linux/drivers/net/ethernet/broadcom/sb1250-mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   4 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   5 *
   6 * This driver is designed for the Broadcom SiByte SOC built-in
   7 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
   8 *
   9 * Updated to the driver model and the PHY abstraction layer
  10 * by Maciej W. Rozycki.
  11 */
  12
  13#include <linux/bug.h>
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/string.h>
  17#include <linux/timer.h>
  18#include <linux/errno.h>
  19#include <linux/ioport.h>
  20#include <linux/slab.h>
  21#include <linux/interrupt.h>
  22#include <linux/netdevice.h>
  23#include <linux/etherdevice.h>
  24#include <linux/skbuff.h>
  25#include <linux/bitops.h>
  26#include <linux/err.h>
  27#include <linux/ethtool.h>
  28#include <linux/mii.h>
  29#include <linux/phy.h>
  30#include <linux/platform_device.h>
  31#include <linux/prefetch.h>
  32
  33#include <asm/cache.h>
  34#include <asm/io.h>
  35#include <asm/processor.h>      /* Processor type for cache alignment. */
  36
  37/* Operational parameters that usually are not changed. */
  38
  39#define CONFIG_SBMAC_COALESCE
  40
  41/* Time in jiffies before concluding the transmitter is hung. */
  42#define TX_TIMEOUT  (2*HZ)
  43
  44
  45MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  46MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  47
  48/* A few user-configurable values which may be modified when a driver
  49   module is loaded. */
  50
  51/* 1 normal messages, 0 quiet .. 7 verbose. */
  52static int debug = 1;
  53module_param(debug, int, 0444);
  54MODULE_PARM_DESC(debug, "Debug messages");
  55
  56#ifdef CONFIG_SBMAC_COALESCE
  57static int int_pktcnt_tx = 255;
  58module_param(int_pktcnt_tx, int, 0444);
  59MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  60
  61static int int_timeout_tx = 255;
  62module_param(int_timeout_tx, int, 0444);
  63MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  64
  65static int int_pktcnt_rx = 64;
  66module_param(int_pktcnt_rx, int, 0444);
  67MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  68
  69static int int_timeout_rx = 64;
  70module_param(int_timeout_rx, int, 0444);
  71MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  72#endif
  73
  74#include <asm/sibyte/board.h>
  75#include <asm/sibyte/sb1250.h>
  76#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  77#include <asm/sibyte/bcm1480_regs.h>
  78#include <asm/sibyte/bcm1480_int.h>
  79#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  80#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  81#include <asm/sibyte/sb1250_regs.h>
  82#include <asm/sibyte/sb1250_int.h>
  83#else
  84#error invalid SiByte MAC configuration
  85#endif
  86#include <asm/sibyte/sb1250_scd.h>
  87#include <asm/sibyte/sb1250_mac.h>
  88#include <asm/sibyte/sb1250_dma.h>
  89
  90#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  91#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
  92#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  93#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
  94#else
  95#error invalid SiByte MAC configuration
  96#endif
  97
  98#ifdef K_INT_PHY
  99#define SBMAC_PHY_INT                   K_INT_PHY
 100#else
 101#define SBMAC_PHY_INT                   PHY_POLL
 102#endif
 103
 104/**********************************************************************
 105 *  Simple types
 106 ********************************************************************* */
 107
 108enum sbmac_speed {
 109        sbmac_speed_none = 0,
 110        sbmac_speed_10 = SPEED_10,
 111        sbmac_speed_100 = SPEED_100,
 112        sbmac_speed_1000 = SPEED_1000,
 113};
 114
 115enum sbmac_duplex {
 116        sbmac_duplex_none = -1,
 117        sbmac_duplex_half = DUPLEX_HALF,
 118        sbmac_duplex_full = DUPLEX_FULL,
 119};
 120
 121enum sbmac_fc {
 122        sbmac_fc_none,
 123        sbmac_fc_disabled,
 124        sbmac_fc_frame,
 125        sbmac_fc_collision,
 126        sbmac_fc_carrier,
 127};
 128
 129enum sbmac_state {
 130        sbmac_state_uninit,
 131        sbmac_state_off,
 132        sbmac_state_on,
 133        sbmac_state_broken,
 134};
 135
 136
 137/**********************************************************************
 138 *  Macros
 139 ********************************************************************* */
 140
 141
 142#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 143                          (d)->sbdma_dscrtable : (d)->f+1)
 144
 145
 146#define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
 147
 148#define SBMAC_MAX_TXDESCR       256
 149#define SBMAC_MAX_RXDESCR       256
 150
 151#define ENET_PACKET_SIZE        1518
 152/*#define ENET_PACKET_SIZE      9216 */
 153
 154/**********************************************************************
 155 *  DMA Descriptor structure
 156 ********************************************************************* */
