linux/drivers/net/ethernet/agere/et131x.c
<<
>>
Prefs
   1/* Agere Systems Inc.
   2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   3 *
   4 * Copyright © 2005 Agere Systems Inc.
   5 * All rights reserved.
   6 *   http://www.agere.com
   7 *
   8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
   9 *
  10 *------------------------------------------------------------------------------
  11 *
  12 * SOFTWARE LICENSE
  13 *
  14 * This software is provided subject to the following terms and conditions,
  15 * which you should read carefully before using the software.  Using this
  16 * software indicates your acceptance of these terms and conditions.  If you do
  17 * not agree with these terms and conditions, do not use the software.
  18 *
  19 * Copyright © 2005 Agere Systems Inc.
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source or binary forms, with or without
  23 * modifications, are permitted provided that the following conditions are met:
  24 *
  25 * . Redistributions of source code must retain the above copyright notice, this
  26 *    list of conditions and the following Disclaimer as comments in the code as
  27 *    well as in the documentation and/or other materials provided with the
  28 *    distribution.
  29 *
  30 * . Redistributions in binary form must reproduce the above copyright notice,
  31 *    this list of conditions and the following Disclaimer in the documentation
  32 *    and/or other materials provided with the distribution.
  33 *
  34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  35 *    may be used to endorse or promote products derived from this software
  36 *    without specific prior written permission.
  37 *
  38 * Disclaimer
  39 *
  40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  51 * DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55
  56#include <linux/pci.h>
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/kernel.h>
  60
  61#include <linux/sched.h>
  62#include <linux/ptrace.h>
  63#include <linux/slab.h>
  64#include <linux/ctype.h>
  65#include <linux/string.h>
  66#include <linux/timer.h>
  67#include <linux/interrupt.h>
  68#include <linux/in.h>
  69#include <linux/delay.h>
  70#include <linux/bitops.h>
  71#include <linux/io.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_arp.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/phy.h>
  81
  82#include "et131x.h"
  83
  84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  86MODULE_LICENSE("Dual BSD/GPL");
  87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  88
  89/* EEPROM defines */
  90#define MAX_NUM_REGISTER_POLLS          1000
  91#define MAX_NUM_WRITE_RETRIES           2
  92
  93/* MAC defines */
  94#define COUNTER_WRAP_16_BIT 0x10000
  95#define COUNTER_WRAP_12_BIT 0x1000
  96
  97/* PCI defines */
  98#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
  99#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 100
 101/* ISR defines */
 102/* For interrupts, normal running is:
 103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 104 *       watchdog_interrupt & txdma_xfer_done
 105 *
 106 * In both cases, when flow control is enabled for either Tx or bi-direction,
 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 108 * buffer rings are running low.
 109 */
 110#define INT_MASK_DISABLE            0xffffffff
 111
 112/* NOTE: Masking out MAC_STAT Interrupt for now...
 113 * #define INT_MASK_ENABLE             0xfff6bf17
 114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 115 */
 116#define INT_MASK_ENABLE             0xfffebf17
 117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 118
 119/* General defines */
 120/* Packet and header sizes */
 121#define NIC_MIN_PACKET_SIZE     60
 122
 123/* Multicast list size */
 124#define NIC_MAX_MCAST_LIST      128
 125
 126/* Supported Filters */
 127#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 128#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 129#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 130#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 131#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 132
 133/* Tx Timeout */
 134#define ET131X_TX_TIMEOUT       (1 * HZ)
 135#define NIC_SEND_HANG_THRESHOLD 0
 136
 137/* MP_ADAPTER flags */
 138#define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 139
 140/* MP_SHARED flags */
 141#define FMP_ADAPTER_LOWER_POWER         0x00200000
 142
 143#define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 144#define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
 145
 146#define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 147
 148/* Some offsets in PCI config space that are actually used. */
 149#define ET1310_PCI_MAC_ADDRESS          0xA4
 150#define ET1310_PCI_EEPROM_STATUS        0xB2
 151#define ET1310_PCI_ACK_NACK             0xC0
 152#define ET1310_PCI_REPLAY               0xC2
 153#define ET1310_PCI_L0L1LATENCY          0xCF
 154
 155/* PCI Product IDs */
 156#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 157#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 158
 159/* Define order of magnitude converter */
 160#define NANO_IN_A_MICRO 1000
 161
 162#define PARM_RX_NUM_BUFS_DEF    4
 163#define PARM_RX_TIME_INT_DEF    10
 164#define PARM_RX_MEM_END_DEF     0x2bc
 165#define PARM_TX_TIME_INT_DEF    40
 166#define PARM_TX_NUM_BUFS_DEF    4
 167#define PARM_DMA_CACHE_DEF      0
 168
 169/* RX defines */
 170#define FBR_CHUNKS              32
 171#define MAX_DESC_PER_RING_RX    1024
 172
 173/* number of RFDs - default and min */
 174#define RFD_LOW_WATER_MARK      40
 175#define NIC_DEFAULT_NUM_RFD     1024
 176#define NUM_FBRS                2
 177
 178#define MAX_PACKETS_HANDLED     256
 179#define ET131X_MIN_MTU          64
 180#define ET131X_MAX_MTU          9216
 181
 182#define ALCATEL_MULTICAST_PKT   0x01000000
 183#define ALCATEL_BROADCAST_PKT   0x02000000
 184
 185/* typedefs for Free Buffer Descriptors */
 186struct fbr_desc {
 187        u32 addr_lo;
 188        u32 addr_hi;
 189        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 190};
 191
 192/* Packet Status Ring Descriptors
 193 *
 194 * Word 0:
 195 *
 196 * top 16 bits are from the Alcatel Status Word as enumerated in
 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 198 *
 199 * 0: hp                        hash pass
 200 * 1: ipa                       IP checksum assist
 201 * 2: ipp                       IP checksum pass
 202 * 3: tcpa                      TCP checksum assist
 203 * 4: tcpp                      TCP checksum pass
 204 * 5: wol                       WOL Event
 205 * 6: rxmac_error               RXMAC Error Indicator
 206 * 7: drop                      Drop packet
 207 * 8: ft                        Frame Truncated
 208 * 9: jp                        Jumbo Packet
 209 * 10: vp                       VLAN Packet
 210 * 11-15: unused
 211 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 212 * 17: asw_RX_DV_event          short receive event detected
 213 * 18: asw_false_carrier_event  bad carrier since last good packet
 214 * 19: asw_code_err             one or more nibbles signalled as errors
 215 * 20: asw_CRC_err              CRC error
 216 * 21: asw_len_chk_err          frame length field incorrect
 217 * 22: asw_too_long             frame length > 1518 bytes
 218 * 23: asw_OK                   valid CRC + no code error
 219 * 24: asw_multicast            has a multicast address
 220 * 25: asw_broadcast            has a broadcast address
 221 * 26: asw_dribble_nibble       spurious bits after EOP
 222 * 27: asw_control_frame        is a control frame
 223 * 28: asw_pause_frame          is a pause frame
 224 * 29: asw_unsupported_op       unsupported OP code
 225 * 30: asw_VLAN_tag             VLAN tag detected
 226 * 31: asw_long_evt             Rx long event
 227 *
 228 * Word 1:
 229 * 0-15: length                 length in bytes
 230 * 16-25: bi                    Buffer Index
 231 * 26-27: ri                    Ring Index
 232 * 28-31: reserved
 233 */
 234struct pkt_stat_desc {
 235        u32 word0;
 236        u32 word1;
 237};
 238
 239/* Typedefs for the RX DMA status word */
 240
 241/* rx status word 0 holds part of the status bits of the Rx DMA engine
 242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 243 * which contains the Free Buffer ring 0 and 1 available offset.
 244 *
 245 * bit 0-9 FBR1 offset
 246 * bit 10 Wrap flag for FBR1
 247 * bit 16-25 FBR0 offset
 248 * bit 26 Wrap flag for FBR0
 249 */
 250
 251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 253 * which contains the Packet Status Ring available offset.
 254 *
 255 * bit 0-15 reserved
 256 * bit 16-27 PSRoffset
 257 * bit 28 PSRwrap
 258 * bit 29-31 unused
 259 */
 260
 261/* struct rx_status_block is a structure representing the status of the Rx
 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 263 */
 264struct rx_status_block {
 265        u32 word0;
 266        u32 word1;
 267};
 268
 269/* Structure for look-up table holding free buffer ring pointers, addresses
 270 * and state.
 271 */
 272struct fbr_lookup {
 273        void            *virt[MAX_DESC_PER_RING_RX];
 274        u32              bus_high[MAX_DESC_PER_RING_RX];
 275        u32              bus_low[MAX_DESC_PER_RING_RX];
 276        void            *ring_virtaddr;
 277        dma_addr_t       ring_physaddr;
 278        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 279        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 280        u32              local_full;
 281        u32              num_entries;
 282        dma_addr_t       buffsize;
 283};
 284
 285/* struct rx_ring is the structure representing the adaptor's local
 286 * reference(s) to the rings
 287 */
 288struct rx_ring {
 289        struct fbr_lookup *fbr[NUM_FBRS];
 290        void *ps_ring_virtaddr;
 291        dma_addr_t ps_ring_physaddr;
 292        u32 local_psr_full;
 293        u32 psr_entries;
 294
 295        struct rx_status_block *rx_status_block;
 296        dma_addr_t rx_status_bus;
 297
 298        struct list_head recv_list;
 299        u32 num_ready_recv;
 300
 301        u32 num_rfd;
 302
 303        bool unfinished_receives;
 304};
 305
 306/* TX defines */
 307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 308 *
 309 * 0-15: length of packet
 310 * 16-27: VLAN tag
 311 * 28: VLAN CFI
 312 * 29-31: VLAN priority
 313 *
 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 315 *
 316 * 0: last packet in the sequence
 317 * 1: first packet in the sequence
 318 * 2: interrupt the processor when this pkt sent
 319 * 3: Control word - no packet data
 320 * 4: Issue half-duplex backpressure : XON/XOFF
 321 * 5: send pause frame
 322 * 6: Tx frame has error
 323 * 7: append CRC
 324 * 8: MAC override
 325 * 9: pad packet
 326 * 10: Packet is a Huge packet
 327 * 11: append VLAN tag
 328 * 12: IP checksum assist
 329 * 13: TCP checksum assist
 330 * 14: UDP checksum assist
 331 */
 332#define TXDESC_FLAG_LASTPKT             0x0001
 333#define TXDESC_FLAG_FIRSTPKT            0x0002
 334#define TXDESC_FLAG_INTPROC             0x0004
 335
 336/* struct tx_desc represents each descriptor on the ring */
 337struct tx_desc {
 338        u32 addr_hi;
 339        u32 addr_lo;
 340        u32 len_vlan;   /* control words how to xmit the */
 341        u32 flags;      /* data (detailed above) */
 342};
 343
 344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
 345 * by 0x101c / 0x1020. This is a DMA10 type
 346 */
 347
 348/* TCB (Transmit Control Block: Host Side) */
 349struct tcb {
 350        struct tcb *next;       /* Next entry in ring */
 351        u32 count;              /* Used to spot stuck/lost packets */
 352        u32 stale;              /* Used to spot stuck/lost packets */
 353        struct sk_buff *skb;    /* Network skb we are tied to */
 354        u32 index;              /* Ring indexes */
 355        u32 index_start;
 356};
 357
 358/* Structure representing our local reference(s) to the ring */
 359struct tx_ring {
 360        /* TCB (Transmit Control Block) memory and lists */
 361        struct tcb *tcb_ring;
 362
 363        /* List of TCBs that are ready to be used */
 364        struct tcb *tcb_qhead;
 365        struct tcb *tcb_qtail;
 366
 367        /* list of TCBs that are currently being sent. */
 368        struct tcb *send_head;
 369        struct tcb *send_tail;
 370        int used;
 371
 372        /* The actual descriptor ring */
 373        struct tx_desc *tx_desc_ring;
 374        dma_addr_t tx_desc_ring_pa;
 375
 376        /* send_idx indicates where we last wrote to in the descriptor ring. */
 377        u32 send_idx;
 378
 379        /* The location of the write-back status block */
 380        u32 *tx_status;
 381        dma_addr_t tx_status_pa;
 382
 383        /* Packets since the last IRQ: used for interrupt coalescing */
 384        int since_irq;
 385};
 386
 387/* Do not change these values: if changed, then change also in respective
 388 * TXdma and Rxdma engines
 389 */
 390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 391#define NUM_TCB                      64
 392
 393/* These values are all superseded by registry entries to facilitate tuning.
 394 * Once the desired performance has been achieved, the optimal registry values
 395 * should be re-populated to these #defines:
 396 */
 397#define TX_ERROR_PERIOD             1000
 398
 399#define LO_MARK_PERCENT_FOR_PSR     15
 400#define LO_MARK_PERCENT_FOR_RX      15
 401
 402/* RFD (Receive Frame Descriptor) */
 403struct rfd {
 404        struct list_head list_node;
 405        struct sk_buff *skb;
 406        u32 len;        /* total size of receive frame */
 407        u16 bufferindex;
 408        u8 ringindex;
 409};
 410
 411/* Flow Control */
 412#define FLOW_BOTH       0
 413#define FLOW_TXONLY     1
 414#define FLOW_RXONLY     2
 415#define FLOW_NONE       3
 416
 417/* Struct to define some device statistics */
 418struct ce_stats {
 419        u32             multicast_pkts_rcvd;
 420        u32             rcvd_pkts_dropped;
 421
 422        u32             tx_underflows;
 423        u32             tx_collisions;
 424        u32             tx_excessive_collisions;
 425        u32             tx_first_collisions;
 426        u32             tx_late_collisions;
 427        u32             tx_max_pkt_errs;
 428        u32             tx_deferred;
 429
 430        u32             rx_overflows;
 431        u32             rx_length_errs;
 432        u32             rx_align_errs;
 433        u32             rx_crc_errs;
 434        u32             rx_code_violations;
 435        u32             rx_other_errs;
 436
 437        u32             interrupt_status;
 438};
 439
 440/* The private adapter structure */
 441struct et131x_adapter {
 442        struct net_device *netdev;
 443        struct pci_dev *pdev;
 444        struct mii_bus *mii_bus;
 445        struct napi_struct napi;
 446
 447        /* Flags that indicate current state of the adapter */
 448        u32 flags;
 449
 450        /* local link state, to determine if a state change has occurred */
 451        int link;
 452
 453        /* Configuration  */
 454        u8 rom_addr[ETH_ALEN];
 455        u8 addr[ETH_ALEN];
 456        bool has_eeprom;
 457        u8 eeprom_data[2];
 458
 459        spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
 460        spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
 461        spinlock_t rcv_lock; /* protects the rx_ring receive list */
 462
 463        /* Packet Filter and look ahead size */
 464        u32 packet_filter;
 465
 466        /* multicast list */
 467        u32 multicast_addr_count;
 468        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 469
 470        /* Pointer to the device's PCI register space */
 471        struct address_map __iomem *regs;
 472
 473        /* Registry parameters */
 474        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 475        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 476
 477        /* Derived from the registry: */
 478        u8 flow;                /* flow control validated by the far-end */
 479
 480        /* Minimize init-time */
 481        struct timer_list error_timer;
 482
 483        /* variable putting the phy into coma mode when boot up with no cable
 484         * plugged in after 5 seconds
 485         */
 486        u8 boot_coma;
 487
 488        /* Tx Memory Variables */
 489        struct tx_ring tx_ring;
 490
 491        /* Rx Memory Variables */
 492        struct rx_ring rx_ring;
 493
 494        struct ce_stats stats;
 495};
 496
 497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 498{
 499        u32 reg;
 500        int i;
 501
 502        /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 503         *    bits 7,1:0 both equal to 1, at least once after reset.
