linux/drivers/net/ethernet/atheros/atl1e/atl1e_hw.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
   4 *
   5 * Derived from Intel e1000 driver
   6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
   7 */
   8#include <linux/pci.h>
   9#include <linux/delay.h>
  10#include <linux/mii.h>
  11#include <linux/crc32.h>
  12
  13#include "atl1e.h"
  14
  15/*
  16 * check_eeprom_exist
  17 * return 0 if eeprom exist
  18 */
  19int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
  20{
  21        u32 value;
  22
  23        value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
  24        if (value & SPI_FLASH_CTRL_EN_VPD) {
  25                value &= ~SPI_FLASH_CTRL_EN_VPD;
  26                AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
  27        }
  28        value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
  29        return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  30}
  31
  32void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
  33{
  34        u32 value;
  35        /*
  36         * 00-0B-6A-F6-00-DC
  37         * 0:  6AF600DC 1: 000B
  38         * low dword
  39         */
  40        value = (((u32)hw->mac_addr[2]) << 24) |
  41                (((u32)hw->mac_addr[3]) << 16) |
  42                (((u32)hw->mac_addr[4]) << 8)  |
  43                (((u32)hw->mac_addr[5])) ;
  44        AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
  45        /* hight dword */
  46        value = (((u32)hw->mac_addr[0]) << 8) |
  47                (((u32)hw->mac_addr[1])) ;
  48        AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
  49}
  50
  51/*
  52 * atl1e_get_permanent_address
  53 * return 0 if get valid mac address,
  54 */
  55static int atl1e_get_permanent_address(struct atl1e_hw *hw)
  56{
  57        u32 addr[2];
  58        u32 i;
  59        u32 twsi_ctrl_data;
  60        u8  eth_addr[ETH_ALEN];
  61
  62        if (is_valid_ether_addr(hw->perm_mac_addr))
  63                return 0;
  64
  65        /* init */
  66        addr[0] = addr[1] = 0;
  67
  68        if (!atl1e_check_eeprom_exist(hw)) {
  69                /* eeprom exist */
  70                twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
  71                twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
  72                AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
  73                for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
  74                        msleep(10);
  75                        twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
  76                        if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
  77                                break;
  78                }
  79                if (i >= AT_TWSI_EEPROM_TIMEOUT)
  80                        return AT_ERR_TIMEOUT;
  81        }
  82
  83        /* maybe MAC-address is from BIOS */
  84        addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
  85        addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
  86        *(u32 *) &eth_addr[2] = swab32(addr[0]);
  87        *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
  88
  89        if (is_valid_ether_addr(eth_addr)) {
  90                memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  91                return 0;
  92        }
  93
  94        return AT_ERR_EEPROM;
  95}
  96
  97bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
  98{
  99        return true;
 100}
 101
 102bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
 103{
 104        int i;
 105        u32 control;
 106
 107        if (offset & 3)
 108                return false; /* address do not align */
 109
 110        AT_WRITE_REG(hw, REG_VPD_DATA, 0);
 111        control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
 112        AT_WRITE_REG(hw, REG_VPD_CAP, control);
 113
 114        for (i = 0; i < 10; i++) {
 115                msleep(2);
 116                control = AT_READ_REG(hw, REG_VPD_CAP);
 117                if (control & VPD_CAP_VPD_FLAG)
 118                        break;
 119        }
 120        if (control & VPD_CAP_VPD_FLAG) {
 121                *p_value = AT_READ_REG(hw, REG_VPD_DATA);
 122                return true;
 123        }
 124        return false; /* timeout */
 125}
 126
 127void atl1e_force_ps(struct atl1e_hw *hw)
 128{
 129        AT_WRITE_REGW(hw, REG_GPHY_CTRL,
 130                        GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
 131}
 132
 133/*
 134 * Reads the adapter's MAC address from the EEPROM
 135 *
 136 * hw - Struct containing variables accessed by shared code
 137 */
 138int atl1e_read_mac_addr(struct atl1e_hw *hw)
 139{
 140        int err = 0;
 141
 142        err = atl1e_get_permanent_address(hw);
 143        if (err)
 144                return AT_ERR_EEPROM;
 145        memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
 146        return 0;
 147}
 148
 149/*
 150 * atl1e_hash_mc_addr
 151 *  purpose
 152 *      set hash value for a multicast address
 153 */
 154u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
 155{
 156        u32 crc32;
 157        u32 value = 0;
 158        int i;
 159
 160        crc32 = ether_crc_le(6, mc_addr);
 161        for (i = 0; i < 32; i++)
 162                value |= (((crc32 >> i) & 1) << (31 - i));
 163
 164        return value;
 165}
 166
 167/*
 168 * Sets the bit in the multicast table corresponding to the hash value.