 157
 158struct sbdmadscr {
 159        uint64_t  dscr_a;
 160        uint64_t  dscr_b;
 161};
 162
 163/**********************************************************************
 164 *  DMA Controller structure
 165 ********************************************************************* */
 166
 167struct sbmacdma {
 168
 169        /*
 170         * This stuff is used to identify the channel and the registers
 171         * associated with it.
 172         */
 173        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 174                                                   MAC */
 175        int                     sbdma_channel;  /* channel number */
 176        int                     sbdma_txdir;    /* direction (1=transmit) */
 177        int                     sbdma_maxdescr; /* total # of descriptors
 178                                                   in ring */
 179#ifdef CONFIG_SBMAC_COALESCE
 180        int                     sbdma_int_pktcnt;
 181                                                /* # descriptors rx/tx
 182                                                   before interrupt */
 183        int                     sbdma_int_timeout;
 184                                                /* # usec rx/tx interrupt */
 185#endif
 186        void __iomem            *sbdma_config0; /* DMA config register 0 */
 187        void __iomem            *sbdma_config1; /* DMA config register 1 */
 188        void __iomem            *sbdma_dscrbase;
 189                                                /* descriptor base address */
 190        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 191        void __iomem            *sbdma_curdscr; /* current descriptor
 192                                                   address */
 193        void __iomem            *sbdma_oodpktlost;
 194                                                /* pkt drop (rx only) */
 195
 196        /*
 197         * This stuff is for maintenance of the ring
 198         */
 199        void                    *sbdma_dscrtable_unaligned;
 200        struct sbdmadscr        *sbdma_dscrtable;
 201                                                /* base of descriptor table */
 202        struct sbdmadscr        *sbdma_dscrtable_end;
 203                                                /* end of descriptor table */
 204        struct sk_buff          **sbdma_ctxtable;
 205                                                /* context table, one
 206                                                   per descr */
 207        dma_addr_t              sbdma_dscrtable_phys;
 208                                                /* and also the phys addr */
 209        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 210        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 211                                                   to remove */
 212};
 213
 214
 215/**********************************************************************
 216 *  Ethernet softc structure
 217 ********************************************************************* */
 218
 219struct sbmac_softc {
 220
 221        /*
 222         * Linux-specific things
 223         */
 224        struct net_device       *sbm_dev;       /* pointer to linux device */
 225        struct napi_struct      napi;
 226        struct phy_device       *phy_dev;       /* the associated PHY device */
 227        struct mii_bus          *mii_bus;       /* the MII bus */
 228        spinlock_t              sbm_lock;       /* spin lock */
 229        int                     sbm_devflags;   /* current device flags */
 230
 231        /*
 232         * Controller-specific things
 233         */
 234        void __iomem            *sbm_base;      /* MAC's base address */
 235        enum sbmac_state        sbm_state;      /* current state */
 236
 237        void __iomem            *sbm_macenable; /* MAC Enable Register */
 238        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 239        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 240        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 241        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 242        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 243        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 244        void __iomem            *sbm_mdio;      /* MDIO Register */
 245
 246        enum sbmac_speed        sbm_speed;      /* current speed */
 247        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 248        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 249        int                     sbm_pause;      /* current pause setting */
 250        int                     sbm_link;       /* current link state */
 251
 252        unsigned char           sbm_hwaddr[ETH_ALEN];
 253
 254        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 255        struct sbmacdma         sbm_rxdma;