 504         *    Subsequent operations need only to check that bits 1:0 are equal
 505         *    to 1 prior to starting a single byte read/write
 506         */
 507        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 508                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 509                        return -EIO;
 510
 511                /* I2C idle and Phy Queue Avail both true */
 512                if ((reg & 0x3000) == 0x3000) {
 513                        if (status)
 514                                *status = reg;
 515                        return reg & 0xFF;
 516                }
 517        }
 518        return -ETIMEDOUT;
 519}
 520
 521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 522{
 523        struct pci_dev *pdev = adapter->pdev;
 524        int index = 0;
 525        int retries;
 526        int err = 0;
 527        int writeok = 0;
 528        u32 status;
 529        u32 val = 0;
 530
 531        /* For an EEPROM, an I2C single byte write is defined as a START
 532         * condition followed by the device address, EEPROM address, one byte
 533         * of data and a STOP condition.  The STOP condition will trigger the
 534         * EEPROM's internally timed write cycle to the nonvolatile memory.
 535         * All inputs are disabled during this write cycle and the EEPROM will
 536         * not respond to any access until the internal write is complete.
 537         */
 538        err = eeprom_wait_ready(pdev, NULL);
 539        if (err < 0)
 540                return err;
 541
 542         /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 543          *    and bits 1:0 both =0.  Bit 5 should be set according to the
 544          *    type of EEPROM being accessed (1=two byte addressing, 0=one
 545          *    byte addressing).
 546          */
 547        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 548                                  LBCIF_CONTROL_LBCIF_ENABLE |
 549                                        LBCIF_CONTROL_I2C_WRITE))
 550                return -EIO;
 551
 552        /* Prepare EEPROM address for Step 3 */
 553        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 554                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 555                        break;
 556                /* Write the data to the LBCIF Data Register (the I2C write
 557                 * will begin).
 558                 */
 559                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 560                        break;
 561                /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
 562                 * 1:0 are both equal to 1, the I2C write has completed and the
 563                 * internal write cycle of the EEPROM is about to start.
 564                 * (bits 1:0 = 01 is a legal state while waiting from both
 565                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 566                 * something is broken).
 567                 */
 568                err = eeprom_wait_ready(pdev, &status);
 569                if (err < 0)
 570                        return 0;
 571
 572                /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 573                 * an error has occurred.Don't break here if we are revision
 574                 * 1, this is so we do a blind write for load bug.
 575                 */
 576                if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
 577                    adapter->pdev->revision == 0)
 578                        break;
 579
 580                /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 581                 * ACK error has occurred on the address phase of the write.
 582                 * This could be due to an actual hardware failure or the
 583                 * EEPROM may still be in its internal write cycle from a
 584                 * previous write. This write operation was ignored and must be
 585                  *repeated later.
 586                 */
 587                if (status & LBCIF_STATUS_ACK_ERROR) {
 588                        /* This could be due to an actual hardware failure
 589                         * or the EEPROM may still be in its internal write
 590                         * cycle from a previous write. This write operation
 591                         * was ignored and must be repeated later.
 592                         */
 593                        udelay(10);
 594                        continue;
 595                }
 596
 597                writeok = 1;
 598                break;
 599        }
 600
 601        udelay(10);
 602
 603        while (1) {
 604                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 605                                          LBCIF_CONTROL_LBCIF_ENABLE))
 606                        writeok = 0;
 607
 608                /* Do read until internal ACK_ERROR goes away meaning write
 609                 * completed
 610                 */
 611                do {
 612                        pci_write_config_dword(pdev,
 613                                               LBCIF_ADDRESS_REGISTER,
 614                                               addr);
 615                        do {
 616                                pci_read_config_dword(pdev,
 617                                                      LBCIF_DATA_REGISTER,
 618                                                      &val);
 619                        } while ((val & 0x00010000) == 0);
 620                } while (val & 0x00040000);
 621
 622                if ((val & 0xFF00) != 0xC000 || index == 10000)
 623                        break;
 624                index++;
 625        }
 626        return writeok ? 0 : -EIO;
 627}
 628
 629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 630{
 631        struct pci_dev *pdev = adapter->pdev;
 632        int err;
 633        u32 status;
 634
 635        /* A single byte read is similar to the single byte write, with the
 636         * exception of the data flow:
 637         */
 638        err = eeprom_wait_ready(pdev, NULL);
 639        if (err < 0)
 640                return err;
 641        /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 642         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 643         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 644         * addressing).
 645         */
 646        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 647                                  LBCIF_CONTROL_LBCIF_ENABLE))
 648                return -EIO;
 649        /* Write the address to the LBCIF Address Register (I2C read will
 650         * begin).
 651         */
 652        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 653                return -EIO;
 654        /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 655         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 656         * has occurred).
 657         */
 658        err = eeprom_wait_ready(pdev, &status);
 659        if (err < 0)
 660                return err;
 661        /* Regardless of error status, read data byte from LBCIF Data
 662         * Register.
 663         */
 664        *pdata = err;
 665
 666        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 667}
 668
 669static int et131x_init_eeprom(struct et131x_adapter *adapter)
 670{
 671        struct pci_dev *pdev = adapter->pdev;
 672        u8 eestatus;
 673
 674        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
 675
 676        /* THIS IS A WORKAROUND:
 677         * I need to call this function twice to get my card in a
 678         * LG M1 Express Dual running. I tried also a msleep before this
 679         * function, because I thought there could be some time conditions
 680         * but it didn't work. Call the whole function twice also work.
 681         */
 682        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 683                dev_err(&pdev->dev,
 684                        "Could not read PCI config space for EEPROM Status\n");
 685                return -EIO;
 686        }
 687
 688        /* Determine if the error(s) we care about are present. If they are
 689         * present we need to fail.
 690         */
 691        if (eestatus & 0x4C) {
 692                int write_failed = 0;
 693
 694                if (pdev->revision == 0x01) {
 695                        int     i;
 696                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 697
 698                        /* Re-write the first 4 bytes if we have an eeprom
 699                         * present and the revision id is 1, this fixes the
 700                         * corruption seen with 1310 B Silicon
 701                         */
 702                        for (i = 0; i < 3; i++)
 703                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 704                                        write_failed = 1;
 705                }
 706                if (pdev->revision  != 0x01 || write_failed) {
 707                        dev_err(&pdev->dev,
 708                                "Fatal EEPROM Status Error - 0x%04x\n",
 709                                eestatus);
 710
 711                        /* This error could mean that there was an error
 712                         * reading the eeprom or that the eeprom doesn't exist.
 713                         * We will treat each case the same and not try to
 714                         * gather additional information that normally would
 715                         * come from the eeprom, like MAC Address
 716                         */
 717                        adapter->has_eeprom = false;
 718                        return -EIO;
 719                }
 720        }
 721        adapter->has_eeprom = true;
 722
 723        /* Read the EEPROM for information regarding LED behavior. Refer to
 724         * et131x_xcvr_init() for its use.
 725         */
 726        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 727        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 728
 729        if (adapter->eeprom_data[0] != 0xcd)
 730                /* Disable all optional features */
 731                adapter->eeprom_data[1] = 0x00;
 732
 733        return 0;
 734}
 735
 736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 737{
 738        /* Setup the receive dma configuration register for normal operation */
 739        u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
 740        struct rx_ring *rx_ring = &adapter->rx_ring;
 741
 742        if (rx_ring->fbr[1]->buffsize == 4096)
 743                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
 744        else if (rx_ring->fbr[1]->buffsize == 8192)
 745                csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
 746        else if (rx_ring->fbr[1]->buffsize == 16384)
 747                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
 748
 749        csr |= ET_RXDMA_CSR_FBR0_ENABLE;
 750        if (rx_ring->fbr[0]->buffsize == 256)
 751                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
 752        else if (rx_ring->fbr[0]->buffsize == 512)
 753                csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
 754        else if (rx_ring->fbr[0]->buffsize == 1024)
 755                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
 756        writel(csr, &adapter->regs->rxdma.csr);
 757
 758        csr = readl(&adapter->regs->rxdma.csr);
 759        if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 760                udelay(5);
 761                csr = readl(&adapter->regs->rxdma.csr);
 762                if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 763                        dev_err(&adapter->pdev->dev,
 764                                "RX Dma failed to exit halt state. CSR 0x%08x\n",
 765                                csr);
 766                }
 767        }
 768}
 769
 770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 771{
 772        u32 csr;
 773        /* Setup the receive dma configuration register */
 774        writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
 775               &adapter->regs->rxdma.csr);
 776        csr = readl(&adapter->regs->rxdma.csr);
 777        if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
 778                udelay(5);
 779                csr = readl(&adapter->regs->rxdma.csr);
 780                if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
 781                        dev_err(&adapter->pdev->dev,
 782                                "RX Dma failed to enter halt state. CSR 0x%08x\n",
 783                                csr);
 784        }
 785}
 786
 787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 788{
 789        /* Setup the transmit dma configuration register for normal
 790         * operation
 791         */
 792        writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 793               &adapter->regs->txdma.csr);
 794}
 795
 796static inline void add_10bit(u32 *v, int n)
 797{
 798        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 799}
 800
 801static inline void add_12bit(u32 *v, int n)
 802{
 803        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 804}
 805
 806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 807{
 808        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 809        u32 station1;
 810        u32 station2;
 811        u32 ipg;
 812
 813        /* First we need to reset everything.  Write to MAC configuration
 814         * register 1 to perform reset.
 815         */
 816        writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
 817               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
 818               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
 819               &macregs->cfg1);
 820
 821        /* Next lets configure the MAC Inter-packet gap register */
 822        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 823        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 824        writel(ipg, &macregs->ipg);
 825
 826        /* Next lets configure the MAC Half Duplex register */
 827        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 828        writel(0x00A1F037, &macregs->hfdp);
 829
 830        /* Next lets configure the MAC Interface Control register */
 831        writel(0, &macregs->if_ctrl);
 832
 833        writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
 834
 835        /* Next lets configure the MAC Station Address register.  These
 836         * values are read from the EEPROM during initialization and stored
 837         * in the adapter structure.  We write what is stored in the adapter
 838         * structure to the MAC Station Address registers high and low.  This
 839         * station address is used for generating and checking pause control
 840         * packets.
 841         */
 842        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 843                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 844        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 845                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 846                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 847                    adapter->addr[2];
 848        writel(station1, &macregs->station_addr_1);
 849        writel(station2, &macregs->station_addr_2);
 850
 851        /* Max ethernet packet in bytes that will be passed by the mac without
 852         * being truncated.  Allow the MAC to pass 4 more than our max packet
 853         * size.  This is 4 for the Ethernet CRC.
 854         *
 855         * Packets larger than (registry_jumbo_packet) that do not contain a
 856         * VLAN ID will be dropped by the Rx function.
 857         */
 858        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 859
 860        /* clear out MAC config reset */
 861        writel(0, &macregs->cfg1);
 862}
 863
 864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
 865{
 866        int32_t delay = 0;
 867        struct mac_regs __iomem *mac = &adapter->regs->mac;
 868        struct phy_device *phydev = adapter->netdev->phydev;
 869        u32 cfg1;
 870        u32 cfg2;
 871        u32 ifctrl;
 872        u32 ctl;
 873
 874        ctl = readl(&adapter->regs->txmac.ctl);
 875        cfg1 = readl(&mac->cfg1);
 876        cfg2 = readl(&mac->cfg2);
 877        ifctrl = readl(&mac->if_ctrl);
 878
 879        /* Set up the if mode bits */
 880        cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
 881        if (phydev->speed == SPEED_1000) {
 882                cfg2 |= ET_MAC_CFG2_IFMODE_1000;
 883                ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
 884        } else {
 885                cfg2 |= ET_MAC_CFG2_IFMODE_100;
 886                ifctrl |= ET_MAC_IFCTRL_PHYMODE;
 887        }
 888
 889        cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
 890                                                        ET_MAC_CFG1_TX_FLOW;
 891
 892        cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
 893        if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
 894                cfg1 |= ET_MAC_CFG1_RX_FLOW;
 895        writel(cfg1, &mac->cfg1);
 896
 897        /* Now we need to initialize the MAC Configuration 2 register */
 898        /* preamble 7, check length, huge frame off, pad crc, crc enable
 899         * full duplex off
 900         */
 901        cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
 902        cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
 903        cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
 904        cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
 905        cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
 906        cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
 907
 908        if (phydev->duplex == DUPLEX_FULL)
 909                cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
 910
 911        ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
 912        if (phydev->duplex == DUPLEX_HALF)
 913                ifctrl |= ET_MAC_IFCTRL_GHDMODE;
 914
 915        writel(ifctrl, &mac->if_ctrl);
 916        writel(cfg2, &mac->cfg2);
 917
 918        do {
 919                udelay(10);
 920                delay++;
 921                cfg1 = readl(&mac->cfg1);
 922        } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
 923
 924        if (delay == 100) {
 925                dev_warn(&adapter->pdev->dev,
 926                         "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
 927                         cfg1);
 928        }
 929
 930        ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
 931        writel(ctl, &adapter->regs->txmac.ctl);
 932
 933        if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
 934                et131x_rx_dma_enable(adapter);
 935                et131x_tx_dma_enable(adapter);
 936        }
 937}
 938
 939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
 940{
 941        u32 pmcsr = readl(&adapter->regs->global.pm_csr);
 942
 943        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
 944}
 945
 946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
 947{
 948        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 949        u32 hash1 = 0;
 950        u32 hash2 = 0;
 951        u32 hash3 = 0;
 952        u32 hash4 = 0;
 953
 954        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
 955         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
 956         * specified) then we should pass NO multi-cast addresses to the
 957         * driver.
 958         */
 959        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
 960                int i;
 961
 962                /* Loop through our multicast array and set up the device */
 963                for (i = 0; i < adapter->multicast_addr_count; i++) {
 964                        u32 result;
 965
 966                        result = ether_crc(6, adapter->multicast_list[i]);
 967
 968                        result = (result & 0x3F800000) >> 23;
 969
 970                        if (result < 32) {
 971                                hash1 |= (1 << result);
 972                        } else if ((31 < result) && (result < 64)) {
 973                                result -= 32;
 974                                hash2 |= (1 << result);
 975                        } else if ((63 < result) && (result < 96)) {
 976                                result -= 64;
 977                                hash3 |= (1 << result);
 978                        } else {
 979                                result -= 96;
 980                                hash4 |= (1 << result);
 981                        }
 982                }
 983        }
 984
 985        /* Write out the new hash to the device */
 986        if (!et1310_in_phy_coma(adapter)) {
 987                writel(hash1, &rxmac->multi_hash1);
 988                writel(hash2, &rxmac->multi_hash2);
 989                writel(hash3, &rxmac->multi_hash3);
 990                writel(hash4, &rxmac->multi_hash4);
 991        }
 992}
 993
 994static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
 995{
 996        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
 997        u32 uni_pf1;
 998        u32 uni_pf2;
 999        u32 uni_pf3;
1000
1001        /* Set up unicast packet filter reg 3 to be the first two octets of
1002         * the MAC address for both address
1003         *
1004         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005         * MAC address for second address
1006         *
1007         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008         * MAC address for first address
1009         */
1010        uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011                  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012                  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013                   adapter->addr[1];
1014
1015        uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018                   adapter->addr[5];
1019
1020        uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023                   adapter->addr[5];
1024
1025        if (!et1310_in_phy_coma(adapter)) {
1026                writel(uni_pf1, &rxmac->uni_pf_addr1);
1027                writel(uni_pf2, &rxmac->uni_pf_addr2);
1028                writel(uni_pf3, &rxmac->uni_pf_addr3);
1029        }
1030}
1031
1032static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033{
1034        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035        struct phy_device *phydev = adapter->netdev->phydev;
1036        u32 sa_lo;
1037        u32 sa_hi = 0;
1038        u32 pf_ctrl = 0;
1039        u32 __iomem *wolw;
1040
1041        /* Disable the MAC while it is being configured (also disable WOL) */
1042        writel(0x8, &rxmac->ctrl);
1043
1044        /* Initialize WOL to disabled. */
1045        writel(0, &rxmac->crc0);
1046        writel(0, &rxmac->crc12);
1047        writel(0, &rxmac->crc34);
1048
1049        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050         * its default Values of 0x00000000 because there are not WOL masks
1051         * as of this time.
