linux/drivers/net/ethernet/amd/au1000_eth.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Alchemy Au1x00 ethernet driver
   5 *
   6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7 * Copyright 2002 TimeSys Corp.
   8 * Added ethtool/mii-tool support,
   9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11 * or riemer@riemer-nt.de: fixed the link beat detection with
  12 * ioctls (SIOCGMIIPHY)
  13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14 *  converted to use linux-2.6.x's PHY framework
  15 *
  16 * Author: MontaVista Software, Inc.
  17 *              ppopov@mvista.com or source@mvista.com
  18 */
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/capability.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/in.h>
  29#include <linux/ioport.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/mii.h>
  37#include <linux/skbuff.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/phy.h>
  41#include <linux/platform_device.h>
  42#include <linux/cpu.h>
  43#include <linux/io.h>
  44
  45#include <asm/mipsregs.h>
  46#include <asm/irq.h>
  47#include <asm/processor.h>
  48
  49#include <au1000.h>
  50#include <au1xxx_eth.h>
  51#include <prom.h>
  52
  53#include "au1000_eth.h"
  54
  55#ifdef AU1000_ETH_DEBUG
  56static int au1000_debug = 5;
  57#else
  58static int au1000_debug = 3;
  59#endif
  60
  61#define AU1000_DEF_MSG_ENABLE   (NETIF_MSG_DRV  | \
  62                                NETIF_MSG_PROBE | \
  63                                NETIF_MSG_LINK)
  64
  65#define DRV_NAME        "au1000_eth"
  66#define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
  67#define DRV_DESC        "Au1xxx on-chip Ethernet driver"
  68
  69MODULE_AUTHOR(DRV_AUTHOR);
  70MODULE_DESCRIPTION(DRV_DESC);
  71MODULE_LICENSE("GPL");
  72
  73/* AU1000 MAC registers and bits */
  74#define MAC_CONTROL             0x0
  75#  define MAC_RX_ENABLE         (1 << 2)
  76#  define MAC_TX_ENABLE         (1 << 3)
  77#  define MAC_DEF_CHECK         (1 << 5)
  78#  define MAC_SET_BL(X)         (((X) & 0x3) << 6)
  79#  define MAC_AUTO_PAD          (1 << 8)
  80#  define MAC_DISABLE_RETRY     (1 << 10)
  81#  define MAC_DISABLE_BCAST     (1 << 11)
  82#  define MAC_LATE_COL          (1 << 12)
  83#  define MAC_HASH_MODE         (1 << 13)
  84#  define MAC_HASH_ONLY         (1 << 15)
  85#  define MAC_PASS_ALL          (1 << 16)
  86#  define MAC_INVERSE_FILTER    (1 << 17)
  87#  define MAC_PROMISCUOUS       (1 << 18)
  88#  define MAC_PASS_ALL_MULTI    (1 << 19)
  89#  define MAC_FULL_DUPLEX       (1 << 20)
  90#  define MAC_NORMAL_MODE       0
  91#  define MAC_INT_LOOPBACK      (1 << 21)
  92#  define MAC_EXT_LOOPBACK      (1 << 22)
  93#  define MAC_DISABLE_RX_OWN    (1 << 23)
  94#  define MAC_BIG_ENDIAN        (1 << 30)
  95#  define MAC_RX_ALL            (1 << 31)
  96#define MAC_ADDRESS_HIGH        0x4
  97#define MAC_ADDRESS_LOW         0x8
  98#define MAC_MCAST_HIGH          0xC
  99#define MAC_MCAST_LOW           0x10
 100#define MAC_MII_CNTRL           0x14
 101#  define MAC_MII_BUSY          (1 << 0)
 102#  define MAC_MII_READ          0
 103#  define MAC_MII_WRITE         (1 << 1)
 104#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 105#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 106#define MAC_MII_DATA            0x18
 107#define MAC_FLOW_CNTRL          0x1C
 108#  define MAC_FLOW_CNTRL_BUSY   (1 << 0)
 109#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 110#  define MAC_PASS_CONTROL      (1 << 2)
 111#  define MAC_SET_PAUSE(X)      (((X) & 0xffff) << 16)
 112#define MAC_VLAN1_TAG           0x20
 113#define MAC_VLAN2_TAG           0x24
 114
 115/* Ethernet Controller Enable */
 116#  define MAC_EN_CLOCK_ENABLE   (1 << 0)
 117#  define MAC_EN_RESET0         (1 << 1)
 118#  define MAC_EN_TOSS           (0 << 2)
 119#  define MAC_EN_CACHEABLE      (1 << 3)
 120#  define MAC_EN_RESET1         (1 << 4)
 121#  define MAC_EN_RESET2         (1 << 5)
 122#  define MAC_DMA_RESET         (1 << 6)
 123
 124/* Ethernet Controller DMA Channels */
 125/* offsets from MAC_TX_RING_ADDR address */
 126#define MAC_TX_BUFF0_STATUS     0x0
 127#  define TX_FRAME_ABORTED      (1 << 0)