 256        int                     rx_hw_checksum;
 257        int                     sbe_idx;
 258};
 259
 260
 261/**********************************************************************
 262 *  Externs
 263 ********************************************************************* */
 264
 265/**********************************************************************
 266 *  Prototypes
 267 ********************************************************************* */
 268
 269static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 270                          int txrx, int maxdescr);
 271static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 272static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 273                               struct sk_buff *m);
 274static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 275static void sbdma_emptyring(struct sbmacdma *d);
 276static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 277static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 278                            int work_to_do, int poll);
 279static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 280                             int poll);
 281static int sbmac_initctx(struct sbmac_softc *s);
 282static void sbmac_channel_start(struct sbmac_softc *s);
 283static void sbmac_channel_stop(struct sbmac_softc *s);
 284static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 285                                                enum sbmac_state);
 286static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 287static uint64_t sbmac_addr2reg(unsigned char *ptr);
 288static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 289static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 290static void sbmac_setmulti(struct sbmac_softc *sc);
 291static int sbmac_init(struct platform_device *pldev, long long base);
 292static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 293static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 294                            enum sbmac_fc fc);
 295
 296static int sbmac_open(struct net_device *dev);
 297static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue);
 298static void sbmac_set_rx_mode(struct net_device *dev);
 299static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 300static int sbmac_close(struct net_device *dev);
 301static int sbmac_poll(struct napi_struct *napi, int budget);
 302
 303static void sbmac_mii_poll(struct net_device *dev);
 304static int sbmac_mii_probe(struct net_device *dev);
 305
 306static void sbmac_mii_sync(void __iomem *sbm_mdio);
 307static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 308                               int bitcnt);
 309static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 310static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 311                           u16 val);
 312
 313
 314/**********************************************************************
 315 *  Globals
 316 ********************************************************************* */
 317
 318static char sbmac_string[] = "sb1250-mac";
 319
 320static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 321
 322
 323/**********************************************************************
 324 *  MDIO constants
 325 ********************************************************************* */
 326
 327#define MII_COMMAND_START       0x01
 328#define MII_COMMAND_READ        0x02
 329#define MII_COMMAND_WRITE       0x01
 330#define MII_COMMAND_ACK         0x02
 331
 332#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 333
 334#define ENABLE          1
 335#define DISABLE         0
 336
 337/**********************************************************************
 338 *  SBMAC_MII_SYNC(sbm_mdio)
 339 *
 340 *  Synchronize with the MII - send a pattern of bits to the MII
 341 *  that will guarantee that it is ready to accept a command.
 342 *
 343 *  Input parameters:
 344 *         sbm_mdio - address of the MAC's MDIO register
 345 *
 346 *  Return value:
 347 *         nothing
 348 ********************************************************************* */
 349
 350static void sbmac_mii_sync(void __iomem *sbm_mdio)
 351{
 352        int cnt;
 353        uint64_t bits;
 354        int mac_mdio_genc;
 355
 356        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 357
 358        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 359
 360        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 361
 362        for (cnt = 0; cnt < 32; cnt++) {
 363                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 364                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 365        }
 366}
 367
 368/**********************************************************************
 369 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 370 *
 371 *  Send some bits to the MII.  The bits to be sent are right-
 372 *  justified in the 'data' parameter.