1052         */
1053        for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054                writel(0, wolw);
1055
1056        /* Lets setup the WOL Source Address */
1057        sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058                (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059                (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060                 adapter->addr[5];
1061        writel(sa_lo, &rxmac->sa_lo);
1062
1063        sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064                       adapter->addr[1];
1065        writel(sa_hi, &rxmac->sa_hi);
1066
1067        /* Disable all Packet Filtering */
1068        writel(0, &rxmac->pf_ctrl);
1069
1070        /* Let's initialize the Unicast Packet filtering address */
1071        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072                et1310_setup_device_for_unicast(adapter);
1073                pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074        } else {
1075                writel(0, &rxmac->uni_pf_addr1);
1076                writel(0, &rxmac->uni_pf_addr2);
1077                writel(0, &rxmac->uni_pf_addr3);
1078        }
1079
1080        /* Let's initialize the Multicast hash */
1081        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082                pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083                et1310_setup_device_for_multicast(adapter);
1084        }
1085
1086        /* Runt packet filtering.  Didn't work in version A silicon. */
1087        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088        pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089
1090        if (adapter->registry_jumbo_packet > 8192)
1091                /* In order to transmit jumbo packets greater than 8k, the
1092                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1093                 * to (16k - Jumbo packet size).  In order to implement this,
1094                 * we must use "cut through" mode in the RxMAC, which chops
1095                 * packets down into segments which are (max_size * 16).  In
1096                 * this case we selected 256 bytes, since this is the size of
1097                 * the PCI-Express TLP's that the 1310 uses.
1098                 *
1099                 * seg_en on, fc_en off, size 0x10
1100                 */
1101                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102        else
1103                writel(0, &rxmac->mcif_ctrl_max_seg);
1104
1105        writel(0, &rxmac->mcif_water_mark);
1106        writel(0, &rxmac->mif_ctrl);
1107        writel(0, &rxmac->space_avail);
1108
1109        /* Initialize the the mif_ctrl register
1110         * bit 3:  Receive code error. One or more nibbles were signaled as
1111         *         errors  during the reception of the packet.  Clear this
1112         *         bit in Gigabit, set it in 100Mbit.  This was derived
1113         *         experimentally at UNH.
1114         * bit 4:  Receive CRC error. The packet's CRC did not match the
1115         *         internally generated CRC.
1116         * bit 5:  Receive length check error. Indicates that frame length
1117         *         field value in the packet does not match the actual data
1118         *         byte length and is not a type field.
1119         * bit 16: Receive frame truncated.
1120         * bit 17: Drop packet enable
1121         */
1122        if (phydev && phydev->speed == SPEED_100)
1123                writel(0x30038, &rxmac->mif_ctrl);
1124        else
1125                writel(0x30030, &rxmac->mif_ctrl);
1126
1127        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128         * filter is always enabled since it is where the runt packets are
1129         * supposed to be dropped.  For version A silicon, runt packet
1130         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131         * but we still leave the packet filter on.
1132         */
1133        writel(pf_ctrl, &rxmac->pf_ctrl);
1134        writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135}
1136
1137static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138{
1139        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140
1141        /* We need to update the Control Frame Parameters
1142         * cfpt - control frame pause timer set to 64 (0x40)
1143         * cfep - control frame extended pause timer set to 0x0
1144         */
1145        if (adapter->flow == FLOW_NONE)
1146                writel(0, &txmac->cf_param);
1147        else
1148                writel(0x40, &txmac->cf_param);
1149}
1150
1151static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152{
1153        struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154        u32 __iomem *reg;
1155
1156        /* initialize all the macstat registers to zero on the device  */
1157        for (reg = &macstat->txrx_0_64_byte_frames;
1158             reg <= &macstat->carry_reg2; reg++)
1159                writel(0, reg);
1160
1161        /* Unmask any counters that we want to track the overflow of.
1162         * Initially this will be all counters.  It may become clear later
1163         * that we do not need to track all counters.
1164         */
1165        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167}
1168
1169static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170                               u8 reg, u16 *value)
1171{
1172        struct mac_regs __iomem *mac = &adapter->regs->mac;
1173        int status = 0;
1174        u32 delay = 0;
1175        u32 mii_addr;
1176        u32 mii_cmd;
1177        u32 mii_indicator;
1178
1179        /* Save a local copy of the registers we are dealing with so we can
1180         * set them back
1181         */
1182        mii_addr = readl(&mac->mii_mgmt_addr);
1183        mii_cmd = readl(&mac->mii_mgmt_cmd);
1184
1185        /* Stop the current operation */
1186        writel(0, &mac->mii_mgmt_cmd);
1187
1188        /* Set up the register we need to read from on the correct PHY */
1189        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190
1191        writel(0x1, &mac->mii_mgmt_cmd);
1192
1193        do {
1194                udelay(50);
1195                delay++;
1196                mii_indicator = readl(&mac->mii_mgmt_indicator);
1197        } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198
1199        /* If we hit the max delay, we could not read the register */
1200        if (delay == 50) {
1201                dev_warn(&adapter->pdev->dev,
1202                         "reg 0x%08x could not be read\n", reg);
1203                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204                         mii_indicator);
1205
1206                status = -EIO;
1207                goto out;
1208        }
1209
1210        /* If we hit here we were able to read the register and we need to
1211         * return the value to the caller
1212         */
1213        *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214
1215out:
1216        /* Stop the read operation */
1217        writel(0, &mac->mii_mgmt_cmd);
1218
1219        /* set the registers we touched back to the state at which we entered
1220         * this function
1221         */
1222        writel(mii_addr, &mac->mii_mgmt_addr);
1223        writel(mii_cmd, &mac->mii_mgmt_cmd);
1224
1225        return status;
1226}
1227
1228static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229{
1230        struct phy_device *phydev = adapter->netdev->phydev;
1231
1232        if (!phydev)
1233                return -EIO;
1234
1235        return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236}
1237
1238static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239                            u16 value)
1240{
1241        struct mac_regs __iomem *mac = &adapter->regs->mac;
1242        int status = 0;
1243        u32 delay = 0;
1244        u32 mii_addr;
1245        u32 mii_cmd;
1246        u32 mii_indicator;
1247
1248        /* Save a local copy of the registers we are dealing with so we can
1249         * set them back
1250         */
1251        mii_addr = readl(&mac->mii_mgmt_addr);
1252        mii_cmd = readl(&mac->mii_mgmt_cmd);
1253
1254        /* Stop the current operation */
1255        writel(0, &mac->mii_mgmt_cmd);
1256
1257        /* Set up the register we need to write to on the correct PHY */
1258        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259
1260        /* Add the value to write to the registers to the mac */
1261        writel(value, &mac->mii_mgmt_ctrl);
1262
1263        do {
1264                udelay(50);
1265                delay++;
1266                mii_indicator = readl(&mac->mii_mgmt_indicator);
1267        } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268
1269        /* If we hit the max delay, we could not write the register */
1270        if (delay == 100) {
1271                u16 tmp;
1272
1273                dev_warn(&adapter->pdev->dev,
1274                         "reg 0x%08x could not be written", reg);
1275                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276                         mii_indicator);
1277                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278                         readl(&mac->mii_mgmt_cmd));
1279
1280                et131x_mii_read(adapter, reg, &tmp);
1281
1282                status = -EIO;
1283        }
1284        /* Stop the write operation */
1285        writel(0, &mac->mii_mgmt_cmd);
1286
1287        /* set the registers we touched back to the state at which we entered
1288         * this function
1289         */
1290        writel(mii_addr, &mac->mii_mgmt_addr);
1291        writel(mii_cmd, &mac->mii_mgmt_cmd);
1292
1293        return status;
1294}
1295
1296static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297                                    u16 regnum,
1298                                    u16 bitnum,
1299                                    u8 *value)
1300{
1301        u16 reg;
1302        u16 mask = 1 << bitnum;
1303
1304        et131x_mii_read(adapter, regnum, &reg);
1305
1306        *value = (reg & mask) >> bitnum;
1307}
1308
1309static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310{
1311        struct phy_device *phydev = adapter->netdev->phydev;
1312
1313        if (phydev->duplex == DUPLEX_HALF) {
1314                adapter->flow = FLOW_NONE;
1315        } else {
1316                char remote_pause, remote_async_pause;
1317
1318                et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319                et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320
1321                if (remote_pause && remote_async_pause) {
1322                        adapter->flow = adapter->wanted_flow;
1323                } else if (remote_pause && !remote_async_pause) {
1324                        if (adapter->wanted_flow == FLOW_BOTH)
1325                                adapter->flow = FLOW_BOTH;
1326                        else
1327                                adapter->flow = FLOW_NONE;
1328                } else if (!remote_pause && !remote_async_pause) {
1329                        adapter->flow = FLOW_NONE;
1330                } else {
1331                        if (adapter->wanted_flow == FLOW_BOTH)
1332                                adapter->flow = FLOW_RXONLY;
1333                        else
1334                                adapter->flow = FLOW_NONE;
1335                }
1336        }
1337}
1338
1339/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341{
1342        struct ce_stats *stats = &adapter->stats;
1343        struct macstat_regs __iomem *macstat =
1344                &adapter->regs->macstat;
1345
1346        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1347        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348        stats->tx_deferred             += readl(&macstat->tx_deferred);
1349        stats->tx_excessive_collisions +=
1350                                readl(&macstat->tx_multiple_collisions);
1351        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1353        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1354
1355        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362}
1363
1364/* et1310_handle_macstat_interrupt
1365 *
1366 * One of the MACSTAT counters has wrapped.  Update the local copy of
1367 * the statistics held in the adapter structure, checking the "wrap"
1368 * bit for each counter.
1369 */
1370static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371{
1372        u32 carry_reg1;
1373        u32 carry_reg2;
1374
1375        /* Read the interrupt bits from the register(s).  These are Clear On
1376         * Write.
1377         */
1378        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380
1381        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383
1384        /* We need to do update the host copy of all the MAC_STAT counters.
1385         * For each counter, check it's overflow bit.  If the overflow bit is
1386         * set, then increment the host version of the count by one complete
1387         * revolution of the counter.  This routine is called when the counter
1388         * block indicates that one of the counters has wrapped.
1389         */
1390        if (carry_reg1 & (1 << 14))
1391                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1392        if (carry_reg1 & (1 << 8))
1393                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1394        if (carry_reg1 & (1 << 7))
1395                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1396        if (carry_reg1 & (1 << 2))
1397                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1398        if (carry_reg1 & (1 << 6))
1399                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1400        if (carry_reg1 & (1 << 3))
1401                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1402        if (carry_reg1 & (1 << 0))
1403                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1404        if (carry_reg2 & (1 << 16))
1405                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1406        if (carry_reg2 & (1 << 15))
1407                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1408        if (carry_reg2 & (1 << 6))
1409                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410        if (carry_reg2 & (1 << 8))
1411                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1412        if (carry_reg2 & (1 << 5))
1413                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414        if (carry_reg2 & (1 << 4))
1415                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1416        if (carry_reg2 & (1 << 2))
1417                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1418}
1419
1420static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421{
1422        struct net_device *netdev = bus->priv;
1423        struct et131x_adapter *adapter = netdev_priv(netdev);
1424        u16 value;
1425        int ret;
1426
1427        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428
1429        if (ret < 0)
1430                return ret;
1431
1432        return value;
1433}
1434
1435static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436                             int reg, u16 value)
1437{
1438        struct net_device *netdev = bus->priv;
1439        struct et131x_adapter *adapter = netdev_priv(netdev);
1440
1441        return et131x_mii_write(adapter, phy_addr, reg, value);
1442}
1443
1444/*      et1310_phy_power_switch -       PHY power control
1445 *      @adapter: device to control
1446 *      @down: true for off/false for back on
1447 *
1448 *      one hundred, ten, one thousand megs
1449 *      How would you like to have your LAN accessed
1450 *      Can't you see that this code processed
1451 *      Phy power, phy power..
1452 */
1453static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454{
1455        u16 data;
1456        struct  phy_device *phydev = adapter->netdev->phydev;
1457
1458        et131x_mii_read(adapter, MII_BMCR, &data);
1459        data &= ~BMCR_PDOWN;
1460        if (down)
1461                data |= BMCR_PDOWN;
1462        et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463}
1464
1465/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467{
1468        u16 lcr2;
1469        struct  phy_device *phydev = adapter->netdev->phydev;
1470
1471        /* Set the LED behavior such that LED 1 indicates speed (off =
1472         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473         * link and activity (on for link, blink off for activity).
1474         *
1475         * NOTE: Some customizations have been added here for specific
1476         * vendors; The LED behavior is now determined by vendor data in the
1477         * EEPROM. However, the above description is the default.
1478         */
1479        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481
1482                lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484
1485                if ((adapter->eeprom_data[1] & 0x8) == 0)
1486                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487                else
1488                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489
1490                et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491        }
1492}
1493
1494/* et131x_configure_global_regs - configure JAGCore global regs */
1495static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496{
1497        struct global_regs __iomem *regs = &adapter->regs->global;
1498
1499        writel(0, &regs->rxq_start_addr);
1500        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501
1502        if (adapter->registry_jumbo_packet < 2048) {
1503                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504                 * block of RAM that the driver can split between Tx
1505                 * and Rx as it desires.  Our default is to split it
1506                 * 50/50:
1507                 */
1508                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510        } else if (adapter->registry_jumbo_packet < 8192) {
1511                /* For jumbo packets > 2k but < 8k, split 50-50. */
1512                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514        } else {
1515                /* 9216 is the only packet size greater than 8k that
1516                 * is available. The Tx buffer has to be big enough
1517                 * for one whole packet on the Tx side. We'll make
1518                 * the Tx 9408, and give the rest to Rx
1519                 */
1520                writel(0x01b3, &regs->rxq_end_addr);
1521                writel(0x01b4, &regs->txq_start_addr);
1522        }
1523
1524        /* Initialize the loopback register. Disable all loopbacks. */
1525        writel(0, &regs->loopback);
1526
1527        writel(0, &regs->msi_config);
1528
1529        /* By default, disable the watchdog timer.  It will be enabled when
1530         * a packet is queued.
1531         */
1532        writel(0, &regs->watchdog_timer);
1533}
1534
1535/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537{
1538        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539        struct rx_ring *rx_local = &adapter->rx_ring;
1540        struct fbr_desc *fbr_entry;
1541        u32 entry;
1542        u32 psr_num_des;
1543        unsigned long flags;
1544        u8 id;
1545
1546        et131x_rx_dma_disable(adapter);
1547
1548        /* Load the completion writeback physical address */
1549        writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550        writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551
1552        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553
1554        /* Set the address and parameters of the packet status ring */
1555        writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556        writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557        writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558        writel(0, &rx_dma->psr_full_offset);
1559
1560        psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562               &rx_dma->psr_min_des);
1563
1564        spin_lock_irqsave(&adapter->rcv_lock, flags);
1565
1566        /* These local variables track the PSR in the adapter structure */
1567        rx_local->local_psr_full = 0;
1568
1569        for (id = 0; id < NUM_FBRS; id++) {
1570                u32 __iomem *num_des;
1571                u32 __iomem *full_offset;
1572                u32 __iomem *min_des;
1573                u32 __iomem *base_hi;
1574                u32 __iomem *base_lo;
1575                struct fbr_lookup *fbr = rx_local->fbr[id];
1576
1577                if (id == 0) {
1578                        num_des = &rx_dma->fbr0_num_des;
1579                        full_offset = &rx_dma->fbr0_full_offset;
1580                        min_des = &rx_dma->fbr0_min_des;
1581                        base_hi = &rx_dma->fbr0_base_hi;
1582                        base_lo = &rx_dma->fbr0_base_lo;
1583                } else {
1584                        num_des = &rx_dma->fbr1_num_des;
1585                        full_offset = &rx_dma->fbr1_full_offset;
1586                        min_des = &rx_dma->fbr1_min_des;
1587                        base_hi = &rx_dma->fbr1_base_hi;
1588                        base_lo = &rx_dma->fbr1_base_lo;
1589                }
1590
1591                /* Now's the best time to initialize FBR contents */
1592                fbr_entry = fbr->ring_virtaddr;
1593                for (entry = 0; entry < fbr->num_entries; entry++) {
1594                        fbr_entry->addr_hi = fbr->bus_high[entry];
1595                        fbr_entry->addr_lo = fbr->bus_low[entry];
1596                        fbr_entry->word2 = entry;
1597                        fbr_entry++;
1598                }
1599
1600                /* Set the address and parameters of Free buffer ring 1 and 0 */
1601                writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602                writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603                writel(fbr->num_entries - 1, num_des);
1604                writel(ET_DMA10_WRAP, full_offset);
1605
1606                /* This variable tracks the free buffer ring 1 full position,
1607                 * so it has to match the above.
