linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Broadcom GENET (Gigabit Ethernet) controller driver
   4 *
   5 * Copyright (c) 2014-2020 Broadcom
   6 */
   7
   8#define pr_fmt(fmt)                             "bcmgenet: " fmt
   9
  10#include <linux/acpi.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/types.h>
  15#include <linux/fcntl.h>
  16#include <linux/interrupt.h>
  17#include <linux/string.h>
  18#include <linux/if_ether.h>
  19#include <linux/init.h>
  20#include <linux/errno.h>
  21#include <linux/delay.h>
  22#include <linux/platform_device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/pm.h>
  25#include <linux/clk.h>
  26#include <net/arp.h>
  27
  28#include <linux/mii.h>
  29#include <linux/ethtool.h>
  30#include <linux/netdevice.h>
  31#include <linux/inetdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/in.h>
  35#include <linux/ip.h>
  36#include <linux/ipv6.h>
  37#include <linux/phy.h>
  38#include <linux/platform_data/bcmgenet.h>
  39
  40#include <asm/unaligned.h>
  41
  42#include "bcmgenet.h"
  43
  44/* Maximum number of hardware queues, downsized if needed */
  45#define GENET_MAX_MQ_CNT        4
  46
  47/* Default highest priority queue for multi queue support */
  48#define GENET_Q0_PRIORITY       0
  49
  50#define GENET_Q16_RX_BD_CNT     \
  51        (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  52#define GENET_Q16_TX_BD_CNT     \
  53        (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  54
  55#define RX_BUF_LENGTH           2048
  56#define SKB_ALIGNMENT           32
  57
  58/* Tx/Rx DMA register offset, skip 256 descriptors */
  59#define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
  60#define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
  61
  62#define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
  63                                TOTAL_DESC * DMA_DESC_SIZE)
  64
  65#define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
  66                                TOTAL_DESC * DMA_DESC_SIZE)
  67
  68/* Forward declarations */
  69static void bcmgenet_set_rx_mode(struct net_device *dev);
  70
  71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
  72{
  73        /* MIPS chips strapped for BE will automagically configure the
  74         * peripheral registers for CPU-native byte order.
  75         */
  76        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  77                __raw_writel(value, offset);
  78        else
  79                writel_relaxed(value, offset);
  80}
  81
  82static inline u32 bcmgenet_readl(void __iomem *offset)
  83{
  84        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  85                return __raw_readl(offset);
  86        else
  87                return readl_relaxed(offset);
  88}
  89
  90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  91                                             void __iomem *d, u32 value)
  92{
  93        bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
  94}
  95
  96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  97                                    void __iomem *d,
  98                                    dma_addr_t addr)
  99{
 100        bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 101
 102        /* Register writes to GISB bus can take couple hundred nanoseconds
 103         * and are done for each packet, save these expensive writes unless
 104         * the platform is explicitly configured for 64-bits/LPAE.
 105         */
 106#ifdef CONFIG_PHYS_ADDR_T_64BIT
 107        if (priv->hw_params->flags & GENET_HAS_40BITS)
 108                bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 109#endif
 110}
 111
 112/* Combined address + length/status setter */
 113static inline void dmadesc_set(struct bcmgenet_priv *priv,
 114                               void __iomem *d, dma_addr_t addr, u32 val)
 115{
 116        dmadesc_set_addr(priv, d, addr);
 117        dmadesc_set_length_status(priv, d, val);
 118}
 119
 120static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 121                                          void __iomem *d)
 122{
 123        dma_addr_t addr;
 124
 125        addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
 126
 127        /* Register writes to GISB bus can take couple hundred nanoseconds
 128         * and are done for each packet, save these expensive writes unless
 129         * the platform is explicitly configured for 64-bits/LPAE.
 130         */
 131#ifdef CONFIG_PHYS_ADDR_T_64BIT
 132        if (priv->hw_params->flags & GENET_HAS_40BITS)
 133                addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 134#endif
 135        return addr;
 136}
 137
 138#define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
 139
 140#define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 141                                NETIF_MSG_LINK)
 142
 143static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 144{
 145        if (GENET_IS_V1(priv))
 146                return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 147        else
 148                return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 149}
 150
 151static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 152{
 153        if (GENET_IS_V1(priv))
 154                bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 155        else
 156                bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 157}
 158
 159/* These macros are defined to deal with register map change
 160 * between GENET1.1 and GENET2. Only those currently being used
 161 * by driver are defined.
 162 */
 163static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 164{
 165        if (GENET_IS_V1(priv))
 166                return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 167        else
 168                return bcmgenet_readl(priv->base +
 169                                      priv->hw_params->tbuf_offset + TBUF_CTRL);
 170}
 171
 172static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 173{
 174        if (GENET_IS_V1(priv))
 175                bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 176        else
 177                bcmgenet_writel(val, priv->base +
 178                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 179}
 180
 181static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 182{
 183        if (GENET_IS_V1(priv))
 184                return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 185        else
 186                return bcmgenet_readl(priv->base +
 187                                      priv->hw_params->tbuf_offset + TBUF_BP_MC);
 188}
 189
 190static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 191{
 192        if (GENET_IS_V1(priv))
 193                bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 194        else
 195                bcmgenet_writel(val, priv->base +
 196                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 197}
 198
 199/* RX/TX DMA register accessors */
 200enum dma_reg {
 201        DMA_RING_CFG = 0,
 202        DMA_CTRL,
 203        DMA_STATUS,
 204        DMA_SCB_BURST_SIZE,
 205        DMA_ARB_CTRL,
 206        DMA_PRIORITY_0,
 207        DMA_PRIORITY_1,
 208        DMA_PRIORITY_2,
 209        DMA_INDEX2RING_0,
 210        DMA_INDEX2RING_1,
 211        DMA_INDEX2RING_2,
 212        DMA_INDEX2RING_3,
 213        DMA_INDEX2RING_4,
 214        DMA_INDEX2RING_5,
 215        DMA_INDEX2RING_6,
 216        DMA_INDEX2RING_7,
 217        DMA_RING0_TIMEOUT,
 218        DMA_RING1_TIMEOUT,
 219        DMA_RING2_TIMEOUT,
 220        DMA_RING3_TIMEOUT,
 221        DMA_RING4_TIMEOUT,
 222        DMA_RING5_TIMEOUT,
 223        DMA_RING6_TIMEOUT,
 224        DMA_RING7_TIMEOUT,
 225        DMA_RING8_TIMEOUT,
 226        DMA_RING9_TIMEOUT,
 227        DMA_RING10_TIMEOUT,
 228        DMA_RING11_TIMEOUT,
 229        DMA_RING12_TIMEOUT,
 230        DMA_RING13_TIMEOUT,
 231        DMA_RING14_TIMEOUT,
 232        DMA_RING15_TIMEOUT,
 233        DMA_RING16_TIMEOUT,
 234};
 235
 236static const u8 bcmgenet_dma_regs_v3plus[] = {
 237        [DMA_RING_CFG]          = 0x00,
 238        [DMA_CTRL]              = 0x04,
 239        [DMA_STATUS]            = 0x08,
 240        [DMA_SCB_BURST_SIZE]    = 0x0C,
 241        [DMA_ARB_CTRL]          = 0x2C,
 242        [DMA_PRIORITY_0]        = 0x30,
 243        [DMA_PRIORITY_1]        = 0x34,
 244        [DMA_PRIORITY_2]        = 0x38,
 245        [DMA_RING0_TIMEOUT]     = 0x2C,
 246        [DMA_RING1_TIMEOUT]     = 0x30,
 247        [DMA_RING2_TIMEOUT]     = 0x34,
 248        [DMA_RING3_TIMEOUT]     = 0x38,
 249        [DMA_RING4_TIMEOUT]     = 0x3c,
 250        [DMA_RING5_TIMEOUT]     = 0x40,
 251        [DMA_RING6_TIMEOUT]     = 0x44,
 252        [DMA_RING7_TIMEOUT]     = 0x48,
 253        [DMA_RING8_TIMEOUT]     = 0x4c,
 254        [DMA_RING9_TIMEOUT]     = 0x50,
 255        [DMA_RING10_TIMEOUT]    = 0x54,
 256        [DMA_RING11_TIMEOUT]    = 0x58,
 257        [DMA_RING12_TIMEOUT]    = 0x5c,
 258        [DMA_RING13_TIMEOUT]    = 0x60,
 259        [DMA_RING14_TIMEOUT]    = 0x64,
 260        [DMA_RING15_TIMEOUT]    = 0x68,
 261        [DMA_RING16_TIMEOUT]    = 0x6C,
 262        [DMA_INDEX2RING_0]      = 0x70,
 263        [DMA_INDEX2RING_1]      = 0x74,
 264        [DMA_INDEX2RING_2]      = 0x78,
 265        [DMA_INDEX2RING_3]      = 0x7C,
 266        [DMA_INDEX2RING_4]      = 0x80,
 267        [DMA_INDEX2RING_5]      = 0x84,
 268        [DMA_INDEX2RING_6]      = 0x88,
 269        [DMA_INDEX2RING_7]      = 0x8C,
 270};
 271
 272static const u8 bcmgenet_dma_regs_v2[] = {
 273        [DMA_RING_CFG]          = 0x00,
 274        [DMA_CTRL]              = 0x04,
 275        [DMA_STATUS]            = 0x08,
 276        [DMA_SCB_BURST_SIZE]    = 0x0C,
 277        [DMA_ARB_CTRL]          = 0x30,
 278        [DMA_PRIORITY_0]        = 0x34,
 279        [DMA_PRIORITY_1]        = 0x38,
 280        [DMA_PRIORITY_2]        = 0x3C,
 281        [DMA_RING0_TIMEOUT]     = 0x2C,
 282        [DMA_RING1_TIMEOUT]     = 0x30,
 283        [DMA_RING2_TIMEOUT]     = 0x34,
 284        [DMA_RING3_TIMEOUT]     = 0x38,
 285        [DMA_RING4_TIMEOUT]     = 0x3c,
 286        [DMA_RING5_TIMEOUT]     = 0x40,
 287        [DMA_RING6_TIMEOUT]     = 0x44,
 288        [DMA_RING7_TIMEOUT]     = 0x48,
 289        [DMA_RING8_TIMEOUT]     = 0x4c,
 290        [DMA_RING9_TIMEOUT]     = 0x50,
 291        [DMA_RING10_TIMEOUT]    = 0x54,
 292        [DMA_RING11_TIMEOUT]    = 0x58,
 293        [DMA_RING12_TIMEOUT]    = 0x5c,
 294        [DMA_RING13_TIMEOUT]    = 0x60,
 295        [DMA_RING14_TIMEOUT]    = 0x64,
 296        [DMA_RING15_TIMEOUT]    = 0x68,
 297        [DMA_RING16_TIMEOUT]    = 0x6C,
 298};
 299
 300static const u8 bcmgenet_dma_regs_v1[] = {
 301        [DMA_CTRL]              = 0x00,
 302        [DMA_STATUS]            = 0x04,
 303        [DMA_SCB_BURST_SIZE]    = 0x0C,
 304        [DMA_ARB_CTRL]          = 0x30,
 305        [DMA_PRIORITY_0]        = 0x34,
 306        [DMA_PRIORITY_1]        = 0x38,
 307        [DMA_PRIORITY_2]        = 0x3C,
 308        [DMA_RING0_TIMEOUT]     = 0x2C,
 309        [DMA_RING1_TIMEOUT]     = 0x30,
 310        [DMA_RING2_TIMEOUT]     = 0x34,
 311        [DMA_RING3_TIMEOUT]     = 0x38,
 312        [DMA_RING4_TIMEOUT]     = 0x3c,
 313        [DMA_RING5_TIMEOUT]     = 0x40,
 314        [DMA_RING6_TIMEOUT]     = 0x44,
 315        [DMA_RING7_TIMEOUT]     = 0x48,
 316        [DMA_RING8_TIMEOUT]     = 0x4c,
 317        [DMA_RING9_TIMEOUT]     = 0x50,
 318        [DMA_RING10_TIMEOUT]    = 0x54,
 319        [DMA_RING11_TIMEOUT]    = 0x58,
 320        [DMA_RING12_TIMEOUT]    = 0x5c,
 321        [DMA_RING13_TIMEOUT]    = 0x60,
 322        [DMA_RING14_TIMEOUT]    = 0x64,
 323        [DMA_RING15_TIMEOUT]    = 0x68,
 324        [DMA_RING16_TIMEOUT]    = 0x6C,
 325};
 326
 327/* Set at runtime once bcmgenet version is known */
 328static const u8 *bcmgenet_dma_regs;
 329
 330static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 331{
 332        return netdev_priv(dev_get_drvdata(dev));
 333}
 334
 335static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 336                                      enum dma_reg r)
 337{
 338        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 339                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 340}
 341
 342static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 343                                        u32 val, enum dma_reg r)
 344{
 345        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 346                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 347}
 348
 349static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 350                                      enum dma_reg r)
 351{
 352        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 353                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 354}
 355
 356static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 357                                        u32 val, enum dma_reg r)
 358{
 359        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 360                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 361}
 362
 363/* RDMA/TDMA ring registers and accessors
 364 * we merge the common fields and just prefix with T/D the registers
 365 * having different meaning depending on the direction
 366 */
 367enum dma_ring_reg {
 368        TDMA_READ_PTR = 0,
 369        RDMA_WRITE_PTR = TDMA_READ_PTR,
 370        TDMA_READ_PTR_HI,
 371        RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 372        TDMA_CONS_INDEX,
 373        RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 374        TDMA_PROD_INDEX,
 375        RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 376        DMA_RING_BUF_SIZE,
 377        DMA_START_ADDR,
 378        DMA_START_ADDR_HI,
 379        DMA_END_ADDR,
 380        DMA_END_ADDR_HI,
 381        DMA_MBUF_DONE_THRESH,
 382        TDMA_FLOW_PERIOD,
 383        RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 384        TDMA_WRITE_PTR,
 385        RDMA_READ_PTR = TDMA_WRITE_PTR,
 386        TDMA_WRITE_PTR_HI,
 387        RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 388};
 389
 390/* GENET v4 supports 40-bits pointer addressing
 391 * for obvious reasons the LO and HI word parts
 392 * are contiguous, but this offsets the other
 393 * registers.