 373 *
 374 *  Input parameters:
 375 *         sbm_mdio - address of the MAC's MDIO register
 376 *         data     - data to send
 377 *         bitcnt   - number of bits to send
 378 ********************************************************************* */
 379
 380static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 381                               int bitcnt)
 382{
 383        int i;
 384        uint64_t bits;
 385        unsigned int curmask;
 386        int mac_mdio_genc;
 387
 388        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 389
 390        bits = M_MAC_MDIO_DIR_OUTPUT;
 391        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 392
 393        curmask = 1 << (bitcnt - 1);
 394
 395        for (i = 0; i < bitcnt; i++) {
 396                if (data & curmask)
 397                        bits |= M_MAC_MDIO_OUT;
 398                else bits &= ~M_MAC_MDIO_OUT;
 399                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 400                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 401                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 402                curmask >>= 1;
 403        }
 404}
 405
 406
 407
 408/**********************************************************************
 409 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 410 *  Read a PHY register.
 411 *
 412 *  Input parameters:
 413 *         bus     - MDIO bus handle
 414 *         phyaddr - PHY's address
 415 *         regnum  - index of register to read
 416 *
 417 *  Return value:
 418 *         value read, or 0xffff if an error occurred.
 419 ********************************************************************* */
 420
 421static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 422{
 423        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 424        void __iomem *sbm_mdio = sc->sbm_mdio;
 425        int idx;
 426        int error;
 427        int regval;
 428        int mac_mdio_genc;
 429
 430        /*
 431         * Synchronize ourselves so that the PHY knows the next
 432         * thing coming down is a command
 433         */
 434        sbmac_mii_sync(sbm_mdio);
 435
 436        /*
 437         * Send the data to the PHY.  The sequence is
 438         * a "start" command (2 bits)
 439         * a "read" command (2 bits)
 440         * the PHY addr (5 bits)
 441         * the register index (5 bits)
 442         */
 443        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 444        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 445        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 446        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 447
 448        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 449
 450        /*
 451         * Switch the port around without a clock transition.
 452         */
 453        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 454
 455        /*
 456         * Send out a clock pulse to signal we want the status
 457         */
 458        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 459                     sbm_mdio);
 460        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 461
 462        /*
 463         * If an error occurred, the PHY will signal '1' back
 464         */
 465        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 466
 467        /*
 468         * Issue an 'idle' clock pulse, but keep the direction
 469         * the same.
 470         */
 471        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 472                     sbm_mdio);
 473        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 474
 475        regval = 0;
 476
 477        for (idx = 0; idx < 16; idx++) {
 478                regval <<= 1;
 479
 480                if (error == 0) {
 481                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 482                                regval |= 1;
 483                }
 484
 485                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 486                             sbm_mdio);
 487                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 488        }
 489
 490        /* Switch back to output */
 491        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 492
 493        if (error == 0)
 494                return regval;
 495        return 0xffff;
 496}
 497
 498
 499/**********************************************************************
 500 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 501 *
 502 *  Write a value to a PHY register.
 503 *
 504 *  Input parameters:
 505 *         bus     - MDIO bus handle
 506 *         phyaddr - PHY to use
 507 *         regidx  - register within the PHY
 508 *         regval  - data to write to register
 509 *
 510 *  Return value:
 511 *         0 for success
 512 ********************************************************************* */
 513
 514static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 515                           u16 regval)
 516{
 517        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 518        void __iomem *sbm_mdio = sc->sbm_mdio;
 519        int mac_mdio_genc;
 520
 521        sbmac_mii_sync(sbm_mdio);
 522
 523        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 524        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 525        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 526        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 527        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 528        sbmac_mii_senddata(sbm_mdio, regval, 16);
 529
 530        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 531
 532        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 533
 534        return 0;
 535}
 536
 537
 538
 539/**********************************************************************
 540 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 541 *
 542 *  Initialize a DMA channel context.  Since there are potentially
 543 *  eight DMA channels per MAC, it's nice to do this in a standard
 544 *  way.