 128#  define TX_JAB_TIMEOUT        (1 << 1)
 129#  define TX_NO_CARRIER         (1 << 2)
 130#  define TX_LOSS_CARRIER       (1 << 3)
 131#  define TX_EXC_DEF            (1 << 4)
 132#  define TX_LATE_COLL_ABORT    (1 << 5)
 133#  define TX_EXC_COLL           (1 << 6)
 134#  define TX_UNDERRUN           (1 << 7)
 135#  define TX_DEFERRED           (1 << 8)
 136#  define TX_LATE_COLL          (1 << 9)
 137#  define TX_COLL_CNT_MASK      (0xF << 10)
 138#  define TX_PKT_RETRY          (1 << 31)
 139#define MAC_TX_BUFF0_ADDR       0x4
 140#  define TX_DMA_ENABLE         (1 << 0)
 141#  define TX_T_DONE             (1 << 1)
 142#  define TX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 143#define MAC_TX_BUFF0_LEN        0x8
 144#define MAC_TX_BUFF1_STATUS     0x10
 145#define MAC_TX_BUFF1_ADDR       0x14
 146#define MAC_TX_BUFF1_LEN        0x18
 147#define MAC_TX_BUFF2_STATUS     0x20
 148#define MAC_TX_BUFF2_ADDR       0x24
 149#define MAC_TX_BUFF2_LEN        0x28
 150#define MAC_TX_BUFF3_STATUS     0x30
 151#define MAC_TX_BUFF3_ADDR       0x34
 152#define MAC_TX_BUFF3_LEN        0x38
 153
 154/* offsets from MAC_RX_RING_ADDR */
 155#define MAC_RX_BUFF0_STATUS     0x0
 156#  define RX_FRAME_LEN_MASK     0x3fff
 157#  define RX_WDOG_TIMER         (1 << 14)
 158#  define RX_RUNT               (1 << 15)
 159#  define RX_OVERLEN            (1 << 16)
 160#  define RX_COLL               (1 << 17)
 161#  define RX_ETHER              (1 << 18)
 162#  define RX_MII_ERROR          (1 << 19)
 163#  define RX_DRIBBLING          (1 << 20)
 164#  define RX_CRC_ERROR          (1 << 21)
 165#  define RX_VLAN1              (1 << 22)
 166#  define RX_VLAN2              (1 << 23)
 167#  define RX_LEN_ERROR          (1 << 24)
 168#  define RX_CNTRL_FRAME        (1 << 25)
 169#  define RX_U_CNTRL_FRAME      (1 << 26)
 170#  define RX_MCAST_FRAME        (1 << 27)
 171#  define RX_BCAST_FRAME        (1 << 28)
 172#  define RX_FILTER_FAIL        (1 << 29)
 173#  define RX_PACKET_FILTER      (1 << 30)
 174#  define RX_MISSED_FRAME       (1 << 31)
 175
 176#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 177                    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 178                    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 179#define MAC_RX_BUFF0_ADDR       0x4
 180#  define RX_DMA_ENABLE         (1 << 0)
 181#  define RX_T_DONE             (1 << 1)
 182#  define RX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 183#  define RX_SET_BUFF_ADDR(X)   ((X) & 0xffffffc0)
 184#define MAC_RX_BUFF1_STATUS     0x10
 185#define MAC_RX_BUFF1_ADDR       0x14
 186#define MAC_RX_BUFF2_STATUS     0x20
 187#define MAC_RX_BUFF2_ADDR       0x24
 188#define MAC_RX_BUFF3_STATUS     0x30
 189#define MAC_RX_BUFF3_ADDR       0x34
 190
 191/*
 192 * Theory of operation
 193 *
 194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 195 * There are four receive and four transmit descriptors.  These
 196 * descriptors are not in memory; rather, they are just a set of
 197 * hardware registers.
 198 *
 199 * Since the Au1000 has a coherent data cache, the receive and
 200 * transmit buffers are allocated from the KSEG0 segment. The
 201 * hardware registers, however, are still mapped at KSEG1 to
 202 * make sure there's no out-of-order writes, and that all writes
 203 * complete immediately.
 204 */
 205
 206/*
 207 * board-specific configurations
 208 *
 209 * PHY detection algorithm
 210 *
 211 * If phy_static_config is undefined, the PHY setup is
 212 * autodetected:
 213 *
 214 * mii_probe() first searches the current MAC's MII bus for a PHY,
 215 * selecting the first (or last, if phy_search_highest_addr is
 216 * defined) PHY address not already claimed by another netdev.
 217 *
 218 * If nothing was found that way when searching for the 2nd ethernet
 219 * controller's PHY and phy1_search_mac0 is defined, then
 220 * the first MII bus is searched as well for an unclaimed PHY; this is
 221 * needed in case of a dual-PHY accessible only through the MAC0's MII
 222 * bus.
 223 *
 224 * Finally, if no PHY is found, then the corresponding ethernet
 225 * controller is not registered to the network subsystem.