1608                 */
1609                fbr->local_full = ET_DMA10_WRAP;
1610                writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611                       min_des);
1612        }
1613
1614        /* Program the number of packets we will receive before generating an
1615         * interrupt.
1616         * For version B silicon, this value gets updated once autoneg is
1617         *complete.
1618         */
1619        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620
1621        /* The "time_done" is not working correctly to coalesce interrupts
1622         * after a given time period, but rather is giving us an interrupt
1623         * regardless of whether we have received packets.
1624         * This value gets updated once autoneg is complete.
1625         */
1626        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627
1628        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629}
1630
1631/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632 *
1633 * Configure the transmit engine with the ring buffers we have created
1634 * and prepare it for use.
1635 */
1636static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637{
1638        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639        struct tx_ring *tx_ring = &adapter->tx_ring;
1640
1641        /* Load the hardware with the start of the transmit descriptor ring. */
1642        writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643        writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644
1645        /* Initialise the transmit DMA engine */
1646        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647
1648        /* Load the completion writeback physical address */
1649        writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650        writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651
1652        *tx_ring->tx_status = 0;
1653
1654        writel(0, &txdma->service_request);
1655        tx_ring->send_idx = 0;
1656}
1657
1658/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660{
1661        et131x_configure_global_regs(adapter);
1662        et1310_config_mac_regs1(adapter);
1663
1664        /* Configure the MMC registers */
1665        /* All we need to do is initialize the Memory Control Register */
1666        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667
1668        et1310_config_rxmac_regs(adapter);
1669        et1310_config_txmac_regs(adapter);
1670
1671        et131x_config_rx_dma_regs(adapter);
1672        et131x_config_tx_dma_regs(adapter);
1673
1674        et1310_config_macstat_regs(adapter);
1675
1676        et1310_phy_power_switch(adapter, 0);
1677        et131x_xcvr_init(adapter);
1678}
1679
1680/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681static void et131x_soft_reset(struct et131x_adapter *adapter)
1682{
1683        u32 reg;
1684
1685        /* Disable MAC Core */
1686        reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687              ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689        writel(reg, &adapter->regs->mac.cfg1);
1690
1691        reg = ET_RESET_ALL;
1692        writel(reg, &adapter->regs->global.sw_reset);
1693
1694        reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696        writel(reg, &adapter->regs->mac.cfg1);
1697        writel(0, &adapter->regs->mac.cfg1);
1698}
1699
1700static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701{
1702        u32 mask;
1703
1704        if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705                mask = INT_MASK_ENABLE;
1706        else
1707                mask = INT_MASK_ENABLE_NO_FLOW;
1708
1709        writel(mask, &adapter->regs->global.int_mask);
1710}
1711
1712static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713{
1714        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715}
1716
1717static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718{
1719        /* Setup the transmit dma configuration register */
1720        writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721               &adapter->regs->txdma.csr);
1722}
1723
1724static void et131x_enable_txrx(struct net_device *netdev)
1725{
1726        struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728        et131x_rx_dma_enable(adapter);
1729        et131x_tx_dma_enable(adapter);
1730
1731        if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732                et131x_enable_interrupts(adapter);
1733
1734        netif_start_queue(netdev);
1735}
1736
1737static void et131x_disable_txrx(struct net_device *netdev)
1738{
1739        struct et131x_adapter *adapter = netdev_priv(netdev);
1740
1741        netif_stop_queue(netdev);
1742
1743        et131x_rx_dma_disable(adapter);
1744        et131x_tx_dma_disable(adapter);
1745
1746        et131x_disable_interrupts(adapter);
1747}
1748
1749static void et131x_init_send(struct et131x_adapter *adapter)
1750{
1751        int i;
1752        struct tx_ring *tx_ring = &adapter->tx_ring;
1753        struct tcb *tcb = tx_ring->tcb_ring;
1754
1755        tx_ring->tcb_qhead = tcb;
1756
1757        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758
1759        for (i = 0; i < NUM_TCB; i++) {
1760                tcb->next = tcb + 1;
1761                tcb++;
1762        }
1763
1764        tcb--;
1765        tx_ring->tcb_qtail = tcb;
1766        tcb->next = NULL;
1767        /* Curr send queue should now be empty */
1768        tx_ring->send_head = NULL;
1769        tx_ring->send_tail = NULL;
1770}
1771
1772/* et1310_enable_phy_coma
1773 *
1774 * driver receive an phy status change interrupt while in D0 and check that
1775 * phy_status is down.
1776 *
1777 *          -- gate off JAGCore;
1778 *          -- set gigE PHY in Coma mode
1779 *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780 *             re-initialize jagcore and gigE PHY
1781 */
1782static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783{
1784        u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785
1786        /* Stop sending packets. */
1787        adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788
1789        /* Wait for outstanding Receive packets */
1790        et131x_disable_txrx(adapter->netdev);
1791
1792        /* Gate off JAGCore 3 clock domains */
1793        pmcsr &= ~ET_PMCSR_INIT;
1794        writel(pmcsr, &adapter->regs->global.pm_csr);
1795
1796        /* Program gigE PHY in to Coma mode */
1797        pmcsr |= ET_PM_PHY_SW_COMA;
1798        writel(pmcsr, &adapter->regs->global.pm_csr);
1799}
1800
1801static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802{
1803        u32 pmcsr;
1804
1805        pmcsr = readl(&adapter->regs->global.pm_csr);
1806
1807        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808        pmcsr |= ET_PMCSR_INIT;
1809        pmcsr &= ~ET_PM_PHY_SW_COMA;
1810        writel(pmcsr, &adapter->regs->global.pm_csr);
1811
1812        /* Restore the GbE PHY speed and duplex modes;
1813         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814         */
1815
1816        /* Re-initialize the send structures */
1817        et131x_init_send(adapter);
1818
1819        /* Bring the device back to the state it was during init prior to
1820         * autonegotiation being complete.  This way, when we get the auto-neg
1821         * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822         */
1823        et131x_soft_reset(adapter);
1824
1825        et131x_adapter_setup(adapter);
1826
1827        /* Allow Tx to restart */
1828        adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829
1830        et131x_enable_txrx(adapter->netdev);
1831}
1832
1833static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834{
1835        u32 tmp_free_buff_ring = *free_buff_ring;
1836
1837        tmp_free_buff_ring++;
1838        /* This works for all cases where limit < 1024. The 1023 case
1839         * works because 1023++ is 1024 which means the if condition is not
1840         * taken but the carry of the bit into the wrap bit toggles the wrap
1841         * value correctly
1842         */
1843        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844                tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845                tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846        }
1847        /* For the 1023 case */
1848        tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849        *free_buff_ring = tmp_free_buff_ring;
1850        return tmp_free_buff_ring;
1851}
1852
1853/* et131x_rx_dma_memory_alloc
1854 *
1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856 * and the Packet Status Ring.
1857 */
1858static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859{
1860        u8 id;
1861        u32 i, j;
1862        u32 bufsize;
1863        u32 psr_size;
1864        u32 fbr_chunksize;
1865        struct rx_ring *rx_ring = &adapter->rx_ring;
1866        struct fbr_lookup *fbr;
1867
1868        /* Alloc memory for the lookup table */
1869        rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870        if (rx_ring->fbr[0] == NULL)
1871                return -ENOMEM;
1872        rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873        if (rx_ring->fbr[1] == NULL)
1874                return -ENOMEM;
1875
1876        /* The first thing we will do is configure the sizes of the buffer
1877         * rings. These will change based on jumbo packet support.  Larger
1878         * jumbo packets increases the size of each entry in FBR0, and the
1879         * number of entries in FBR0, while at the same time decreasing the
1880         * number of entries in FBR1.
1881         *
1882         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883         * entries are huge in order to accommodate a "jumbo" frame, then it
1884         * will have less entries.  Conversely, FBR1 will now be relied upon
1885         * to carry more "normal" frames, thus it's entry size also increases
1886         * and the number of entries goes up too (since it now carries
1887         * "small" + "regular" packets.
1888         *
1889         * In this scheme, we try to maintain 512 entries between the two
1890         * rings. Also, FBR1 remains a constant size - when it's size doubles
1891         * the number of entries halves.  FBR0 increases in size, however.
1892         */
1893        if (adapter->registry_jumbo_packet < 2048) {
1894                rx_ring->fbr[0]->buffsize = 256;
1895                rx_ring->fbr[0]->num_entries = 512;
1896                rx_ring->fbr[1]->buffsize = 2048;
1897                rx_ring->fbr[1]->num_entries = 512;
1898        } else if (adapter->registry_jumbo_packet < 4096) {
1899                rx_ring->fbr[0]->buffsize = 512;
1900                rx_ring->fbr[0]->num_entries = 1024;
1901                rx_ring->fbr[1]->buffsize = 4096;
1902                rx_ring->fbr[1]->num_entries = 512;
1903        } else {
1904                rx_ring->fbr[0]->buffsize = 1024;
1905                rx_ring->fbr[0]->num_entries = 768;
1906                rx_ring->fbr[1]->buffsize = 16384;
1907                rx_ring->fbr[1]->num_entries = 128;
1908        }
1909
1910        rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911                               rx_ring->fbr[1]->num_entries;
1912
1913        for (id = 0; id < NUM_FBRS; id++) {
1914                fbr = rx_ring->fbr[id];
1915                /* Allocate an area of memory for Free Buffer Ring */
1916                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917                fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918                                                        bufsize,
1919                                                        &fbr->ring_physaddr,
1920                                                        GFP_KERNEL);
1921                if (!fbr->ring_virtaddr) {
1922                        dev_err(&adapter->pdev->dev,
1923                                "Cannot alloc memory for Free Buffer Ring %d\n",
1924                                id);
1925                        return -ENOMEM;
1926                }
1927        }
1928
1929        for (id = 0; id < NUM_FBRS; id++) {
1930                fbr = rx_ring->fbr[id];
1931                fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932
1933                for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934                        dma_addr_t fbr_physaddr;
1935
1936                        fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937                                        &adapter->pdev->dev, fbr_chunksize,
1938                                        &fbr->mem_physaddrs[i],
1939                                        GFP_KERNEL);
1940
1941                        if (!fbr->mem_virtaddrs[i]) {
1942                                dev_err(&adapter->pdev->dev,
1943                                        "Could not alloc memory\n");
1944                                return -ENOMEM;
1945                        }
1946
1947                        /* See NOTE in "Save Physical Address" comment above */
1948                        fbr_physaddr = fbr->mem_physaddrs[i];
1949
1950                        for (j = 0; j < FBR_CHUNKS; j++) {
1951                                u32 k = (i * FBR_CHUNKS) + j;
1952
1953                                /* Save the Virtual address of this index for
1954                                 * quick access later
1955                                 */
1956                                fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957                                                   (j * fbr->buffsize);
1958
1959                                /* now store the physical address in the
1960                                 * descriptor so the device can access it
1961                                 */
1962                                fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963                                fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964                                fbr_physaddr += fbr->buffsize;
1965                        }
1966                }
1967        }
1968
1969        /* Allocate an area of memory for FIFO of Packet Status ring entries */
1970        psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971
1972        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973                                                  psr_size,
1974                                                  &rx_ring->ps_ring_physaddr,
1975                                                  GFP_KERNEL);
1976
1977        if (!rx_ring->ps_ring_virtaddr) {
1978                dev_err(&adapter->pdev->dev,
1979                        "Cannot alloc memory for Packet Status Ring\n");
1980                return -ENOMEM;
1981        }
1982
1983        /* Allocate an area of memory for writeback of status information */
1984        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985                                            sizeof(struct rx_status_block),
1986                                            &rx_ring->rx_status_bus,
1987                                            GFP_KERNEL);
1988        if (!rx_ring->rx_status_block) {
1989                dev_err(&adapter->pdev->dev,
1990                        "Cannot alloc memory for Status Block\n");
1991                return -ENOMEM;
1992        }
1993        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994
1995        /* The RFDs are going to be put on lists later on, so initialize the
1996         * lists now.