 545 *
 546 *  Input parameters:
 547 *         d - struct sbmacdma (DMA channel context)
 548 *         s - struct sbmac_softc (pointer to a MAC)
 549 *         chan - channel number (0..1 right now)
 550 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 551 *      maxdescr - number of descriptors
 552 *
 553 *  Return value:
 554 *         nothing
 555 ********************************************************************* */
 556
 557static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 558                          int txrx, int maxdescr)
 559{
 560#ifdef CONFIG_SBMAC_COALESCE
 561        int int_pktcnt, int_timeout;
 562#endif
 563
 564        /*
 565         * Save away interesting stuff in the structure
 566         */
 567
 568        d->sbdma_eth       = s;
 569        d->sbdma_channel   = chan;
 570        d->sbdma_txdir     = txrx;
 571
 572#if 0
 573        /* RMON clearing */
 574        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 575#endif
 576
 577        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 578        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 579        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 580        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 581        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 582        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 583        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 584        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 585        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 586        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 587        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 588        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 589        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 590        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 591        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 592        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 593        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 598
 599        /*
 600         * initialize register pointers
 601         */
 602
 603        d->sbdma_config0 =
 604                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 605        d->sbdma_config1 =
 606                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 607        d->sbdma_dscrbase =
 608                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 609        d->sbdma_dscrcnt =
 610                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 611        d->sbdma_curdscr =
 612                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 613        if (d->sbdma_txdir)
 614                d->sbdma_oodpktlost = NULL;
 615        else
 616                d->sbdma_oodpktlost =
 617                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 618
 619        /*
 620         * Allocate memory for the ring
 621         */
 622
 623        d->sbdma_maxdescr = maxdescr;
 624
 625        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 626                                               sizeof(*d->sbdma_dscrtable),
 627                                               GFP_KERNEL);
 628
 629        /*
 630         * The descriptor table must be aligned to at least 16 bytes or the
 631         * MAC will corrupt it.
 632         */
 633        d->sbdma_dscrtable = (struct sbdmadscr *)
 634                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 635                                   sizeof(*d->sbdma_dscrtable));
 636
 637        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 638
 639        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 640
 641        /*
 642         * And context table
 643         */
 644
 645        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 646                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 647
 648#ifdef CONFIG_SBMAC_COALESCE
 649        /*
 650         * Setup Rx/Tx DMA coalescing defaults
 651         */
 652
 653        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 654        if ( int_pktcnt ) {
 655                d->sbdma_int_pktcnt = int_pktcnt;
 656        } else {
 657                d->sbdma_int_pktcnt = 1;
 658        }
 659
 660        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 661        if ( int_timeout ) {
 662                d->sbdma_int_timeout = int_timeout;
 663        } else {
 664                d->sbdma_int_timeout = 0;
 665        }
 666#endif
 667
 668}
 669
 670/**********************************************************************
 671 *  SBDMA_CHANNEL_START(d)
 672 *
 673 *  Initialize the hardware registers for a DMA channel.
 674 *
 675 *  Input parameters:
 676 *         d - DMA channel to init (context must be previously init'd
 677 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 678 *
 679 *  Return value:
 680 *         nothing
 681 ********************************************************************* */
 682
 683static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 684{
 685        /*
 686         * Turn on the DMA channel
 687         */
 688
 689#ifdef CONFIG_SBMAC_COALESCE
 690        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 691                       0, d->sbdma_config1);
 692        __raw_writeq(M_DMA_EOP_INT_EN |
 693                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 694                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 695                       0, d->sbdma_config0);
 696#else
 697        __raw_writeq(0, d->sbdma_config1);
 698        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 699                       0, d->sbdma_config0);
 700#endif
 701
 702        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 703
 704        /*
 705         * Initialize ring pointers
 706         */
 707
 708        d->sbdma_addptr = d->sbdma_dscrtable;
 709        d->sbdma_remptr = d->sbdma_dscrtable;
 710}
 711
 712/**********************************************************************
 713 *  SBDMA_CHANNEL_STOP(d)
 714 *
 715 *  Initialize the hardware registers for a DMA channel.