 226 */
 227
 228/* autodetection defaults: phy1_search_mac0 */
 229
 230/* static PHY setup
 231 *
 232 * most boards PHY setup should be detectable properly with the
 233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 234 * you have a switch attached, or want to use the PHY's interrupt
 235 * notification capabilities) you can provide a static PHY
 236 * configuration here
 237 *
 238 * IRQs may only be set, if a PHY address was configured
 239 * If a PHY address is given, also a bus id is required to be set
 240 *
 241 * ps: make sure the used irqs are configured properly in the board
 242 * specific irq-map
 243 */
 244static void au1000_enable_mac(struct net_device *dev, int force_reset)
 245{
 246        unsigned long flags;
 247        struct au1000_private *aup = netdev_priv(dev);
 248
 249        spin_lock_irqsave(&aup->lock, flags);
 250
 251        if (force_reset || (!aup->mac_enabled)) {
 252                writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 253                wmb(); /* drain writebuffer */
 254                mdelay(2);
 255                writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 256                                | MAC_EN_CLOCK_ENABLE), aup->enable);
 257                wmb(); /* drain writebuffer */
 258                mdelay(2);
 259
 260                aup->mac_enabled = 1;
 261        }
 262
 263        spin_unlock_irqrestore(&aup->lock, flags);
 264}
 265
 266/*
 267 * MII operations
 268 */
 269static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 270{
 271        struct au1000_private *aup = netdev_priv(dev);
 272        u32 *const mii_control_reg = &aup->mac->mii_control;
 273        u32 *const mii_data_reg = &aup->mac->mii_data;
 274        u32 timedout = 20;
 275        u32 mii_control;
 276
 277        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 278                mdelay(1);
 279                if (--timedout == 0) {
 280                        netdev_err(dev, "read_MII busy timeout!!\n");
 281                        return -1;
 282                }
 283        }
 284
 285        mii_control = MAC_SET_MII_SELECT_REG(reg) |
 286                MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 287
 288        writel(mii_control, mii_control_reg);
 289
 290        timedout = 20;
 291        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 292                mdelay(1);
 293                if (--timedout == 0) {
 294                        netdev_err(dev, "mdio_read busy timeout!!\n");
 295                        return -1;
 296                }
 297        }
 298        return readl(mii_data_reg);
 299}
 300
 301static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 302                              int reg, u16 value)
 303{
 304        struct au1000_private *aup = netdev_priv(dev);
 305        u32 *const mii_control_reg = &aup->mac->mii_control;
 306        u32 *const mii_data_reg = &aup->mac->mii_data;
 307        u32 timedout = 20;
 308        u32 mii_control;
 309
 310        while (readl(mii_control_reg) & MAC_MII_BUSY) {
 311                mdelay(1);
 312                if (--timedout == 0) {
 313                        netdev_err(dev, "mdio_write busy timeout!!\n");
 314                        return;
 315                }
 316        }
 317
 318        mii_control = MAC_SET_MII_SELECT_REG(reg) |
 319                MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 320
 321        writel(value, mii_data_reg);
 322        writel(mii_control, mii_control_reg);
 323}
 324
 325static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 326{
 327        struct net_device *const dev = bus->priv;
 328
 329        /* make sure the MAC associated with this
 330         * mii_bus is enabled
 331         */
 332        au1000_enable_mac(dev, 0);
 333
 334        return au1000_mdio_read(dev, phy_addr, regnum);
 335}
 336
 337static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 338                                u16 value)
 339{
 340        struct net_device *const dev = bus->priv;
 341
 342        /* make sure the MAC associated with this
 343         * mii_bus is enabled
 344         */
 345        au1000_enable_mac(dev, 0);
 346
 347        au1000_mdio_write(dev, phy_addr, regnum, value);
 348        return 0;
 349}
 350
 351static int au1000_mdiobus_reset(struct mii_bus *bus)
 352{
 353        struct net_device *const dev = bus->priv;
 354
 355        /* make sure the MAC associated with this
 356         * mii_bus is enabled
 357         */
 358        au1000_enable_mac(dev, 0);
 359
 360        return 0;
 361}
 362
 363static void au1000_hard_stop(struct net_device *dev)
 364{
 365        struct au1000_private *aup = netdev_priv(dev);
 366        u32 reg;
 367
 368        netif_dbg(aup, drv, dev, "hard stop\n");
 369
 370        reg = readl(&aup->mac->control);
 371        reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 372        writel(reg, &aup->mac->control);
 373        wmb(); /* drain writebuffer */
 374        mdelay(10);
 375}
 376
 377static void au1000_enable_rx_tx(struct net_device *dev)
 378{
 379        struct au1000_private *aup = netdev_priv(dev);
 380        u32 reg;
 381
 382        netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 383
 384        reg = readl(&aup->mac->control);
 385        reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 386        writel(reg, &aup->mac->control);
 387        wmb(); /* drain writebuffer */
 388        mdelay(10);
 389}
 390
 391static void
 392au1000_adjust_link(struct net_device *dev)
 393{
 394        struct au1000_private *aup = netdev_priv(dev);
 395        struct phy_device *phydev = dev->phydev;
 396        unsigned long flags;
 397        u32 reg;
 398
 399        int status_change = 0;
 400
 401        BUG_ON(!phydev);
 402
 403        spin_lock_irqsave(&aup->lock, flags);
 404
 405        if (phydev->link && (aup->old_speed != phydev->speed)) {
 406                /* speed changed */
 407
 408                switch (phydev->speed) {
 409                case SPEED_10:
 410                case SPEED_100:
 411                        break;
 412                default:
 413                        netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 414                                                        phydev->speed);
 415                        break;
 416                }
 417
 418                aup->old_speed = phydev->speed;
 419
 420                status_change = 1;
 421        }
 422
 423        if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 424                /* duplex mode changed */
 425
 426                /* switching duplex mode requires to disable rx and tx! */
 427                au1000_hard_stop(dev);
 428
 429                reg = readl(&aup->mac->control);
 430                if (DUPLEX_FULL == phydev->duplex) {
 431                        reg |= MAC_FULL_DUPLEX;
 432                        reg &= ~MAC_DISABLE_RX_OWN;
 433                } else {
 434                        reg &= ~MAC_FULL_DUPLEX;
 435                        reg |= MAC_DISABLE_RX_OWN;
 436                }
 437                writel(reg, &aup->mac->control);
 438                wmb(); /* drain writebuffer */
 439                mdelay(1);
 440
 441                au1000_enable_rx_tx(dev);
 442                aup->old_duplex = phydev->duplex;
 443
 444                status_change = 1;
 445        }
 446
 447        if (phydev->link != aup->old_link) {
 448                /* link state changed */
 449
 450                if (!phydev->link) {
 451                        /* link went down */
 452                        aup->old_speed = 0;
 453                        aup->old_duplex = -1;
 454                }
 455
 456                aup->old_link = phydev->link;
 457                status_change = 1;