 169 * hw - Struct containing variables accessed by shared code
 170 * hash_value - Multicast address hash value
 171 */
 172void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
 173{
 174        u32 hash_bit, hash_reg;
 175        u32 mta;
 176
 177        /*
 178         * The HASH Table  is a register array of 2 32-bit registers.
 179         * It is treated like an array of 64 bits.  We want to set
 180         * bit BitArray[hash_value]. So we figure out what register
 181         * the bit is in, read it, OR in the new bit, then write
 182         * back the new value.  The register is determined by the
 183         * upper 7 bits of the hash value and the bit within that
 184         * register are determined by the lower 5 bits of the value.
 185         */
 186        hash_reg = (hash_value >> 31) & 0x1;
 187        hash_bit = (hash_value >> 26) & 0x1F;
 188
 189        mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
 190
 191        mta |= (1 << hash_bit);
 192
 193        AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
 194}
 195/*
 196 * Reads the value from a PHY register
 197 * hw - Struct containing variables accessed by shared code
 198 * reg_addr - address of the PHY register to read
 199 */
 200int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
 201{
 202        u32 val;
 203        int i;
 204
 205        val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 206                MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
 207                MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 208
 209        AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 210
 211        wmb();
 212
 213        for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 214                udelay(2);
 215                val = AT_READ_REG(hw, REG_MDIO_CTRL);
 216                if (!(val & (MDIO_START | MDIO_BUSY)))
 217                        break;
 218                wmb();
 219        }
 220        if (!(val & (MDIO_START | MDIO_BUSY))) {
 221                *phy_data = (u16)val;
 222                return 0;
 223        }
 224
 225        return AT_ERR_PHY;
 226}
 227
 228/*
 229 * Writes a value to a PHY register
 230 * hw - Struct containing variables accessed by shared code
 231 * reg_addr - address of the PHY register to write
 232 * data - data to write to the PHY
 233 */
 234int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
 235{
 236        int i;
 237        u32 val;
 238
 239        val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
 240               (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 241               MDIO_SUP_PREAMBLE |
 242               MDIO_START |
 243               MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 244
 245        AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 246        wmb();
 247
 248        for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 249                udelay(2);
 250                val = AT_READ_REG(hw, REG_MDIO_CTRL);
 251                if (!(val & (MDIO_START | MDIO_BUSY)))
 252                        break;
 253                wmb();
 254        }
 255
 256        if (!(val & (MDIO_START | MDIO_BUSY)))
 257                return 0;
 258
 259        return AT_ERR_PHY;
 260}
 261
 262/*
 263 * atl1e_init_pcie - init PCIE module
 264 */
 265static void atl1e_init_pcie(struct atl1e_hw *hw)
 266{
 267        u32 value;
 268        /* comment 2lines below to save more power when sususpend
 269           value = LTSSM_TEST_MODE_DEF;
 270           AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
 271         */
 272
 273        /* pcie flow control mode change */
 274        value = AT_READ_REG(hw, 0x1008);
 275        value |= 0x8000;
 276        AT_WRITE_REG(hw, 0x1008, value);
 277}
 278/*
 279 * Configures PHY autoneg and flow control advertisement settings
 280 *
 281 * hw - Struct containing variables accessed by shared code
 282 */
 283static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
 284{
 285        s32 ret_val;
 286        u16 mii_autoneg_adv_reg;
 287        u16 mii_1000t_ctrl_reg;
 288
 289        if (0 != hw->mii_autoneg_adv_reg)
 290                return 0;
 291        /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
 292        mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
 293        mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
 294
 295        /*
 296         * Need to parse autoneg_advertised  and set up
 297         * the appropriate PHY registers.  First we will parse for
 298         * autoneg_advertised software override.  Since we can advertise
 299         * a plethora of combinations, we need to check each bit
 300         * individually.
 301         */
 302
 303        /*
 304         * First we clear all the 10/100 mb speed bits in the Auto-Neg
 305         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 306         * the  1000Base-T control Register (Address 9).
 307         */
 308        mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
 309        mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
 310
 311        /*
 312         * Need to parse MediaType and setup the
 313         * appropriate PHY registers.