 716 *
 717 *  Input parameters:
 718 *         d - DMA channel to init (context must be previously init'd
 719 *
 720 *  Return value:
 721 *         nothing
 722 ********************************************************************* */
 723
 724static void sbdma_channel_stop(struct sbmacdma *d)
 725{
 726        /*
 727         * Turn off the DMA channel
 728         */
 729
 730        __raw_writeq(0, d->sbdma_config1);
 731
 732        __raw_writeq(0, d->sbdma_dscrbase);
 733
 734        __raw_writeq(0, d->sbdma_config0);
 735
 736        /*
 737         * Zero ring pointers
 738         */
 739
 740        d->sbdma_addptr = NULL;
 741        d->sbdma_remptr = NULL;
 742}
 743
 744static inline void sbdma_align_skb(struct sk_buff *skb,
 745                                   unsigned int power2, unsigned int offset)
 746{
 747        unsigned char *addr = skb->data;
 748        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 749
 750        skb_reserve(skb, newaddr - addr + offset);
 751}
 752
 753
 754/**********************************************************************
 755 *  SBDMA_ADD_RCVBUFFER(d,sb)
 756 *
 757 *  Add a buffer to the specified DMA channel.   For receive channels,
 758 *  this queues a buffer for inbound packets.
 759 *
 760 *  Input parameters:
 761 *         sc - softc structure
 762 *          d - DMA channel descriptor
 763 *         sb - sk_buff to add, or NULL if we should allocate one
 764 *
 765 *  Return value:
 766 *         0 if buffer could not be added (ring is full)
 767 *         1 if buffer added successfully
 768 ********************************************************************* */
 769
 770
 771static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 772                               struct sk_buff *sb)
 773{
 774        struct net_device *dev = sc->sbm_dev;
 775        struct sbdmadscr *dsc;
 776        struct sbdmadscr *nextdsc;
 777        struct sk_buff *sb_new = NULL;
 778        int pktsize = ENET_PACKET_SIZE;
 779
 780        /* get pointer to our current place in the ring */
 781
 782        dsc = d->sbdma_addptr;
 783        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 784
 785        /*
 786         * figure out if the ring is full - if the next descriptor
 787         * is the same as the one that we're going to remove from
 788         * the ring, the ring is full
 789         */
 790
 791        if (nextdsc == d->sbdma_remptr) {
 792                return -ENOSPC;
 793        }
 794
 795        /*
 796         * Allocate a sk_buff if we don't already have one.
 797         * If we do have an sk_buff, reset it so that it's empty.
 798         *
 799         * Note: sk_buffs don't seem to be guaranteed to have any sort
 800         * of alignment when they are allocated.  Therefore, allocate enough
 801         * extra space to make sure that:
 802         *
 803         *    1. the data does not start in the middle of a cache line.
 804         *    2. The data does not end in the middle of a cache line
 805         *    3. The buffer can be aligned such that the IP addresses are
 806         *       naturally aligned.
 807         *
 808         *  Remember, the SOCs MAC writes whole cache lines at a time,
 809         *  without reading the old contents first.  So, if the sk_buff's
 810         *  data portion starts in the middle of a cache line, the SOC
 811         *  DMA will trash the beginning (and ending) portions.
 812         */
 813
 814        if (sb == NULL) {
 815                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 816                                               SMP_CACHE_BYTES * 2 +
 817                                               NET_IP_ALIGN);
 818                if (sb_new == NULL)
 819                        return -ENOBUFS;
 820
 821                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 822        }
 823        else {
 824                sb_new = sb;
 825                /*
 826                 * nothing special to reinit buffer, it's already aligned
 827                 * and sb->data already points to a good place.