 394 */
 395static const u8 genet_dma_ring_regs_v4[] = {
 396        [TDMA_READ_PTR]                 = 0x00,
 397        [TDMA_READ_PTR_HI]              = 0x04,
 398        [TDMA_CONS_INDEX]               = 0x08,
 399        [TDMA_PROD_INDEX]               = 0x0C,
 400        [DMA_RING_BUF_SIZE]             = 0x10,
 401        [DMA_START_ADDR]                = 0x14,
 402        [DMA_START_ADDR_HI]             = 0x18,
 403        [DMA_END_ADDR]                  = 0x1C,
 404        [DMA_END_ADDR_HI]               = 0x20,
 405        [DMA_MBUF_DONE_THRESH]          = 0x24,
 406        [TDMA_FLOW_PERIOD]              = 0x28,
 407        [TDMA_WRITE_PTR]                = 0x2C,
 408        [TDMA_WRITE_PTR_HI]             = 0x30,
 409};
 410
 411static const u8 genet_dma_ring_regs_v123[] = {
 412        [TDMA_READ_PTR]                 = 0x00,
 413        [TDMA_CONS_INDEX]               = 0x04,
 414        [TDMA_PROD_INDEX]               = 0x08,
 415        [DMA_RING_BUF_SIZE]             = 0x0C,
 416        [DMA_START_ADDR]                = 0x10,
 417        [DMA_END_ADDR]                  = 0x14,
 418        [DMA_MBUF_DONE_THRESH]          = 0x18,
 419        [TDMA_FLOW_PERIOD]              = 0x1C,
 420        [TDMA_WRITE_PTR]                = 0x20,
 421};
 422
 423/* Set at runtime once GENET version is known */
 424static const u8 *genet_dma_ring_regs;
 425
 426static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 427                                           unsigned int ring,
 428                                           enum dma_ring_reg r)
 429{
 430        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 431                              (DMA_RING_SIZE * ring) +
 432                              genet_dma_ring_regs[r]);
 433}
 434
 435static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 436                                             unsigned int ring, u32 val,
 437                                             enum dma_ring_reg r)
 438{
 439        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 440                        (DMA_RING_SIZE * ring) +
 441                        genet_dma_ring_regs[r]);
 442}
 443
 444static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 445                                           unsigned int ring,
 446                                           enum dma_ring_reg r)
 447{
 448        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 449                              (DMA_RING_SIZE * ring) +
 450                              genet_dma_ring_regs[r]);
 451}
 452
 453static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 454                                             unsigned int ring, u32 val,
 455                                             enum dma_ring_reg r)
 456{
 457        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 458                        (DMA_RING_SIZE * ring) +
 459                        genet_dma_ring_regs[r]);
 460}
 461
 462static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
 463{
 464        u32 offset;
 465        u32 reg;
 466
 467        offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
 468        reg = bcmgenet_hfb_reg_readl(priv, offset);
 469        reg |= (1 << (f_index % 32));
 470        bcmgenet_hfb_reg_writel(priv, reg, offset);
 471        reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 472        reg |= RBUF_HFB_EN;
 473        bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 474}
 475
 476static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
 477{
 478        u32 offset, reg, reg1;
 479
 480        offset = HFB_FLT_ENABLE_V3PLUS;
 481        reg = bcmgenet_hfb_reg_readl(priv, offset);
 482        reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
 483        if  (f_index < 32) {
 484                reg1 &= ~(1 << (f_index % 32));
 485                bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
 486        } else {
 487                reg &= ~(1 << (f_index % 32));
 488                bcmgenet_hfb_reg_writel(priv, reg, offset);
 489        }
 490        if (!reg && !reg1) {
 491                reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 492                reg &= ~RBUF_HFB_EN;
 493                bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 494        }
 495}
 496
 497static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
 498                                                     u32 f_index, u32 rx_queue)
 499{
 500        u32 offset;
 501        u32 reg;
 502
 503        offset = f_index / 8;
 504        reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
 505        reg &= ~(0xF << (4 * (f_index % 8)));
 506        reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
 507        bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
 508}
 509
 510static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
 511                                           u32 f_index, u32 f_length)
 512{
 513        u32 offset;
 514        u32 reg;
 515
 516        offset = HFB_FLT_LEN_V3PLUS +
 517                 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
 518                 sizeof(u32);
 519        reg = bcmgenet_hfb_reg_readl(priv, offset);
 520        reg &= ~(0xFF << (8 * (f_index % 4)));
 521        reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
 522        bcmgenet_hfb_reg_writel(priv, reg, offset);
 523}
 524
 525static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
 526{
 527        while (size) {
 528                switch (*(unsigned char *)mask++) {
 529                case 0x00:
 530                case 0x0f:
 531                case 0xf0:
 532                case 0xff:
 533                        size--;
 534                        continue;
 535                default:
 536                        return -EINVAL;
 537                }
 538        }
 539
 540        return 0;
 541}
 542
 543#define VALIDATE_MASK(x) \
 544        bcmgenet_hfb_validate_mask(&(x), sizeof(x))
 545
 546static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
 547                                    u32 offset, void *val, void *mask,
 548                                    size_t size)
 549{
 550        u32 index, tmp;
 551
 552        index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
 553        tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
 554
 555        while (size--) {
 556                if (offset++ & 1) {
 557                        tmp &= ~0x300FF;
 558                        tmp |= (*(unsigned char *)val++);
 559                        switch ((*(unsigned char *)mask++)) {
 560                        case 0xFF:
 561                                tmp |= 0x30000;
 562                                break;
 563                        case 0xF0:
 564                                tmp |= 0x20000;
 565                                break;
 566                        case 0x0F:
 567                                tmp |= 0x10000;
 568                                break;
 569                        }
 570                        bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
 571                        if (size)
 572                                tmp = bcmgenet_hfb_readl(priv,
 573                                                         index * sizeof(u32));
 574                } else {
 575                        tmp &= ~0xCFF00;
 576                        tmp |= (*(unsigned char *)val++) << 8;
 577                        switch ((*(unsigned char *)mask++)) {
 578                        case 0xFF:
 579                                tmp |= 0xC0000;
 580                                break;
 581                        case 0xF0:
 582                                tmp |= 0x80000;
 583                                break;
 584                        case 0x0F:
 585                                tmp |= 0x40000;
 586                                break;
 587                        }
 588                        if (!size)
 589                                bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
 590                }
 591        }
 592
 593        return 0;
 594}
 595
 596static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
 597                                             struct bcmgenet_rxnfc_rule *rule)
 598{
 599        struct ethtool_rx_flow_spec *fs = &rule->fs;
 600        u32 offset = 0, f_length = 0, f;
 601        u8 val_8, mask_8;
 602        __be16 val_16;
 603        u16 mask_16;
 604        size_t size;
 605
 606        f = fs->location;
 607        if (fs->flow_type & FLOW_MAC_EXT) {
 608                bcmgenet_hfb_insert_data(priv, f, 0,
 609                                         &fs->h_ext.h_dest, &fs->m_ext.h_dest,
 610                                         sizeof(fs->h_ext.h_dest));
 611        }
 612
 613        if (fs->flow_type & FLOW_EXT) {
 614                if (fs->m_ext.vlan_etype ||
 615                    fs->m_ext.vlan_tci) {
 616                        bcmgenet_hfb_insert_data(priv, f, 12,
 617                                                 &fs->h_ext.vlan_etype,
 618                                                 &fs->m_ext.vlan_etype,
 619                                                 sizeof(fs->h_ext.vlan_etype));
 620                        bcmgenet_hfb_insert_data(priv, f, 14,
 621                                                 &fs->h_ext.vlan_tci,
 622                                                 &fs->m_ext.vlan_tci,
 623                                                 sizeof(fs->h_ext.vlan_tci));
 624                        offset += VLAN_HLEN;
 625                        f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
 626                }
 627        }
 628
 629        switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
 630        case ETHER_FLOW:
 631                f_length += DIV_ROUND_UP(ETH_HLEN, 2);
 632                bcmgenet_hfb_insert_data(priv, f, 0,
 633                                         &fs->h_u.ether_spec.h_dest,
 634                                         &fs->m_u.ether_spec.h_dest,
 635                                         sizeof(fs->h_u.ether_spec.h_dest));
 636                bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
 637                                         &fs->h_u.ether_spec.h_source,
 638                                         &fs->m_u.ether_spec.h_source,
 639                                         sizeof(fs->h_u.ether_spec.h_source));
 640                bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 641                                         &fs->h_u.ether_spec.h_proto,
 642                                         &fs->m_u.ether_spec.h_proto,
 643                                         sizeof(fs->h_u.ether_spec.h_proto));
 644                break;
 645        case IP_USER_FLOW:
 646                f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
 647                /* Specify IP Ether Type */
 648                val_16 = htons(ETH_P_IP);
 649                mask_16 = 0xFFFF;
 650                bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 651                                         &val_16, &mask_16, sizeof(val_16));
 652                bcmgenet_hfb_insert_data(priv, f, 15 + offset,
 653                                         &fs->h_u.usr_ip4_spec.tos,
 654                                         &fs->m_u.usr_ip4_spec.tos,
 655                                         sizeof(fs->h_u.usr_ip4_spec.tos));
 656                bcmgenet_hfb_insert_data(priv, f, 23 + offset,
 657                                         &fs->h_u.usr_ip4_spec.proto,
 658                                         &fs->m_u.usr_ip4_spec.proto,
 659                                         sizeof(fs->h_u.usr_ip4_spec.proto));
 660                bcmgenet_hfb_insert_data(priv, f, 26 + offset,
 661                                         &fs->h_u.usr_ip4_spec.ip4src,
 662                                         &fs->m_u.usr_ip4_spec.ip4src,
 663                                         sizeof(fs->h_u.usr_ip4_spec.ip4src));
 664                bcmgenet_hfb_insert_data(priv, f, 30 + offset,
 665                                         &fs->h_u.usr_ip4_spec.ip4dst,
 666                                         &fs->m_u.usr_ip4_spec.ip4dst,
 667                                         sizeof(fs->h_u.usr_ip4_spec.ip4dst));
 668                if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
 669                        break;
 670
 671                /* Only supports 20 byte IPv4 header */
 672                val_8 = 0x45;
 673                mask_8 = 0xFF;
 674                bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
 675                                         &val_8, &mask_8,
 676                                         sizeof(val_8));
 677                size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
 678                bcmgenet_hfb_insert_data(priv, f,
 679                                         ETH_HLEN + 20 + offset,
 680                                         &fs->h_u.usr_ip4_spec.l4_4_bytes,
 681                                         &fs->m_u.usr_ip4_spec.l4_4_bytes,
 682                                         size);
 683                f_length += DIV_ROUND_UP(size, 2);
 684                break;
 685        }
 686
 687        bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
 688        if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
 689                /* Ring 0 flows can be handled by the default Descriptor Ring
 690                 * We'll map them to ring 0, but don't enable the filter
 691                 */
 692                bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
 693                rule->state = BCMGENET_RXNFC_STATE_DISABLED;
 694        } else {
 695                /* Other Rx rings are direct mapped here */
 696                bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
 697                                                         fs->ring_cookie);
 698                bcmgenet_hfb_enable_filter(priv, f);
 699                rule->state = BCMGENET_RXNFC_STATE_ENABLED;
 700        }
 701}
 702
 703/* bcmgenet_hfb_clear
 704 *
 705 * Clear Hardware Filter Block and disable all filtering.
 706 */
 707static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
 708{
 709        u32 base, i;
 710
 711        base = f_index * priv->hw_params->hfb_filter_size;
 712        for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
 713                bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
 714}
 715
 716static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
 717{
 718        u32 i;
 719
 720        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 721                return;
 722
 723        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
 724        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
 725        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
 726
 727        for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
 728                bcmgenet_rdma_writel(priv, 0x0, i);
 729
 730        for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
 731                bcmgenet_hfb_reg_writel(priv, 0x0,
 732                                        HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
 733
 734        for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
 735                bcmgenet_hfb_clear_filter(priv, i);
 736}
 737
 738static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
 739{
 740        int i;
 741
 742        INIT_LIST_HEAD(&priv->rxnfc_list);
 743        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 744                return;
 745
 746        for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
 747                INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
 748                priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
 749        }
 750
 751        bcmgenet_hfb_clear(priv);
 752}
 753
 754static int bcmgenet_begin(struct net_device *dev)
 755{
 756        struct bcmgenet_priv *priv = netdev_priv(dev);
 757
 758        /* Turn on the clock */
 759        return clk_prepare_enable(priv->clk);
 760}
 761
 762static void bcmgenet_complete(struct net_device *dev)
 763{
 764        struct bcmgenet_priv *priv = netdev_priv(dev);
 765
 766        /* Turn off the clock */
 767        clk_disable_unprepare(priv->clk);
 768}
 769
 770static int bcmgenet_get_link_ksettings(struct net_device *dev,
 771                                       struct ethtool_link_ksettings *cmd)
 772{
 773        if (!netif_running(dev))
 774                return -EINVAL;
 775
 776        if (!dev->phydev)
 777                return -ENODEV;
 778
 779        phy_ethtool_ksettings_get(dev->phydev, cmd);
 780
 781        return 0;
 782}
 783
 784static int bcmgenet_set_link_ksettings(struct net_device *dev,
 785                                       const struct ethtool_link_ksettings *cmd)
 786{
 787        if (!netif_running(dev))
 788                return -EINVAL;
 789
 790        if (!dev->phydev)
 791                return -ENODEV;
 792
 793        return phy_ethtool_ksettings_set(dev->phydev, cmd);
 794}
 795
 796static int bcmgenet_set_features(struct net_device *dev,
 797                                 netdev_features_t features)
 798{
 799        struct bcmgenet_priv *priv = netdev_priv(dev);
 800        u32 reg;
 801        int ret;
 802
 803        ret = clk_prepare_enable(priv->clk);
 804        if (ret)
 805                return ret;
 806
 807        /* Make sure we reflect the value of CRC_CMD_FWD */
 808        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
 809        priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
 810
 811        clk_disable_unprepare(priv->clk);
 812
 813        return ret;
 814}
 815
 816static u32 bcmgenet_get_msglevel(struct net_device *dev)
 817{
 818        struct bcmgenet_priv *priv = netdev_priv(dev);
 819
 820        return priv->msg_enable;
 821}
 822
 823static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 824{
 825        struct bcmgenet_priv *priv = netdev_priv(dev);
 826
 827        priv->msg_enable = level;
 828}
 829
 830static int bcmgenet_get_coalesce(struct net_device *dev,
 831                                 struct ethtool_coalesce *ec,
 832                                 struct kernel_ethtool_coalesce *kernel_coal,
 833                                 struct netlink_ext_ack *extack)
 834{
 835        struct bcmgenet_priv *priv = netdev_priv(dev);
 836        struct bcmgenet_rx_ring *ring;
 837        unsigned int i;
 838
 839        ec->tx_max_coalesced_frames =
 840                bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 841                                         DMA_MBUF_DONE_THRESH);
 842        ec->rx_max_coalesced_frames =
 843                bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 844                                         DMA_MBUF_DONE_THRESH);
 845        ec->rx_coalesce_usecs =
 846                bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 847
 848        for (i = 0; i < priv->hw_params->rx_queues; i++) {
 849                ring = &priv->rx_rings[i];
 850                ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 851        }
 852        ring = &priv->rx_rings[DESC_INDEX];
 853        ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 854
 855        return 0;
 856}
 857
 858static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
 859                                     u32 usecs, u32 pkts)
 860{
 861        struct bcmgenet_priv *priv = ring->priv;
 862        unsigned int i = ring->index;
 863        u32 reg;
 864
 865        bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
 866
 867        reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 868        reg &= ~DMA_TIMEOUT_MASK;
 869        reg |= DIV_ROUND_UP(usecs * 1000, 8192);
 870        bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 871}
 872
 873static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
 874                                          struct ethtool_coalesce *ec)
 875{
 876        struct dim_cq_moder moder;
 877        u32 usecs, pkts;
 878
 879        ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
 880        ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
 881        usecs = ring->rx_coalesce_usecs;
 882        pkts = ring->rx_max_coalesced_frames;
 883
 884        if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
 885                moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
 886                usecs = moder.usec;
 887                pkts = moder.pkts;
 888        }
 889
 890        ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
 891        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
 892}
 893
 894static int bcmgenet_set_coalesce(struct net_device *dev,
 895                                 struct ethtool_coalesce *ec,
 896                                 struct kernel_ethtool_coalesce *kernel_coal,
 897                                 struct netlink_ext_ack *extack)
 898{
 899        struct bcmgenet_priv *priv = netdev_priv(dev);
 900        unsigned int i;
 901
 902        /* Base system clock is 125Mhz, DMA timeout is this reference clock
 903         * divided by 1024, which yields roughly 8.192us, our maximum value
 904         * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 905         */
 906        if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 907            ec->tx_max_coalesced_frames == 0 ||
 908            ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 909            ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 910                return -EINVAL;
 911
 912        if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 913                return -EINVAL;
 914
 915        /* GENET TDMA hardware does not support a configurable timeout, but will
 916         * always generate an interrupt either after MBDONE packets have been
 917         * transmitted, or when the ring is empty.