 314         */
 315        switch (hw->media_type) {
 316        case MEDIA_TYPE_AUTO_SENSOR:
 317                mii_autoneg_adv_reg |= ADVERTISE_ALL;
 318                hw->autoneg_advertised = ADVERTISE_ALL;
 319                if (hw->nic_type == athr_l1e) {
 320                        mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 321                        hw->autoneg_advertised |= ADVERTISE_1000_FULL;
 322                }
 323                break;
 324
 325        case MEDIA_TYPE_100M_FULL:
 326                mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
 327                hw->autoneg_advertised = ADVERTISE_100_FULL;
 328                break;
 329
 330        case MEDIA_TYPE_100M_HALF:
 331                mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
 332                hw->autoneg_advertised = ADVERTISE_100_HALF;
 333                break;
 334
 335        case MEDIA_TYPE_10M_FULL:
 336                mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
 337                hw->autoneg_advertised = ADVERTISE_10_FULL;
 338                break;
 339
 340        default:
 341                mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
 342                hw->autoneg_advertised = ADVERTISE_10_HALF;
 343                break;
 344        }
 345
 346        /* flow control fixed to enable all */
 347        mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 348
 349        hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
 350        hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
 351
 352        ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
 353        if (ret_val)
 354                return ret_val;
 355
 356        if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
 357                ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
 358                                           mii_1000t_ctrl_reg);
 359                if (ret_val)
 360                        return ret_val;
 361        }
 362
 363        return 0;
 364}
 365
 366
 367/*
 368 * Resets the PHY and make all config validate
 369 *
 370 * hw - Struct containing variables accessed by shared code
 371 *
 372 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
 373 */
 374int atl1e_phy_commit(struct atl1e_hw *hw)
 375{
 376        struct atl1e_adapter *adapter = hw->adapter;
 377        int ret_val;
 378        u16 phy_data;
 379
 380        phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
 381
 382        ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
 383        if (ret_val) {
 384                u32 val;
 385                int i;
 386                /**************************************
 387                 * pcie serdes link may be down !
 388                 **************************************/
 389                for (i = 0; i < 25; i++) {
 390                        msleep(1);
 391                        val = AT_READ_REG(hw, REG_MDIO_CTRL);
 392                        if (!(val & (MDIO_START | MDIO_BUSY)))
 393                                break;
 394                }
 395
 396                if (0 != (val & (MDIO_START | MDIO_BUSY))) {
 397                        netdev_err(adapter->netdev,
 398                                   "pcie linkdown at least for 25ms\n");
 399                        return ret_val;
 400                }
 401
 402                netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
 403        }
 404        return 0;
 405}
 406
 407int atl1e_phy_init(struct atl1e_hw *hw)
 408{
 409        struct atl1e_adapter *adapter = hw->adapter;
 410        s32 ret_val;
 411        u16 phy_val;
 412
 413        if (hw->phy_configured) {
 414                if (hw->re_autoneg) {
 415                        hw->re_autoneg = false;
 416                        return atl1e_restart_autoneg(hw);
 417                }
 418                return 0;
 419        }
 420
 421        /* RESET GPHY Core */
 422        AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
 423        msleep(2);
 424        AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
 425                      GPHY_CTRL_EXT_RESET);
 426        msleep(2);
 427
 428        /* patches */
 429        /* p1. eable hibernation mode */
 430        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
 431        if (ret_val)
 432                return ret_val;
 433        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
 434        if (ret_val)
 435                return ret_val;
 436        /* p2. set Class A/B for all modes */
 437        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
 438        if (ret_val)
 439                return ret_val;
 440        phy_val = 0x02ef;
 441        /* remove Class AB */
 442        /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
 443        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
 444        if (ret_val)
 445                return ret_val;
 446        /* p3. 10B ??? */
 447        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
 448        if (ret_val)
 449                return ret_val;
 450        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
 451        if (ret_val)
 452                return ret_val;
 453        /* p4. 1000T power */
 454        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
 455        if (ret_val)
 456                return ret_val;
 457        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
 458        if (ret_val)
 459                return ret_val;
 460
 461        ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
 462        if (ret_val)
 463                return ret_val;
 464        ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
 465        if (ret_val)
 466                return ret_val;
 467
 468        msleep(1);
 469
 470        /*Enable PHY LinkChange Interrupt */
 471        ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
 472        if (ret_val) {
 473                netdev_err(adapter->netdev,
 474                           "Error enable PHY linkChange Interrupt\n");
 475                return ret_val;
 476        }
 477        /* setup AutoNeg parameters */
 478        ret_val = atl1e_phy_setup_autoneg_adv(hw);
 479        if (ret_val) {
 480                netdev_err(adapter->netdev,
 481                           "Error Setting up Auto-Negotiation\n");
 482                return ret_val;
 483        }
 484        /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
 485        netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
 486        ret_val = atl1e_phy_commit(hw);
 487        if (ret_val) {
 488                netdev_err(adapter->netdev, "Error resetting the phy\n");
 489                return ret_val;
 490        }
 491
 492        hw->phy_configured = true;
 493
 494        return 0;
 495}
 496
 497/*
 498 * Reset the transmit and receive units; mask and clear all interrupts.
