265                        err = mcp251xfd_handle(priv, eccif, set_normal_mode);
2266                        if (err)
2267                                goto out_fail;
2268                }
2269
2270                if (intf_pending & MCP251XFD_REG_INT_SPICRCIF) {
2271                        err = mcp251xfd_handle(priv, spicrcif);
2272                        if (err)
2273                                goto out_fail;
2274                }
2275
2276                /* On the MCP2527FD and MCP2518FD, we don't get a
2277                 * CERRIF IRQ on the transition TX ERROR_WARNING -> TX
2278                 * ERROR_ACTIVE.
2279                 */
2280                if (intf_pending & MCP251XFD_REG_INT_CERRIF ||
2281                    priv->can.state > CAN_STATE_ERROR_ACTIVE) {
2282                        err = mcp251xfd_handle(priv, cerrif);
2283                        if (err)
2284                                goto out_fail;
2285
2286                        /* In Bus Off we completely shut down the
2287                         * controller. Every subsequent register read
2288                         * will read bogus data, and if
2289                         * MCP251XFD_QUIRK_CRC_REG is enabled the CRC
2290                         * check will fail, too. So leave IRQ handler
2291                         * directly.
2292                         */
2293                        if (priv->can.state == CAN_STATE_BUS_OFF)
2294                                return IRQ_HANDLED;
2295                }
2296
2297                handled = IRQ_HANDLED;
2298        } while (1);
2299
2300 out_fail:
2301        can_rx_offload_threaded_irq_finish(&priv->offload);
2302
2303        netdev_err(priv->ndev, "IRQ handler returned %d (intf=0x%08x).\n",
2304                   err, priv->regs_status.intf);
2305        mcp251xfd_dump(priv);
2306        mcp251xfd_chip_interrupts_disable(priv);
2307        mcp251xfd_timestamp_stop(priv);
2308
2309        return handled;
2310}
2311
2312static inline struct
2313mcp251xfd_tx_obj *mcp251xfd_get_tx_obj_next(struct mcp251xfd_tx_ring *tx_ring)
2314{
2315        u8 tx_head;
2316
2317        tx_head = mcp251xfd_get_tx_head(tx_ring);
2318
2319        return &tx_ring->obj[tx_head];
2320}
2321
2322static void
2323mcp251xfd_tx_obj_from_skb(const struct mcp251xfd_priv *priv,
2324                          struct mcp251xfd_tx_obj *tx_obj,
2325                          const struct sk_buff *skb,
2326                          unsigned int seq)
2327{
2328        const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
2329        struct mcp251xfd_hw_tx_obj_raw *hw_tx_obj;
2330        union mcp251xfd_tx_obj_load_buf *load_buf;
2331        u8 dlc;
2332        u32 id, flags;
2333        int len_sanitized = 0, len;
2334
2335        if (cfd->can_id & CAN_EFF_FLAG) {
2336                u32 sid, eid;
2337
2338                sid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_SID_MASK, cfd->can_id);
2339                eid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_EID_MASK, cfd->can_id);
2340
2341                id = FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, eid) |
2342                        FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, sid);
2343
2344                flags = MCP251XFD_OBJ_FLAGS_IDE;
2345        } else {
2346                id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, cfd->can_id);
2347                flags = 0;
2348        }
2349
2350        /* Use the MCP2518FD mask even on the MCP2517FD. It doesn't
2351         * harm, only the lower 7 bits will be transferred into the
2352         * TEF object.