 918         */
 919
 920        /* Program all TX queues with the same values, as there is no
 921         * ethtool knob to do coalescing on a per-queue basis
 922         */
 923        for (i = 0; i < priv->hw_params->tx_queues; i++)
 924                bcmgenet_tdma_ring_writel(priv, i,
 925                                          ec->tx_max_coalesced_frames,
 926                                          DMA_MBUF_DONE_THRESH);
 927        bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 928                                  ec->tx_max_coalesced_frames,
 929                                  DMA_MBUF_DONE_THRESH);
 930
 931        for (i = 0; i < priv->hw_params->rx_queues; i++)
 932                bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
 933        bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
 934
 935        return 0;
 936}
 937
 938/* standard ethtool support functions. */
 939enum bcmgenet_stat_type {
 940        BCMGENET_STAT_NETDEV = -1,
 941        BCMGENET_STAT_MIB_RX,
 942        BCMGENET_STAT_MIB_TX,
 943        BCMGENET_STAT_RUNT,
 944        BCMGENET_STAT_MISC,
 945        BCMGENET_STAT_SOFT,
 946};
 947
 948struct bcmgenet_stats {
 949        char stat_string[ETH_GSTRING_LEN];
 950        int stat_sizeof;
 951        int stat_offset;
 952        enum bcmgenet_stat_type type;
 953        /* reg offset from UMAC base for misc counters */
 954        u16 reg_offset;
 955};
 956
 957#define STAT_NETDEV(m) { \
 958        .stat_string = __stringify(m), \
 959        .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 960        .stat_offset = offsetof(struct net_device_stats, m), \
 961        .type = BCMGENET_STAT_NETDEV, \
 962}
 963
 964#define STAT_GENET_MIB(str, m, _type) { \
 965        .stat_string = str, \
 966        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 967        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 968        .type = _type, \
 969}
 970
 971#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 972#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 973#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 974#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 975
 976#define STAT_GENET_MISC(str, m, offset) { \
 977        .stat_string = str, \
 978        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 979        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 980        .type = BCMGENET_STAT_MISC, \
 981        .reg_offset = offset, \
 982}
 983
 984#define STAT_GENET_Q(num) \
 985        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
 986                        tx_rings[num].packets), \
 987        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
 988                        tx_rings[num].bytes), \
 989        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
 990                        rx_rings[num].bytes),    \
 991        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
 992                        rx_rings[num].packets), \
 993        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
 994                        rx_rings[num].errors), \
 995        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
 996                        rx_rings[num].dropped)
 997
 998/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 999 * between the end of TX stats and the beginning of the RX RUNT
1000 */
1001#define BCMGENET_STAT_OFFSET    0xc
1002
1003/* Hardware counters must be kept in sync because the order/offset
1004 * is important here (order in structure declaration = order in hardware)
1005 */
1006static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1007        /* general stats */
1008        STAT_NETDEV(rx_packets),
1009        STAT_NETDEV(tx_packets),
1010        STAT_NETDEV(rx_bytes),
1011        STAT_NETDEV(tx_bytes),
1012        STAT_NETDEV(rx_errors),
1013        STAT_NETDEV(tx_errors),
1014        STAT_NETDEV(rx_dropped),
1015        STAT_NETDEV(tx_dropped),
1016        STAT_NETDEV(multicast),
1017        /* UniMAC RSV counters */
1018        STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1019        STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1020        STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1021        STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1022        STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1023        STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1024        STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1025        STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1026        STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1027        STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1028        STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1029        STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1030        STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1031        STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1032        STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1033        STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1034        STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1035        STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1036        STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1037        STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1038        STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1039        STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1040        STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1041        STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1042        STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1043        STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1044        STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1045        STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1046        STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1047        /* UniMAC TSV counters */
1048        STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1049        STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1050        STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1051        STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1052        STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1053        STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1054        STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1055        STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1056        STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1057        STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1058        STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1059        STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1060        STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1061        STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1062        STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1063        STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1064        STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1065        STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1066        STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1067        STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1068        STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1069        STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1070        STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1071        STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1072        STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1073        STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1074        STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1075        STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1076        STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1077        /* UniMAC RUNT counters */
1078        STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1079        STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1080        STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1081        STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1082        /* Misc UniMAC counters */
1083        STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1084                        UMAC_RBUF_OVFL_CNT_V1),
1085        STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1086                        UMAC_RBUF_ERR_CNT_V1),
1087        STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1088        STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1089        STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1090        STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1091        STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1092        STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1093                            mib.tx_realloc_tsb_failed),
1094        /* Per TX queues */
1095        STAT_GENET_Q(0),
1096        STAT_GENET_Q(1),
1097        STAT_GENET_Q(2),
1098        STAT_GENET_Q(3),
1099        STAT_GENET_Q(16),
1100};
1101
1102#define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1103
1104static void bcmgenet_get_drvinfo(struct net_device *dev,
1105                                 struct ethtool_drvinfo *info)
1106{
1107        strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1108}
1109
1110static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1111{
1112        switch (string_set) {
1113        case ETH_SS_STATS:
1114                return BCMGENET_STATS_LEN;
1115        default:
1116                return -EOPNOTSUPP;
1117        }
1118}
1119
1120static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1121                                 u8 *data)
1122{
1123        int i;
1124
1125        switch (stringset) {
1126        case ETH_SS_STATS:
1127                for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1128                        memcpy(data + i * ETH_GSTRING_LEN,
1129                               bcmgenet_gstrings_stats[i].stat_string,
1130                               ETH_GSTRING_LEN);
1131                }
1132                break;
1133        }
1134}
1135
1136static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1137{
1138        u16 new_offset;
1139        u32 val;
1140
1141        switch (offset) {
1142        case UMAC_RBUF_OVFL_CNT_V1:
1143                if (GENET_IS_V2(priv))
1144                        new_offset = RBUF_OVFL_CNT_V2;
1145                else
1146                        new_offset = RBUF_OVFL_CNT_V3PLUS;
1147
1148                val = bcmgenet_rbuf_readl(priv, new_offset);
1149                /* clear if overflowed */
1150                if (val == ~0)
1151                        bcmgenet_rbuf_writel(priv, 0, new_offset);
1152                break;
1153        case UMAC_RBUF_ERR_CNT_V1:
1154                if (GENET_IS_V2(priv))
1155                        new_offset = RBUF_ERR_CNT_V2;
1156                else
1157                        new_offset = RBUF_ERR_CNT_V3PLUS;
1158
1159                val = bcmgenet_rbuf_readl(priv, new_offset);
1160                /* clear if overflowed */
1161                if (val == ~0)
1162                        bcmgenet_rbuf_writel(priv, 0, new_offset);
1163                break;
1164        default:
1165                val = bcmgenet_umac_readl(priv, offset);
1166                /* clear if overflowed */
1167                if (val == ~0)
1168                        bcmgenet_umac_writel(priv, 0, offset);
1169                break;
1170        }
1171
1172        return val;
1173}
1174
1175static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1176{
1177        int i, j = 0;
1178
1179        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1180                const struct bcmgenet_stats *s;
1181                u8 offset = 0;
1182                u32 val = 0;
1183                char *p;
1184
1185                s = &bcmgenet_gstrings_stats[i];
1186                switch (s->type) {
1187                case BCMGENET_STAT_NETDEV:
1188                case BCMGENET_STAT_SOFT:
1189                        continue;
1190                case BCMGENET_STAT_RUNT:
1191                        offset += BCMGENET_STAT_OFFSET;
1192                        fallthrough;
1193                case BCMGENET_STAT_MIB_TX:
1194                        offset += BCMGENET_STAT_OFFSET;
1195                        fallthrough;
1196                case BCMGENET_STAT_MIB_RX:
1197                        val = bcmgenet_umac_readl(priv,
1198                                                  UMAC_MIB_START + j + offset);
1199                        offset = 0;     /* Reset Offset */
1200                        break;
1201                case BCMGENET_STAT_MISC:
1202                        if (GENET_IS_V1(priv)) {
1203                                val = bcmgenet_umac_readl(priv, s->reg_offset);
1204                                /* clear if overflowed */
1205                                if (val == ~0)
1206                                        bcmgenet_umac_writel(priv, 0,
1207                                                             s->reg_offset);
1208                        } else {
1209                                val = bcmgenet_update_stat_misc(priv,
1210                                                                s->reg_offset);
1211                        }
1212                        break;
1213                }
1214
1215                j += s->stat_sizeof;
1216                p = (char *)priv + s->stat_offset;
1217                *(u32 *)p = val;
1218        }
1219}
1220
1221static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1222                                       struct ethtool_stats *stats,
1223                                       u64 *data)
1224{
1225        struct bcmgenet_priv *priv = netdev_priv(dev);
1226        int i;
1227
1228        if (netif_running(dev))
1229                bcmgenet_update_mib_counters(priv);
1230
1231        dev->netdev_ops->ndo_get_stats(dev);
1232
1233        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1234                const struct bcmgenet_stats *s;
1235                char *p;
1236
1237                s = &bcmgenet_gstrings_stats[i];
1238                if (s->type == BCMGENET_STAT_NETDEV)
1239                        p = (char *)&dev->stats;
1240                else
1241                        p = (char *)priv;
1242                p += s->stat_offset;
1243                if (sizeof(unsigned long) != sizeof(u32) &&
1244                    s->stat_sizeof == sizeof(unsigned long))
1245                        data[i] = *(unsigned long *)p;
1246                else
1247                        data[i] = *(u32 *)p;
1248        }
1249}
1250
1251static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1252{
1253        struct bcmgenet_priv *priv = netdev_priv(dev);
1254        u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1255        u32 reg;
1256
1257        if (enable && !priv->clk_eee_enabled) {
1258                clk_prepare_enable(priv->clk_eee);
1259                priv->clk_eee_enabled = true;
1260        }
1261
1262        reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1263        if (enable)
1264                reg |= EEE_EN;
1265        else
1266                reg &= ~EEE_EN;
1267        bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1268
1269        /* Enable EEE and switch to a 27Mhz clock automatically */
1270        reg = bcmgenet_readl(priv->base + off);
1271        if (enable)
1272                reg |= TBUF_EEE_EN | TBUF_PM_EN;
1273        else
1274                reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1275        bcmgenet_writel(reg, priv->base + off);
1276
1277        /* Do the same for thing for RBUF */
1278        reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1279        if (enable)
1280                reg |= RBUF_EEE_EN | RBUF_PM_EN;
1281        else
1282                reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1283        bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1284
1285        if (!enable && priv->clk_eee_enabled) {
1286                clk_disable_unprepare(priv->clk_eee);
1287                priv->clk_eee_enabled = false;
1288        }
1289
1290        priv->eee.eee_enabled = enable;
1291        priv->eee.eee_active = enable;
1292}
1293
1294static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1295{
1296        struct bcmgenet_priv *priv = netdev_priv(dev);
1297        struct ethtool_eee *p = &priv->eee;
1298
1299        if (GENET_IS_V1(priv))
1300                return -EOPNOTSUPP;
1301
1302        if (!dev->phydev)
1303                return -ENODEV;
1304
1305        e->eee_enabled = p->eee_enabled;
1306        e->eee_active = p->eee_active;
1307        e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1308
1309        return phy_ethtool_get_eee(dev->phydev, e);
1310}
1311
1312static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1313{
1314        struct bcmgenet_priv *priv = netdev_priv(dev);
1315        struct ethtool_eee *p = &priv->eee;
1316        int ret = 0;
1317
1318        if (GENET_IS_V1(priv))
1319                return -EOPNOTSUPP;
1320
1321        if (!dev->phydev)
1322                return -ENODEV;
1323
1324        p->eee_enabled = e->eee_enabled;
1325
1326        if (!p->eee_enabled) {
1327                bcmgenet_eee_enable_set(dev, false);
1328        } else {
1329                ret = phy_init_eee(dev->phydev, 0);
1330                if (ret) {
1331                        netif_err(priv, hw, dev, "EEE initialization failed\n");
1332                        return ret;
1333                }
1334
1335                bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1336                bcmgenet_eee_enable_set(dev, true);
1337        }
1338
1339        return phy_ethtool_set_eee(dev->phydev, e);
1340}
1341
1342static int bcmgenet_validate_flow(struct net_device *dev,
1343                                  struct ethtool_rxnfc *cmd)
1344{
1345        struct ethtool_usrip4_spec *l4_mask;
1346        struct ethhdr *eth_mask;
1347
1348        if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1349                netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1350                           cmd->fs.location);
1351                return -EINVAL;
1352        }
1353
1354        switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1355        case IP_USER_FLOW:
1356                l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1357                /* don't allow mask which isn't valid */
1358                if (VALIDATE_MASK(l4_mask->ip4src) ||
1359                    VALIDATE_MASK(l4_mask->ip4dst) ||
1360                    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1361                    VALIDATE_MASK(l4_mask->proto) ||
1362                    VALIDATE_MASK(l4_mask->ip_ver) ||
1363                    VALIDATE_MASK(l4_mask->tos)) {
1364                        netdev_err(dev, "rxnfc: Unsupported mask\n");
1365                        return -EINVAL;
1366                }
1367                break;
1368        case ETHER_FLOW:
1369                eth_mask = &cmd->fs.m_u.ether_spec;
1370                /* don't allow mask which isn't valid */
1371                if (VALIDATE_MASK(eth_mask->h_dest) ||
1372                    VALIDATE_MASK(eth_mask->h_source) ||
1373                    VALIDATE_MASK(eth_mask->h_proto)) {
1374                        netdev_err(dev, "rxnfc: Unsupported mask\n");
1375                        return -EINVAL;
1376                }
1377                break;
1378        default:
1379                netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1380                           cmd->fs.flow_type);
1381                return -EINVAL;
1382        }
1383
1384        if ((cmd->fs.flow_type & FLOW_EXT)) {
1385                /* don't allow mask which isn't valid */
1386                if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1387                    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1388                        netdev_err(dev, "rxnfc: Unsupported mask\n");
1389                        return -EINVAL;
1390                }
1391                if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1392                        netdev_err(dev, "rxnfc: user-def not supported\n");
1393                        return -EINVAL;
1394                }
1395        }
1396
1397        if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1398                /* don't allow mask which isn't valid */
1399                if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1400                        netdev_err(dev, "rxnfc: Unsupported mask\n");
1401                        return -EINVAL;
1402                }
1403        }
1404
1405        return 0;
1406}
1407
1408static int bcmgenet_insert_flow(struct net_device *dev,
1409                                struct ethtool_rxnfc *cmd)
1410{
1411        struct bcmgenet_priv *priv = netdev_priv(dev);
1412        struct bcmgenet_rxnfc_rule *loc_rule;
1413        int err;
1414
1415        if (priv->hw_params->hfb_filter_size < 128) {
1416                netdev_err(dev, "rxnfc: Not supported by this device\n");
1417                return -EINVAL;
1418        }
1419
1420        if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1421            cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1422                netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1423                           cmd->fs.ring_cookie);
1424                return -EINVAL;
1425        }
1426
1427        err = bcmgenet_validate_flow(dev, cmd);
1428        if (err)
1429                return err;
1430
1431        loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1432        if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1433                bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1434        if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1435                list_del(&loc_rule->list);
1436                bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1437        }
1438        loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1439        memcpy(&loc_rule->fs, &cmd->fs,
1440               sizeof(struct ethtool_rx_flow_spec));
1441
1442        bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1443
1444        list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1445
1446        return 0;
1447}
1448
1449static int bcmgenet_delete_flow(struct net_device *dev,
1450                                struct ethtool_rxnfc *cmd)
1451{
1452        struct bcmgenet_priv *priv = netdev_priv(dev);
1453        struct bcmgenet_rxnfc_rule *rule;
1454        int err = 0;
1455
1456        if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1457                return -EINVAL;
1458
1459        rule = &priv->rxnfc_rules[cmd->fs.location];
1460        if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1461                err =  -ENOENT;
1462                goto out;
1463        }
1464
1465        if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1466                bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1467        if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1468                list_del(&rule->list);
1469                bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1470        }
1471        rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1472        memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1473
1474out:
1475        return err;
1476}
1477
1478static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1479{
1480        struct bcmgenet_priv *priv = netdev_priv(dev);
1481        int err = 0;
1482
1483        switch (cmd->cmd) {
1484        case ETHTOOL_SRXCLSRLINS:
1485                err = bcmgenet_insert_flow(dev, cmd);
1486                break;
1487        case ETHTOOL_SRXCLSRLDEL:
1488                err = bcmgenet_delete_flow(dev, cmd);
1489                break;
1490        default:
1491                netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1492                            cmd->cmd);
1493                return -EINVAL;
1494        }
1495
1496        return err;
1497}
1498
1499static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1500                             int loc)
1501{
1502        struct bcmgenet_priv *priv = netdev_priv(dev);
1503        struct bcmgenet_rxnfc_rule *rule;
1504        int err = 0;
1505
1506        if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1507                return -EINVAL;
1508
1509        rule = &priv->rxnfc_rules[loc];
1510        if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1511                err = -ENOENT;
1512        else
1513                memcpy(&cmd->fs, &rule->fs,
1514                       sizeof(struct ethtool_rx_flow_spec));
1515
1516        return err;
1517}
1518
1519static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1520{
1521        struct list_head *pos;
1522        int res = 0;
1523
1524        list_for_each(pos, &priv->rxnfc_list)
1525                res++;
1526
1527        return res;
1528}
1529
1530static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1531                              u32 *rule_locs)
1532{