1997         */
1998        INIT_LIST_HEAD(&rx_ring->recv_list);
1999        return 0;
2000}
2001
2002static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003{
2004        u8 id;
2005        u32 ii;
2006        u32 bufsize;
2007        u32 psr_size;
2008        struct rfd *rfd;
2009        struct rx_ring *rx_ring = &adapter->rx_ring;
2010        struct fbr_lookup *fbr;
2011
2012        /* Free RFDs and associated packet descriptors */
2013        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014
2015        while (!list_empty(&rx_ring->recv_list)) {
2016                rfd = list_entry(rx_ring->recv_list.next,
2017                                 struct rfd, list_node);
2018
2019                list_del(&rfd->list_node);
2020                rfd->skb = NULL;
2021                kfree(rfd);
2022        }
2023
2024        /* Free Free Buffer Rings */
2025        for (id = 0; id < NUM_FBRS; id++) {
2026                fbr = rx_ring->fbr[id];
2027
2028                if (!fbr || !fbr->ring_virtaddr)
2029                        continue;
2030
2031                /* First the packet memory */
2032                for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033                        if (fbr->mem_virtaddrs[ii]) {
2034                                bufsize = fbr->buffsize * FBR_CHUNKS;
2035
2036                                dma_free_coherent(&adapter->pdev->dev,
2037                                                  bufsize,
2038                                                  fbr->mem_virtaddrs[ii],
2039                                                  fbr->mem_physaddrs[ii]);
2040
2041                                fbr->mem_virtaddrs[ii] = NULL;
2042                        }
2043                }
2044
2045                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046
2047                dma_free_coherent(&adapter->pdev->dev,
2048                                  bufsize,
2049                                  fbr->ring_virtaddr,
2050                                  fbr->ring_physaddr);
2051
2052                fbr->ring_virtaddr = NULL;
2053        }
2054
2055        /* Free Packet Status Ring */
2056        if (rx_ring->ps_ring_virtaddr) {
2057                psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058
2059                dma_free_coherent(&adapter->pdev->dev, psr_size,
2060                                  rx_ring->ps_ring_virtaddr,
2061                                  rx_ring->ps_ring_physaddr);
2062
2063                rx_ring->ps_ring_virtaddr = NULL;
2064        }
2065
2066        /* Free area of memory for the writeback of status information */
2067        if (rx_ring->rx_status_block) {
2068                dma_free_coherent(&adapter->pdev->dev,
2069                                  sizeof(struct rx_status_block),
2070                                  rx_ring->rx_status_block,
2071                                  rx_ring->rx_status_bus);
2072                rx_ring->rx_status_block = NULL;
2073        }
2074
2075        /* Free the FBR Lookup Table */
2076        kfree(rx_ring->fbr[0]);
2077        kfree(rx_ring->fbr[1]);
2078
2079        /* Reset Counters */
2080        rx_ring->num_ready_recv = 0;
2081}
2082
2083/* et131x_init_recv - Initialize receive data structures */
2084static int et131x_init_recv(struct et131x_adapter *adapter)
2085{
2086        struct rfd *rfd;
2087        u32 rfdct;
2088        struct rx_ring *rx_ring = &adapter->rx_ring;
2089
2090        /* Setup each RFD */
2091        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092                rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093                if (!rfd)
2094                        return -ENOMEM;
2095
2096                rfd->skb = NULL;
2097
2098                /* Add this RFD to the recv_list */
2099                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100
2101                /* Increment the available RFD's */
2102                rx_ring->num_ready_recv++;
2103        }
2104
2105        return 0;
2106}
2107
2108/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110{
2111        struct phy_device *phydev = adapter->netdev->phydev;
2112
2113        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115         */
2116        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117                writel(0, &adapter->regs->rxdma.max_pkt_time);
2118                writel(1, &adapter->regs->rxdma.num_pkt_done);
2119        }
2120}
2121
2122/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124{
2125        struct rx_ring *rx_local = &adapter->rx_ring;
2126        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127        u16 buff_index = rfd->bufferindex;
2128        u8 ring_index = rfd->ringindex;
2129        unsigned long flags;
2130        struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131
2132        /* We don't use any of the OOB data besides status. Otherwise, we
2133         * need to clean up OOB data
2134         */
2135        if (buff_index < fbr->num_entries) {
2136                u32 free_buff_ring;
2137                u32 __iomem *offset;
2138                struct fbr_desc *next;
2139
2140                if (ring_index == 0)
2141                        offset = &rx_dma->fbr0_full_offset;
2142                else
2143                        offset = &rx_dma->fbr1_full_offset;
2144
2145                next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146                       INDEX10(fbr->local_full);
2147
2148                /* Handle the Free Buffer Ring advancement here. Write
2149                 * the PA / Buffer Index for the returned buffer into
2150                 * the oldest (next to be freed)FBR entry
2151                 */
2152                next->addr_hi = fbr->bus_high[buff_index];
2153                next->addr_lo = fbr->bus_low[buff_index];
2154                next->word2 = buff_index;
2155
2156                free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157                                                     fbr->num_entries - 1);
2158                writel(free_buff_ring, offset);
2159        } else {
2160                dev_err(&adapter->pdev->dev,
2161                        "%s illegal Buffer Index returned\n", __func__);
2162        }
2163
2164        /* The processing on this RFD is done, so put it back on the tail of
2165         * our list
2166         */
2167        spin_lock_irqsave(&adapter->rcv_lock, flags);
2168        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169        rx_local->num_ready_recv++;
2170        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171
2172        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173}
2174
2175/* nic_rx_pkts - Checks the hardware for available packets
2176 *
2177 * Checks the hardware for available packets, using completion ring
2178 * If packets are available, it gets an RFD from the recv_list, attaches
2179 * the packet to it, puts the RFD in the RecvPendList, and also returns
2180 * the pointer to the RFD.
2181 */
2182static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183{
2184        struct rx_ring *rx_local = &adapter->rx_ring;
2185        struct rx_status_block *status;
2186        struct pkt_stat_desc *psr;
2187        struct rfd *rfd;
2188        unsigned long flags;
2189        struct list_head *element;
2190        u8 ring_index;
2191        u16 buff_index;
2192        u32 len;
2193        u32 word0;
2194        u32 word1;
2195        struct sk_buff *skb;
2196        struct fbr_lookup *fbr;
2197
2198        /* RX Status block is written by the DMA engine prior to every
2199         * interrupt. It contains the next to be used entry in the Packet
2200         * Status Ring, and also the two Free Buffer rings.
2201         */
2202        status = rx_local->rx_status_block;
2203        word1 = status->word1 >> 16;
2204
2205        /* Check the PSR and wrap bits do not match */
2206        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207                return NULL; /* Looks like this ring is not updated yet */
2208
2209        /* The packet status ring indicates that data is available. */
2210        psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211                        (rx_local->local_psr_full & 0xFFF);
2212
2213        /* Grab any information that is required once the PSR is advanced,
2214         * since we can no longer rely on the memory being accurate
2215         */
2216        len = psr->word1 & 0xFFFF;
2217        ring_index = (psr->word1 >> 26) & 0x03;
2218        fbr = rx_local->fbr[ring_index];
2219        buff_index = (psr->word1 >> 16) & 0x3FF;
2220        word0 = psr->word0;
2221
2222        /* Indicate that we have used this PSR entry. */
2223        /* FIXME wrap 12 */
2224        add_12bit(&rx_local->local_psr_full, 1);
2225        if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226                /* Clear psr full and toggle the wrap bit */
2227                rx_local->local_psr_full &=  ~0xFFF;
2228                rx_local->local_psr_full ^= 0x1000;
2229        }
2230
2231        writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232
2233        if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234                /* Illegal buffer or ring index cannot be used by S/W*/
2235                dev_err(&adapter->pdev->dev,
2236                        "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237                        rx_local->local_psr_full & 0xFFF, len, buff_index);
2238                return NULL;
2239        }
2240
2241        /* Get and fill the RFD. */
2242        spin_lock_irqsave(&adapter->rcv_lock, flags);
2243
2244        element = rx_local->recv_list.next;
2245        rfd = list_entry(element, struct rfd, list_node);
2246
2247        if (!rfd) {
2248                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249                return NULL;
2250        }
2251
2252        list_del(&rfd->list_node);
2253        rx_local->num_ready_recv--;
2254
2255        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256
2257        rfd->bufferindex = buff_index;
2258        rfd->ringindex = ring_index;
2259
2260        /* In V1 silicon, there is a bug which screws up filtering of runt
2261         * packets. Therefore runt packet filtering is disabled in the MAC and
2262         * the packets are dropped here. They are also counted here.
2263         */
2264        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265                adapter->stats.rx_other_errs++;
2266                rfd->len = 0;
2267                goto out;
2268        }
2269
2270        if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271                adapter->stats.multicast_pkts_rcvd++;
2272
2273        rfd->len = len;
2274
2275        skb = dev_alloc_skb(rfd->len + 2);
2276        if (!skb)
2277                return NULL;
2278
2279        adapter->netdev->stats.rx_bytes += rfd->len;
2280
2281        skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282
2283        skb->protocol = eth_type_trans(skb, adapter->netdev);
2284        skb->ip_summed = CHECKSUM_NONE;
2285        netif_receive_skb(skb);
2286
2287out:
2288        nic_return_rfd(adapter, rfd);
2289        return rfd;
2290}
2291
2292static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293{
2294        struct rfd *rfd = NULL;
2295        int count = 0;
2296        int limit = budget;
2297        bool done = true;
2298        struct rx_ring *rx_ring = &adapter->rx_ring;
2299
2300        if (budget > MAX_PACKETS_HANDLED)
2301                limit = MAX_PACKETS_HANDLED;
2302
2303        /* Process up to available RFD's */
2304        while (count < limit) {
2305                if (list_empty(&rx_ring->recv_list)) {
2306                        WARN_ON(rx_ring->num_ready_recv != 0);
2307                        done = false;
2308                        break;
2309                }
2310
2311                rfd = nic_rx_pkts(adapter);
2312
2313                if (rfd == NULL)
2314                        break;
2315
2316                /* Do not receive any packets until a filter has been set.
2317                 * Do not receive any packets until we have link.
2318                 * If length is zero, return the RFD in order to advance the
2319                 * Free buffer ring.
2320                 */
2321                if (!adapter->packet_filter ||
2322                    !netif_carrier_ok(adapter->netdev) ||
2323                    rfd->len == 0)
2324                        continue;
2325
2326                adapter->netdev->stats.rx_packets++;
2327
2328                if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329                        dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330
2331                count++;
2332        }
2333
2334        if (count == limit || !done) {
2335                rx_ring->unfinished_receives = true;
2336                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337                       &adapter->regs->global.watchdog_timer);
2338        } else {
2339                /* Watchdog timer will disable itself if appropriate. */
2340                rx_ring->unfinished_receives = false;
2341        }
2342
2343        return count;
2344}
2345
2346/* et131x_tx_dma_memory_alloc
2347 *
2348 * Allocates memory that will be visible both to the device and to the CPU.
2349 * The OS will pass us packets, pointers to which we will insert in the Tx
2350 * Descriptor queue. The device will read this queue to find the packets in
2351 * memory. The device will update the "status" in memory each time it xmits a
2352 * packet.
2353 */
2354static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355{
2356        int desc_size = 0;
2357        struct tx_ring *tx_ring = &adapter->tx_ring;
2358
2359        /* Allocate memory for the TCB's (Transmit Control Block) */
2360        tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361                                    GFP_KERNEL | GFP_DMA);
2362        if (!tx_ring->tcb_ring)
2363                return -ENOMEM;
2364
2365        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366        tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367                                                   desc_size,
2368                                                   &tx_ring->tx_desc_ring_pa,
2369                                                   GFP_KERNEL);
2370        if (!tx_ring->tx_desc_ring) {
2371                dev_err(&adapter->pdev->dev,
2372                        "Cannot alloc memory for Tx Ring\n");
2373                return -ENOMEM;
2374        }
2375
2376        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377                                                    sizeof(u32),
2378                                                    &tx_ring->tx_status_pa,
2379                                                    GFP_KERNEL);
2380        if (!tx_ring->tx_status) {
2381                dev_err(&adapter->pdev->dev,
2382                        "Cannot alloc memory for Tx status block\n");
2383                return -ENOMEM;
2384        }
2385        return 0;
2386}
2387
2388static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389{
2390        int desc_size = 0;
2391        struct tx_ring *tx_ring = &adapter->tx_ring;
2392
2393        if (tx_ring->tx_desc_ring) {
2394                /* Free memory relating to Tx rings here */
2395                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396                dma_free_coherent(&adapter->pdev->dev,
2397                                  desc_size,
2398                                  tx_ring->tx_desc_ring,
2399                                  tx_ring->tx_desc_ring_pa);
2400                tx_ring->tx_desc_ring = NULL;
2401        }
2402
2403        /* Free memory for the Tx status block */
2404        if (tx_ring->tx_status) {
2405                dma_free_coherent(&adapter->pdev->dev,
2406                                  sizeof(u32),
2407                                  tx_ring->tx_status,
2408                                  tx_ring->tx_status_pa);
2409
2410                tx_ring->tx_status = NULL;
2411        }
2412        /* Free the memory for the tcb structures */
2413        kfree(tx_ring->tcb_ring);
2414}
2415
2416/* nic_send_packet - NIC specific send handler for version B silicon. */
2417static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2418{
2419        u32 i;
2420        struct tx_desc desc[24];
2421        u32 frag = 0;
2422        u32 thiscopy, remainder;
2423        struct sk_buff *skb = tcb->skb;
2424        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2425        skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2426        struct phy_device *phydev = adapter->netdev->phydev;
2427        dma_addr_t dma_addr;
2428        struct tx_ring *tx_ring = &adapter->tx_ring;
2429
2430        /* Part of the optimizations of this send routine restrict us to
2431         * sending 24 fragments at a pass.  In practice we should never see
2432         * more than 5 fragments.
2433         */
2434
2435        /* nr_frags should be no more than 18. */
2436        BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2437
2438        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2439
2440        for (i = 0; i < nr_frags; i++) {
2441                /* If there is something in this element, lets get a
2442                 * descriptor from the ring and get the necessary data
2443                 */
2444                if (i == 0) {
2445                        /* If the fragments are smaller than a standard MTU,
2446                         * then map them to a single descriptor in the Tx
2447                         * Desc ring. However, if they're larger, as is
2448                         * possible with support for jumbo packets, then
2449                         * split them each across 2 descriptors.
2450                         *
2451                         * This will work until we determine why the hardware
2452                         * doesn't seem to like large fragments.
2453                         */
2454                        if (skb_headlen(skb) <= 1514) {
2455                                /* Low 16bits are length, high is vlan and
2456                                 * unused currently so zero
2457                                 */
2458                                desc[frag].len_vlan = skb_headlen(skb);
2459                                dma_addr = dma_map_single(&adapter->pdev->dev,
2460                                                          skb->data,
2461                                                          skb_headlen(skb),
2462                                                          DMA_TO_DEVICE);
2463                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2464                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2465                                frag++;
2466                        } else {
2467                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2468                                dma_addr = dma_map_single(&adapter->pdev->dev,
2469                                                          skb->data,
2470                                                          skb_headlen(skb) / 2,
2471                                                          DMA_TO_DEVICE);
2472                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2473                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2474                                frag++;
2475
2476                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2477                                dma_addr = dma_map_single(&adapter->pdev->dev,
2478                                                          skb->data +
2479                                                          skb_headlen(skb) / 2,
2480                                                          skb_headlen(skb) / 2,
2481                                                          DMA_TO_DEVICE);
2482                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2483                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2484                                frag++;
2485                        }
2486                } else {
2487                        desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2488                        dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2489                                                    &frags[i - 1],
2490                                                    0,
2491                                                    desc[frag].len_vlan,
2492                                                    DMA_TO_DEVICE);
2493                        desc[frag].addr_lo = lower_32_bits(dma_addr);
2494                        desc[frag].addr_hi = upper_32_bits(dma_addr);
2495                        frag++;
2496                }
2497        }
2498
2499        if (phydev && phydev->speed == SPEED_1000) {
2500                if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2501                        /* Last element & Interrupt flag */
2502                        desc[frag - 1].flags =
2503                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2504                        tx_ring->since_irq = 0;
2505                } else { /* Last element */
2506                        desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2507                }
2508        } else {
2509                desc[frag - 1].flags =
2510                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2511        }
2512
2513        desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2514
2515        tcb->index_start = tx_ring->send_idx;
2516        tcb->stale = 0;
2517
2518        thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2519
2520        if (thiscopy >= frag) {
2521                remainder = 0;
2522                thiscopy = frag;
2523        } else {
2524                remainder = frag - thiscopy;
2525        }
2526
2527        memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2528               desc,
2529               sizeof(struct tx_desc) * thiscopy);
2530
2531        add_10bit(&tx_ring->send_idx, thiscopy);
2532
2533        if (INDEX10(tx_ring->send_idx) == 0 ||
2534            INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2535                tx_ring->send_idx &= ~ET_DMA10_MASK;
2536                tx_ring->send_idx ^= ET_DMA10_WRAP;
2537        }
2538
2539        if (remainder) {
2540                memcpy(tx_ring->tx_desc_ring,
2541                       desc + thiscopy,
2542                       sizeof(struct tx_desc) * remainder);
2543
2544                add_10bit(&tx_ring->send_idx, remainder);
2545        }
2546
2547        if (INDEX10(tx_ring->send_idx) == 0) {
2548                if (tx_ring->send_idx)
2549                        tcb->index = NUM_DESC_PER_RING_TX - 1;
2550                else
2551                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2552        } else {
2553                tcb->index = tx_ring->send_idx - 1;
2554        }
2555
2556        spin_lock(&adapter->tcb_send_qlock);
2557
2558        if (tx_ring->send_tail)
2559                tx_ring->send_tail->next = tcb;
2560        else
2561                tx_ring->send_head = tcb;
2562
2563        tx_ring->send_tail = tcb;
2564
2565        WARN_ON(tcb->next != NULL);
2566
2567        tx_ring->used++;
2568
2569        spin_unlock(&adapter->tcb_send_qlock);
2570
2571        /* Write the new write pointer back to the device. */
2572        writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2573
2574        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2575         * timer to wake us up if this packet isn't followed by N more.