2353         */
2354        flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK, seq);
2355
2356        if (cfd->can_id & CAN_RTR_FLAG)
2357                flags |= MCP251XFD_OBJ_FLAGS_RTR;
2358        else
2359                len_sanitized = canfd_sanitize_len(cfd->len);
2360
2361        /* CANFD */
2362        if (can_is_canfd_skb(skb)) {
2363                if (cfd->flags & CANFD_ESI)
2364                        flags |= MCP251XFD_OBJ_FLAGS_ESI;
2365
2366                flags |= MCP251XFD_OBJ_FLAGS_FDF;
2367
2368                if (cfd->flags & CANFD_BRS)
2369                        flags |= MCP251XFD_OBJ_FLAGS_BRS;
2370
2371                dlc = can_fd_len2dlc(cfd->len);
2372        } else {
2373                dlc = can_get_cc_dlc((struct can_frame *)cfd,
2374                                     priv->can.ctrlmode);
2375        }
2376
2377        flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC_MASK, dlc);
2378
2379        load_buf = &tx_obj->buf;
2380        if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
2381                hw_tx_obj = &load_buf->crc.hw_tx_obj;
2382        else
2383                hw_tx_obj = &load_buf->nocrc.hw_tx_obj;
2384
2385        put_unaligned_le32(id, &hw_tx_obj->id);
2386        put_unaligned_le32(flags, &hw_tx_obj->flags);
2387
2388        /* Copy data */
2389        memcpy(hw_tx_obj->data, cfd->data, cfd->len);
2390
2391        /* Clear unused data at end of CAN frame */
2392        if (MCP251XFD_SANITIZE_CAN && len_sanitized) {
2393                int pad_len;
2394
2395                pad_len = len_sanitized - cfd->len;
2396                if (pad_len)
2397                        memset(hw_tx_obj->data + cfd->len, 0x0, pad_len);
2398        }
2399
2400        /* Number of bytes to be written into the RAM of the controller */
2401        len = sizeof(hw_tx_obj->id) + sizeof(hw_tx_obj->flags);
2402        if (MCP251XFD_SANITIZE_CAN)
2403                len += round_up(len_sanitized, sizeof(u32));
2404        else
2405                len += round_up(cfd->len, sizeof(u32));
2406
2407        if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) {
2408                u16 crc;
2409
2410                mcp251xfd_spi_cmd_crc_set_len_in_ram(&load_buf->crc.cmd,
2411                                                     len);
2412                /* CRC */
2413                len += sizeof(load_buf->crc.cmd);
2414                crc = mcp251xfd_crc16_compute(&load_buf->crc, len);
2415                put_unaligned_be16(crc, (void *)load_buf + len);
2416
2417                /* Total length */
2418                len += sizeof(load_buf->crc.crc);
2419        } else {
2420                len += sizeof(load_buf->nocrc.cmd);
2421        }
2422
2423        tx_obj->xfer[0].len = len;
2424}
2425
2426static int mcp251xfd_tx_obj_write(const struct mcp251xfd_priv *priv,
2427                                  struct mcp251xfd_tx_obj *tx_obj)
2428{
2429        return spi_async(priv->spi, &tx_obj->msg);
2430}
2431
2432static bool mcp251xfd_tx_busy(const struct mcp251xfd_priv *priv,
2433                              struct mcp251xfd_tx_ring *tx_ring)
2434{
2435        if (mcp251xfd_get_tx_free(tx_ring) > 0)
2436                return false;
2437
2438        netif_stop_queue(priv->ndev);
2439
2440        /* Memory barrier before checking tx_free (head and tail) */
2441        smp_mb();
2442
2443        if (mcp251xfd_get_tx_free(tx_ring) == 0) {
2444                netdev_dbg(priv->ndev,
2445                           "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
2446                           tx_ring->head, tx_ring->tail,
2447                           tx_ring->head - tx_ring->tail);
2448
2449                return true;
2450        }
2451
2452        netif_start_queue(priv->ndev);
2453
2454        return false;
2455}
2456
2457static netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
2458                                        struct net_device *ndev)
2459{
2460        struct mcp251xfd_priv *priv = netdev_priv(ndev);
2461        struct mcp251xfd_tx_ring *tx_ring = priv->tx;
2462        struct mcp251xfd_tx_obj *tx_obj;
2463        unsigned int frame_len;
2464        u8 tx_head;
2465        int err;
2466
2467        if (can_dropped_invalid_skb(ndev, skb))
2468                return NETDEV_TX_OK;
2469
2470        if (mcp251xfd_tx_busy(priv, tx_ring))
2471                return NETDEV_TX_BUSY;
2472
2473        tx_obj = mcp251xfd_get_tx_obj_next(tx_ring);