1533        struct bcmgenet_priv *priv = netdev_priv(dev);
1534        struct bcmgenet_rxnfc_rule *rule;
1535        int err = 0;
1536        int i = 0;
1537
1538        switch (cmd->cmd) {
1539        case ETHTOOL_GRXRINGS:
1540                cmd->data = priv->hw_params->rx_queues ?: 1;
1541                break;
1542        case ETHTOOL_GRXCLSRLCNT:
1543                cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1544                cmd->data = MAX_NUM_OF_FS_RULES;
1545                break;
1546        case ETHTOOL_GRXCLSRULE:
1547                err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1548                break;
1549        case ETHTOOL_GRXCLSRLALL:
1550                list_for_each_entry(rule, &priv->rxnfc_list, list)
1551                        if (i < cmd->rule_cnt)
1552                                rule_locs[i++] = rule->fs.location;
1553                cmd->rule_cnt = i;
1554                cmd->data = MAX_NUM_OF_FS_RULES;
1555                break;
1556        default:
1557                err = -EOPNOTSUPP;
1558                break;
1559        }
1560
1561        return err;
1562}
1563
1564/* standard ethtool support functions. */
1565static const struct ethtool_ops bcmgenet_ethtool_ops = {
1566        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1567                                     ETHTOOL_COALESCE_MAX_FRAMES |
1568                                     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1569        .begin                  = bcmgenet_begin,
1570        .complete               = bcmgenet_complete,
1571        .get_strings            = bcmgenet_get_strings,
1572        .get_sset_count         = bcmgenet_get_sset_count,
1573        .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1574        .get_drvinfo            = bcmgenet_get_drvinfo,
1575        .get_link               = ethtool_op_get_link,
1576        .get_msglevel           = bcmgenet_get_msglevel,
1577        .set_msglevel           = bcmgenet_set_msglevel,
1578        .get_wol                = bcmgenet_get_wol,
1579        .set_wol                = bcmgenet_set_wol,
1580        .get_eee                = bcmgenet_get_eee,
1581        .set_eee                = bcmgenet_set_eee,
1582        .nway_reset             = phy_ethtool_nway_reset,
1583        .get_coalesce           = bcmgenet_get_coalesce,
1584        .set_coalesce           = bcmgenet_set_coalesce,
1585        .get_link_ksettings     = bcmgenet_get_link_ksettings,
1586        .set_link_ksettings     = bcmgenet_set_link_ksettings,
1587        .get_ts_info            = ethtool_op_get_ts_info,
1588        .get_rxnfc              = bcmgenet_get_rxnfc,
1589        .set_rxnfc              = bcmgenet_set_rxnfc,
1590};
1591
1592/* Power down the unimac, based on mode. */
1593static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1594                                enum bcmgenet_power_mode mode)
1595{
1596        int ret = 0;
1597        u32 reg;
1598
1599        switch (mode) {
1600        case GENET_POWER_CABLE_SENSE:
1601                phy_detach(priv->dev->phydev);
1602                break;
1603
1604        case GENET_POWER_WOL_MAGIC:
1605                ret = bcmgenet_wol_power_down_cfg(priv, mode);
1606                break;
1607
1608        case GENET_POWER_PASSIVE:
1609                /* Power down LED */
1610                if (priv->hw_params->flags & GENET_HAS_EXT) {
1611                        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1612                        if (GENET_IS_V5(priv))
1613                                reg |= EXT_PWR_DOWN_PHY_EN |
1614                                       EXT_PWR_DOWN_PHY_RD |
1615                                       EXT_PWR_DOWN_PHY_SD |
1616                                       EXT_PWR_DOWN_PHY_RX |
1617                                       EXT_PWR_DOWN_PHY_TX |
1618                                       EXT_IDDQ_GLBL_PWR;
1619                        else
1620                                reg |= EXT_PWR_DOWN_PHY;
1621
1622                        reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1623                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1624
1625                        bcmgenet_phy_power_set(priv->dev, false);
1626                }
1627                break;
1628        default:
1629                break;
1630        }
1631
1632        return ret;
1633}
1634
1635static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1636                              enum bcmgenet_power_mode mode)
1637{
1638        u32 reg;
1639
1640        if (!(priv->hw_params->flags & GENET_HAS_EXT))
1641                return;
1642
1643        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1644
1645        switch (mode) {
1646        case GENET_POWER_PASSIVE:
1647                reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1648                         EXT_ENERGY_DET_MASK);
1649                if (GENET_IS_V5(priv)) {
1650                        reg &= ~(EXT_PWR_DOWN_PHY_EN |
1651                                 EXT_PWR_DOWN_PHY_RD |
1652                                 EXT_PWR_DOWN_PHY_SD |
1653                                 EXT_PWR_DOWN_PHY_RX |
1654                                 EXT_PWR_DOWN_PHY_TX |
1655                                 EXT_IDDQ_GLBL_PWR);
1656                        reg |=   EXT_PHY_RESET;
1657                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1658                        mdelay(1);
1659
1660                        reg &=  ~EXT_PHY_RESET;
1661                } else {
1662                        reg &= ~EXT_PWR_DOWN_PHY;
1663                        reg |= EXT_PWR_DN_EN_LD;
1664                }
1665                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1666                bcmgenet_phy_power_set(priv->dev, true);
1667                break;
1668
1669        case GENET_POWER_CABLE_SENSE:
1670                /* enable APD */
1671                if (!GENET_IS_V5(priv)) {
1672                        reg |= EXT_PWR_DN_EN_LD;
1673                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1674                }
1675                break;
1676        case GENET_POWER_WOL_MAGIC:
1677                bcmgenet_wol_power_up_cfg(priv, mode);
1678                return;
1679        default:
1680                break;
1681        }
1682}
1683
1684static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1685                                         struct bcmgenet_tx_ring *ring)
1686{
1687        struct enet_cb *tx_cb_ptr;
1688
1689        tx_cb_ptr = ring->cbs;
1690        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1691
1692        /* Advancing local write pointer */
1693        if (ring->write_ptr == ring->end_ptr)
1694                ring->write_ptr = ring->cb_ptr;
1695        else
1696                ring->write_ptr++;
1697
1698        return tx_cb_ptr;
1699}
1700
1701static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1702                                         struct bcmgenet_tx_ring *ring)
1703{
1704        struct enet_cb *tx_cb_ptr;
1705
1706        tx_cb_ptr = ring->cbs;
1707        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1708
1709        /* Rewinding local write pointer */
1710        if (ring->write_ptr == ring->cb_ptr)
1711                ring->write_ptr = ring->end_ptr;
1712        else
1713                ring->write_ptr--;
1714
1715        return tx_cb_ptr;
1716}
1717
1718static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1719{
1720        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1721                                 INTRL2_CPU_MASK_SET);
1722}
1723
1724static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1725{
1726        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1727                                 INTRL2_CPU_MASK_CLEAR);
1728}
1729
1730static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1731{
1732        bcmgenet_intrl2_1_writel(ring->priv,
1733                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1734                                 INTRL2_CPU_MASK_SET);
1735}
1736
1737static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1738{
1739        bcmgenet_intrl2_1_writel(ring->priv,
1740                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1741                                 INTRL2_CPU_MASK_CLEAR);
1742}
1743
1744static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1745{
1746        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1747                                 INTRL2_CPU_MASK_SET);
1748}
1749
1750static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1751{
1752        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1753                                 INTRL2_CPU_MASK_CLEAR);
1754}
1755
1756static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1757{
1758        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1759                                 INTRL2_CPU_MASK_CLEAR);
1760}
1761
1762static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1763{
1764        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1765                                 INTRL2_CPU_MASK_SET);
1766}
1767
1768/* Simple helper to free a transmit control block's resources
1769 * Returns an skb when the last transmit control block associated with the
1770 * skb is freed.  The skb should be freed by the caller if necessary.
1771 */
1772static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1773                                           struct enet_cb *cb)
1774{
1775        struct sk_buff *skb;
1776
1777        skb = cb->skb;
1778
1779        if (skb) {
1780                cb->skb = NULL;
1781                if (cb == GENET_CB(skb)->first_cb)
1782                        dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1783                                         dma_unmap_len(cb, dma_len),
1784                                         DMA_TO_DEVICE);
1785                else
1786                        dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1787                                       dma_unmap_len(cb, dma_len),
1788                                       DMA_TO_DEVICE);
1789                dma_unmap_addr_set(cb, dma_addr, 0);
1790
1791                if (cb == GENET_CB(skb)->last_cb)
1792                        return skb;
1793
1794        } else if (dma_unmap_addr(cb, dma_addr)) {
1795                dma_unmap_page(dev,
1796                               dma_unmap_addr(cb, dma_addr),
1797                               dma_unmap_len(cb, dma_len),
1798                               DMA_TO_DEVICE);
1799                dma_unmap_addr_set(cb, dma_addr, 0);
1800        }
1801
1802        return NULL;
1803}
1804
1805/* Simple helper to free a receive control block's resources */
1806static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1807                                           struct enet_cb *cb)
1808{
1809        struct sk_buff *skb;
1810
1811        skb = cb->skb;
1812        cb->skb = NULL;
1813
1814        if (dma_unmap_addr(cb, dma_addr)) {
1815                dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1816                                 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1817                dma_unmap_addr_set(cb, dma_addr, 0);
1818        }
1819
1820        return skb;
1821}
1822
1823/* Unlocked version of the reclaim routine */
1824static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1825                                          struct bcmgenet_tx_ring *ring)
1826{
1827        struct bcmgenet_priv *priv = netdev_priv(dev);
1828        unsigned int txbds_processed = 0;
1829        unsigned int bytes_compl = 0;
1830        unsigned int pkts_compl = 0;
1831        unsigned int txbds_ready;
1832        unsigned int c_index;
1833        struct sk_buff *skb;
1834
1835        /* Clear status before servicing to reduce spurious interrupts */
1836        if (ring->index == DESC_INDEX)
1837                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1838                                         INTRL2_CPU_CLEAR);
1839        else
1840                bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1841                                         INTRL2_CPU_CLEAR);
1842
1843        /* Compute how many buffers are transmitted since last xmit call */
1844        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1845                & DMA_C_INDEX_MASK;
1846        txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1847
1848        netif_dbg(priv, tx_done, dev,
1849                  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1850                  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1851
1852        /* Reclaim transmitted buffers */
1853        while (txbds_processed < txbds_ready) {
1854                skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1855                                          &priv->tx_cbs[ring->clean_ptr]);
1856                if (skb) {
1857                        pkts_compl++;
1858                        bytes_compl += GENET_CB(skb)->bytes_sent;
1859                        dev_consume_skb_any(skb);
1860                }
1861
1862                txbds_processed++;
1863                if (likely(ring->clean_ptr < ring->end_ptr))
1864                        ring->clean_ptr++;
1865                else
1866                        ring->clean_ptr = ring->cb_ptr;
1867        }
1868
1869        ring->free_bds += txbds_processed;
1870        ring->c_index = c_index;
1871
1872        ring->packets += pkts_compl;
1873        ring->bytes += bytes_compl;
1874
1875        netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1876                                  pkts_compl, bytes_compl);
1877
1878        return txbds_processed;
1879}
1880
1881static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1882                                struct bcmgenet_tx_ring *ring)
1883{
1884        unsigned int released;
1885
1886        spin_lock_bh(&ring->lock);
1887        released = __bcmgenet_tx_reclaim(dev, ring);
1888        spin_unlock_bh(&ring->lock);
1889
1890        return released;
1891}
1892
1893static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1894{
1895        struct bcmgenet_tx_ring *ring =
1896                container_of(napi, struct bcmgenet_tx_ring, napi);
1897        unsigned int work_done = 0;
1898        struct netdev_queue *txq;
1899
1900        spin_lock(&ring->lock);
1901        work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1902        if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1903                txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1904                netif_tx_wake_queue(txq);
1905        }
1906        spin_unlock(&ring->lock);
1907
1908        if (work_done == 0) {
1909                napi_complete(napi);
1910                ring->int_enable(ring);
1911
1912                return 0;
1913        }
1914
1915        return budget;
1916}
1917
1918static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1919{
1920        struct bcmgenet_priv *priv = netdev_priv(dev);
1921        int i;
1922
1923        if (netif_is_multiqueue(dev)) {
1924                for (i = 0; i < priv->hw_params->tx_queues; i++)
1925                        bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1926        }
1927
1928        bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1929}
1930
1931/* Reallocate the SKB to put enough headroom in front of it and insert
1932 * the transmit checksum offsets in the descriptors
1933 */
1934static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1935                                        struct sk_buff *skb)
1936{
1937        struct bcmgenet_priv *priv = netdev_priv(dev);
1938        struct status_64 *status = NULL;
1939        struct sk_buff *new_skb;
1940        u16 offset;
1941        u8 ip_proto;
1942        __be16 ip_ver;
1943        u32 tx_csum_info;
1944
1945        if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1946                /* If 64 byte status block enabled, must make sure skb has
1947                 * enough headroom for us to insert 64B status block.
1948                 */
1949                new_skb = skb_realloc_headroom(skb, sizeof(*status));
1950                if (!new_skb) {
1951                        dev_kfree_skb_any(skb);
1952                        priv->mib.tx_realloc_tsb_failed++;
1953                        dev->stats.tx_dropped++;
1954                        return NULL;
1955                }
1956                dev_consume_skb_any(skb);
1957                skb = new_skb;
1958                priv->mib.tx_realloc_tsb++;
1959        }
1960
1961        skb_push(skb, sizeof(*status));
1962        status = (struct status_64 *)skb->data;
1963
1964        if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1965                ip_ver = skb->protocol;
1966                switch (ip_ver) {
1967                case htons(ETH_P_IP):
1968                        ip_proto = ip_hdr(skb)->protocol;
1969                        break;
1970                case htons(ETH_P_IPV6):
1971                        ip_proto = ipv6_hdr(skb)->nexthdr;
1972                        break;
1973                default:
1974                        /* don't use UDP flag */
1975                        ip_proto = 0;
1976                        break;
1977                }
1978
1979                offset = skb_checksum_start_offset(skb) - sizeof(*status);
1980                tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1981                                (offset + skb->csum_offset) |
1982                                STATUS_TX_CSUM_LV;
1983
1984                /* Set the special UDP flag for UDP */
1985                if (ip_proto == IPPROTO_UDP)
1986                        tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1987
1988                status->tx_csum_info = tx_csum_info;
1989        }
1990
1991        return skb;
1992}
1993
1994static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1995{
1996        struct bcmgenet_priv *priv = netdev_priv(dev);
1997        struct device *kdev = &priv->pdev->dev;
1998        struct bcmgenet_tx_ring *ring = NULL;
1999        struct enet_cb *tx_cb_ptr;
2000        struct netdev_queue *txq;
2001        int nr_frags, index;
2002        dma_addr_t mapping;
2003        unsigned int size;
2004        skb_frag_t *frag;
2005        u32 len_stat;
2006        int ret;
2007        int i;
2008
2009        index = skb_get_queue_mapping(skb);
2010        /* Mapping strategy:
2011         * queue_mapping = 0, unclassified, packet xmited through ring16
2012         * queue_mapping = 1, goes to ring 0. (highest priority queue
2013         * queue_mapping = 2, goes to ring 1.
2014         * queue_mapping = 3, goes to ring 2.
2015         * queue_mapping = 4, goes to ring 3.
2016         */
2017        if (index == 0)
2018                index = DESC_INDEX;
2019        else
2020                index -= 1;
2021
2022        ring = &priv->tx_rings[index];
2023        txq = netdev_get_tx_queue(dev, ring->queue);
2024
2025        nr_frags = skb_shinfo(skb)->nr_frags;
2026
2027        spin_lock(&ring->lock);
2028        if (ring->free_bds <= (nr_frags + 1)) {
2029                if (!netif_tx_queue_stopped(txq)) {
2030                        netif_tx_stop_queue(txq);
2031                        netdev_err(dev,
2032                                   "%s: tx ring %d full when queue %d awake\n",
2033                                   __func__, index, ring->queue);
2034                }
2035                ret = NETDEV_TX_BUSY;
2036                goto out;
2037        }
2038
2039        /* Retain how many bytes will be sent on the wire, without TSB inserted
2040         * by transmit checksum offload
2041         */
2042        GENET_CB(skb)->bytes_sent = skb->len;
2043
2044        /* add the Transmit Status Block */
2045        skb = bcmgenet_add_tsb(dev, skb);
2046        if (!skb) {
2047                ret = NETDEV_TX_OK;
2048                goto out;
2049        }
2050
2051        for (i = 0; i <= nr_frags; i++) {
2052                tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2053
2054                BUG_ON(!tx_cb_ptr);
2055
2056                if (!i) {
2057                        /* Transmit single SKB or head of fragment list */
2058                        GENET_CB(skb)->first_cb = tx_cb_ptr;
2059                        size = skb_headlen(skb);
2060                        mapping = dma_map_single(kdev, skb->data, size,
2061                                                 DMA_TO_DEVICE);
2062                } else {
2063                        /* xmit fragment */
2064                        frag = &skb_shinfo(skb)->frags[i - 1];
2065                        size = skb_frag_size(frag);
2066                        mapping = skb_frag_dma_map(kdev, frag, 0, size,
2067                                                   DMA_TO_DEVICE);
2068                }
2069
2070                ret = dma_mapping_error(kdev, mapping);
2071                if (ret) {
2072                        priv->mib.tx_dma_failed++;
2073                        netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2074                        ret = NETDEV_TX_OK;
2075                        goto out_unmap_frags;
2076                }
2077                dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2078                dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2079
2080                tx_cb_ptr->skb = skb;
2081
2082                len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2083                           (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2084
2085                /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2086                 * will need to restore software padding of "runt" packets
2087                 */
2088                if (!i) {
2089                        len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2090                        if (skb->ip_summed == CHECKSUM_PARTIAL)
2091                                len_stat |= DMA_TX_DO_CSUM;
2092                }
2093                if (i == nr_frags)
2094                        len_stat |= DMA_EOP;
2095
2096                dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2097        }
2098
2099        GENET_CB(skb)->last_cb = tx_cb_ptr;
2100        skb_tx_timestamp(skb);
2101
2102        /* Decrement total BD count and advance our write pointer */
2103        ring->free_bds -= nr_frags + 1;
2104        ring->prod_index += nr_frags + 1;
2105        ring->prod_index &= DMA_P_INDEX_MASK;
2106
2107        netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2108
2109        if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2110                netif_tx_stop_queue(txq);
2111
2112        if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2113                /* Packets are ready, update producer index */
2114                bcmgenet_tdma_ring_writel(priv, ring->index,
2115                                          ring->prod_index, TDMA_PROD_INDEX);
2116out:
2117        spin_unlock(&ring->lock);
2118
2119        return ret;
2120
2121out_unmap_frags:
2122        /* Back up for failed control block mapping */
2123        bcmgenet_put_txcb(priv, ring);
2124
2125        /* Unmap successfully mapped control blocks */
2126        while (i-- > 0) {
2127                tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2128                bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2129        }
2130
2131        dev_kfree_skb(skb);
2132        goto out;
2133}
2134
2135static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2136                                          struct enet_cb *cb)
2137{
2138        struct device *kdev = &priv->pdev->dev;
2139        struct sk_buff *skb;
2140        struct sk_buff *rx_skb;
2141        dma_addr_t mapping;
2142
2143        /* Allocate a new Rx skb */
2144        skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2145                                 GFP_ATOMIC | __GFP_NOWARN);
2146        if (!skb) {
2147                priv->mib.alloc_rx_buff_failed++;
2148                netif_err(priv, rx_err, priv->dev,
2149                          "%s: Rx skb allocation failed\n", __func__);
2150                return NULL;
2151        }
2152
2153        /* DMA-map the new Rx skb */
2154        mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2155                                 DMA_FROM_DEVICE);
2156        if (dma_mapping_error(kdev, mapping)) {
2157                priv->mib.rx_dma_failed++;
2158                dev_kfree_skb_any(skb);
2159                netif_err(priv, rx_err, priv->dev,
2160                          "%s: Rx skb DMA mapping failed\n", __func__);
2161                return NULL;
2162        }
2163
2164        /* Grab the current Rx skb from the ring and DMA-unmap it */
2165        rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2166
2167        /* Put the new Rx skb on the ring */
2168        cb->skb = skb;
2169        dma_unmap_addr_set(cb, dma_addr, mapping);
2170        dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2171        dmadesc_set_addr(priv, cb->bd_addr, mapping);
2172
2173        /* Return the current Rx skb to caller */
2174        return rx_skb;
2175}
2176
2177/* bcmgenet_desc_rx - descriptor based rx process.