 458        }
 459
 460        spin_unlock_irqrestore(&aup->lock, flags);
 461
 462        if (status_change) {
 463                if (phydev->link)
 464                        netdev_info(dev, "link up (%d/%s)\n",
 465                               phydev->speed,
 466                               DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 467                else
 468                        netdev_info(dev, "link down\n");
 469        }
 470}
 471
 472static int au1000_mii_probe(struct net_device *dev)
 473{
 474        struct au1000_private *const aup = netdev_priv(dev);
 475        struct phy_device *phydev = NULL;
 476        int phy_addr;
 477
 478        if (aup->phy_static_config) {
 479                BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 480
 481                if (aup->phy_addr)
 482                        phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 483                else
 484                        netdev_info(dev, "using PHY-less setup\n");
 485                return 0;
 486        }
 487
 488        /* find the first (lowest address) PHY
 489         * on the current MAC's MII bus
 490         */
 491        for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 492                if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 493                        phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 494                        if (!aup->phy_search_highest_addr)
 495                                /* break out with first one found */
 496                                break;
 497                }
 498
 499        if (aup->phy1_search_mac0) {
 500                /* try harder to find a PHY */
 501                if (!phydev && (aup->mac_id == 1)) {
 502                        /* no PHY found, maybe we have a dual PHY? */
 503                        dev_info(&dev->dev, ": no PHY found on MAC1, "
 504                                "let's see if it's attached to MAC0...\n");
 505
 506                        /* find the first (lowest address) non-attached
 507                         * PHY on the MAC0 MII bus
 508                         */
 509                        for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 510                                struct phy_device *const tmp_phydev =
 511                                        mdiobus_get_phy(aup->mii_bus,
 512                                                        phy_addr);
 513
 514                                if (aup->mac_id == 1)
 515                                        break;
 516
 517                                /* no PHY here... */
 518                                if (!tmp_phydev)
 519                                        continue;
 520
 521                                /* already claimed by MAC0 */
 522                                if (tmp_phydev->attached_dev)
 523                                        continue;
 524
 525                                phydev = tmp_phydev;
 526                                break; /* found it */
 527                        }
 528                }
 529        }
 530
 531        if (!phydev) {
 532                netdev_err(dev, "no PHY found\n");
 533                return -1;
 534        }
 535
 536        /* now we are supposed to have a proper phydev, to attach to... */
 537        BUG_ON(phydev->attached_dev);
 538
 539        phydev = phy_connect(dev, phydev_name(phydev),
 540                             &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 541
 542        if (IS_ERR(phydev)) {
 543                netdev_err(dev, "Could not attach to PHY\n");
 544                return PTR_ERR(phydev);
 545        }
 546
 547        phy_set_max_speed(phydev, SPEED_100);
 548
 549        aup->old_link = 0;
 550        aup->old_speed = 0;
 551        aup->old_duplex = -1;
 552
 553        phy_attached_info(phydev);
 554
 555        return 0;
 556}
 557
 558/*
 559 * Buffer allocation/deallocation routines. The buffer descriptor returned
 560 * has the virtual and dma address of a buffer suitable for
 561 * both, receive and transmit operations.
 562 */
 563static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 564{
 565        struct db_dest *pDB;
 566        pDB = aup->pDBfree;
 567
 568        if (pDB)
 569                aup->pDBfree = pDB->pnext;
 570
 571        return pDB;
 572}
 573
 574void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 575{
 576        struct db_dest *pDBfree = aup->pDBfree;
 577        if (pDBfree)
 578                pDBfree->pnext = pDB;
 579        aup->pDBfree = pDB;
 580}
 581
 582static void au1000_reset_mac_unlocked(struct net_device *dev)
 583{
 584        struct au1000_private *const aup = netdev_priv(dev);
 585        int i;
 586
 587        au1000_hard_stop(dev);
 588
 589        writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 590        wmb(); /* drain writebuffer */
 591        mdelay(2);
 592        writel(0, aup->enable);
 593        wmb(); /* drain writebuffer */
 594        mdelay(2);
 595
 596        aup->tx_full = 0;
 597        for (i = 0; i < NUM_RX_DMA; i++) {
 598                /* reset control bits */
 599                aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 600        }
 601        for (i = 0; i < NUM_TX_DMA; i++) {
 602                /* reset control bits */
 603                aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 604        }
 605
 606        aup->mac_enabled = 0;
 607
 608}
 609
 610static void au1000_reset_mac(struct net_device *dev)
 611{
 612        struct au1000_private *const aup = netdev_priv(dev);
 613        unsigned long flags;
 614
 615        netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 616                                        (unsigned)aup);
 617
 618        spin_lock_irqsave(&aup->lock, flags);
 619
 620        au1000_reset_mac_unlocked(dev);
 621
 622        spin_unlock_irqrestore(&aup->lock, flags);
 623}
 624
 625/*
 626 * Setup the receive and transmit "rings".  These pointers are the addresses
 627 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 628 * these are not descriptors sitting in memory.
 629 */
 630static void
 631au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 632{
 633        int i;
 634
 635        for (i = 0; i < NUM_RX_DMA; i++) {
 636                aup->rx_dma_ring[i] = (struct rx_dma *)
 637                        (tx_base + 0x100 + sizeof(struct rx_dma) * i);
 638        }
 639        for (i = 0; i < NUM_TX_DMA; i++) {
 640                aup->tx_dma_ring[i] = (struct tx_dma *)
 641                        (tx_base + sizeof(struct tx_dma) * i);
 642        }
 643}
 644
 645/*
 646 * ethtool operations
 647 */
 648static void
 649au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 650{
 651        struct au1000_private *aup = netdev_priv(dev);
 652
 653        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 654        snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 655                 aup->mac_id);
 656}
 657
 658static void au1000_set_msglevel(struct net_device *dev, u32 value)
 659{
 660        struct au1000_private *aup = netdev_priv(dev);
 661        aup->msg_enable = value;
 662}
 663
 664static u32 au1000_get_msglevel(struct net_device *dev)
 665{
 666        struct au1000_private *aup = netdev_priv(dev);
 667        return aup->msg_enable;
 668}
 669
 670static const struct ethtool_ops au1000_ethtool_ops = {
 671        .get_drvinfo = au1000_get_drvinfo,
 672        .get_link = ethtool_op_get_link,
 673        .get_msglevel = au1000_get_msglevel,
 674        .set_msglevel = au1000_set_msglevel,
 675        .get_link_ksettings = phy_ethtool_get_link_ksettings,
 676        .set_link_ksettings = phy_ethtool_set_link_ksettings,
 677};
 678
 679/*
 680 * Initialize the interface.