2474        mcp251xfd_tx_obj_from_skb(priv, tx_obj, skb, tx_ring->head);
2475
2476        /* Stop queue if we occupy the complete TX FIFO */
2477        tx_head = mcp251xfd_get_tx_head(tx_ring);
2478        tx_ring->head++;
2479        if (mcp251xfd_get_tx_free(tx_ring) == 0)
2480                netif_stop_queue(ndev);
2481
2482        frame_len = can_skb_get_frame_len(skb);
2483        err = can_put_echo_skb(skb, ndev, tx_head, frame_len);
2484        if (!err)
2485                netdev_sent_queue(priv->ndev, frame_len);
2486
2487        err = mcp251xfd_tx_obj_write(priv, tx_obj);
2488        if (err)
2489                goto out_err;
2490
2491        return NETDEV_TX_OK;
2492
2493 out_err:
2494        netdev_err(priv->ndev, "ERROR in %s: %d\n", __func__, err);
2495
2496        return NETDEV_TX_OK;
2497}
2498
2499static int mcp251xfd_open(struct net_device *ndev)
2500{
2501        struct mcp251xfd_priv *priv = netdev_priv(ndev);
2502        const struct spi_device *spi = priv->spi;
2503        int err;
2504
2505        err = pm_runtime_get_sync(ndev->dev.parent);
2506        if (err < 0) {
2507                pm_runtime_put_noidle(ndev->dev.parent);
2508                return err;
2509        }
2510
2511        err = open_candev(ndev);
2512        if (err)
2513                goto out_pm_runtime_put;
2514
2515        err = mcp251xfd_ring_alloc(priv);
2516        if (err)
2517                goto out_close_candev;
2518
2519        err = mcp251xfd_transceiver_enable(priv);
2520        if (err)
2521                goto out_mcp251xfd_ring_free;
2522
2523        err = mcp251xfd_chip_start(priv);
2524        if (err)
2525                goto out_transceiver_disable;
2526
2527        mcp251xfd_timestamp_init(priv);
2528        can_rx_offload_enable(&priv->offload);
2529
2530        err = request_threaded_irq(spi->irq, NULL, mcp251xfd_irq,
2531                                   IRQF_SHARED | IRQF_ONESHOT,
2532                                   dev_name(&spi->dev), priv);
2533        if (err)
2534                goto out_can_rx_offload_disable;
2535
2536        err = mcp251xfd_chip_interrupts_enable(priv);
2537        if (err)
2538                goto out_free_irq;
2539
2540        netif_start_queue(ndev);
2541
2542        return 0;
2543
2544 out_free_irq:
2545        free_irq(spi->irq, priv);
2546 out_can_rx_offload_disable:
2547        can_rx_offload_disable(&priv->offload);
2548        mcp251xfd_timestamp_stop(priv);
2549 out_transceiver_disable:
2550        mcp251xfd_transceiver_disable(priv);
2551 out_mcp251xfd_ring_free:
2552        mcp251xfd_ring_free(priv);
2553 out_close_candev:
2554        close_candev(ndev);
2555 out_pm_runtime_put:
2556        mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
2557        pm_runtime_put(ndev->dev.parent);
2558
2559        return err;
2560}
2561
2562static int mcp251xfd_stop(struct net_device *ndev)
2563{
2564        struct mcp251xfd_priv *priv = netdev_priv(ndev);
2565
2566        netif_stop_queue(ndev);
2567        mcp251xfd_chip_interrupts_disable(priv);
2568        free_irq(ndev->irq, priv);
2569        can_rx_offload_disable(&priv->offload);
2570        mcp251xfd_timestamp_stop(priv);
2571        mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
2572        mcp251xfd_transceiver_disable(priv);
2573        mcp251xfd_ring_free(priv);
2574        close_candev(ndev);
2575
2576        pm_runtime_put(ndev->dev.parent);
2577
2578        return 0;
2579}
2580
2581static const struct net_device_ops mcp251xfd_netdev_ops = {
2582        .ndo_open = mcp251xfd_open,
2583        .ndo_stop = mcp251xfd_stop,
2584        .ndo_start_xmit = mcp251xfd_start_xmit,
2585        .ndo_change_mtu = can_change_mtu,
2586};
2587
2588static void
2589mcp251xfd_register_quirks(struct mcp251xfd_priv *priv)
2590{
2591        const struct spi_device *spi = priv->spi;
2592        const struct spi_controller *ctlr = spi->controller;
2593
2594        if (ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX)
2595                priv->devtype_data.quirks |= MCP251XFD_QUIRK_HALF_DUPLEX;
2596}
2597
2598static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
2599{
2600        const struct net_device *ndev = priv->ndev;
2601        const struct mcp251xfd_devtype_data *devtype_data;
2602        u32 osc;
2603        int err;
2604
2605        /* The OSC_LPMEN is only supported on MCP2518FD, so use it to
2606         * autodetect the model.