2178 * this could be called from bottom half, or from NAPI polling method.
2179 */
2180static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2181                                     unsigned int budget)
2182{
2183        struct bcmgenet_priv *priv = ring->priv;
2184        struct net_device *dev = priv->dev;
2185        struct enet_cb *cb;
2186        struct sk_buff *skb;
2187        u32 dma_length_status;
2188        unsigned long dma_flag;
2189        int len;
2190        unsigned int rxpktprocessed = 0, rxpkttoprocess;
2191        unsigned int bytes_processed = 0;
2192        unsigned int p_index, mask;
2193        unsigned int discards;
2194
2195        /* Clear status before servicing to reduce spurious interrupts */
2196        if (ring->index == DESC_INDEX) {
2197                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2198                                         INTRL2_CPU_CLEAR);
2199        } else {
2200                mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2201                bcmgenet_intrl2_1_writel(priv,
2202                                         mask,
2203                                         INTRL2_CPU_CLEAR);
2204        }
2205
2206        p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2207
2208        discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2209                   DMA_P_INDEX_DISCARD_CNT_MASK;
2210        if (discards > ring->old_discards) {
2211                discards = discards - ring->old_discards;
2212                ring->errors += discards;
2213                ring->old_discards += discards;
2214
2215                /* Clear HW register when we reach 75% of maximum 0xFFFF */
2216                if (ring->old_discards >= 0xC000) {
2217                        ring->old_discards = 0;
2218                        bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2219                                                  RDMA_PROD_INDEX);
2220                }
2221        }
2222
2223        p_index &= DMA_P_INDEX_MASK;
2224        rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2225
2226        netif_dbg(priv, rx_status, dev,
2227                  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2228
2229        while ((rxpktprocessed < rxpkttoprocess) &&
2230               (rxpktprocessed < budget)) {
2231                struct status_64 *status;
2232                __be16 rx_csum;
2233
2234                cb = &priv->rx_cbs[ring->read_ptr];
2235                skb = bcmgenet_rx_refill(priv, cb);
2236
2237                if (unlikely(!skb)) {
2238                        ring->dropped++;
2239                        goto next;
2240                }
2241
2242                status = (struct status_64 *)skb->data;
2243                dma_length_status = status->length_status;
2244                if (dev->features & NETIF_F_RXCSUM) {
2245                        rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2246                        skb->csum = (__force __wsum)ntohs(rx_csum);
2247                        skb->ip_summed = CHECKSUM_COMPLETE;
2248                }
2249
2250                /* DMA flags and length are still valid no matter how
2251                 * we got the Receive Status Vector (64B RSB or register)
2252                 */
2253                dma_flag = dma_length_status & 0xffff;
2254                len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2255
2256                netif_dbg(priv, rx_status, dev,
2257                          "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2258                          __func__, p_index, ring->c_index,
2259                          ring->read_ptr, dma_length_status);
2260
2261                if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2262                        netif_err(priv, rx_status, dev,
2263                                  "dropping fragmented packet!\n");
2264                        ring->errors++;
2265                        dev_kfree_skb_any(skb);
2266                        goto next;
2267                }
2268
2269                /* report errors */
2270                if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2271                                                DMA_RX_OV |
2272                                                DMA_RX_NO |
2273                                                DMA_RX_LG |
2274                                                DMA_RX_RXER))) {
2275                        netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2276                                  (unsigned int)dma_flag);
2277                        if (dma_flag & DMA_RX_CRC_ERROR)
2278                                dev->stats.rx_crc_errors++;
2279                        if (dma_flag & DMA_RX_OV)
2280                                dev->stats.rx_over_errors++;
2281                        if (dma_flag & DMA_RX_NO)
2282                                dev->stats.rx_frame_errors++;
2283                        if (dma_flag & DMA_RX_LG)
2284                                dev->stats.rx_length_errors++;
2285                        dev->stats.rx_errors++;
2286                        dev_kfree_skb_any(skb);
2287                        goto next;
2288                } /* error packet */
2289
2290                skb_put(skb, len);
2291
2292                /* remove RSB and hardware 2bytes added for IP alignment */
2293                skb_pull(skb, 66);
2294                len -= 66;
2295
2296                if (priv->crc_fwd_en) {
2297                        skb_trim(skb, len - ETH_FCS_LEN);
2298                        len -= ETH_FCS_LEN;
2299                }
2300
2301                bytes_processed += len;
2302
2303                /*Finish setting up the received SKB and send it to the kernel*/
2304                skb->protocol = eth_type_trans(skb, priv->dev);
2305                ring->packets++;
2306                ring->bytes += len;
2307                if (dma_flag & DMA_RX_MULT)
2308                        dev->stats.multicast++;
2309
2310                /* Notify kernel */
2311                napi_gro_receive(&ring->napi, skb);
2312                netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2313
2314next:
2315                rxpktprocessed++;
2316                if (likely(ring->read_ptr < ring->end_ptr))
2317                        ring->read_ptr++;
2318                else
2319                        ring->read_ptr = ring->cb_ptr;
2320
2321                ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2322                bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2323        }
2324
2325        ring->dim.bytes = bytes_processed;
2326        ring->dim.packets = rxpktprocessed;
2327
2328        return rxpktprocessed;
2329}
2330
2331/* Rx NAPI polling method */
2332static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2333{
2334        struct bcmgenet_rx_ring *ring = container_of(napi,
2335                        struct bcmgenet_rx_ring, napi);
2336        struct dim_sample dim_sample = {};
2337        unsigned int work_done;
2338
2339        work_done = bcmgenet_desc_rx(ring, budget);
2340
2341        if (work_done < budget) {
2342                napi_complete_done(napi, work_done);
2343                ring->int_enable(ring);
2344        }
2345
2346        if (ring->dim.use_dim) {
2347                dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2348                                  ring->dim.bytes, &dim_sample);
2349                net_dim(&ring->dim.dim, dim_sample);
2350        }
2351
2352        return work_done;
2353}
2354
2355static void bcmgenet_dim_work(struct work_struct *work)
2356{
2357        struct dim *dim = container_of(work, struct dim, work);
2358        struct bcmgenet_net_dim *ndim =
2359                        container_of(dim, struct bcmgenet_net_dim, dim);
2360        struct bcmgenet_rx_ring *ring =
2361                        container_of(ndim, struct bcmgenet_rx_ring, dim);
2362        struct dim_cq_moder cur_profile =
2363                        net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2364
2365        bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2366        dim->state = DIM_START_MEASURE;
2367}
2368
2369/* Assign skb to RX DMA descriptor. */
2370static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2371                                     struct bcmgenet_rx_ring *ring)
2372{
2373        struct enet_cb *cb;
2374        struct sk_buff *skb;
2375        int i;
2376
2377        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2378
2379        /* loop here for each buffer needing assign */
2380        for (i = 0; i < ring->size; i++) {
2381                cb = ring->cbs + i;
2382                skb = bcmgenet_rx_refill(priv, cb);
2383                if (skb)
2384                        dev_consume_skb_any(skb);
2385                if (!cb->skb)
2386                        return -ENOMEM;
2387        }
2388
2389        return 0;
2390}
2391
2392static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2393{
2394        struct sk_buff *skb;
2395        struct enet_cb *cb;
2396        int i;
2397
2398        for (i = 0; i < priv->num_rx_bds; i++) {
2399                cb = &priv->rx_cbs[i];
2400
2401                skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2402                if (skb)
2403                        dev_consume_skb_any(skb);
2404        }
2405}
2406
2407static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2408{
2409        u32 reg;
2410
2411        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2412        if (reg & CMD_SW_RESET)
2413                return;
2414        if (enable)
2415                reg |= mask;
2416        else
2417                reg &= ~mask;
2418        bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2419
2420        /* UniMAC stops on a packet boundary, wait for a full-size packet
2421         * to be processed
2422         */
2423        if (enable == 0)
2424                usleep_range(1000, 2000);
2425}
2426
2427static void reset_umac(struct bcmgenet_priv *priv)
2428{
2429        /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2430        bcmgenet_rbuf_ctrl_set(priv, 0);
2431        udelay(10);
2432
2433        /* issue soft reset and disable MAC while updating its registers */
2434        bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2435        udelay(2);
2436}
2437
2438static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2439{
2440        /* Mask all interrupts.*/
2441        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2442        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2443        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2444        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2445}
2446
2447static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2448{
2449        u32 int0_enable = 0;
2450
2451        /* Monitor cable plug/unplugged event for internal PHY, external PHY
2452         * and MoCA PHY
2453         */
2454        if (priv->internal_phy) {
2455                int0_enable |= UMAC_IRQ_LINK_EVENT;
2456                if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2457                        int0_enable |= UMAC_IRQ_PHY_DET_R;
2458        } else if (priv->ext_phy) {
2459                int0_enable |= UMAC_IRQ_LINK_EVENT;
2460        } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2461                if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2462                        int0_enable |= UMAC_IRQ_LINK_EVENT;
2463        }
2464        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2465}
2466
2467static void init_umac(struct bcmgenet_priv *priv)
2468{
2469        struct device *kdev = &priv->pdev->dev;
2470        u32 reg;
2471        u32 int0_enable = 0;
2472
2473        dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2474
2475        reset_umac(priv);
2476
2477        /* clear tx/rx counter */
2478        bcmgenet_umac_writel(priv,
2479                             MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2480                             UMAC_MIB_CTRL);
2481        bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2482
2483        bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2484
2485        /* init tx registers, enable TSB */
2486        reg = bcmgenet_tbuf_ctrl_get(priv);
2487        reg |= TBUF_64B_EN;
2488        bcmgenet_tbuf_ctrl_set(priv, reg);
2489
2490        /* init rx registers, enable ip header optimization and RSB */
2491        reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2492        reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2493        bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2494
2495        /* enable rx checksumming */
2496        reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2497        reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2498        /* If UniMAC forwards CRC, we need to skip over it to get
2499         * a valid CHK bit to be set in the per-packet status word
2500         */
2501        if (priv->crc_fwd_en)
2502                reg |= RBUF_SKIP_FCS;
2503        else
2504                reg &= ~RBUF_SKIP_FCS;
2505        bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2506
2507        if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2508                bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2509
2510        bcmgenet_intr_disable(priv);
2511
2512        /* Configure backpressure vectors for MoCA */
2513        if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514                reg = bcmgenet_bp_mc_get(priv);
2515                reg |= BIT(priv->hw_params->bp_in_en_shift);
2516
2517                /* bp_mask: back pressure mask */
2518                if (netif_is_multiqueue(priv->dev))
2519                        reg |= priv->hw_params->bp_in_mask;
2520                else
2521                        reg &= ~priv->hw_params->bp_in_mask;
2522                bcmgenet_bp_mc_set(priv, reg);
2523        }
2524
2525        /* Enable MDIO interrupts on GENET v3+ */
2526        if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2527                int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2528
2529        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2530
2531        dev_dbg(kdev, "done init umac\n");
2532}
2533
2534static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2535                              void (*cb)(struct work_struct *work))
2536{
2537        struct bcmgenet_net_dim *dim = &ring->dim;
2538
2539        INIT_WORK(&dim->dim.work, cb);
2540        dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2541        dim->event_ctr = 0;
2542        dim->packets = 0;
2543        dim->bytes = 0;
2544}
2545
2546static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2547{
2548        struct bcmgenet_net_dim *dim = &ring->dim;
2549        struct dim_cq_moder moder;
2550        u32 usecs, pkts;
2551
2552        usecs = ring->rx_coalesce_usecs;
2553        pkts = ring->rx_max_coalesced_frames;
2554
2555        /* If DIM was enabled, re-apply default parameters */
2556        if (dim->use_dim) {
2557                moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2558                usecs = moder.usec;
2559                pkts = moder.pkts;
2560        }
2561
2562        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2563}
2564
2565/* Initialize a Tx ring along with corresponding hardware registers */
2566static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2567                                  unsigned int index, unsigned int size,
2568                                  unsigned int start_ptr, unsigned int end_ptr)
2569{
2570        struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2571        u32 words_per_bd = WORDS_PER_BD(priv);
2572        u32 flow_period_val = 0;
2573
2574        spin_lock_init(&ring->lock);
2575        ring->priv = priv;
2576        ring->index = index;
2577        if (index == DESC_INDEX) {
2578                ring->queue = 0;
2579                ring->int_enable = bcmgenet_tx_ring16_int_enable;
2580                ring->int_disable = bcmgenet_tx_ring16_int_disable;
2581        } else {
2582                ring->queue = index + 1;
2583                ring->int_enable = bcmgenet_tx_ring_int_enable;
2584                ring->int_disable = bcmgenet_tx_ring_int_disable;
2585        }
2586        ring->cbs = priv->tx_cbs + start_ptr;
2587        ring->size = size;
2588        ring->clean_ptr = start_ptr;
2589        ring->c_index = 0;
2590        ring->free_bds = size;
2591        ring->write_ptr = start_ptr;
2592        ring->cb_ptr = start_ptr;
2593        ring->end_ptr = end_ptr - 1;
2594        ring->prod_index = 0;
2595
2596        /* Set flow period for ring != 16 */
2597        if (index != DESC_INDEX)
2598                flow_period_val = ENET_MAX_MTU_SIZE << 16;
2599
2600        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2601        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2602        bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2603        /* Disable rate control for now */
2604        bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2605                                  TDMA_FLOW_PERIOD);
2606        bcmgenet_tdma_ring_writel(priv, index,
2607                                  ((size << DMA_RING_SIZE_SHIFT) |
2608                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2609
2610        /* Set start and end address, read and write pointers */
2611        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612                                  DMA_START_ADDR);
2613        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2614                                  TDMA_READ_PTR);
2615        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2616                                  TDMA_WRITE_PTR);
2617        bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2618                                  DMA_END_ADDR);
2619
2620        /* Initialize Tx NAPI */
2621        netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2622                          NAPI_POLL_WEIGHT);
2623}
2624
2625/* Initialize a RDMA ring */
2626static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2627                                 unsigned int index, unsigned int size,
2628                                 unsigned int start_ptr, unsigned int end_ptr)
2629{
2630        struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2631        u32 words_per_bd = WORDS_PER_BD(priv);
2632        int ret;
2633
2634        ring->priv = priv;
2635        ring->index = index;
2636        if (index == DESC_INDEX) {
2637                ring->int_enable = bcmgenet_rx_ring16_int_enable;
2638                ring->int_disable = bcmgenet_rx_ring16_int_disable;
2639        } else {
2640                ring->int_enable = bcmgenet_rx_ring_int_enable;
2641                ring->int_disable = bcmgenet_rx_ring_int_disable;
2642        }
2643        ring->cbs = priv->rx_cbs + start_ptr;
2644        ring->size = size;
2645        ring->c_index = 0;
2646        ring->read_ptr = start_ptr;
2647        ring->cb_ptr = start_ptr;
2648        ring->end_ptr = end_ptr - 1;
2649
2650        ret = bcmgenet_alloc_rx_buffers(priv, ring);
2651        if (ret)
2652                return ret;
2653
2654        bcmgenet_init_dim(ring, bcmgenet_dim_work);
2655        bcmgenet_init_rx_coalesce(ring);
2656
2657        /* Initialize Rx NAPI */
2658        netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2659                       NAPI_POLL_WEIGHT);
2660
2661        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2662        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2663        bcmgenet_rdma_ring_writel(priv, index,
2664                                  ((size << DMA_RING_SIZE_SHIFT) |
2665                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2666        bcmgenet_rdma_ring_writel(priv, index,
2667                                  (DMA_FC_THRESH_LO <<
2668                                   DMA_XOFF_THRESHOLD_SHIFT) |
2669                                   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2670
2671        /* Set start and end address, read and write pointers */
2672        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673                                  DMA_START_ADDR);
2674        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675                                  RDMA_READ_PTR);
2676        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677                                  RDMA_WRITE_PTR);
2678        bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679                                  DMA_END_ADDR);
2680
2681        return ret;
2682}
2683
2684static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2685{
2686        unsigned int i;
2687        struct bcmgenet_tx_ring *ring;
2688
2689        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2690                ring = &priv->tx_rings[i];
2691                napi_enable(&ring->napi);
2692                ring->int_enable(ring);
2693        }
2694
2695        ring = &priv->tx_rings[DESC_INDEX];
2696        napi_enable(&ring->napi);
2697        ring->int_enable(ring);
2698}
2699
2700static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2701{
2702        unsigned int i;
2703        struct bcmgenet_tx_ring *ring;
2704
2705        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2706                ring = &priv->tx_rings[i];
2707                napi_disable(&ring->napi);
2708        }
2709
2710        ring = &priv->tx_rings[DESC_INDEX];
2711        napi_disable(&ring->napi);
2712}
2713
2714static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2715{
2716        unsigned int i;
2717        struct bcmgenet_tx_ring *ring;
2718
2719        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2720                ring = &priv->tx_rings[i];
2721                netif_napi_del(&ring->napi);
2722        }
2723
2724        ring = &priv->tx_rings[DESC_INDEX];
2725        netif_napi_del(&ring->napi);
2726}
2727
2728/* Initialize Tx queues
2729 *
2730 * Queues 0-3 are priority-based, each one has 32 descriptors,
2731 * with queue 0 being the highest priority queue.