 681 *
 682 * When the device powers up, the clocks are disabled and the
 683 * mac is in reset state.  When the interface is closed, we
 684 * do the same -- reset the device and disable the clocks to
 685 * conserve power. Thus, whenever au1000_init() is called,
 686 * the device should already be in reset state.
 687 */
 688static int au1000_init(struct net_device *dev)
 689{
 690        struct au1000_private *aup = netdev_priv(dev);
 691        unsigned long flags;
 692        int i;
 693        u32 control;
 694
 695        netif_dbg(aup, hw, dev, "au1000_init\n");
 696
 697        /* bring the device out of reset */
 698        au1000_enable_mac(dev, 1);
 699
 700        spin_lock_irqsave(&aup->lock, flags);
 701
 702        writel(0, &aup->mac->control);
 703        aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 704        aup->tx_tail = aup->tx_head;
 705        aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 706
 707        writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 708                                        &aup->mac->mac_addr_high);
 709        writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 710                dev->dev_addr[1]<<8 | dev->dev_addr[0],
 711                                        &aup->mac->mac_addr_low);
 712
 713
 714        for (i = 0; i < NUM_RX_DMA; i++)
 715                aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 716
 717        wmb(); /* drain writebuffer */
 718
 719        control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 720#ifndef CONFIG_CPU_LITTLE_ENDIAN
 721        control |= MAC_BIG_ENDIAN;
 722#endif
 723        if (dev->phydev) {
 724                if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 725                        control |= MAC_FULL_DUPLEX;
 726                else
 727                        control |= MAC_DISABLE_RX_OWN;
 728        } else { /* PHY-less op, assume full-duplex */
 729                control |= MAC_FULL_DUPLEX;
 730        }
 731
 732        writel(control, &aup->mac->control);
 733        writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 734        wmb(); /* drain writebuffer */
 735
 736        spin_unlock_irqrestore(&aup->lock, flags);
 737        return 0;
 738}
 739
 740static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 741{
 742        struct net_device_stats *ps = &dev->stats;
 743
 744        ps->rx_packets++;
 745        if (status & RX_MCAST_FRAME)
 746                ps->multicast++;
 747
 748        if (status & RX_ERROR) {
 749                ps->rx_errors++;
 750                if (status & RX_MISSED_FRAME)
 751                        ps->rx_missed_errors++;
 752                if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 753                        ps->rx_length_errors++;
 754                if (status & RX_CRC_ERROR)
 755                        ps->rx_crc_errors++;
 756                if (status & RX_COLL)
 757                        ps->collisions++;
 758        } else
 759                ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 760
 761}
 762
 763/*
 764 * Au1000 receive routine.
 765 */
 766static int au1000_rx(struct net_device *dev)
 767{
 768        struct au1000_private *aup = netdev_priv(dev);
 769        struct sk_buff *skb;
 770        struct rx_dma *prxd;
 771        u32 buff_stat, status;
 772        struct db_dest *pDB;
 773        u32     frmlen;
 774
 775        netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 776
 777        prxd = aup->rx_dma_ring[aup->rx_head];
 778        buff_stat = prxd->buff_stat;
 779        while (buff_stat & RX_T_DONE)  {
 780                status = prxd->status;
 781                pDB = aup->rx_db_inuse[aup->rx_head];
 782                au1000_update_rx_stats(dev, status);
 783                if (!(status & RX_ERROR))  {
 784
 785                        /* good frame */
 786                        frmlen = (status & RX_FRAME_LEN_MASK);
 787                        frmlen -= 4; /* Remove FCS */
 788                        skb = netdev_alloc_skb(dev, frmlen + 2);
 789                        if (skb == NULL) {
 790                                dev->stats.rx_dropped++;
 791                                continue;
 792                        }
 793                        skb_reserve(skb, 2);    /* 16 byte IP header align */
 794                        skb_copy_to_linear_data(skb,
 795                                (unsigned char *)pDB->vaddr, frmlen);
 796                        skb_put(skb, frmlen);
 797                        skb->protocol = eth_type_trans(skb, dev);
 798                        netif_rx(skb);  /* pass the packet to upper layers */
 799                } else {
 800                        if (au1000_debug > 4) {
 801                                pr_err("rx_error(s):");
 802                                if (status & RX_MISSED_FRAME)
 803                                        pr_cont(" miss");
 804                                if (status & RX_WDOG_TIMER)
 805                                        pr_cont(" wdog");
 806                                if (status & RX_RUNT)
 807                                        pr_cont(" runt");
 808                                if (status & RX_OVERLEN)
 809                                        pr_cont(" overlen");
 810                                if (status & RX_COLL)
 811                                        pr_cont(" coll");
 812                                if (status & RX_MII_ERROR)
 813                                        pr_cont(" mii error");
 814                                if (status & RX_CRC_ERROR)
 815                                        pr_cont(" crc error");
 816                                if (status & RX_LEN_ERROR)
 817                                        pr_cont(" len error");
 818                                if (status & RX_U_CNTRL_FRAME)
 819                                        pr_cont(" u control frame");
 820                                pr_cont("\n");
 821                        }
 822                }
 823                prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 824                aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 825                wmb(); /* drain writebuffer */
 826
 827                /* next descriptor */
 828                prxd = aup->rx_dma_ring[aup->rx_head];
 829                buff_stat = prxd->buff_stat;
 830        }
 831        return 0;
 832}
 833
 834static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 835{
 836        struct net_device_stats *ps = &dev->stats;
 837
 838        if (status & TX_FRAME_ABORTED) {
 839                if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 840                        if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 841                                /* any other tx errors are only valid
 842                                 * in half duplex mode
 843                                 */
 844                                ps->tx_errors++;
 845                                ps->tx_aborted_errors++;
 846                        }
 847                } else {
 848                        ps->tx_errors++;
 849                        ps->tx_aborted_errors++;
 850                        if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 851                                ps->tx_carrier_errors++;
 852                }
 853        }
 854}
 855
 856/*
 857 * Called from the interrupt service routine to acknowledge
 858 * the TX DONE bits.  This is a must if the irq is setup as
 859 * edge triggered.