2607         */
2608        err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_OSC,
2609                                 MCP251XFD_REG_OSC_LPMEN,
2610                                 MCP251XFD_REG_OSC_LPMEN);
2611        if (err)
2612                return err;
2613
2614        err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
2615        if (err)
2616                return err;
2617
2618        if (osc & MCP251XFD_REG_OSC_LPMEN)
2619                devtype_data = &mcp251xfd_devtype_data_mcp2518fd;
2620        else
2621                devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
2622
2623        if (!mcp251xfd_is_251X(priv) &&
2624            priv->devtype_data.model != devtype_data->model) {
2625                netdev_info(ndev,
2626                            "Detected %s, but firmware specifies a %s. Fixing up.",
2627                            __mcp251xfd_get_model_str(devtype_data->model),
2628                            mcp251xfd_get_model_str(priv));
2629        }
2630        priv->devtype_data = *devtype_data;
2631
2632        /* We need to preserve the Half Duplex Quirk. */
2633        mcp251xfd_register_quirks(priv);
2634
2635        /* Re-init regmap with quirks of detected model. */
2636        return mcp251xfd_regmap_init(priv);
2637}
2638
2639static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
2640{
2641        int err, rx_pending;
2642
2643        if (!priv->rx_int)
2644                return 0;
2645
2646        err = mcp251xfd_chip_rx_int_enable(priv);
2647        if (err)
2648                return err;
2649
2650        /* Check if RX_INT is properly working. The RX_INT should not
2651         * be active after a softreset.
2652         */
2653        rx_pending = gpiod_get_value_cansleep(priv->rx_int);
2654
2655        err = mcp251xfd_chip_rx_int_disable(priv);
2656        if (err)
2657                return err;
2658
2659        if (!rx_pending)
2660                return 0;
2661
2662        netdev_info(priv->ndev,
2663                    "RX_INT active after softreset, disabling RX_INT support.");
2664        devm_gpiod_put(&priv->spi->dev, priv->rx_int);
2665        priv->rx_int = NULL;
2666
2667        return 0;
2668}
2669
2670static int
2671mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv *priv,
2672                              u32 *dev_id, u32 *effective_speed_hz)
2673{
2674        struct mcp251xfd_map_buf_nocrc *buf_rx;
2675        struct mcp251xfd_map_buf_nocrc *buf_tx;
2676        struct spi_transfer xfer[2] = { };
2677        int err;
2678
2679        buf_rx = kzalloc(sizeof(*buf_rx), GFP_KERNEL);
2680        if (!buf_rx)
2681                return -ENOMEM;
2682
2683        buf_tx = kzalloc(sizeof(*buf_tx), GFP_KERNEL);
2684        if (!buf_tx) {
2685                err = -ENOMEM;
2686                goto out_kfree_buf_rx;
2687        }
2688
2689        xfer[0].tx_buf = buf_tx;
2690        xfer[0].len = sizeof(buf_tx->cmd);
2691        xfer[1].rx_buf = buf_rx->data;
2692        xfer[1].len = sizeof(dev_id);
2693
2694        mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, MCP251XFD_REG_DEVID);
2695        err = spi_sync_transfer(priv->spi, xfer, ARRAY_SIZE(xfer));
2696        if (err)
2697                goto out_kfree_buf_tx;
2698
2699        *dev_id = be32_to_cpup((__be32 *)buf_rx->data);
2700        *effective_speed_hz = xfer->effective_speed_hz;
2701
2702 out_kfree_buf_tx:
2703        kfree(buf_tx);
2704 out_kfree_buf_rx:
2705        kfree(buf_rx);
2706
2707        return 0;
2708}
2709
2710#define MCP251XFD_QUIRK_ACTIVE(quirk) \
2711        (priv->devtype_data.quirks & MCP251XFD_QUIRK_##quirk ? '+' : '-')
2712
2713static int
2714mcp251xfd_register_done(const struct mcp251xfd_priv *priv)
2715{
2716        u32 dev_id, effective_speed_hz;
2717        int err;
2718
2719        err = mcp251xfd_register_get_dev_id(priv, &dev_id,
2720                                            &effective_speed_hz);
2721        if (err)
2722                return err;
2723
2724        netdev_info(priv->ndev,
2725                    "%s rev%lu.%lu (%cRX_INT %cMAB_NO_WARN %cCRC_REG %cCRC_RX %cCRC_TX %cECC %cHD c:%u.%02uMHz m:%u.%02uMHz r:%u.%02uMHz e:%u.%02uMHz) successfully initialized.\n",
2726                    mcp251xfd_get_model_str(priv),
2727                    FIELD_GET(MCP251XFD_REG_DEVID_ID_MASK, dev_id),
2728                    FIELD_GET(MCP251XFD_REG_DEVID_REV_MASK, dev_id),
2729                    priv->rx_int ? '+' : '-',
2730                    MCP251XFD_QUIRK_ACTIVE(MAB_NO_WARN),
2731                    MCP251XFD_QUIRK_ACTIVE(CRC_REG),
2732                    MCP251XFD_QUIRK_ACTIVE(CRC_RX),
2733                    MCP251XFD_QUIRK_ACTIVE(CRC_TX),
2734                    MCP251XFD_QUIRK_ACTIVE(ECC),
2735                    MCP251XFD_QUIRK_ACTIVE(HALF_DUPLEX),
2736                    priv->can.clock.freq / 1000000,
2737                    priv->can.clock.freq % 1000000 / 1000 / 10,
2738                    priv->spi_max_speed_hz_orig / 1000000,
2739                    priv->spi_max_speed_hz_orig % 1000000 / 1000 / 10,
2740                    priv->spi->max_speed_hz / 1000000,
2741                    priv->spi->max_speed_hz % 1000000 / 1000 / 10,
2742                    effective_speed_hz / 1000000,
2743                    effective_speed_hz % 1000000 / 1000 / 10);
2744
2745        return 0;
2746}
2747
2748static int mcp251xfd_register(struct mcp251xfd_priv *priv)
2749{
2750        struct net_device *ndev = priv->ndev;
2751        int err;
2752
2753        err = mcp251xfd_clks_and_vdd_enable(priv);
2754        if (err)
2755                return err;
2756
2757        pm_runtime_get_noresume(ndev->dev.parent);
2758        err = pm_runtime_set_active(ndev->dev.parent);
2759        if (err)
2760                goto out_runtime_put_noidle;
2761        pm_runtime_enable(ndev->dev.parent);
2762
2763        mcp251xfd_register_quirks(priv);
2764
2765        err = mcp251xfd_chip_softreset(priv);
2766        if (err == -ENODEV)
2767                goto out_runtime_disable;
2768        if (err)
2769                goto out_chip_set_mode_sleep;
2770
2771        err = mcp251xfd_register_chip_detect(priv);
2772        if (err)
2773                goto out_chip_set_mode_sleep;
2774
2775        err = mcp251xfd_register_check_rx_int(priv);
2776        if (err)
2777                goto out_chip_set_mode_sleep;
2778
2779        err = register_candev(ndev);
2780        if (err)
2781                goto out_chip_set_mode_sleep;
2782
2783        err = mcp251xfd_register_done(priv);
2784        if (err)
2785                goto out_unregister_candev;
2786
2787        /* Put controller into sleep mode and let pm_runtime_put()
2788         * disable the clocks and vdd. If CONFIG_PM is not enabled,
2789         * the clocks and vdd will stay powered.