2732 *
2733 * Queue 16 is the default Tx queue with
2734 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2735 *
2736 * The transmit control block pool is then partitioned as follows:
2737 * - Tx queue 0 uses tx_cbs[0..31]
2738 * - Tx queue 1 uses tx_cbs[32..63]
2739 * - Tx queue 2 uses tx_cbs[64..95]
2740 * - Tx queue 3 uses tx_cbs[96..127]
2741 * - Tx queue 16 uses tx_cbs[128..255]
2742 */
2743static void bcmgenet_init_tx_queues(struct net_device *dev)
2744{
2745        struct bcmgenet_priv *priv = netdev_priv(dev);
2746        u32 i, dma_enable;
2747        u32 dma_ctrl, ring_cfg;
2748        u32 dma_priority[3] = {0, 0, 0};
2749
2750        dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2751        dma_enable = dma_ctrl & DMA_EN;
2752        dma_ctrl &= ~DMA_EN;
2753        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2754
2755        dma_ctrl = 0;
2756        ring_cfg = 0;
2757
2758        /* Enable strict priority arbiter mode */
2759        bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2760
2761        /* Initialize Tx priority queues */
2762        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2763                bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2764                                      i * priv->hw_params->tx_bds_per_q,
2765                                      (i + 1) * priv->hw_params->tx_bds_per_q);
2766                ring_cfg |= (1 << i);
2767                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2768                dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2769                        ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2770        }
2771
2772        /* Initialize Tx default queue 16 */
2773        bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2774                              priv->hw_params->tx_queues *
2775                              priv->hw_params->tx_bds_per_q,
2776                              TOTAL_DESC);
2777        ring_cfg |= (1 << DESC_INDEX);
2778        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2779        dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2780                ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2781                 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2782
2783        /* Set Tx queue priorities */
2784        bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2785        bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2786        bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2787
2788        /* Enable Tx queues */
2789        bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2790
2791        /* Enable Tx DMA */
2792        if (dma_enable)
2793                dma_ctrl |= DMA_EN;
2794        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2795}
2796
2797static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2798{
2799        unsigned int i;
2800        struct bcmgenet_rx_ring *ring;
2801
2802        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2803                ring = &priv->rx_rings[i];
2804                napi_enable(&ring->napi);
2805                ring->int_enable(ring);
2806        }
2807
2808        ring = &priv->rx_rings[DESC_INDEX];
2809        napi_enable(&ring->napi);
2810        ring->int_enable(ring);
2811}
2812
2813static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2814{
2815        unsigned int i;
2816        struct bcmgenet_rx_ring *ring;
2817
2818        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2819                ring = &priv->rx_rings[i];
2820                napi_disable(&ring->napi);
2821                cancel_work_sync(&ring->dim.dim.work);
2822        }
2823
2824        ring = &priv->rx_rings[DESC_INDEX];
2825        napi_disable(&ring->napi);
2826        cancel_work_sync(&ring->dim.dim.work);
2827}
2828
2829static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2830{
2831        unsigned int i;
2832        struct bcmgenet_rx_ring *ring;
2833
2834        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2835                ring = &priv->rx_rings[i];
2836                netif_napi_del(&ring->napi);
2837        }
2838
2839        ring = &priv->rx_rings[DESC_INDEX];
2840        netif_napi_del(&ring->napi);
2841}
2842
2843/* Initialize Rx queues
2844 *
2845 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2846 * used to direct traffic to these queues.
2847 *
2848 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2849 */
2850static int bcmgenet_init_rx_queues(struct net_device *dev)
2851{
2852        struct bcmgenet_priv *priv = netdev_priv(dev);
2853        u32 i;
2854        u32 dma_enable;
2855        u32 dma_ctrl;
2856        u32 ring_cfg;
2857        int ret;
2858
2859        dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2860        dma_enable = dma_ctrl & DMA_EN;
2861        dma_ctrl &= ~DMA_EN;
2862        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2863
2864        dma_ctrl = 0;
2865        ring_cfg = 0;
2866
2867        /* Initialize Rx priority queues */
2868        for (i = 0; i < priv->hw_params->rx_queues; i++) {
2869                ret = bcmgenet_init_rx_ring(priv, i,
2870                                            priv->hw_params->rx_bds_per_q,
2871                                            i * priv->hw_params->rx_bds_per_q,
2872                                            (i + 1) *
2873                                            priv->hw_params->rx_bds_per_q);
2874                if (ret)
2875                        return ret;
2876
2877                ring_cfg |= (1 << i);
2878                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2879        }
2880
2881        /* Initialize Rx default queue 16 */
2882        ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2883                                    priv->hw_params->rx_queues *
2884                                    priv->hw_params->rx_bds_per_q,
2885                                    TOTAL_DESC);
2886        if (ret)
2887                return ret;
2888
2889        ring_cfg |= (1 << DESC_INDEX);
2890        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2891
2892        /* Enable rings */
2893        bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2894
2895        /* Configure ring as descriptor ring and re-enable DMA if enabled */
2896        if (dma_enable)
2897                dma_ctrl |= DMA_EN;
2898        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2899
2900        return 0;
2901}
2902
2903static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2904{
2905        int ret = 0;
2906        int timeout = 0;
2907        u32 reg;
2908        u32 dma_ctrl;
2909        int i;
2910
2911        /* Disable TDMA to stop add more frames in TX DMA */
2912        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2913        reg &= ~DMA_EN;
2914        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2915
2916        /* Check TDMA status register to confirm TDMA is disabled */
2917        while (timeout++ < DMA_TIMEOUT_VAL) {
2918                reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2919                if (reg & DMA_DISABLED)
2920                        break;
2921
2922                udelay(1);
2923        }
2924
2925        if (timeout == DMA_TIMEOUT_VAL) {
2926                netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2927                ret = -ETIMEDOUT;
2928        }
2929
2930        /* Wait 10ms for packet drain in both tx and rx dma */
2931        usleep_range(10000, 20000);
2932
2933        /* Disable RDMA */
2934        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2935        reg &= ~DMA_EN;
2936        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2937
2938        timeout = 0;
2939        /* Check RDMA status register to confirm RDMA is disabled */
2940        while (timeout++ < DMA_TIMEOUT_VAL) {
2941                reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2942                if (reg & DMA_DISABLED)
2943                        break;
2944
2945                udelay(1);
2946        }
2947
2948        if (timeout == DMA_TIMEOUT_VAL) {
2949                netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2950                ret = -ETIMEDOUT;
2951        }
2952
2953        dma_ctrl = 0;
2954        for (i = 0; i < priv->hw_params->rx_queues; i++)
2955                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2956        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2957        reg &= ~dma_ctrl;
2958        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2959
2960        dma_ctrl = 0;
2961        for (i = 0; i < priv->hw_params->tx_queues; i++)
2962                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2963        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2964        reg &= ~dma_ctrl;
2965        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2966
2967        return ret;
2968}
2969
2970static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2971{
2972        struct netdev_queue *txq;
2973        int i;
2974
2975        bcmgenet_fini_rx_napi(priv);
2976        bcmgenet_fini_tx_napi(priv);
2977
2978        for (i = 0; i < priv->num_tx_bds; i++)
2979                dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2980                                                  priv->tx_cbs + i));
2981
2982        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2983                txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2984                netdev_tx_reset_queue(txq);
2985        }
2986
2987        txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2988        netdev_tx_reset_queue(txq);
2989
2990        bcmgenet_free_rx_buffers(priv);
2991        kfree(priv->rx_cbs);
2992        kfree(priv->tx_cbs);
2993}
2994
2995/* init_edma: Initialize DMA control register */
2996static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2997{
2998        int ret;
2999        unsigned int i;
3000        struct enet_cb *cb;
3001
3002        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3003
3004        /* Initialize common Rx ring structures */
3005        priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3006        priv->num_rx_bds = TOTAL_DESC;
3007        priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3008                               GFP_KERNEL);
3009        if (!priv->rx_cbs)
3010                return -ENOMEM;
3011
3012        for (i = 0; i < priv->num_rx_bds; i++) {
3013                cb = priv->rx_cbs + i;
3014                cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3015        }
3016
3017        /* Initialize common TX ring structures */
3018        priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3019        priv->num_tx_bds = TOTAL_DESC;
3020        priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3021                               GFP_KERNEL);
3022        if (!priv->tx_cbs) {
3023                kfree(priv->rx_cbs);
3024                return -ENOMEM;
3025        }
3026
3027        for (i = 0; i < priv->num_tx_bds; i++) {
3028                cb = priv->tx_cbs + i;
3029                cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3030        }
3031
3032        /* Init rDma */
3033        bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3034                             DMA_SCB_BURST_SIZE);
3035
3036        /* Initialize Rx queues */
3037        ret = bcmgenet_init_rx_queues(priv->dev);
3038        if (ret) {
3039                netdev_err(priv->dev, "failed to initialize Rx queues\n");
3040                bcmgenet_free_rx_buffers(priv);
3041                kfree(priv->rx_cbs);
3042                kfree(priv->tx_cbs);
3043                return ret;
3044        }
3045
3046        /* Init tDma */
3047        bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3048                             DMA_SCB_BURST_SIZE);
3049
3050        /* Initialize Tx queues */
3051        bcmgenet_init_tx_queues(priv->dev);
3052
3053        return 0;
3054}
3055
3056/* Interrupt bottom half */
3057static void bcmgenet_irq_task(struct work_struct *work)
3058{
3059        unsigned int status;
3060        struct bcmgenet_priv *priv = container_of(
3061                        work, struct bcmgenet_priv, bcmgenet_irq_work);
3062
3063        netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3064
3065        spin_lock_irq(&priv->lock);
3066        status = priv->irq0_stat;
3067        priv->irq0_stat = 0;
3068        spin_unlock_irq(&priv->lock);
3069
3070        if (status & UMAC_IRQ_PHY_DET_R &&
3071            priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3072                phy_init_hw(priv->dev->phydev);
3073                genphy_config_aneg(priv->dev->phydev);
3074        }
3075
3076        /* Link UP/DOWN event */
3077        if (status & UMAC_IRQ_LINK_EVENT)
3078                phy_mac_interrupt(priv->dev->phydev);
3079
3080}
3081
3082/* bcmgenet_isr1: handle Rx and Tx priority queues */
3083static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3084{
3085        struct bcmgenet_priv *priv = dev_id;
3086        struct bcmgenet_rx_ring *rx_ring;
3087        struct bcmgenet_tx_ring *tx_ring;
3088        unsigned int index, status;
3089
3090        /* Read irq status */
3091        status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3092                ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3093
3094        /* clear interrupts */
3095        bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3096
3097        netif_dbg(priv, intr, priv->dev,
3098                  "%s: IRQ=0x%x\n", __func__, status);
3099
3100        /* Check Rx priority queue interrupts */
3101        for (index = 0; index < priv->hw_params->rx_queues; index++) {
3102                if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3103                        continue;
3104
3105                rx_ring = &priv->rx_rings[index];
3106                rx_ring->dim.event_ctr++;
3107
3108                if (likely(napi_schedule_prep(&rx_ring->napi))) {
3109                        rx_ring->int_disable(rx_ring);
3110                        __napi_schedule_irqoff(&rx_ring->napi);
3111                }
3112        }
3113
3114        /* Check Tx priority queue interrupts */
3115        for (index = 0; index < priv->hw_params->tx_queues; index++) {
3116                if (!(status & BIT(index)))
3117                        continue;
3118
3119                tx_ring = &priv->tx_rings[index];
3120
3121                if (likely(napi_schedule_prep(&tx_ring->napi))) {
3122                        tx_ring->int_disable(tx_ring);
3123                        __napi_schedule_irqoff(&tx_ring->napi);
3124                }
3125        }
3126
3127        return IRQ_HANDLED;
3128}
3129
3130/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3131static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3132{
3133        struct bcmgenet_priv *priv = dev_id;
3134        struct bcmgenet_rx_ring *rx_ring;
3135        struct bcmgenet_tx_ring *tx_ring;
3136        unsigned int status;
3137        unsigned long flags;
3138
3139        /* Read irq status */
3140        status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3141                ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3142
3143        /* clear interrupts */
3144        bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3145
3146        netif_dbg(priv, intr, priv->dev,
3147                  "IRQ=0x%x\n", status);
3148
3149        if (status & UMAC_IRQ_RXDMA_DONE) {
3150                rx_ring = &priv->rx_rings[DESC_INDEX];
3151                rx_ring->dim.event_ctr++;
3152
3153                if (likely(napi_schedule_prep(&rx_ring->napi))) {
3154                        rx_ring->int_disable(rx_ring);
3155                        __napi_schedule_irqoff(&rx_ring->napi);
3156                }
3157        }
3158
3159        if (status & UMAC_IRQ_TXDMA_DONE) {
3160                tx_ring = &priv->tx_rings[DESC_INDEX];
3161
3162                if (likely(napi_schedule_prep(&tx_ring->napi))) {
3163                        tx_ring->int_disable(tx_ring);
3164                        __napi_schedule_irqoff(&tx_ring->napi);
3165                }
3166        }
3167
3168        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3169                status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3170                wake_up(&priv->wq);
3171        }
3172
3173        /* all other interested interrupts handled in bottom half */
3174        status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3175        if (status) {
3176                /* Save irq status for bottom-half processing. */
3177                spin_lock_irqsave(&priv->lock, flags);
3178                priv->irq0_stat |= status;
3179                spin_unlock_irqrestore(&priv->lock, flags);
3180
3181                schedule_work(&priv->bcmgenet_irq_work);
3182        }
3183
3184        return IRQ_HANDLED;
3185}
3186
3187static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3188{
3189        /* Acknowledge the interrupt */
3190        return IRQ_HANDLED;
3191}
3192
3193#ifdef CONFIG_NET_POLL_CONTROLLER
3194static void bcmgenet_poll_controller(struct net_device *dev)
3195{
3196        struct bcmgenet_priv *priv = netdev_priv(dev);
3197
3198        /* Invoke the main RX/TX interrupt handler */
3199        disable_irq(priv->irq0);
3200        bcmgenet_isr0(priv->irq0, priv);
3201        enable_irq(priv->irq0);
3202
3203        /* And the interrupt handler for RX/TX priority queues */
3204        disable_irq(priv->irq1);
3205        bcmgenet_isr1(priv->irq1, priv);
3206        enable_irq(priv->irq1);
3207}
3208#endif
3209
3210static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3211{
3212        u32 reg;
3213
3214        reg = bcmgenet_rbuf_ctrl_get(priv);
3215        reg |= BIT(1);
3216        bcmgenet_rbuf_ctrl_set(priv, reg);
3217        udelay(10);
3218
3219        reg &= ~BIT(1);
3220        bcmgenet_rbuf_ctrl_set(priv, reg);
3221        udelay(10);
3222}
3223
3224static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3225                                 unsigned char *addr)
3226{
3227        bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3228        bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3229}
3230
3231static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3232                                 unsigned char *addr)
3233{
3234        u32 addr_tmp;
3235
3236        addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3237        put_unaligned_be32(addr_tmp, &addr[0]);
3238        addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3239        put_unaligned_be16(addr_tmp, &addr[4]);
3240}
3241
3242/* Returns a reusable dma control register value */
3243static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3244{
3245        unsigned int i;
3246        u32 reg;
3247        u32 dma_ctrl;
3248
3249        /* disable DMA */
3250        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3251        for (i = 0; i < priv->hw_params->tx_queues; i++)
3252                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3253        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3254        reg &= ~dma_ctrl;
3255        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3256
3257        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3258        for (i = 0; i < priv->hw_params->rx_queues; i++)
3259                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3260        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3261        reg &= ~dma_ctrl;
3262        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3263
3264        bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3265        udelay(10);
3266        bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3267
3268        return dma_ctrl;
3269}
3270
3271static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3272{
3273        u32 reg;
3274
3275        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3276        reg |= dma_ctrl;
3277        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3278
3279        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3280        reg |= dma_ctrl;
3281        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3282}
3283
3284static void bcmgenet_netif_start(struct net_device *dev)
3285{
3286        struct bcmgenet_priv *priv = netdev_priv(dev);
3287
3288        /* Start the network engine */
3289        bcmgenet_set_rx_mode(dev);
3290        bcmgenet_enable_rx_napi(priv);
3291
3292        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3293
3294        bcmgenet_enable_tx_napi(priv);
3295
3296        /* Monitor link interrupts now */
3297        bcmgenet_link_intr_enable(priv);
3298
3299        phy_start(dev->phydev);
3300}
3301
3302static int bcmgenet_open(struct net_device *dev)
3303{
3304        struct bcmgenet_priv *priv = netdev_priv(dev);
3305        unsigned long dma_ctrl;
3306        int ret;
3307
3308        netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3309
3310        /* Turn on the clock */
3311        clk_prepare_enable(priv->clk);
3312
3313        /* If this is an internal GPHY, power it back on now, before UniMAC is
3314         * brought out of reset as absolutely no UniMAC activity is allowed
3315         */
3316        if (priv->internal_phy)
3317                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3318
3319        /* take MAC out of reset */
3320        bcmgenet_umac_reset(priv);
3321
3322        init_umac(priv);
3323
3324        /* Apply features again in case we changed them while interface was
3325         * down
3326         */
3327        bcmgenet_set_features(dev, dev->features);
3328
3329        bcmgenet_set_hw_addr(priv, dev->dev_addr);
3330
3331        /* Disable RX/TX DMA and flush TX queues */
3332        dma_ctrl = bcmgenet_dma_disable(priv);
3333
3334        /* Reinitialize TDMA and RDMA and SW housekeeping */
3335        ret = bcmgenet_init_dma(priv);
3336        if (ret) {
3337                netdev_err(dev, "failed to initialize DMA\n");
3338                goto err_clk_disable;
3339        }
3340
3341        /* Always enable ring 16 - descriptor ring */
3342        bcmgenet_enable_dma(priv, dma_ctrl);
3343
3344        /* HFB init */
3345        bcmgenet_hfb_init(priv);
3346
3347        ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3348                          dev->name, priv);
3349        if (ret < 0) {
3350                netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3351                goto err_fini_dma;
3352        }
3353
3354        ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3355                          dev->name, priv);
3356        if (ret < 0) {
3357                netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3358                goto err_irq0;
3359        }
3360
3361        ret = bcmgenet_mii_probe(dev);
3362        if (ret) {
3363                netdev_err(dev, "failed to connect to PHY\n");
3364                goto err_irq1;
3365        }
3366
3367        bcmgenet_netif_start(dev);
3368
3369        netif_tx_start_all_queues(dev);
3370
3371        return 0;
3372
3373err_irq1:
3374        free_irq(priv->irq1, priv);
3375err_irq0:
3376        free_irq(priv->irq0, priv);
3377err_fini_dma:
3378        bcmgenet_dma_teardown(priv);
3379        bcmgenet_fini_dma(priv);
3380err_clk_disable:
3381        if (priv->internal_phy)
3382                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3383        clk_disable_unprepare(priv->clk);
3384        return ret;
3385}
3386
3387static void bcmgenet_netif_stop(struct net_device *dev)
3388{
3389        struct bcmgenet_priv *priv = netdev_priv(dev);
3390
3391        bcmgenet_disable_tx_napi(priv);
3392        netif_tx_disable(dev);
3393
3394        /* Disable MAC receive */
3395        umac_enable_set(priv, CMD_RX_EN, false);
3396
3397        bcmgenet_dma_teardown(priv);
3398
3399        /* Disable MAC transmit. TX DMA disabled must be done before this */
3400        umac_enable_set(priv, CMD_TX_EN, false);
3401
3402        phy_stop(dev->phydev);
3403        bcmgenet_disable_rx_napi(priv);
3404        bcmgenet_intr_disable(priv);
3405
3406        /* Wait for pending work items to complete. Since interrupts are
3407         * disabled no new work will be scheduled.