2576         */
2577        if (phydev && phydev->speed == SPEED_1000) {
2578                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2579                       &adapter->regs->global.watchdog_timer);
2580        }
2581        return 0;
2582}
2583
2584static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2585{
2586        int status;
2587        struct tcb *tcb;
2588        unsigned long flags;
2589        struct tx_ring *tx_ring = &adapter->tx_ring;
2590
2591        /* All packets must have at least a MAC address and a protocol type */
2592        if (skb->len < ETH_HLEN)
2593                return -EIO;
2594
2595        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2596
2597        tcb = tx_ring->tcb_qhead;
2598
2599        if (tcb == NULL) {
2600                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2601                return -ENOMEM;
2602        }
2603
2604        tx_ring->tcb_qhead = tcb->next;
2605
2606        if (tx_ring->tcb_qhead == NULL)
2607                tx_ring->tcb_qtail = NULL;
2608
2609        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2610
2611        tcb->skb = skb;
2612        tcb->next = NULL;
2613
2614        status = nic_send_packet(adapter, tcb);
2615
2616        if (status != 0) {
2617                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2618
2619                if (tx_ring->tcb_qtail)
2620                        tx_ring->tcb_qtail->next = tcb;
2621                else
2622                        /* Apparently ready Q is empty. */
2623                        tx_ring->tcb_qhead = tcb;
2624
2625                tx_ring->tcb_qtail = tcb;
2626                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2627                return status;
2628        }
2629        WARN_ON(tx_ring->used > NUM_TCB);
2630        return 0;
2631}
2632
2633/* free_send_packet - Recycle a struct tcb */
2634static inline void free_send_packet(struct et131x_adapter *adapter,
2635                                    struct tcb *tcb)
2636{
2637        unsigned long flags;
2638        struct tx_desc *desc = NULL;
2639        struct net_device_stats *stats = &adapter->netdev->stats;
2640        struct tx_ring *tx_ring = &adapter->tx_ring;
2641        u64  dma_addr;
2642
2643        if (tcb->skb) {
2644                stats->tx_bytes += tcb->skb->len;
2645
2646                /* Iterate through the TX descriptors on the ring
2647                 * corresponding to this packet and umap the fragments
2648                 * they point to
2649                 */
2650                do {
2651                        desc = tx_ring->tx_desc_ring +
2652                               INDEX10(tcb->index_start);
2653
2654                        dma_addr = desc->addr_lo;
2655                        dma_addr |= (u64)desc->addr_hi << 32;
2656
2657                        dma_unmap_single(&adapter->pdev->dev,
2658                                         dma_addr,
2659                                         desc->len_vlan, DMA_TO_DEVICE);
2660
2661                        add_10bit(&tcb->index_start, 1);
2662                        if (INDEX10(tcb->index_start) >=
2663                                                        NUM_DESC_PER_RING_TX) {
2664                                tcb->index_start &= ~ET_DMA10_MASK;
2665                                tcb->index_start ^= ET_DMA10_WRAP;
2666                        }
2667                } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2668
2669                dev_kfree_skb_any(tcb->skb);
2670        }
2671
2672        memset(tcb, 0, sizeof(struct tcb));
2673
2674        /* Add the TCB to the Ready Q */
2675        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2676
2677        stats->tx_packets++;
2678
2679        if (tx_ring->tcb_qtail)
2680                tx_ring->tcb_qtail->next = tcb;
2681        else /* Apparently ready Q is empty. */
2682                tx_ring->tcb_qhead = tcb;
2683
2684        tx_ring->tcb_qtail = tcb;
2685
2686        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2687        WARN_ON(tx_ring->used < 0);
2688}
2689
2690/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2691static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2692{
2693        struct tcb *tcb;
2694        unsigned long flags;
2695        u32 freed = 0;
2696        struct tx_ring *tx_ring = &adapter->tx_ring;
2697
2698        /* Any packets being sent? Check the first TCB on the send list */
2699        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2700
2701        tcb = tx_ring->send_head;
2702
2703        while (tcb != NULL && freed < NUM_TCB) {
2704                struct tcb *next = tcb->next;
2705
2706                tx_ring->send_head = next;
2707
2708                if (next == NULL)
2709                        tx_ring->send_tail = NULL;
2710
2711                tx_ring->used--;
2712
2713                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2714
2715                freed++;
2716                free_send_packet(adapter, tcb);
2717
2718                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2719
2720                tcb = tx_ring->send_head;
2721        }
2722
2723        WARN_ON(freed == NUM_TCB);
2724
2725        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2726
2727        tx_ring->used = 0;
2728}
2729
2730/* et131x_handle_send_pkts
2731 *
2732 * Re-claim the send resources, complete sends and get more to send from
2733 * the send wait queue.
2734 */
2735static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2736{
2737        unsigned long flags;
2738        u32 serviced;
2739        struct tcb *tcb;
2740        u32 index;
2741        struct tx_ring *tx_ring = &adapter->tx_ring;
2742
2743        serviced = readl(&adapter->regs->txdma.new_service_complete);
2744        index = INDEX10(serviced);
2745
2746        /* Has the ring wrapped?  Process any descriptors that do not have
2747         * the same "wrap" indicator as the current completion indicator
2748         */
2749        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2750
2751        tcb = tx_ring->send_head;
2752
2753        while (tcb &&
2754               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2755               index < INDEX10(tcb->index)) {
2756                tx_ring->used--;
2757                tx_ring->send_head = tcb->next;
2758                if (tcb->next == NULL)
2759                        tx_ring->send_tail = NULL;
2760
2761                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2762                free_send_packet(adapter, tcb);
2763                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2764
2765                /* Goto the next packet */
2766                tcb = tx_ring->send_head;
2767        }
2768        while (tcb &&
2769               !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2770               index > (tcb->index & ET_DMA10_MASK)) {
2771                tx_ring->used--;
2772                tx_ring->send_head = tcb->next;
2773                if (tcb->next == NULL)
2774                        tx_ring->send_tail = NULL;
2775
2776                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2777                free_send_packet(adapter, tcb);
2778                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2779
2780                /* Goto the next packet */
2781                tcb = tx_ring->send_head;
2782        }
2783
2784        /* Wake up the queue when we hit a low-water mark */
2785        if (tx_ring->used <= NUM_TCB / 3)
2786                netif_wake_queue(adapter->netdev);
2787
2788        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2789}
2790
2791static int et131x_get_regs_len(struct net_device *netdev)
2792{
2793#define ET131X_REGS_LEN 256
2794        return ET131X_REGS_LEN * sizeof(u32);
2795}
2796
2797static void et131x_get_regs(struct net_device *netdev,
2798                            struct ethtool_regs *regs, void *regs_data)
2799{
2800        struct et131x_adapter *adapter = netdev_priv(netdev);
2801        struct address_map __iomem *aregs = adapter->regs;
2802        u32 *regs_buff = regs_data;
2803        u32 num = 0;
2804        u16 tmp;
2805
2806        memset(regs_data, 0, et131x_get_regs_len(netdev));
2807
2808        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2809                        adapter->pdev->device;
2810
2811        /* PHY regs */
2812        et131x_mii_read(adapter, MII_BMCR, &tmp);
2813        regs_buff[num++] = tmp;
2814        et131x_mii_read(adapter, MII_BMSR, &tmp);
2815        regs_buff[num++] = tmp;
2816        et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2817        regs_buff[num++] = tmp;
2818        et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2819        regs_buff[num++] = tmp;
2820        et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2821        regs_buff[num++] = tmp;
2822        et131x_mii_read(adapter, MII_LPA, &tmp);
2823        regs_buff[num++] = tmp;
2824        et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2825        regs_buff[num++] = tmp;
2826        /* Autoneg next page transmit reg */
2827        et131x_mii_read(adapter, 0x07, &tmp);
2828        regs_buff[num++] = tmp;
2829        /* Link partner next page reg */
2830        et131x_mii_read(adapter, 0x08, &tmp);
2831        regs_buff[num++] = tmp;
2832        et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2833        regs_buff[num++] = tmp;
2834        et131x_mii_read(adapter, MII_STAT1000, &tmp);
2835        regs_buff[num++] = tmp;
2836        et131x_mii_read(adapter, 0x0b, &tmp);
2837        regs_buff[num++] = tmp;
2838        et131x_mii_read(adapter, 0x0c, &tmp);
2839        regs_buff[num++] = tmp;
2840        et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2841        regs_buff[num++] = tmp;
2842        et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2843        regs_buff[num++] = tmp;
2844        et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2845        regs_buff[num++] = tmp;
2846
2847        et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2848        regs_buff[num++] = tmp;
2849        et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2850        regs_buff[num++] = tmp;
2851        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2852        regs_buff[num++] = tmp;
2853        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2854        regs_buff[num++] = tmp;
2855        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2856        regs_buff[num++] = tmp;
2857
2858        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2859        regs_buff[num++] = tmp;
2860        et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2861        regs_buff[num++] = tmp;
2862        et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2863        regs_buff[num++] = tmp;
2864        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2865        regs_buff[num++] = tmp;
2866        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2867        regs_buff[num++] = tmp;
2868        et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2869        regs_buff[num++] = tmp;
2870        et131x_mii_read(adapter, PHY_LED_1, &tmp);
2871        regs_buff[num++] = tmp;
2872        et131x_mii_read(adapter, PHY_LED_2, &tmp);
2873        regs_buff[num++] = tmp;
2874
2875        /* Global regs */
2876        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2877        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2878        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2879        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2880        regs_buff[num++] = readl(&aregs->global.pm_csr);
2881        regs_buff[num++] = adapter->stats.interrupt_status;
2882        regs_buff[num++] = readl(&aregs->global.int_mask);
2883        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2884        regs_buff[num++] = readl(&aregs->global.int_status_alias);
2885        regs_buff[num++] = readl(&aregs->global.sw_reset);
2886        regs_buff[num++] = readl(&aregs->global.slv_timer);
2887        regs_buff[num++] = readl(&aregs->global.msi_config);
2888        regs_buff[num++] = readl(&aregs->global.loopback);
2889        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2890
2891        /* TXDMA regs */
2892        regs_buff[num++] = readl(&aregs->txdma.csr);
2893        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2894        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2895        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2896        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2897        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2898        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2899        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2900        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2901        regs_buff[num++] = readl(&aregs->txdma.service_request);
2902        regs_buff[num++] = readl(&aregs->txdma.service_complete);
2903        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2904        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2905        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2906        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2907        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2908        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2909        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2910        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2911        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2912        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2913        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2914        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2915        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2916        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2917        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2918
2919        /* RXDMA regs */
2920        regs_buff[num++] = readl(&aregs->rxdma.csr);
2921        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2922        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2923        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2924        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2925        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2926        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2927        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2928        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2929        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2930        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2931        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2932        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2933        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2934        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2935        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2936        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2937        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2938        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2939        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2940        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2941        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2942        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2943        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2944        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2945        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2946        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2947        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2948        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2949}
2950
2951static void et131x_get_drvinfo(struct net_device *netdev,
2952                               struct ethtool_drvinfo *info)
2953{
2954        struct et131x_adapter *adapter = netdev_priv(netdev);
2955
2956        strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2957        strlcpy(info->bus_info, pci_name(adapter->pdev),
2958                sizeof(info->bus_info));
2959}
2960
2961static const struct ethtool_ops et131x_ethtool_ops = {
2962        .get_drvinfo    = et131x_get_drvinfo,
2963        .get_regs_len   = et131x_get_regs_len,
2964        .get_regs       = et131x_get_regs,
2965        .get_link       = ethtool_op_get_link,
2966        .get_link_ksettings = phy_ethtool_get_link_ksettings,
2967        .set_link_ksettings = phy_ethtool_set_link_ksettings,
2968};
2969
2970/* et131x_hwaddr_init - set up the MAC Address */
2971static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2972{
2973        /* If have our default mac from init and no mac address from
2974         * EEPROM then we need to generate the last octet and set it on the
2975         * device
2976         */
2977        if (is_zero_ether_addr(adapter->rom_addr)) {
2978                /* We need to randomly generate the last octet so we
2979                 * decrease our chances of setting the mac address to
2980                 * same as another one of our cards in the system
2981                 */
2982                get_random_bytes(&adapter->addr[5], 1);
2983                /* We have the default value in the register we are
2984                 * working with so we need to copy the current
2985                 * address into the permanent address
2986                 */
2987                ether_addr_copy(adapter->rom_addr, adapter->addr);
2988        } else {
2989                /* We do not have an override address, so set the
2990                 * current address to the permanent address and add
2991                 * it to the device
2992                 */
2993                ether_addr_copy(adapter->addr, adapter->rom_addr);
2994        }
2995}
2996
2997static int et131x_pci_init(struct et131x_adapter *adapter,
2998                           struct pci_dev *pdev)
2999{
3000        u16 max_payload;
3001        int i, rc;
3002
3003        rc = et131x_init_eeprom(adapter);
3004        if (rc < 0)
3005                goto out;
3006
3007        if (!pci_is_pcie(pdev)) {
3008                dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3009                goto err_out;
3010        }
3011
3012        /* Program the Ack/Nak latency and replay timers */
3013        max_payload = pdev->pcie_mpss;
3014
3015        if (max_payload < 2) {
3016                static const u16 acknak[2] = { 0x76, 0xD0 };
3017                static const u16 replay[2] = { 0x1E0, 0x2ED };
3018
3019                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3020                                          acknak[max_payload])) {
3021                        dev_err(&pdev->dev,
3022                                "Could not write PCI config space for ACK/NAK\n");
3023                        goto err_out;
3024                }
3025                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3026                                          replay[max_payload])) {
3027                        dev_err(&pdev->dev,
3028                                "Could not write PCI config space for Replay Timer\n");
3029                        goto err_out;
3030                }
3031        }
3032
3033        /* l0s and l1 latency timers.  We are using default values.
3034         * Representing 001 for L0s and 010 for L1
3035         */
3036        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3037                dev_err(&pdev->dev,
3038                        "Could not write PCI config space for Latency Timers\n");
3039                goto err_out;
3040        }
3041
3042        /* Change the max read size to 2k */
3043        if (pcie_set_readrq(pdev, 2048)) {
3044                dev_err(&pdev->dev,
3045                        "Couldn't change PCI config space for Max read size\n");
3046                goto err_out;
3047        }
3048
3049        /* Get MAC address from config space if an eeprom exists, otherwise
3050         * the MAC address there will not be valid
3051         */
3052        if (!adapter->has_eeprom) {
3053                et131x_hwaddr_init(adapter);
3054                return 0;
3055        }
3056
3057        for (i = 0; i < ETH_ALEN; i++) {
3058                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3059                                         adapter->rom_addr + i)) {
3060                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3061                        goto err_out;
3062                }
3063        }
3064        ether_addr_copy(adapter->addr, adapter->rom_addr);
3065out:
3066        return rc;
3067err_out:
3068        rc = -EIO;
3069        goto out;
3070}
3071
3072/* et131x_error_timer_handler
3073 * @data: timer-specific variable; here a pointer to our adapter structure
3074 *
3075 * The routine called when the error timer expires, to track the number of
3076 * recurring errors.
3077 */
3078static void et131x_error_timer_handler(struct timer_list *t)
3079{
3080        struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3081        struct phy_device *phydev = adapter->netdev->phydev;
3082
3083        if (et1310_in_phy_coma(adapter)) {
3084                /* Bring the device immediately out of coma, to
3085                 * prevent it from sleeping indefinitely, this
3086                 * mechanism could be improved!
3087                 */
3088                et1310_disable_phy_coma(adapter);
3089                adapter->boot_coma = 20;
3090        } else {
3091                et1310_update_macstat_host_counters(adapter);
3092        }
3093
3094        if (!phydev->link && adapter->boot_coma < 11)
3095                adapter->boot_coma++;
3096
3097        if (adapter->boot_coma == 10) {
3098                if (!phydev->link) {
3099                        if (!et1310_in_phy_coma(adapter)) {
3100                                /* NOTE - This was originally a 'sync with
3101                                 *  interrupt'. How to do that under Linux?