2790         */
2791        err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
2792        if (err)
2793                goto out_unregister_candev;
2794
2795        pm_runtime_put(ndev->dev.parent);
2796
2797        return 0;
2798
2799 out_unregister_candev:
2800        unregister_candev(ndev);
2801 out_chip_set_mode_sleep:
2802        mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
2803 out_runtime_disable:
2804        pm_runtime_disable(ndev->dev.parent);
2805 out_runtime_put_noidle:
2806        pm_runtime_put_noidle(ndev->dev.parent);
2807        mcp251xfd_clks_and_vdd_disable(priv);
2808
2809        return err;
2810}
2811
2812static inline void mcp251xfd_unregister(struct mcp251xfd_priv *priv)
2813{
2814        struct net_device *ndev = priv->ndev;
2815
2816        unregister_candev(ndev);
2817
2818        pm_runtime_get_sync(ndev->dev.parent);
2819        pm_runtime_put_noidle(ndev->dev.parent);
2820        mcp251xfd_clks_and_vdd_disable(priv);
2821        pm_runtime_disable(ndev->dev.parent);
2822}
2823
2824static const struct of_device_id mcp251xfd_of_match[] = {
2825        {
2826                .compatible = "microchip,mcp2517fd",
2827                .data = &mcp251xfd_devtype_data_mcp2517fd,
2828        }, {
2829                .compatible = "microchip,mcp2518fd",
2830                .data = &mcp251xfd_devtype_data_mcp2518fd,
2831        }, {
2832                .compatible = "microchip,mcp251xfd",
2833                .data = &mcp251xfd_devtype_data_mcp251xfd,
2834        }, {
2835                /* sentinel */
2836        },
2837};
2838MODULE_DEVICE_TABLE(of, mcp251xfd_of_match);
2839
2840static const struct spi_device_id mcp251xfd_id_table[] = {
2841        {
2842                .name = "mcp2517fd",
2843                .driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2517fd,
2844        }, {
2845                .name = "mcp2518fd",
2846                .driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
2847        }, {
2848                .name = "mcp251xfd",
2849                .driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,
2850        }, {
2851                /* sentinel */
2852        },
2853};
2854MODULE_DEVICE_TABLE(spi, mcp251xfd_id_table);
2855
2856static int mcp251xfd_probe(struct spi_device *spi)
2857{
2858        const void *match;
2859        struct net_device *ndev;
2860        struct mcp251xfd_priv *priv;
2861        struct gpio_desc *rx_int;
2862        struct regulator *reg_vdd, *reg_xceiver;
2863        struct clk *clk;
2864        u32 freq = 0;
2865        int err;
2866
2867        if (!spi->irq)
2868                return dev_err_probe(&spi->dev, -ENXIO,
2869                                     "No IRQ specified (maybe node \"interrupts-extended\" in DT missing)!\n");
2870
2871        rx_int = devm_gpiod_get_optional(&spi->dev, "microchip,rx-int",
2872                                         GPIOD_IN);
2873        if (IS_ERR(rx_int))
2874                return dev_err_probe(&spi->dev, PTR_ERR(rx_int),
2875                                     "Failed to get RX-INT!\n");
2876
2877        reg_vdd = devm_regulator_get_optional(&spi->dev, "vdd");
2878        if (PTR_ERR(reg_vdd) == -ENODEV)
2879                reg_vdd = NULL;
2880        else if (IS_ERR(reg_vdd))
2881                return dev_err_probe(&spi->dev, PTR_ERR(reg_vdd),
2882                                     "Failed to get VDD regulator!\n");
2883
2884        reg_xceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
2885        if (PTR_ERR(reg_xceiver) == -ENODEV)
2886                reg_xceiver = NULL;
2887        else if (IS_ERR(reg_xceiver))