3408         */
3409        cancel_work_sync(&priv->bcmgenet_irq_work);
3410
3411        priv->old_link = -1;
3412        priv->old_speed = -1;
3413        priv->old_duplex = -1;
3414        priv->old_pause = -1;
3415
3416        /* tx reclaim */
3417        bcmgenet_tx_reclaim_all(dev);
3418        bcmgenet_fini_dma(priv);
3419}
3420
3421static int bcmgenet_close(struct net_device *dev)
3422{
3423        struct bcmgenet_priv *priv = netdev_priv(dev);
3424        int ret = 0;
3425
3426        netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3427
3428        bcmgenet_netif_stop(dev);
3429
3430        /* Really kill the PHY state machine and disconnect from it */
3431        phy_disconnect(dev->phydev);
3432
3433        free_irq(priv->irq0, priv);
3434        free_irq(priv->irq1, priv);
3435
3436        if (priv->internal_phy)
3437                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3438
3439        clk_disable_unprepare(priv->clk);
3440
3441        return ret;
3442}
3443
3444static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3445{
3446        struct bcmgenet_priv *priv = ring->priv;
3447        u32 p_index, c_index, intsts, intmsk;
3448        struct netdev_queue *txq;
3449        unsigned int free_bds;
3450        bool txq_stopped;
3451
3452        if (!netif_msg_tx_err(priv))
3453                return;
3454
3455        txq = netdev_get_tx_queue(priv->dev, ring->queue);
3456
3457        spin_lock(&ring->lock);
3458        if (ring->index == DESC_INDEX) {
3459                intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3460                intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3461        } else {
3462                intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3463                intmsk = 1 << ring->index;
3464        }
3465        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3466        p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3467        txq_stopped = netif_tx_queue_stopped(txq);
3468        free_bds = ring->free_bds;
3469        spin_unlock(&ring->lock);
3470
3471        netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3472                  "TX queue status: %s, interrupts: %s\n"
3473                  "(sw)free_bds: %d (sw)size: %d\n"
3474                  "(sw)p_index: %d (hw)p_index: %d\n"
3475                  "(sw)c_index: %d (hw)c_index: %d\n"
3476                  "(sw)clean_p: %d (sw)write_p: %d\n"
3477                  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3478                  ring->index, ring->queue,
3479                  txq_stopped ? "stopped" : "active",
3480                  intsts & intmsk ? "enabled" : "disabled",
3481                  free_bds, ring->size,
3482                  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3483                  ring->c_index, c_index & DMA_C_INDEX_MASK,
3484                  ring->clean_ptr, ring->write_ptr,
3485                  ring->cb_ptr, ring->end_ptr);
3486}
3487
3488static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3489{
3490        struct bcmgenet_priv *priv = netdev_priv(dev);
3491        u32 int0_enable = 0;
3492        u32 int1_enable = 0;
3493        unsigned int q;
3494
3495        netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3496
3497        for (q = 0; q < priv->hw_params->tx_queues; q++)
3498                bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3499        bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3500
3501        bcmgenet_tx_reclaim_all(dev);
3502
3503        for (q = 0; q < priv->hw_params->tx_queues; q++)
3504                int1_enable |= (1 << q);
3505
3506        int0_enable = UMAC_IRQ_TXDMA_DONE;
3507
3508        /* Re-enable TX interrupts if disabled */
3509        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3510        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3511
3512        netif_trans_update(dev);
3513
3514        dev->stats.tx_errors++;
3515
3516        netif_tx_wake_all_queues(dev);
3517}
3518
3519#define MAX_MDF_FILTER  17
3520
3521static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3522                                         unsigned char *addr,
3523                                         int *i)
3524{
3525        bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3526                             UMAC_MDF_ADDR + (*i * 4));
3527        bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3528                             addr[4] << 8 | addr[5],
3529                             UMAC_MDF_ADDR + ((*i + 1) * 4));
3530        *i += 2;
3531}
3532
3533static void bcmgenet_set_rx_mode(struct net_device *dev)
3534{
3535        struct bcmgenet_priv *priv = netdev_priv(dev);
3536        struct netdev_hw_addr *ha;
3537        int i, nfilter;
3538        u32 reg;
3539
3540        netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3541
3542        /* Number of filters needed */
3543        nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3544
3545        /*
3546         * Turn on promicuous mode for three scenarios
3547         * 1. IFF_PROMISC flag is set
3548         * 2. IFF_ALLMULTI flag is set
3549         * 3. The number of filters needed exceeds the number filters
3550         *    supported by the hardware.
3551        */
3552        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3553        if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3554            (nfilter > MAX_MDF_FILTER)) {
3555                reg |= CMD_PROMISC;
3556                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3557                bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3558                return;
3559        } else {
3560                reg &= ~CMD_PROMISC;
3561                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3562        }
3563
3564        /* update MDF filter */
3565        i = 0;
3566        /* Broadcast */
3567        bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3568        /* my own address.*/
3569        bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3570
3571        /* Unicast */
3572        netdev_for_each_uc_addr(ha, dev)
3573                bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575        /* Multicast */
3576        netdev_for_each_mc_addr(ha, dev)
3577                bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3578
3579        /* Enable filters */
3580        reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3581        bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3582}
3583
3584/* Set the hardware MAC address. */
3585static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3586{
3587        struct sockaddr *addr = p;
3588
3589        /* Setting the MAC address at the hardware level is not possible
3590         * without disabling the UniMAC RX/TX enable bits.
3591         */
3592        if (netif_running(dev))
3593                return -EBUSY;
3594
3595        ether_addr_copy(dev->dev_addr, addr->sa_data);
3596
3597        return 0;
3598}
3599
3600static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3601{
3602        struct bcmgenet_priv *priv = netdev_priv(dev);
3603        unsigned long tx_bytes = 0, tx_packets = 0;
3604        unsigned long rx_bytes = 0, rx_packets = 0;
3605        unsigned long rx_errors = 0, rx_dropped = 0;
3606        struct bcmgenet_tx_ring *tx_ring;
3607        struct bcmgenet_rx_ring *rx_ring;
3608        unsigned int q;
3609
3610        for (q = 0; q < priv->hw_params->tx_queues; q++) {
3611                tx_ring = &priv->tx_rings[q];
3612                tx_bytes += tx_ring->bytes;
3613                tx_packets += tx_ring->packets;
3614        }
3615        tx_ring = &priv->tx_rings[DESC_INDEX];
3616        tx_bytes += tx_ring->bytes;
3617        tx_packets += tx_ring->packets;
3618
3619        for (q = 0; q < priv->hw_params->rx_queues; q++) {
3620                rx_ring = &priv->rx_rings[q];
3621
3622                rx_bytes += rx_ring->bytes;
3623                rx_packets += rx_ring->packets;
3624                rx_errors += rx_ring->errors;
3625                rx_dropped += rx_ring->dropped;
3626        }
3627        rx_ring = &priv->rx_rings[DESC_INDEX];
3628        rx_bytes += rx_ring->bytes;
3629        rx_packets += rx_ring->packets;
3630        rx_errors += rx_ring->errors;
3631        rx_dropped += rx_ring->dropped;
3632
3633        dev->stats.tx_bytes = tx_bytes;
3634        dev->stats.tx_packets = tx_packets;
3635        dev->stats.rx_bytes = rx_bytes;
3636        dev->stats.rx_packets = rx_packets;
3637        dev->stats.rx_errors = rx_errors;
3638        dev->stats.rx_missed_errors = rx_errors;
3639        dev->stats.rx_dropped = rx_dropped;
3640        return &dev->stats;
3641}
3642
3643static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3644{
3645        struct bcmgenet_priv *priv = netdev_priv(dev);
3646
3647        if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3648            priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3649                return -EOPNOTSUPP;
3650
3651        if (new_carrier)
3652                netif_carrier_on(dev);
3653        else
3654                netif_carrier_off(dev);
3655
3656        return 0;
3657}
3658
3659static const struct net_device_ops bcmgenet_netdev_ops = {
3660        .ndo_open               = bcmgenet_open,
3661        .ndo_stop               = bcmgenet_close,
3662        .ndo_start_xmit         = bcmgenet_xmit,
3663        .ndo_tx_timeout         = bcmgenet_timeout,
3664        .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3665        .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3666        .ndo_eth_ioctl          = phy_do_ioctl_running,
3667        .ndo_set_features       = bcmgenet_set_features,
3668#ifdef CONFIG_NET_POLL_CONTROLLER
3669        .ndo_poll_controller    = bcmgenet_poll_controller,
3670#endif
3671        .ndo_get_stats          = bcmgenet_get_stats,
3672        .ndo_change_carrier     = bcmgenet_change_carrier,
3673};
3674
3675/* Array of GENET hardware parameters/characteristics */
3676static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3677        [GENET_V1] = {
3678                .tx_queues = 0,
3679                .tx_bds_per_q = 0,
3680                .rx_queues = 0,
3681                .rx_bds_per_q = 0,
3682                .bp_in_en_shift = 16,
3683                .bp_in_mask = 0xffff,
3684                .hfb_filter_cnt = 16,
3685                .qtag_mask = 0x1F,
3686                .hfb_offset = 0x1000,
3687                .rdma_offset = 0x2000,
3688                .tdma_offset = 0x3000,
3689                .words_per_bd = 2,
3690        },
3691        [GENET_V2] = {
3692                .tx_queues = 4,
3693                .tx_bds_per_q = 32,
3694                .rx_queues = 0,
3695                .rx_bds_per_q = 0,
3696                .bp_in_en_shift = 16,
3697                .bp_in_mask = 0xffff,
3698                .hfb_filter_cnt = 16,
3699                .qtag_mask = 0x1F,
3700                .tbuf_offset = 0x0600,
3701                .hfb_offset = 0x1000,
3702                .hfb_reg_offset = 0x2000,
3703                .rdma_offset = 0x3000,
3704                .tdma_offset = 0x4000,
3705                .words_per_bd = 2,
3706                .flags = GENET_HAS_EXT,
3707        },
3708        [GENET_V3] = {
3709                .tx_queues = 4,
3710                .tx_bds_per_q = 32,
3711                .rx_queues = 0,
3712                .rx_bds_per_q = 0,
3713                .bp_in_en_shift = 17,
3714                .bp_in_mask = 0x1ffff,
3715                .hfb_filter_cnt = 48,
3716                .hfb_filter_size = 128,
3717                .qtag_mask = 0x3F,
3718                .tbuf_offset = 0x0600,
3719                .hfb_offset = 0x8000,
3720                .hfb_reg_offset = 0xfc00,
3721                .rdma_offset = 0x10000,
3722                .tdma_offset = 0x11000,
3723                .words_per_bd = 2,
3724                .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3725                         GENET_HAS_MOCA_LINK_DET,
3726        },
3727        [GENET_V4] = {
3728                .tx_queues = 4,
3729                .tx_bds_per_q = 32,
3730                .rx_queues = 0,
3731                .rx_bds_per_q = 0,
3732                .bp_in_en_shift = 17,
3733                .bp_in_mask = 0x1ffff,
3734                .hfb_filter_cnt = 48,
3735                .hfb_filter_size = 128,
3736                .qtag_mask = 0x3F,
3737                .tbuf_offset = 0x0600,
3738                .hfb_offset = 0x8000,
3739                .hfb_reg_offset = 0xfc00,
3740                .rdma_offset = 0x2000,
3741                .tdma_offset = 0x4000,
3742                .words_per_bd = 3,
3743                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3744                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3745        },
3746        [GENET_V5] = {
3747                .tx_queues = 4,
3748                .tx_bds_per_q = 32,
3749                .rx_queues = 0,
3750                .rx_bds_per_q = 0,
3751                .bp_in_en_shift = 17,
3752                .bp_in_mask = 0x1ffff,
3753                .hfb_filter_cnt = 48,
3754                .hfb_filter_size = 128,
3755                .qtag_mask = 0x3F,
3756                .tbuf_offset = 0x0600,
3757                .hfb_offset = 0x8000,
3758                .hfb_reg_offset = 0xfc00,
3759                .rdma_offset = 0x2000,
3760                .tdma_offset = 0x4000,
3761                .words_per_bd = 3,
3762                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3763                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3764        },
3765};
3766
3767/* Infer hardware parameters from the detected GENET version */
3768static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3769{
3770        struct bcmgenet_hw_params *params;
3771        u32 reg;
3772        u8 major;
3773        u16 gphy_rev;
3774
3775        if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3776                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3777                genet_dma_ring_regs = genet_dma_ring_regs_v4;
3778        } else if (GENET_IS_V3(priv)) {
3779                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3780                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3781        } else if (GENET_IS_V2(priv)) {
3782                bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3783                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3784        } else if (GENET_IS_V1(priv)) {
3785                bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3786                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3787        }
3788
3789        /* enum genet_version starts at 1 */
3790        priv->hw_params = &bcmgenet_hw_params[priv->version];
3791        params = priv->hw_params;
3792
3793        /* Read GENET HW version */
3794        reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3795        major = (reg >> 24 & 0x0f);
3796        if (major == 6)
3797                major = 5;
3798        else if (major == 5)
3799                major = 4;
3800        else if (major == 0)
3801                major = 1;
3802        if (major != priv->version) {
3803                dev_err(&priv->pdev->dev,
3804                        "GENET version mismatch, got: %d, configured for: %d\n",
3805                        major, priv->version);
3806        }
3807
3808        /* Print the GENET core version */
3809        dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3810                 major, (reg >> 16) & 0x0f, reg & 0xffff);
3811
3812        /* Store the integrated PHY revision for the MDIO probing function
3813         * to pass this information to the PHY driver. The PHY driver expects
3814         * to find the PHY major revision in bits 15:8 while the GENET register
3815         * stores that information in bits 7:0, account for that.