 499 * hw - Struct containing variables accessed by shared code
 500 * return : 0  or  idle status (if error)
 501 */
 502int atl1e_reset_hw(struct atl1e_hw *hw)
 503{
 504        struct atl1e_adapter *adapter = hw->adapter;
 505        struct pci_dev *pdev = adapter->pdev;
 506
 507        u32 idle_status_data = 0;
 508        u16 pci_cfg_cmd_word = 0;
 509        int timeout = 0;
 510
 511        /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
 512        pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
 513        if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
 514                                CMD_MEMORY_SPACE | CMD_BUS_MASTER))
 515                        != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
 516                pci_cfg_cmd_word |= (CMD_IO_SPACE |
 517                                     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
 518                pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
 519        }
 520
 521        /*
 522         * Issue Soft Reset to the MAC.  This will reset the chip's
 523         * transmit, receive, DMA.  It will not effect
 524         * the current PCI configuration.  The global reset bit is self-
 525         * clearing, and should clear within a microsecond.
 526         */
 527        AT_WRITE_REG(hw, REG_MASTER_CTRL,
 528                        MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
 529        wmb();
 530        msleep(1);
 531
 532        /* Wait at least 10ms for All module to be Idle */
 533        for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
 534                idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
 535                if (idle_status_data == 0)
 536                        break;
 537                msleep(1);
 538                cpu_relax();
 539        }
 540
 541        if (timeout >= AT_HW_MAX_IDLE_DELAY) {
 542                netdev_err(adapter->netdev,
 543                           "MAC state machine can't be idle since disabled for 10ms second\n");
 544                return AT_ERR_TIMEOUT;
 545        }
 546
 547        return 0;
 548}
 549
 550
 551/*
 552 * Performs basic configuration of the adapter.
 553 *
 554 * hw - Struct containing variables accessed by shared code
 555 * Assumes that the controller has previously been reset and is in a
 556 * post-reset uninitialized state. Initializes multicast table,
 557 * and  Calls routines to setup link
 558 * Leaves the transmit and receive units disabled and uninitialized.
 559 */
 560int atl1e_init_hw(struct atl1e_hw *hw)
 561{
 562        s32 ret_val = 0;
 563
 564        atl1e_init_pcie(hw);
 565
 566        /* Zero out the Multicast HASH table */
 567        /* clear the old settings from the multicast hash table */
 568        AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
 569        AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
 570
 571        ret_val = atl1e_phy_init(hw);
 572
 573        return ret_val;
 574}
 575
 576/*
 577 * Detects the current speed and duplex settings of the hardware.
 578 *
 579 * hw - Struct containing variables accessed by shared code
 580 * speed - Speed of the connection
 581 * duplex - Duplex setting of the connection
 582 */
 583int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
 584{
 585        int err;
 586        u16 phy_data;
 587
 588        /* Read   PHY Specific Status Register (17) */
 589        err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
 590        if (err)
 591                return err;
 592
 593        if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
 594                return AT_ERR_PHY_RES;
 595
 596        switch (phy_data & MII_AT001_PSSR_SPEED) {
 597        case MII_AT001_PSSR_1000MBS:
 598                *speed = SPEED_1000;
 599                break;
 600        case MII_AT001_PSSR_100MBS:
 601                *speed = SPEED_100;
 602                break;
 603        case MII_AT001_PSSR_10MBS:
 604                *speed = SPEED_10;
 605                break;
 606        default:
 607                return AT_ERR_PHY_SPEED;
 608        }
 609
 610        if (phy_data & MII_AT001_PSSR_DPLX)
 611                *duplex = FULL_DUPLEX;
 612        else
 613                *duplex = HALF_DUPLEX;
 614
 615        return 0;
 616}
 617
 618int atl1e_restart_autoneg(struct atl1e_hw *hw)
 619{
 620        int err = 0;
 621
 622        err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
 623        if (err)
 624                return err;
 625
 626        if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
 627                err = atl1e_write_phy_reg(hw, MII_CTRL1000,
 628                                       hw->mii_1000t_ctrl_reg);
 629                if (err)
 630                        return err;
 631        }
 632
 633        err = atl1e_write_phy_reg(hw, MII_BMCR,
 634                        BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
 635        return err;
 636}
 637
 638