 860 */
 861static void au1000_tx_ack(struct net_device *dev)
 862{
 863        struct au1000_private *aup = netdev_priv(dev);
 864        struct tx_dma *ptxd;
 865
 866        ptxd = aup->tx_dma_ring[aup->tx_tail];
 867
 868        while (ptxd->buff_stat & TX_T_DONE) {
 869                au1000_update_tx_stats(dev, ptxd->status);
 870                ptxd->buff_stat &= ~TX_T_DONE;
 871                ptxd->len = 0;
 872                wmb(); /* drain writebuffer */
 873
 874                aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 875                ptxd = aup->tx_dma_ring[aup->tx_tail];
 876
 877                if (aup->tx_full) {
 878                        aup->tx_full = 0;
 879                        netif_wake_queue(dev);
 880                }
 881        }
 882}
 883
 884/*
 885 * Au1000 interrupt service routine.
 886 */
 887static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 888{
 889        struct net_device *dev = dev_id;
 890
 891        /* Handle RX interrupts first to minimize chance of overrun */
 892
 893        au1000_rx(dev);
 894        au1000_tx_ack(dev);
 895        return IRQ_RETVAL(1);
 896}
 897
 898static int au1000_open(struct net_device *dev)
 899{
 900        int retval;
 901        struct au1000_private *aup = netdev_priv(dev);
 902
 903        netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 904
 905        retval = request_irq(dev->irq, au1000_interrupt, 0,
 906                                        dev->name, dev);
 907        if (retval) {
 908                netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 909                return retval;
 910        }
 911
 912        retval = au1000_init(dev);
 913        if (retval) {
 914                netdev_err(dev, "error in au1000_init\n");
 915                free_irq(dev->irq, dev);
 916                return retval;
 917        }
 918
 919        if (dev->phydev)
 920                phy_start(dev->phydev);
 921
 922        netif_start_queue(dev);
 923
 924        netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 925
 926        return 0;
 927}
 928
 929static int au1000_close(struct net_device *dev)
 930{
 931        unsigned long flags;
 932        struct au1000_private *const aup = netdev_priv(dev);
 933
 934        netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 935
 936        if (dev->phydev)
 937                phy_stop(dev->phydev);
 938
 939        spin_lock_irqsave(&aup->lock, flags);
 940
 941        au1000_reset_mac_unlocked(dev);
 942
 943        /* stop the device */
 944        netif_stop_queue(dev);
 945
 946        /* disable the interrupt */
 947        free_irq(dev->irq, dev);
 948        spin_unlock_irqrestore(&aup->lock, flags);
 949
 950        return 0;
 951}
 952
 953/*
 954 * Au1000 transmit routine.
 955 */
 956static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 957{
 958        struct au1000_private *aup = netdev_priv(dev);
 959        struct net_device_stats *ps = &dev->stats;
 960        struct tx_dma *ptxd;
 961        u32 buff_stat;
 962        struct db_dest *pDB;
 963        int i;
 964
 965        netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 966                                (unsigned)aup, skb->len,
 967                                skb->data, aup->tx_head);
 968
 969        ptxd = aup->tx_dma_ring[aup->tx_head];
 970        buff_stat = ptxd->buff_stat;
 971        if (buff_stat & TX_DMA_ENABLE) {
 972                /* We've wrapped around and the transmitter is still busy */
 973                netif_stop_queue(dev);
 974                aup->tx_full = 1;
 975                return NETDEV_TX_BUSY;
 976        } else if (buff_stat & TX_T_DONE) {
 977                au1000_update_tx_stats(dev, ptxd->status);
 978                ptxd->len = 0;
 979        }
 980
 981        if (aup->tx_full) {
 982                aup->tx_full = 0;
 983                netif_wake_queue(dev);
 984        }
 985
 986        pDB = aup->tx_db_inuse[aup->tx_head];
 987        skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 988        if (skb->len < ETH_ZLEN) {
 989                for (i = skb->len; i < ETH_ZLEN; i++)
 990                        ((char *)pDB->vaddr)[i] = 0;
 991
 992                ptxd->len = ETH_ZLEN;
 993        } else
 994                ptxd->len = skb->len;
 995
 996        ps->tx_packets++;
 997        ps->tx_bytes += ptxd->len;
 998
 999        ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1000        wmb(); /* drain writebuffer */
1001        dev_kfree_skb(skb);
1002        aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1003        return NETDEV_TX_OK;
1004}
1005
1006/*
1007 * The Tx ring has been full longer than the watchdog timeout
1008 * value. The transmitter must be hung?