3816         *
3817         * On newer chips, starting with PHY revision G0, a new scheme is
3818         * deployed similar to the Starfighter 2 switch with GPHY major
3819         * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3820         * is reserved as well as special value 0x01ff, we have a small
3821         * heuristic to check for the new GPHY revision and re-arrange things
3822         * so the GPHY driver is happy.
3823         */
3824        gphy_rev = reg & 0xffff;
3825
3826        if (GENET_IS_V5(priv)) {
3827                /* The EPHY revision should come from the MDIO registers of
3828                 * the PHY not from GENET.
3829                 */
3830                if (gphy_rev != 0) {
3831                        pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3832                                gphy_rev);
3833                }
3834        /* This is reserved so should require special treatment */
3835        } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3836                pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3837                return;
3838        /* This is the good old scheme, just GPHY major, no minor nor patch */
3839        } else if ((gphy_rev & 0xf0) != 0) {
3840                priv->gphy_rev = gphy_rev << 8;
3841        /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3842        } else if ((gphy_rev & 0xff00) != 0) {
3843                priv->gphy_rev = gphy_rev;
3844        }
3845
3846#ifdef CONFIG_PHYS_ADDR_T_64BIT
3847        if (!(params->flags & GENET_HAS_40BITS))
3848                pr_warn("GENET does not support 40-bits PA\n");
3849#endif
3850
3851        pr_debug("Configuration for version: %d\n"
3852                "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3853                "BP << en: %2d, BP msk: 0x%05x\n"
3854                "HFB count: %2d, QTAQ msk: 0x%05x\n"
3855                "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3856                "RDMA: 0x%05x, TDMA: 0x%05x\n"
3857                "Words/BD: %d\n",
3858                priv->version,
3859                params->tx_queues, params->tx_bds_per_q,
3860                params->rx_queues, params->rx_bds_per_q,
3861                params->bp_in_en_shift, params->bp_in_mask,
3862                params->hfb_filter_cnt, params->qtag_mask,
3863                params->tbuf_offset, params->hfb_offset,
3864                params->hfb_reg_offset,
3865                params->rdma_offset, params->tdma_offset,
3866                params->words_per_bd);
3867}
3868
3869struct bcmgenet_plat_data {
3870        enum bcmgenet_version version;
3871        u32 dma_max_burst_length;
3872};
3873
3874static const struct bcmgenet_plat_data v1_plat_data = {
3875        .version = GENET_V1,
3876        .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3877};
3878
3879static const struct bcmgenet_plat_data v2_plat_data = {
3880        .version = GENET_V2,
3881        .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3882};
3883
3884static const struct bcmgenet_plat_data v3_plat_data = {
3885        .version = GENET_V3,
3886        .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3887};
3888
3889static const struct bcmgenet_plat_data v4_plat_data = {
3890        .version = GENET_V4,
3891        .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3892};
3893
3894static const struct bcmgenet_plat_data v5_plat_data = {
3895        .version = GENET_V5,
3896        .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3897};
3898
3899static const struct bcmgenet_plat_data bcm2711_plat_data = {
3900        .version = GENET_V5,
3901        .dma_max_burst_length = 0x08,
3902};
3903
3904static const struct of_device_id bcmgenet_match[] = {
3905        { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3906        { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3907        { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3908        { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3909        { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3910        { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3911        { },
3912};
3913MODULE_DEVICE_TABLE(of, bcmgenet_match);
3914
3915static int bcmgenet_probe(struct platform_device *pdev)
3916{
3917        struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3918        const struct bcmgenet_plat_data *pdata;
3919        struct bcmgenet_priv *priv;
3920        struct net_device *dev;
3921        unsigned int i;
3922        int err = -EIO;
3923
3924        /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3925        dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3926                                 GENET_MAX_MQ_CNT + 1);
3927        if (!dev) {
3928                dev_err(&pdev->dev, "can't allocate net device\n");
3929                return -ENOMEM;
3930        }
3931
3932        priv = netdev_priv(dev);
3933        priv->irq0 = platform_get_irq(pdev, 0);
3934        if (priv->irq0 < 0) {
3935                err = priv->irq0;
3936                goto err;
3937        }
3938        priv->irq1 = platform_get_irq(pdev, 1);
3939        if (priv->irq1 < 0) {
3940                err = priv->irq1;
3941                goto err;
3942        }
3943        priv->wol_irq = platform_get_irq_optional(pdev, 2);
3944
3945        priv->base = devm_platform_ioremap_resource(pdev, 0);
3946        if (IS_ERR(priv->base)) {
3947                err = PTR_ERR(priv->base);
3948                goto err;
3949        }
3950
3951        spin_lock_init(&priv->lock);
3952
3953        SET_NETDEV_DEV(dev, &pdev->dev);
3954        dev_set_drvdata(&pdev->dev, dev);
3955        dev->watchdog_timeo = 2 * HZ;
3956        dev->ethtool_ops = &bcmgenet_ethtool_ops;
3957        dev->netdev_ops = &bcmgenet_netdev_ops;
3958
3959        priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3960
3961        /* Set default features */
3962        dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3963                         NETIF_F_RXCSUM;
3964        dev->hw_features |= dev->features;
3965        dev->vlan_features |= dev->features;
3966
3967        /* Request the WOL interrupt and advertise suspend if available */
3968        priv->wol_irq_disabled = true;
3969        err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3970                               dev->name, priv);
3971        if (!err)
3972                device_set_wakeup_capable(&pdev->dev, 1);
3973
3974        /* Set the needed headroom to account for any possible
3975         * features enabling/disabling at runtime
3976         */
3977        dev->needed_headroom += 64;
3978
3979        priv->dev = dev;
3980        priv->pdev = pdev;
3981
3982        pdata = device_get_match_data(&pdev->dev);
3983        if (pdata) {
3984                priv->version = pdata->version;
3985                priv->dma_max_burst_length = pdata->dma_max_burst_length;
3986        } else {
3987                priv->version = pd->genet_version;
3988                priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3989        }
3990
3991        priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3992        if (IS_ERR(priv->clk)) {
3993                dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3994                err = PTR_ERR(priv->clk);
3995                goto err;
3996        }
3997
3998        err = clk_prepare_enable(priv->clk);
3999        if (err)
4000                goto err;
4001
4002        bcmgenet_set_hw_params(priv);
4003
4004        err = -EIO;
4005        if (priv->hw_params->flags & GENET_HAS_40BITS)
4006                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4007        if (err)
4008                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4009        if (err)
4010                goto err_clk_disable;
4011
4012        /* Mii wait queue */
4013        init_waitqueue_head(&priv->wq);
4014        /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4015        priv->rx_buf_len = RX_BUF_LENGTH;
4016        INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4017
4018        priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4019        if (IS_ERR(priv->clk_wol)) {
4020                dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4021                err = PTR_ERR(priv->clk_wol);
4022                goto err_clk_disable;
4023        }
4024
4025        priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4026        if (IS_ERR(priv->clk_eee)) {
4027                dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4028                err = PTR_ERR(priv->clk_eee);
4029                goto err_clk_disable;
4030        }
4031
4032        /* If this is an internal GPHY, power it on now, before UniMAC is
4033         * brought out of reset as absolutely no UniMAC activity is allowed
4034         */
4035        if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4036                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4037
4038        if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4039                ether_addr_copy(dev->dev_addr, pd->mac_address);
4040        else
4041                if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4042                        if (has_acpi_companion(&pdev->dev))
4043                                bcmgenet_get_hw_addr(priv, dev->dev_addr);
4044
4045        if (!is_valid_ether_addr(dev->dev_addr)) {
4046                dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4047                eth_hw_addr_random(dev);
4048        }
4049
4050        reset_umac(priv);
4051
4052        err = bcmgenet_mii_init(dev);
4053        if (err)
4054                goto err_clk_disable;
4055
4056        /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4057         * just the ring 16 descriptor based TX
4058         */
4059        netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4060        netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4061
4062        /* Set default coalescing parameters */
4063        for (i = 0; i < priv->hw_params->rx_queues; i++)
4064                priv->rx_rings[i].rx_max_coalesced_frames = 1;
4065        priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4066
4067        /* libphy will determine the link state */
4068        netif_carrier_off(dev);
4069
4070        /* Turn off the main clock, WOL clock is handled separately */
4071        clk_disable_unprepare(priv->clk);
4072
4073        err = register_netdev(dev);
4074        if (err) {
4075                bcmgenet_mii_exit(dev);
4076                goto err;
4077        }
4078
4079        return err;
4080
4081err_clk_disable:
4082        clk_disable_unprepare(priv->clk);
4083err:
4084        free_netdev(dev);
4085        return err;
4086}
4087
4088static int bcmgenet_remove(struct platform_device *pdev)
4089{
4090        struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4091
4092        dev_set_drvdata(&pdev->dev, NULL);
4093        unregister_netdev(priv->dev);
4094        bcmgenet_mii_exit(priv->dev);
4095        free_netdev(priv->dev);
4096
4097        return 0;
4098}
4099
4100static void bcmgenet_shutdown(struct platform_device *pdev)
4101{
4102        bcmgenet_remove(pdev);
4103}
4104
4105#ifdef CONFIG_PM_SLEEP
4106static int bcmgenet_resume_noirq(struct device *d)
4107{
4108        struct net_device *dev = dev_get_drvdata(d);
4109        struct bcmgenet_priv *priv = netdev_priv(dev);
4110        int ret;
4111        u32 reg;
4112
4113        if (!netif_running(dev))
4114                return 0;
4115
4116        /* Turn on the clock */
4117        ret = clk_prepare_enable(priv->clk);
4118        if (ret)
4119                return ret;
4120
4121        if (device_may_wakeup(d) && priv->wolopts) {
4122                /* Account for Wake-on-LAN events and clear those events
4123                 * (Some devices need more time between enabling the clocks
4124                 *  and the interrupt register reflecting the wake event so
4125                 *  read the register twice)
4126                 */
4127                reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4128                reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4129                if (reg & UMAC_IRQ_WAKE_EVENT)
4130                        pm_wakeup_event(&priv->pdev->dev, 0);
4131        }
4132
4133        bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4134
4135        return 0;
4136}
4137
4138static int bcmgenet_resume(struct device *d)
4139{
4140        struct net_device *dev = dev_get_drvdata(d);
4141        struct bcmgenet_priv *priv = netdev_priv(dev);
4142        struct bcmgenet_rxnfc_rule *rule;
4143        unsigned long dma_ctrl;
4144        int ret;
4145
4146        if (!netif_running(dev))
4147                return 0;
4148
4149        /* From WOL-enabled suspend, switch to regular clock */
4150        if (device_may_wakeup(d) && priv->wolopts)
4151                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4152
4153        /* If this is an internal GPHY, power it back on now, before UniMAC is
4154         * brought out of reset as absolutely no UniMAC activity is allowed
4155         */
4156        if (priv->internal_phy)
4157                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4158
4159        bcmgenet_umac_reset(priv);
4160
4161        init_umac(priv);
4162
4163        phy_init_hw(dev->phydev);
4164
4165        /* Speed settings must be restored */
4166        genphy_config_aneg(dev->phydev);
4167        bcmgenet_mii_config(priv->dev, false);
4168
4169        /* Restore enabled features */
4170        bcmgenet_set_features(dev, dev->features);
4171
4172        bcmgenet_set_hw_addr(priv, dev->dev_addr);
4173
4174        /* Restore hardware filters */
4175        bcmgenet_hfb_clear(priv);
4176        list_for_each_entry(rule, &priv->rxnfc_list, list)
4177                if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4178                        bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4179
4180        /* Disable RX/TX DMA and flush TX queues */
4181        dma_ctrl = bcmgenet_dma_disable(priv);
4182
4183        /* Reinitialize TDMA and RDMA and SW housekeeping */
4184        ret = bcmgenet_init_dma(priv);
4185        if (ret) {
4186                netdev_err(dev, "failed to initialize DMA\n");
4187                goto out_clk_disable;
4188        }
4189
4190        /* Always enable ring 16 - descriptor ring */
4191        bcmgenet_enable_dma(priv, dma_ctrl);
4192
4193        if (!device_may_wakeup(d))
4194                phy_resume(dev->phydev);
4195
4196        if (priv->eee.eee_enabled)
4197                bcmgenet_eee_enable_set(dev, true);
4198
4199        bcmgenet_netif_start(dev);
4200
4201        netif_device_attach(dev);
4202
4203        return 0;
4204
4205out_clk_disable:
4206        if (priv->internal_phy)
4207                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4208        clk_disable_unprepare(priv->clk);
4209        return ret;
4210}
4211
4212static int bcmgenet_suspend(struct device *d)
4213{
4214        struct net_device *dev = dev_get_drvdata(d);
4215        struct bcmgenet_priv *priv = netdev_priv(dev);
4216
4217        if (!netif_running(dev))
4218                return 0;
4219
4220        netif_device_detach(dev);
4221
4222        bcmgenet_netif_stop(dev);
4223
4224        if (!device_may_wakeup(d))
4225                phy_suspend(dev->phydev);
4226
4227        /* Disable filtering */
4228        bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4229
4230        return 0;
4231}
4232
4233static int bcmgenet_suspend_noirq(struct device *d)
4234{
4235        struct net_device *dev = dev_get_drvdata(d);
4236        struct bcmgenet_priv *priv = netdev_priv(dev);
4237        int ret = 0;
4238
4239        if (!netif_running(dev))
4240                return 0;
4241
4242        /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4243        if (device_may_wakeup(d) && priv->wolopts)
4244                ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4245        else if (priv->internal_phy)
4246                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4247
4248        /* Let the framework handle resumption and leave the clocks on */
4249        if (ret)
4250                return ret;
4251
4252        /* Turn off the clocks */
4253        clk_disable_unprepare(priv->clk);
4254
4255        return 0;
4256}
4257#else
4258#define bcmgenet_suspend        NULL
4259#define bcmgenet_suspend_noirq  NULL
4260#define bcmgenet_resume         NULL
4261#define bcmgenet_resume_noirq   NULL
4262#endif /* CONFIG_PM_SLEEP */
4263
4264static const struct dev_pm_ops bcmgenet_pm_ops = {
4265        .suspend        = bcmgenet_suspend,
4266        .suspend_noirq  = bcmgenet_suspend_noirq,
4267        .resume         = bcmgenet_resume,
4268        .resume_noirq   = bcmgenet_resume_noirq,
4269};
4270
4271static const struct acpi_device_id genet_acpi_match[] = {
4272        { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4273        { },
4274};
4275MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4276
4277static struct platform_driver bcmgenet_driver = {
4278        .probe  = bcmgenet_probe,
4279        .remove = bcmgenet_remove,
4280        .shutdown = bcmgenet_shutdown,
4281        .driver = {
4282                .name   = "bcmgenet",
4283                .of_match_table = bcmgenet_match,
4284                .pm     = &bcmgenet_pm_ops,
4285                .acpi_match_table = genet_acpi_match,
4286        },
4287};
4288module_platform_driver(bcmgenet_driver);
4289
4290MODULE_AUTHOR("Broadcom Corporation");
4291MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4292MODULE_ALIAS("platform:bcmgenet");
4293MODULE_LICENSE("GPL");
4294MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4295