 828                 */
 829        }
 830
 831        /*
 832         * fill in the descriptor
 833         */
 834
 835#ifdef CONFIG_SBMAC_COALESCE
 836        /*
 837         * Do not interrupt per DMA transfer.
 838         */
 839        dsc->dscr_a = virt_to_phys(sb_new->data) |
 840                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 841#else
 842        dsc->dscr_a = virt_to_phys(sb_new->data) |
 843                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 844                M_DMA_DSCRA_INTERRUPT;
 845#endif
 846
 847        /* receiving: no options */
 848        dsc->dscr_b = 0;
 849
 850        /*
 851         * fill in the context
 852         */
 853
 854        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 855
 856        /*
 857         * point at next packet
 858         */
 859
 860        d->sbdma_addptr = nextdsc;
 861
 862        /*
 863         * Give the buffer to the DMA engine.
 864         */
 865
 866        __raw_writeq(1, d->sbdma_dscrcnt);
 867
 868        return 0;                                       /* we did it */
 869}
 870
 871/**********************************************************************
 872 *  SBDMA_ADD_TXBUFFER(d,sb)
 873 *
 874 *  Add a transmit buffer to the specified DMA channel, causing a
 875 *  transmit to start.
 876 *
 877 *  Input parameters:
 878 *         d - DMA channel descriptor
 879 *         sb - sk_buff to add
 880 *
 881 *  Return value:
 882 *         0 transmit queued successfully
 883 *         otherwise error code
 884 ********************************************************************* */
 885
 886
 887static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 888{
 889        struct sbdmadscr *dsc;
 890        struct sbdmadscr *nextdsc;
 891        uint64_t phys;
 892        uint64_t ncb;
 893        int length;
 894
 895        /* get pointer to our current place in the ring */
 896
 897        dsc = d->sbdma_addptr;
 898        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 899
 900        /*
 901         * figure out if the ring is full - if the next descriptor
 902         * is the same as the one that we're going to remove from
 903         * the ring, the ring is full
 904         */
 905
 906        if (nextdsc == d->sbdma_remptr) {
 907                return -ENOSPC;
 908        }
 909
 910        /*
 911         * Under Linux, it's not necessary to copy/coalesce buffers
 912         * like it is on NetBSD.  We think they're all contiguous,
 913         * but that may not be true for GBE.
 914         */
 915
 916        length = sb->len;
 917
 918        /*
 919         * fill in the descriptor.  Note that the number of cache
 920         * blocks in the descriptor is the number of blocks
 921         * *spanned*, so we need to add in the offset (if any)
 922         * while doing the calculation.
 923         */
 924
 925        phys = virt_to_phys(sb->data);
 926        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 927
 928        dsc->dscr_a = phys |
 929                V_DMA_DSCRA_A_SIZE(ncb) |
 930#ifndef CONFIG_SBMAC_COALESCE
 931                M_DMA_DSCRA_INTERRUPT |
 932#endif
 933                M_DMA_ETHTX_SOP;
 934
 935        /* transmitting: set outbound options and length */
 936
 937        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 938                V_DMA_DSCRB_PKT_SIZE(length);
 939
 940        /*
 941         * fill in the context
 942         */
 943
 944        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 945
 946        /*
 947         * point at next packet
 948         */
 949
 950        d->sbdma_addptr = nextdsc;
 951
 952        /*
 953         * Give the buffer to the DMA engine.