1009 */
1010static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1011{
1012        netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1013        au1000_reset_mac(dev);
1014        au1000_init(dev);
1015        netif_trans_update(dev); /* prevent tx timeout */
1016        netif_wake_queue(dev);
1017}
1018
1019static void au1000_multicast_list(struct net_device *dev)
1020{
1021        struct au1000_private *aup = netdev_priv(dev);
1022        u32 reg;
1023
1024        netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1025        reg = readl(&aup->mac->control);
1026        if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1027                reg |= MAC_PROMISCUOUS;
1028        } else if ((dev->flags & IFF_ALLMULTI)  ||
1029                           netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1030                reg |= MAC_PASS_ALL_MULTI;
1031                reg &= ~MAC_PROMISCUOUS;
1032                netdev_info(dev, "Pass all multicast\n");
1033        } else {
1034                struct netdev_hw_addr *ha;
1035                u32 mc_filter[2];       /* Multicast hash filter */
1036
1037                mc_filter[1] = mc_filter[0] = 0;
1038                netdev_for_each_mc_addr(ha, dev)
1039                        set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1040                                        (long *)mc_filter);
1041                writel(mc_filter[1], &aup->mac->multi_hash_high);
1042                writel(mc_filter[0], &aup->mac->multi_hash_low);
1043                reg &= ~MAC_PROMISCUOUS;
1044                reg |= MAC_HASH_MODE;
1045        }
1046        writel(reg, &aup->mac->control);
1047}
1048
1049static const struct net_device_ops au1000_netdev_ops = {
1050        .ndo_open               = au1000_open,
1051        .ndo_stop               = au1000_close,
1052        .ndo_start_xmit         = au1000_tx,
1053        .ndo_set_rx_mode        = au1000_multicast_list,
1054        .ndo_eth_ioctl          = phy_do_ioctl_running,
1055        .ndo_tx_timeout         = au1000_tx_timeout,
1056        .ndo_set_mac_address    = eth_mac_addr,
1057        .ndo_validate_addr      = eth_validate_addr,
1058};
1059
1060static int au1000_probe(struct platform_device *pdev)
1061{
1062        struct au1000_private *aup = NULL;
1063        struct au1000_eth_platform_data *pd;
1064        struct net_device *dev = NULL;
1065        struct db_dest *pDB, *pDBfree;
1066        int irq, i, err = 0;
1067        struct resource *base, *macen, *macdma;
1068
1069        base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1070        if (!base) {
1071                dev_err(&pdev->dev, "failed to retrieve base register\n");
1072                err = -ENODEV;
1073                goto out;
1074        }
1075
1076        macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1077        if (!macen) {
1078                dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1079                err = -ENODEV;
1080                goto out;
1081        }
1082
1083        irq = platform_get_irq(pdev, 0);
1084        if (irq < 0) {
1085                err = -ENODEV;
1086                goto out;
1087        }
1088
1089        macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1090        if (!macdma) {
1091                dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1092                err = -ENODEV;
1093                goto out;
1094        }
1095
1096        if (!request_mem_region(base->start, resource_size(base),
1097                                                        pdev->name)) {
1098                dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1099                err = -ENXIO;
1100                goto out;
1101        }
1102
1103        if (!request_mem_region(macen->start, resource_size(macen),
1104                                                        pdev->name)) {
1105                dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1106                err = -ENXIO;
1107                goto err_request;
1108        }
1109
1110        if (!request_mem_region(macdma->start, resource_size(macdma),
1111                                                        pdev->name)) {
1112                dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1113                err = -ENXIO;
1114                goto err_macdma;
1115        }
1116
1117        dev = alloc_etherdev(sizeof(struct au1000_private));
1118        if (!dev) {
1119                err = -ENOMEM;
1120                goto err_alloc;
1121        }
1122
1123        SET_NETDEV_DEV(dev, &pdev->dev);
1124        platform_set_drvdata(pdev, dev);
1125        aup = netdev_priv(dev);
1126
1127        spin_lock_init(&aup->lock);
1128        aup->msg_enable = (au1000_debug < 4 ?
1129                                AU1000_DEF_MSG_ENABLE : au1000_debug);
1130
1131        /* Allocate the data buffers
1132         * Snooping works fine with eth on all au1xxx
1133         */
1134        aup->vaddr = (u32)dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE *
1135                                          (NUM_TX_BUFFS + NUM_RX_BUFFS),
1136                                          &aup->dma_addr, 0);
1137        if (!aup->vaddr) {
1138                dev_err(&pdev->dev, "failed to allocate data buffers\n");
1139                err = -ENOMEM;
1140                goto err_vaddr;
1141        }
1142
1143        /* aup->mac is the base address of the MAC's registers */
1144        aup->mac = (struct mac_reg *)
1145                        ioremap(base->start, resource_size(base));
1146        if (!aup->mac) {
1147                dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1148                err = -ENXIO;
1149                goto err_remap1;
1150        }
1151
1152        /* Setup some variables for quick register address access */
1153        aup->enable = (u32 *)ioremap(macen->start,
1154                                                resource_size(macen));
1155        if (!aup->enable) {
1156                dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1157                err = -ENXIO;
1158                goto err_remap2;
1159        }
1160        aup->mac_id = pdev->id;
1161
1162        aup->macdma = ioremap(macdma->start, resource_size(macdma));
1163        if (!aup->macdma) {
1164                dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1165                err = -ENXIO;
1166                goto err_remap3;
1167        }
1168
1169        au1000_setup_hw_rings(aup, aup->macdma);
1170
1171        writel(0, aup->enable);
1172        aup->mac_enabled = 0;
1173
1174        pd = dev_get_platdata(&pdev->dev);
1175        if (!pd) {
1176                dev_info(&pdev->dev, "no platform_data passed,"
1177                                        " PHY search on MAC0\n");
1178                aup->phy1_search_mac0 = 1;
1179        } else {
1180                if (is_valid_ether_addr(pd->mac)) {
1181                        memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1182                } else {