3102                                 */
3103                                et131x_enable_interrupts(adapter);
3104                                et1310_enable_phy_coma(adapter);
3105                        }
3106                }
3107        }
3108
3109        /* This is a periodic timer, so reschedule */
3110        mod_timer(&adapter->error_timer, jiffies +
3111                  msecs_to_jiffies(TX_ERROR_PERIOD));
3112}
3113
3114static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3115{
3116        et131x_tx_dma_memory_free(adapter);
3117        et131x_rx_dma_memory_free(adapter);
3118}
3119
3120static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3121{
3122        int status;
3123
3124        status = et131x_tx_dma_memory_alloc(adapter);
3125        if (status) {
3126                dev_err(&adapter->pdev->dev,
3127                        "et131x_tx_dma_memory_alloc FAILED\n");
3128                et131x_tx_dma_memory_free(adapter);
3129                return status;
3130        }
3131
3132        status = et131x_rx_dma_memory_alloc(adapter);
3133        if (status) {
3134                dev_err(&adapter->pdev->dev,
3135                        "et131x_rx_dma_memory_alloc FAILED\n");
3136                et131x_adapter_memory_free(adapter);
3137                return status;
3138        }
3139
3140        status = et131x_init_recv(adapter);
3141        if (status) {
3142                dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3143                et131x_adapter_memory_free(adapter);
3144        }
3145        return status;
3146}
3147
3148static void et131x_adjust_link(struct net_device *netdev)
3149{
3150        struct et131x_adapter *adapter = netdev_priv(netdev);
3151        struct  phy_device *phydev = netdev->phydev;
3152
3153        if (!phydev)
3154                return;
3155        if (phydev->link == adapter->link)
3156                return;
3157
3158        /* Check to see if we are in coma mode and if
3159         * so, disable it because we will not be able
3160         * to read PHY values until we are out.
3161         */
3162        if (et1310_in_phy_coma(adapter))
3163                et1310_disable_phy_coma(adapter);
3164
3165        adapter->link = phydev->link;
3166        phy_print_status(phydev);
3167
3168        if (phydev->link) {
3169                adapter->boot_coma = 20;
3170                if (phydev->speed == SPEED_10) {
3171                        u16 register18;
3172
3173                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3174                                        &register18);
3175                        et131x_mii_write(adapter, phydev->mdio.addr,
3176                                         PHY_MPHY_CONTROL_REG,
3177                                         register18 | 0x4);
3178                        et131x_mii_write(adapter, phydev->mdio.addr,
3179                                         PHY_INDEX_REG, register18 | 0x8402);
3180                        et131x_mii_write(adapter, phydev->mdio.addr,
3181                                         PHY_DATA_REG, register18 | 511);
3182                        et131x_mii_write(adapter, phydev->mdio.addr,
3183                                         PHY_MPHY_CONTROL_REG, register18);
3184                }
3185
3186                et1310_config_flow_control(adapter);
3187
3188                if (phydev->speed == SPEED_1000 &&
3189                    adapter->registry_jumbo_packet > 2048) {
3190                        u16 reg;
3191
3192                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
3193                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3194                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3195                        et131x_mii_write(adapter, phydev->mdio.addr,
3196                                         PHY_CONFIG, reg);
3197                }
3198
3199                et131x_set_rx_dma_timer(adapter);
3200                et1310_config_mac_regs2(adapter);
3201        } else {
3202                adapter->boot_coma = 0;
3203
3204                if (phydev->speed == SPEED_10) {
3205                        u16 register18;
3206
3207                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3208                                        &register18);
3209                        et131x_mii_write(adapter, phydev->mdio.addr,
3210                                         PHY_MPHY_CONTROL_REG,
3211                                         register18 | 0x4);
3212                        et131x_mii_write(adapter, phydev->mdio.addr,
3213                                         PHY_INDEX_REG, register18 | 0x8402);
3214                        et131x_mii_write(adapter, phydev->mdio.addr,
3215                                         PHY_DATA_REG, register18 | 511);
3216                        et131x_mii_write(adapter, phydev->mdio.addr,
3217                                         PHY_MPHY_CONTROL_REG, register18);
3218                }
3219
3220                et131x_free_busy_send_packets(adapter);
3221                et131x_init_send(adapter);
3222
3223                /* Bring the device back to the state it was during
3224                 * init prior to autonegotiation being complete. This
3225                 * way, when we get the auto-neg complete interrupt,
3226                 * we can complete init by calling config_mac_regs2.
3227                 */
3228                et131x_soft_reset(adapter);
3229
3230                et131x_adapter_setup(adapter);
3231
3232                et131x_disable_txrx(netdev);
3233                et131x_enable_txrx(netdev);
3234        }
3235}
3236
3237static int et131x_mii_probe(struct net_device *netdev)
3238{
3239        struct et131x_adapter *adapter = netdev_priv(netdev);
3240        struct  phy_device *phydev = NULL;
3241
3242        phydev = phy_find_first(adapter->mii_bus);
3243        if (!phydev) {
3244                dev_err(&adapter->pdev->dev, "no PHY found\n");
3245                return -ENODEV;
3246        }
3247
3248        phydev = phy_connect(netdev, phydev_name(phydev),
3249                             &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3250
3251        if (IS_ERR(phydev)) {
3252                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3253                return PTR_ERR(phydev);
3254        }
3255
3256        phy_set_max_speed(phydev, SPEED_100);
3257
3258        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3259                phy_set_max_speed(phydev, SPEED_1000);
3260
3261        phydev->autoneg = AUTONEG_ENABLE;
3262
3263        phy_attached_info(phydev);
3264
3265        return 0;
3266}
3267
3268static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3269                                                  struct pci_dev *pdev)
3270{
3271        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3272
3273        struct et131x_adapter *adapter;
3274
3275        adapter = netdev_priv(netdev);
3276        adapter->pdev = pci_dev_get(pdev);
3277        adapter->netdev = netdev;
3278
3279        spin_lock_init(&adapter->tcb_send_qlock);
3280        spin_lock_init(&adapter->tcb_ready_qlock);
3281        spin_lock_init(&adapter->rcv_lock);
3282
3283        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3284
3285        ether_addr_copy(adapter->addr, default_mac);
3286
3287        return adapter;
3288}
3289
3290static void et131x_pci_remove(struct pci_dev *pdev)
3291{
3292        struct net_device *netdev = pci_get_drvdata(pdev);
3293        struct et131x_adapter *adapter = netdev_priv(netdev);
3294
3295        unregister_netdev(netdev);
3296        netif_napi_del(&adapter->napi);
3297        phy_disconnect(netdev->phydev);
3298        mdiobus_unregister(adapter->mii_bus);
3299        mdiobus_free(adapter->mii_bus);
3300
3301        et131x_adapter_memory_free(adapter);
3302        iounmap(adapter->regs);
3303        pci_dev_put(pdev);
3304
3305        free_netdev(netdev);
3306        pci_release_regions(pdev);
3307        pci_disable_device(pdev);
3308}
3309
3310static void et131x_up(struct net_device *netdev)
3311{
3312        et131x_enable_txrx(netdev);
3313        phy_start(netdev->phydev);
3314}
3315
3316static void et131x_down(struct net_device *netdev)
3317{
3318        /* Save the timestamp for the TX watchdog, prevent a timeout */
3319        netif_trans_update(netdev);
3320
3321        phy_stop(netdev->phydev);
3322        et131x_disable_txrx(netdev);
3323}
3324
3325#ifdef CONFIG_PM_SLEEP
3326static int et131x_suspend(struct device *dev)
3327{
3328        struct pci_dev *pdev = to_pci_dev(dev);
3329        struct net_device *netdev = pci_get_drvdata(pdev);
3330
3331        if (netif_running(netdev)) {
3332                netif_device_detach(netdev);
3333                et131x_down(netdev);
3334                pci_save_state(pdev);
3335        }
3336
3337        return 0;
3338}
3339
3340static int et131x_resume(struct device *dev)
3341{
3342        struct pci_dev *pdev = to_pci_dev(dev);
3343        struct net_device *netdev = pci_get_drvdata(pdev);
3344
3345        if (netif_running(netdev)) {
3346                pci_restore_state(pdev);
3347                et131x_up(netdev);
3348                netif_device_attach(netdev);
3349        }
3350
3351        return 0;
3352}
3353#endif
3354
3355static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3356
3357static irqreturn_t et131x_isr(int irq, void *dev_id)
3358{
3359        bool handled = true;
3360        bool enable_interrupts = true;
3361        struct net_device *netdev = dev_id;
3362        struct et131x_adapter *adapter = netdev_priv(netdev);
3363        struct address_map __iomem *iomem = adapter->regs;
3364        struct rx_ring *rx_ring = &adapter->rx_ring;
3365        struct tx_ring *tx_ring = &adapter->tx_ring;
3366        u32 status;
3367
3368        if (!netif_device_present(netdev)) {
3369                handled = false;
3370                enable_interrupts = false;
3371                goto out;
3372        }
3373
3374        et131x_disable_interrupts(adapter);
3375
3376        status = readl(&adapter->regs->global.int_status);
3377
3378        if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3379                status &= ~INT_MASK_ENABLE;
3380        else
3381                status &= ~INT_MASK_ENABLE_NO_FLOW;
3382
3383        /* Make sure this is our interrupt */
3384        if (!status) {
3385                handled = false;
3386                et131x_enable_interrupts(adapter);
3387                goto out;
3388        }
3389
3390        /* This is our interrupt, so process accordingly */
3391        if (status & ET_INTR_WATCHDOG) {
3392                struct tcb *tcb = tx_ring->send_head;
3393
3394                if (tcb)
3395                        if (++tcb->stale > 1)
3396                                status |= ET_INTR_TXDMA_ISR;
3397
3398                if (rx_ring->unfinished_receives)
3399                        status |= ET_INTR_RXDMA_XFR_DONE;
3400                else if (tcb == NULL)
3401                        writel(0, &adapter->regs->global.watchdog_timer);
3402
3403                status &= ~ET_INTR_WATCHDOG;
3404        }
3405
3406        if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3407                enable_interrupts = false;
3408                napi_schedule(&adapter->napi);
3409        }
3410
3411        status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3412
3413        if (!status)
3414                goto out;
3415
3416        if (status & ET_INTR_TXDMA_ERR) {
3417                /* Following read also clears the register (COR) */
3418                u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3419
3420                dev_warn(&adapter->pdev->dev,
3421                         "TXDMA_ERR interrupt, error = %d\n",
3422                         txdma_err);
3423        }
3424
3425        if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3426                /* This indicates the number of unused buffers in RXDMA free
3427                 * buffer ring 0 is <= the limit you programmed. Free buffer
3428                 * resources need to be returned.  Free buffers are consumed as
3429                 * packets are passed from the network to the host. The host
3430                 * becomes aware of the packets from the contents of the packet
3431                 * status ring. This ring is queried when the packet done
3432                 * interrupt occurs. Packets are then passed to the OS. When
3433                 * the OS is done with the packets the resources can be
3434                 * returned to the ET1310 for re-use. This interrupt is one
3435                 * method of returning resources.
3436                 */
3437
3438                /*  If the user has flow control on, then we will
3439                 * send a pause packet, otherwise just exit
3440                 */
3441                if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3442                        /* Tell the device to send a pause packet via the back
3443                         * pressure register (bp req and bp xon/xoff)
3444                         */
3445                        if (!et1310_in_phy_coma(adapter))
3446                                writel(3, &iomem->txmac.bp_ctrl);
3447                }
3448        }
3449
3450        /* Handle Packet Status Ring Low Interrupt */
3451        if (status & ET_INTR_RXDMA_STAT_LOW) {
3452                /* Same idea as with the two Free Buffer Rings. Packets going
3453                 * from the network to the host each consume a free buffer
3454                 * resource and a packet status resource. These resources are
3455                 * passed to the OS. When the OS is done with the resources,
3456                 * they need to be returned to the ET1310. This is one method
3457                 * of returning the resources.
3458                 */
3459        }
3460
3461        if (status & ET_INTR_RXDMA_ERR) {
3462                /* The rxdma_error interrupt is sent when a time-out on a
3463                 * request issued by the JAGCore has occurred or a completion is
3464                 * returned with an un-successful status. In both cases the
3465                 * request is considered complete. The JAGCore will
3466                 * automatically re-try the request in question. Normally
3467                 * information on events like these are sent to the host using
3468                 * the "Advanced Error Reporting" capability. This interrupt is
3469                 * another way of getting similar information. The only thing
3470                 * required is to clear the interrupt by reading the ISR in the
3471                 * global resources. The JAGCore will do a re-try on the
3472                 * request. Normally you should never see this interrupt. If
3473                 * you start to see this interrupt occurring frequently then
3474                 * something bad has occurred. A reset might be the thing to do.
3475                 */
3476                /* TRAP();*/
3477
3478                dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3479                         readl(&iomem->txmac.tx_test));
3480        }
3481
3482        /* Handle the Wake on LAN Event */
3483        if (status & ET_INTR_WOL) {
3484                /* This is a secondary interrupt for wake on LAN. The driver
3485                 * should never see this, if it does, something serious is
3486                 * wrong.
3487                 */
3488                dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3489        }
3490
3491        if (status & ET_INTR_TXMAC) {
3492                u32 err = readl(&iomem->txmac.err);
3493
3494                /* When any of the errors occur and TXMAC generates an
3495                 * interrupt to report these errors, it usually means that
3496                 * TXMAC has detected an error in the data stream retrieved
3497                 * from the on-chip Tx Q. All of these errors are catastrophic
3498                 * and TXMAC won't be able to recover data when these errors
3499                 * occur. In a nutshell, the whole Tx path will have to be reset
3500                 * and re-configured afterwards.
3501                 */
3502                dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3503                         err);
3504
3505                /* If we are debugging, we want to see this error, otherwise we
3506                 * just want the device to be reset and continue
3507                 */
3508        }
3509
3510        if (status & ET_INTR_RXMAC) {
3511                /* These interrupts are catastrophic to the device, what we need
3512                 * to do is disable the interrupts and set the flag to cause us
3513                 * to reset so we can solve this issue.
3514                 */
3515                dev_warn(&adapter->pdev->dev,
3516                         "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3517                         readl(&iomem->rxmac.err_reg));
3518
3519                dev_warn(&adapter->pdev->dev,
3520                         "Enable 0x%08x, Diag 0x%08x\n",
3521                         readl(&iomem->rxmac.ctrl),
3522                         readl(&iomem->rxmac.rxq_diag));
3523
3524                /* If we are debugging, we want to see this error, otherwise we
3525                 * just want the device to be reset and continue
3526                 */
3527        }
3528
3529        if (status & ET_INTR_MAC_STAT) {
3530                /* This means at least one of the un-masked counters in the
3531                 * MAC_STAT block has rolled over. Use this to maintain the top,
3532                 * software managed bits of the counter(s).
3533                 */
3534                et1310_handle_macstat_interrupt(adapter);
3535        }
3536
3537        if (status & ET_INTR_SLV_TIMEOUT) {
3538                /* This means a timeout has occurred on a read or write request
3539                 * to one of the JAGCore registers. The Global Resources block
3540                 * has terminated the request and on a read request, returned a
3541                 * "fake" value. The most likely reasons are: Bad Address or the
3542                 * addressed module is in a power-down state and can't respond.