2888                return dev_err_probe(&spi->dev, PTR_ERR(reg_xceiver),
2889                                     "Failed to get Transceiver regulator!\n");
2890
2891        clk = devm_clk_get_optional(&spi->dev, NULL);
2892        if (IS_ERR(clk))
2893                return dev_err_probe(&spi->dev, PTR_ERR(clk),
2894                                     "Failed to get Oscillator (clock)!\n");
2895        if (clk) {
2896                freq = clk_get_rate(clk);
2897        } else {
2898                err = device_property_read_u32(&spi->dev, "clock-frequency",
2899                                               &freq);
2900                if (err)
2901                        return dev_err_probe(&spi->dev, err,
2902                                             "Failed to get clock-frequency!\n");
2903        }
2904
2905        /* Sanity check */
2906        if (freq < MCP251XFD_SYSCLOCK_HZ_MIN ||
2907            freq > MCP251XFD_SYSCLOCK_HZ_MAX) {
2908                dev_err(&spi->dev,
2909                        "Oscillator frequency (%u Hz) is too low or high.\n",
2910                        freq);
2911                return -ERANGE;
2912        }
2913
2914        if (freq <= MCP251XFD_SYSCLOCK_HZ_MAX / MCP251XFD_OSC_PLL_MULTIPLIER) {
2915                dev_err(&spi->dev,
2916                        "Oscillator frequency (%u Hz) is too low and PLL is not supported.\n",
2917                        freq);
2918                return -ERANGE;
2919        }
2920
2921        ndev = alloc_candev(sizeof(struct mcp251xfd_priv),
2922                            MCP251XFD_TX_OBJ_NUM_MAX);
2923        if (!ndev)
2924                return -ENOMEM;
2925
2926        SET_NETDEV_DEV(ndev, &spi->dev);
2927
2928        ndev->netdev_ops = &mcp251xfd_netdev_ops;
2929        ndev->irq = spi->irq;
2930        ndev->flags |= IFF_ECHO;
2931
2932        priv = netdev_priv(ndev);
2933        spi_set_drvdata(spi, priv);
2934        priv->can.clock.freq = freq;
2935        priv->can.do_set_mode = mcp251xfd_set_mode;
2936        priv->can.do_get_berr_counter = mcp251xfd_get_berr_counter;
2937        priv->can.bittiming_const = &mcp251xfd_bittiming_const;
2938        priv->can.data_bittiming_const = &mcp251xfd_data_bittiming_const;
2939        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
2940                CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING |
2941                CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO |
2942                CAN_CTRLMODE_CC_LEN8_DLC;
2943        priv->ndev = ndev;
2944        priv->spi = spi;
2945        priv->rx_int = rx_int;
2946        priv->clk = clk;
2947        priv->reg_vdd = reg_vdd;
2948        priv->reg_xceiver = reg_xceiver;
2949
2950        match = device_get_match_data(&spi->dev);
2951        if (match)
2952                priv->devtype_data = *(struct mcp251xfd_devtype_data *)match;
2953        else
2954                priv->devtype_data = *(struct mcp251xfd_devtype_data *)
2955                        spi_get_device_id(spi)->driver_data;
2956
2957        /* Errata Reference:
2958         * mcp2517fd: DS80000792C 5., mcp2518fd: DS80000789C 4.
2959         *
2960         * The SPI can write corrupted data to the RAM at fast SPI
2961         * speeds:
2962         *
2963         * Simultaneous activity on the CAN bus while writing data to
2964         * RAM via the SPI interface, with high SCK frequency, can
2965         * lead to corrupted data being written to RAM.
2966         *
2967         * Fix/Work Around:
2968         * Ensure that FSCK is less than or equal to 0.85 *
2969         * (FSYSCLK/2).