1183                        /* Set a random MAC since no valid provided by platform_data. */
1184                        eth_hw_addr_random(dev);
1185                }
1186
1187                aup->phy_static_config = pd->phy_static_config;
1188                aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1189                aup->phy1_search_mac0 = pd->phy1_search_mac0;
1190                aup->phy_addr = pd->phy_addr;
1191                aup->phy_busid = pd->phy_busid;
1192                aup->phy_irq = pd->phy_irq;
1193        }
1194
1195        if (aup->phy_busid > 0) {
1196                dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1197                err = -ENODEV;
1198                goto err_mdiobus_alloc;
1199        }
1200
1201        aup->mii_bus = mdiobus_alloc();
1202        if (aup->mii_bus == NULL) {
1203                dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1204                err = -ENOMEM;
1205                goto err_mdiobus_alloc;
1206        }
1207
1208        aup->mii_bus->priv = dev;
1209        aup->mii_bus->read = au1000_mdiobus_read;
1210        aup->mii_bus->write = au1000_mdiobus_write;
1211        aup->mii_bus->reset = au1000_mdiobus_reset;
1212        aup->mii_bus->name = "au1000_eth_mii";
1213        snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1214                pdev->name, aup->mac_id);
1215
1216        /* if known, set corresponding PHY IRQs */
1217        if (aup->phy_static_config)
1218                if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1219                        aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1220
1221        err = mdiobus_register(aup->mii_bus);
1222        if (err) {
1223                dev_err(&pdev->dev, "failed to register MDIO bus\n");
1224                goto err_mdiobus_reg;
1225        }
1226
1227        err = au1000_mii_probe(dev);
1228        if (err != 0)
1229                goto err_out;
1230
1231        pDBfree = NULL;
1232        /* setup the data buffer descriptors and attach a buffer to each one */
1233        pDB = aup->db;
1234        for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1235                pDB->pnext = pDBfree;
1236                pDBfree = pDB;
1237                pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1238                pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1239                pDB++;
1240        }
1241        aup->pDBfree = pDBfree;
1242
1243        err = -ENODEV;
1244        for (i = 0; i < NUM_RX_DMA; i++) {
1245                pDB = au1000_GetFreeDB(aup);
1246                if (!pDB)
1247                        goto err_out;
1248
1249                aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1250                aup->rx_db_inuse[i] = pDB;
1251        }
1252
1253        for (i = 0; i < NUM_TX_DMA; i++) {
1254                pDB = au1000_GetFreeDB(aup);
1255                if (!pDB)
1256                        goto err_out;
1257
1258                aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1259                aup->tx_dma_ring[i]->len = 0;
1260                aup->tx_db_inuse[i] = pDB;
1261        }
1262
1263        dev->base_addr = base->start;
1264        dev->irq = irq;
1265        dev->netdev_ops = &au1000_netdev_ops;
1266        dev->ethtool_ops = &au1000_ethtool_ops;
1267        dev->watchdog_timeo = ETH_TX_TIMEOUT;
1268
1269        /*
1270         * The boot code uses the ethernet controller, so reset it to start
1271         * fresh.  au1000_init() expects that the device is in reset state.
1272         */
1273        au1000_reset_mac(dev);
1274
1275        err = register_netdev(dev);
1276        if (err) {
1277                netdev_err(dev, "Cannot register net device, aborting.\n");
1278                goto err_out;
1279        }
1280
1281        netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1282                        (unsigned long)base->start, irq);
1283
1284        return 0;
1285
1286err_out:
1287        if (aup->mii_bus != NULL)
1288                mdiobus_unregister(aup->mii_bus);
1289
1290        /* here we should have a valid dev plus aup-> register addresses
1291         * so we can reset the mac properly.
1292         */
1293        au1000_reset_mac(dev);
1294
1295        for (i = 0; i < NUM_RX_DMA; i++) {
1296                if (aup->rx_db_inuse[i])
1297                        au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1298        }
1299        for (i = 0; i < NUM_TX_DMA; i++) {
1300                if (aup->tx_db_inuse[i])
1301                        au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1302        }
1303err_mdiobus_reg:
1304        mdiobus_free(aup->mii_bus);
1305err_mdiobus_alloc:
1306        iounmap(aup->macdma);
1307err_remap3:
1308        iounmap(aup->enable);
1309err_remap2:
1310        iounmap(aup->mac);
1311err_remap1:
1312        dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1313                        (void *)aup->vaddr, aup->dma_addr);
1314err_vaddr:
1315        free_netdev(dev);
1316err_alloc:
1317        release_mem_region(macdma->start, resource_size(macdma));
1318err_macdma:
1319        release_mem_region(macen->start, resource_size(macen));
1320err_request:
1321        release_mem_region(base->start, resource_size(base));
1322out:
1323        return err;
1324}
1325
1326static int au1000_remove(struct platform_device *pdev)
1327{
1328        struct net_device *dev = platform_get_drvdata(pdev);
1329        struct au1000_private *aup = netdev_priv(dev);
1330        int i;
1331        struct resource *base, *macen;
1332
1333        unregister_netdev(dev);
1334        mdiobus_unregister(aup->mii_bus);
1335        mdiobus_free(aup->mii_bus);
1336
1337        for (i = 0; i < NUM_RX_DMA; i++)
1338                if (aup->rx_db_inuse[i])
1339                        au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1340
1341        for (i = 0; i < NUM_TX_DMA; i++)
1342                if (aup->tx_db_inuse[i])
1343                        au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1344
1345        dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1346                        (void *)aup->vaddr, aup->dma_addr);
1347
1348        iounmap(aup->macdma);
1349        iounmap(aup->mac);
1350        iounmap(aup->enable);
1351
1352        base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1353        release_mem_region(base->start, resource_size(base));
1354
1355        base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356        release_mem_region(base->start, resource_size(base));
1357
1358        macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1359        release_mem_region(macen->start, resource_size(macen));
1360
1361        free_netdev(dev);
1362
1363        return 0;
1364}
1365
1366static struct platform_driver au1000_eth_driver = {
1367        .probe  = au1000_probe,
1368        .remove = au1000_remove,
1369        .driver = {
1370                .name   = "au1000-eth",
1371        },
1372};
1373
1374module_platform_driver(au1000_eth_driver);
1375
1376MODULE_ALIAS("platform:au1000-eth");
1377