3543                 */
3544        }
3545
3546out:
3547        if (enable_interrupts)
3548                et131x_enable_interrupts(adapter);
3549
3550        return IRQ_RETVAL(handled);
3551}
3552
3553static int et131x_poll(struct napi_struct *napi, int budget)
3554{
3555        struct et131x_adapter *adapter =
3556                container_of(napi, struct et131x_adapter, napi);
3557        int work_done = et131x_handle_recv_pkts(adapter, budget);
3558
3559        et131x_handle_send_pkts(adapter);
3560
3561        if (work_done < budget) {
3562                napi_complete_done(&adapter->napi, work_done);
3563                et131x_enable_interrupts(adapter);
3564        }
3565
3566        return work_done;
3567}
3568
3569/* et131x_stats - Return the current device statistics  */
3570static struct net_device_stats *et131x_stats(struct net_device *netdev)
3571{
3572        struct et131x_adapter *adapter = netdev_priv(netdev);
3573        struct net_device_stats *stats = &adapter->netdev->stats;
3574        struct ce_stats *devstat = &adapter->stats;
3575
3576        stats->rx_errors = devstat->rx_length_errs +
3577                           devstat->rx_align_errs +
3578                           devstat->rx_crc_errs +
3579                           devstat->rx_code_violations +
3580                           devstat->rx_other_errs;
3581        stats->tx_errors = devstat->tx_max_pkt_errs;
3582        stats->multicast = devstat->multicast_pkts_rcvd;
3583        stats->collisions = devstat->tx_collisions;
3584
3585        stats->rx_length_errors = devstat->rx_length_errs;
3586        stats->rx_over_errors = devstat->rx_overflows;
3587        stats->rx_crc_errors = devstat->rx_crc_errs;
3588        stats->rx_dropped = devstat->rcvd_pkts_dropped;
3589
3590        /* NOTE: Not used, can't find analogous statistics */
3591        /* stats->rx_frame_errors     = devstat->; */
3592        /* stats->rx_fifo_errors      = devstat->; */
3593        /* stats->rx_missed_errors    = devstat->; */
3594
3595        /* stats->tx_aborted_errors   = devstat->; */
3596        /* stats->tx_carrier_errors   = devstat->; */
3597        /* stats->tx_fifo_errors      = devstat->; */
3598        /* stats->tx_heartbeat_errors = devstat->; */
3599        /* stats->tx_window_errors    = devstat->; */
3600        return stats;
3601}
3602
3603static int et131x_open(struct net_device *netdev)
3604{
3605        struct et131x_adapter *adapter = netdev_priv(netdev);
3606        struct pci_dev *pdev = adapter->pdev;
3607        unsigned int irq = pdev->irq;
3608        int result;
3609
3610        /* Start the timer to track NIC errors */
3611        timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3612        adapter->error_timer.expires = jiffies +
3613                msecs_to_jiffies(TX_ERROR_PERIOD);
3614        add_timer(&adapter->error_timer);
3615
3616        result = request_irq(irq, et131x_isr,
3617                             IRQF_SHARED, netdev->name, netdev);
3618        if (result) {
3619                dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3620                return result;
3621        }
3622
3623        adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3624
3625        napi_enable(&adapter->napi);
3626
3627        et131x_up(netdev);
3628
3629        return result;
3630}
3631
3632static int et131x_close(struct net_device *netdev)
3633{
3634        struct et131x_adapter *adapter = netdev_priv(netdev);
3635
3636        et131x_down(netdev);
3637        napi_disable(&adapter->napi);
3638
3639        adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3640        free_irq(adapter->pdev->irq, netdev);
3641
3642        /* Stop the error timer */
3643        return del_timer_sync(&adapter->error_timer);
3644}
3645
3646/* et131x_set_packet_filter - Configures the Rx Packet filtering */
3647static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3648{
3649        int filter = adapter->packet_filter;
3650        u32 ctrl;
3651        u32 pf_ctrl;
3652
3653        ctrl = readl(&adapter->regs->rxmac.ctrl);
3654        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3655
3656        /* Default to disabled packet filtering */
3657        ctrl |= 0x04;
3658
3659        /* Set us to be in promiscuous mode so we receive everything, this
3660         * is also true when we get a packet filter of 0
3661         */
3662        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3663                pf_ctrl &= ~7;  /* Clear filter bits */
3664        else {
3665                /* Set us up with Multicast packet filtering.  Three cases are
3666                 * possible - (1) we have a multi-cast list, (2) we receive ALL
3667                 * multicast entries or (3) we receive none.
3668                 */
3669                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3670                        pf_ctrl &= ~2;  /* Multicast filter bit */
3671                else {
3672                        et1310_setup_device_for_multicast(adapter);
3673                        pf_ctrl |= 2;
3674                        ctrl &= ~0x04;
3675                }
3676
3677                /* Set us up with Unicast packet filtering */
3678                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3679                        et1310_setup_device_for_unicast(adapter);
3680                        pf_ctrl |= 4;
3681                        ctrl &= ~0x04;
3682                }
3683
3684                /* Set us up with Broadcast packet filtering */
3685                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3686                        pf_ctrl |= 1;   /* Broadcast filter bit */
3687                        ctrl &= ~0x04;
3688                } else {
3689                        pf_ctrl &= ~1;
3690                }
3691
3692                /* Setup the receive mac configuration registers - Packet
3693                 * Filter control + the enable / disable for packet filter
3694                 * in the control reg.
3695                 */
3696                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3697                writel(ctrl, &adapter->regs->rxmac.ctrl);
3698        }
3699        return 0;
3700}
3701
3702static void et131x_multicast(struct net_device *netdev)
3703{
3704        struct et131x_adapter *adapter = netdev_priv(netdev);
3705        int packet_filter;
3706        struct netdev_hw_addr *ha;
3707        int i;
3708
3709        /* Before we modify the platform-independent filter flags, store them
3710         * locally. This allows us to determine if anything's changed and if
3711         * we even need to bother the hardware
3712         */
3713        packet_filter = adapter->packet_filter;
3714
3715        /* Clear the 'multicast' flag locally; because we only have a single
3716         * flag to check multicast, and multiple multicast addresses can be
3717         * set, this is the easiest way to determine if more than one
3718         * multicast address is being set.
3719         */
3720        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3721
3722        /* Check the net_device flags and set the device independent flags
3723         * accordingly
3724         */
3725        if (netdev->flags & IFF_PROMISC)
3726                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3727        else
3728                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3729
3730        if ((netdev->flags & IFF_ALLMULTI) ||
3731            (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3732                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3733
3734        if (netdev_mc_count(netdev) < 1) {
3735                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3736                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3737        } else {
3738                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3739        }
3740
3741        /* Set values in the private adapter struct */
3742        i = 0;
3743        netdev_for_each_mc_addr(ha, netdev) {
3744                if (i == NIC_MAX_MCAST_LIST)
3745                        break;
3746                ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3747        }
3748        adapter->multicast_addr_count = i;
3749
3750        /* Are the new flags different from the previous ones? If not, then no
3751         * action is required
3752         *
3753         * NOTE - This block will always update the multicast_list with the
3754         *        hardware, even if the addresses aren't the same.
3755         */
3756        if (packet_filter != adapter->packet_filter)
3757                et131x_set_packet_filter(adapter);
3758}
3759
3760static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3761{
3762        struct et131x_adapter *adapter = netdev_priv(netdev);
3763        struct tx_ring *tx_ring = &adapter->tx_ring;
3764
3765        /* stop the queue if it's getting full */
3766        if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3767                netif_stop_queue(netdev);
3768
3769        /* Save the timestamp for the TX timeout watchdog */
3770        netif_trans_update(netdev);
3771
3772        /* TCB is not available */
3773        if (tx_ring->used >= NUM_TCB)
3774                goto drop_err;
3775
3776        if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3777            !netif_carrier_ok(netdev))
3778                goto drop_err;
3779
3780        if (send_packet(skb, adapter))
3781                goto drop_err;
3782
3783        return NETDEV_TX_OK;
3784
3785drop_err:
3786        dev_kfree_skb_any(skb);
3787        adapter->netdev->stats.tx_dropped++;
3788        return NETDEV_TX_OK;
3789}
3790
3791/* et131x_tx_timeout - Timeout handler
3792 *
3793 * The handler called when a Tx request times out. The timeout period is
3794 * specified by the 'tx_timeo" element in the net_device structure (see
3795 * et131x_alloc_device() to see how this value is set).
3796 */
3797static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3798{
3799        struct et131x_adapter *adapter = netdev_priv(netdev);
3800        struct tx_ring *tx_ring = &adapter->tx_ring;
3801        struct tcb *tcb;
3802        unsigned long flags;
3803
3804        /* If the device is closed, ignore the timeout */
3805        if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3806                return;
3807
3808        /* Any nonrecoverable hardware error?
3809         * Checks adapter->flags for any failure in phy reading
3810         */
3811        if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3812                return;
3813
3814        /* Hardware failure? */
3815        if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3816                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3817                return;
3818        }
3819
3820        /* Is send stuck? */
3821        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3822        tcb = tx_ring->send_head;
3823        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3824
3825        if (tcb) {
3826                tcb->count++;
3827
3828                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3829                        dev_warn(&adapter->pdev->dev,
3830                                 "Send stuck - reset. tcb->WrIndex %x\n",
3831                                 tcb->index);
3832
3833                        adapter->netdev->stats.tx_errors++;
3834
3835                        /* perform reset of tx/rx */
3836                        et131x_disable_txrx(netdev);
3837                        et131x_enable_txrx(netdev);
3838                }
3839        }
3840}
3841
3842static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3843{
3844        int result = 0;
3845        struct et131x_adapter *adapter = netdev_priv(netdev);
3846
3847        et131x_disable_txrx(netdev);
3848
3849        netdev->mtu = new_mtu;
3850
3851        et131x_adapter_memory_free(adapter);
3852
3853        /* Set the config parameter for Jumbo Packet support */
3854        adapter->registry_jumbo_packet = new_mtu + 14;
3855        et131x_soft_reset(adapter);
3856
3857        result = et131x_adapter_memory_alloc(adapter);
3858        if (result != 0) {
3859                dev_warn(&adapter->pdev->dev,
3860                         "Change MTU failed; couldn't re-alloc DMA memory\n");
3861                return result;
3862        }
3863
3864        et131x_init_send(adapter);
3865        et131x_hwaddr_init(adapter);
3866        ether_addr_copy(netdev->dev_addr, adapter->addr);
3867
3868        /* Init the device with the new settings */
3869        et131x_adapter_setup(adapter);
3870        et131x_enable_txrx(netdev);
3871
3872        return result;
3873}
3874
3875static const struct net_device_ops et131x_netdev_ops = {
3876        .ndo_open               = et131x_open,
3877        .ndo_stop               = et131x_close,
3878        .ndo_start_xmit         = et131x_tx,
3879        .ndo_set_rx_mode        = et131x_multicast,
3880        .ndo_tx_timeout         = et131x_tx_timeout,
3881        .ndo_change_mtu         = et131x_change_mtu,
3882        .ndo_set_mac_address    = eth_mac_addr,
3883        .ndo_validate_addr      = eth_validate_addr,
3884        .ndo_get_stats          = et131x_stats,
3885        .ndo_eth_ioctl          = phy_do_ioctl,
3886};
3887
3888static int et131x_pci_setup(struct pci_dev *pdev,
3889                            const struct pci_device_id *ent)
3890{
3891        struct net_device *netdev;
3892        struct et131x_adapter *adapter;
3893        int rc;
3894
3895        rc = pci_enable_device(pdev);
3896        if (rc < 0) {
3897                dev_err(&pdev->dev, "pci_enable_device() failed\n");
3898                goto out;
3899        }
3900
3901        /* Perform some basic PCI checks */
3902        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3903                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3904                rc = -ENODEV;
3905                goto err_disable;
3906        }
3907
3908        rc = pci_request_regions(pdev, DRIVER_NAME);
3909        if (rc < 0) {
3910                dev_err(&pdev->dev, "Can't get PCI resources\n");
3911                goto err_disable;
3912        }
3913
3914        pci_set_master(pdev);
3915
3916        /* Check the DMA addressing support of this device */
3917        if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3918            dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3919                dev_err(&pdev->dev, "No usable DMA addressing method\n");
3920                rc = -EIO;
3921                goto err_release_res;
3922        }
3923
3924        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3925        if (!netdev) {
3926                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3927                rc = -ENOMEM;
3928                goto err_release_res;
3929        }
3930
3931        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3932        netdev->netdev_ops     = &et131x_netdev_ops;
3933        netdev->min_mtu        = ET131X_MIN_MTU;
3934        netdev->max_mtu        = ET131X_MAX_MTU;
3935
3936        SET_NETDEV_DEV(netdev, &pdev->dev);
3937        netdev->ethtool_ops = &et131x_ethtool_ops;
3938
3939        adapter = et131x_adapter_init(netdev, pdev);
3940
3941        rc = et131x_pci_init(adapter, pdev);
3942        if (rc < 0)
3943                goto err_free_dev;
3944
3945        /* Map the bus-relative registers to system virtual memory */
3946        adapter->regs = pci_ioremap_bar(pdev, 0);
3947        if (!adapter->regs) {
3948                dev_err(&pdev->dev, "Cannot map device registers\n");
3949                rc = -ENOMEM;
3950                goto err_free_dev;
3951        }
3952
3953        /* If Phy COMA mode was enabled when we went down, disable it here. */
3954        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3955
3956        et131x_soft_reset(adapter);
3957        et131x_disable_interrupts(adapter);
3958
3959        rc = et131x_adapter_memory_alloc(adapter);
3960        if (rc < 0) {
3961                dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3962                goto err_iounmap;
3963        }
3964
3965        et131x_init_send(adapter);
3966
3967        netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3968
3969        ether_addr_copy(netdev->dev_addr, adapter->addr);
3970
3971        rc = -ENOMEM;
3972
3973        adapter->mii_bus = mdiobus_alloc();
3974        if (!adapter->mii_bus) {
3975                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3976                goto err_mem_free;
3977        }
3978
3979        adapter->mii_bus->name = "et131x_eth_mii";
3980        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3981                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3982        adapter->mii_bus->priv = netdev;
3983        adapter->mii_bus->read = et131x_mdio_read;
3984        adapter->mii_bus->write = et131x_mdio_write;
3985
3986        rc = mdiobus_register(adapter->mii_bus);
3987        if (rc < 0) {
3988                dev_err(&pdev->dev, "failed to register MII bus\n");
3989                goto err_mdio_free;
3990        }
3991
3992        rc = et131x_mii_probe(netdev);
3993        if (rc < 0) {
3994                dev_err(&pdev->dev, "failed to probe MII bus\n");
3995                goto err_mdio_unregister;
3996        }
3997
3998        et131x_adapter_setup(adapter);
3999
4000        /* Init variable for counting how long we do not have link status */
4001        adapter->boot_coma = 0;
4002        et1310_disable_phy_coma(adapter);
4003
4004        /* We can enable interrupts now
4005         *
4006         *  NOTE - Because registration of interrupt handler is done in the
4007         *         device's open(), defer enabling device interrupts to that
4008         *         point
4009         */
4010
4011        rc = register_netdev(netdev);
4012        if (rc < 0) {
4013                dev_err(&pdev->dev, "register_netdev() failed\n");
4014                goto err_phy_disconnect;
4015        }
4016
4017        /* Register the net_device struct with the PCI subsystem. Save a copy
4018         * of the PCI config space for this device now that the device has
4019         * been initialized, just in case it needs to be quickly restored.
4020         */
4021        pci_set_drvdata(pdev, netdev);
4022out:
4023        return rc;
4024
4025err_phy_disconnect:
4026        phy_disconnect(netdev->phydev);
4027err_mdio_unregister:
4028        mdiobus_unregister(adapter->mii_bus);
4029err_mdio_free:
4030        mdiobus_free(adapter->mii_bus);
4031err_mem_free:
4032        et131x_adapter_memory_free(adapter);
4033err_iounmap:
4034        iounmap(adapter->regs);
4035err_free_dev:
4036        pci_dev_put(pdev);
4037        free_netdev(netdev);
4038err_release_res:
4039        pci_release_regions(pdev);
4040err_disable:
4041        pci_disable_device(pdev);
4042        goto out;
4043}
4044
4045static const struct pci_device_id et131x_pci_table[] = {
4046        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4047        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4048        { 0,}
4049};
4050MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4051
4052static struct pci_driver et131x_driver = {
4053        .name           = DRIVER_NAME,
4054        .id_table       = et131x_pci_table,
4055        .probe          = et131x_pci_setup,
4056        .remove         = et131x_pci_remove,
4057        .driver.pm      = &et131x_pm_ops,
4058};
4059
4060module_pci_driver(et131x_driver);
4061