2970         *
2971         * Known good combinations are:
2972         *
2973         * MCP  ext-clk SoC                     SPI                     SPI-clk         max-clk parent-clk      config
2974         *
2975         * 2518 20 MHz  allwinner,sun8i-h3      allwinner,sun8i-h3-spi   8333333 Hz      83.33% 600000000 Hz    assigned-clocks = <&ccu CLK_SPIx>
2976         * 2518 40 MHz  allwinner,sun8i-h3      allwinner,sun8i-h3-spi  16666667 Hz      83.33% 600000000 Hz    assigned-clocks = <&ccu CLK_SPIx>
2977         * 2517 40 MHz  atmel,sama5d27          atmel,at91rm9200-spi    16400000 Hz      82.00%  82000000 Hz    default
2978         * 2518 40 MHz  atmel,sama5d27          atmel,at91rm9200-spi    16400000 Hz      82.00%  82000000 Hz    default
2979         * 2518 40 MHz  fsl,imx6dl              fsl,imx51-ecspi         15000000 Hz      75.00%  30000000 Hz    default
2980         * 2517 20 MHz  fsl,imx8mm              fsl,imx51-ecspi          8333333 Hz      83.33%  16666667 Hz    assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
2981         *
2982         */
2983        priv->spi_max_speed_hz_orig = spi->max_speed_hz;
2984        spi->max_speed_hz = min(spi->max_speed_hz, freq / 2 / 1000 * 850);
2985        spi->bits_per_word = 8;
2986        spi->rt = true;
2987        err = spi_setup(spi);
2988        if (err)
2989                goto out_free_candev;
2990
2991        err = mcp251xfd_regmap_init(priv);
2992        if (err)
2993                goto out_free_candev;
2994
2995        err = can_rx_offload_add_manual(ndev, &priv->offload,
2996                                        MCP251XFD_NAPI_WEIGHT);
2997        if (err)
2998                goto out_free_candev;
2999
3000        err = mcp251xfd_register(priv);
3001        if (err)
3002                goto out_can_rx_offload_del;
3003
3004        return 0;
3005
3006 out_can_rx_offload_del:
3007        can_rx_offload_del(&priv->offload);
3008 out_free_candev:
3009        spi->max_speed_hz = priv->spi_max_speed_hz_orig;
3010
3011        free_candev(ndev);
3012
3013        return err;
3014}
3015
3016static int mcp251xfd_remove(struct spi_device *spi)
3017{
3018        struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
3019        struct net_device *ndev = priv->ndev;
3020
3021        can_rx_offload_del(&priv->offload);
3022        mcp251xfd_unregister(priv);
3023        spi->max_speed_hz = priv->spi_max_speed_hz_orig;
3024        free_candev(ndev);
3025
3026        return 0;
3027}
3028
3029static int __maybe_unused mcp251xfd_runtime_suspend(struct device *device)
3030{
3031        const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
3032
3033        return mcp251xfd_clks_and_vdd_disable(priv);
3034}
3035
3036static int __maybe_unused mcp251xfd_runtime_resume(struct device *device)
3037{
3038        const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
3039
3040        return mcp251xfd_clks_and_vdd_enable(priv);
3041}
3042
3043static const struct dev_pm_ops mcp251xfd_pm_ops = {
3044        SET_RUNTIME_PM_OPS(mcp251xfd_runtime_suspend,
3045                           mcp251xfd_runtime_resume, NULL)
3046};
3047
3048static struct spi_driver mcp251xfd_driver = {
3049        .driver = {
3050                .name = DEVICE_NAME,
3051                .pm = &mcp251xfd_pm_ops,
3052                .of_match_table = mcp251xfd_of_match,
3053        },
3054        .probe = mcp251xfd_probe,
3055        .remove = mcp251xfd_remove,
3056        .id_table = mcp251xfd_id_table,
3057};
3058module_spi_driver(mcp251xfd_driver);
3059
3060MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
3061MODULE_DESCRIPTION("Microchip MCP251xFD Family CAN controller driver");
3062MODULE_LICENSE("GPL v2");
3063