 954         */
 955
 956        __raw_writeq(1, d->sbdma_dscrcnt);
 957
 958        return 0;                                       /* we did it */
 959}
 960
 961
 962
 963
 964/**********************************************************************
 965 *  SBDMA_EMPTYRING(d)
 966 *
 967 *  Free all allocated sk_buffs on the specified DMA channel;
 968 *
 969 *  Input parameters:
 970 *         d  - DMA channel
 971 *
 972 *  Return value:
 973 *         nothing
 974 ********************************************************************* */
 975
 976static void sbdma_emptyring(struct sbmacdma *d)
 977{
 978        int idx;
 979        struct sk_buff *sb;
 980
 981        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 982                sb = d->sbdma_ctxtable[idx];
 983                if (sb) {
 984                        dev_kfree_skb(sb);
 985                        d->sbdma_ctxtable[idx] = NULL;
 986                }
 987        }
 988}
 989
 990
 991/**********************************************************************
 992 *  SBDMA_FILLRING(d)
 993 *
 994 *  Fill the specified DMA channel (must be receive channel)
 995 *  with sk_buffs
 996 *
 997 *  Input parameters:
 998 *         sc - softc structure
 999 *          d - DMA channel
1000 *
1001 *  Return value:
1002 *         nothing
1003 ********************************************************************* */
1004
1005static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006{
1007        int idx;
1008
1009        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011                        break;
1012        }
1013}
1014
1015#ifdef CONFIG_NET_POLL_CONTROLLER
1016static void sbmac_netpoll(struct net_device *netdev)
1017{
1018        struct sbmac_softc *sc = netdev_priv(netdev);
1019        int irq = sc->sbm_dev->irq;
1020
1021        __raw_writeq(0, sc->sbm_imr);
1022
1023        sbmac_intr(irq, netdev);
1024
1025#ifdef CONFIG_SBMAC_COALESCE
1026        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028        sc->sbm_imr);
1029#else
1030        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032#endif
1033}
1034#endif
1035
1036/**********************************************************************
1037 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038 *
1039 *  Process "completed" receive buffers on the specified DMA channel.
1040 *
1041 *  Input parameters:
1042 *            sc - softc structure
1043 *             d - DMA channel context
1044 *    work_to_do - no. of packets to process before enabling interrupt
1045 *                 again (for NAPI)
1046 *          poll - 1: using polling (for NAPI)
1047 *
1048 *  Return value:
1049 *         nothing
1050 ********************************************************************* */
1051
1052static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053                            int work_to_do, int poll)
1054{
1055        struct net_device *dev = sc->sbm_dev;
1056        int curidx;
1057        int hwidx;
1058        struct sbdmadscr *dsc;
1059        struct sk_buff *sb;
1060        int len;
1061        int work_done = 0;
1062        int dropped = 0;
1063
1064        prefetch(d);
1065
1066again:
1067        /* Check if the HW dropped any frames */
1068        dev->stats.rx_fifo_errors
1069            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071
1072        while (work_to_do-- > 0) {
1073                /*
1074                 * figure out where we are (as an index) and where
1075                 * the hardware is (also as an index)
1076                 *
1077                 * This could be done faster if (for example) the
1078                 * descriptor table was page-aligned and contiguous in
1079                 * both virtual and physical memory -- you could then
1080                 * just compare the low-order bits of the virtual address
1081                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082                 */
1083
1084                dsc = d->sbdma_remptr;
1085                curidx = dsc - d->sbdma_dscrtable;
1086
1087                prefetch(dsc);
1088                prefetch(&d->sbdma_ctxtable[curidx]);
1089
1090                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091                         d->sbdma_dscrtable_phys) /
1092                        sizeof(*d->sbdma_dscrtable);
1093
1094                /*
1095                 * If they're the same, that means we've processed all
1096                 * of the descriptors up to (but not including) the one that
1097                 * the hardware is working on right now.
1098                 */
1099
1100                if (curidx == hwidx)
1101                        goto done;
1102
1103                /*
1104                 * Otherwise, get the packet's sk_buff ptr back
1105                 */
1106
1107                sb = d->sbdma_ctxtable[curidx];
1108                d->sbdma_ctxtable[curidx] = NULL;
1109
1110                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111
1112                /*
1113                 * Check packet status.  If good, process it.
1114                 * If not, silently drop it and put it back on the
1115                 * receive ring.
1116                 */
1117
1118                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119
1120                        /*
1121                         * Add a new buffer to replace the old one.  If we fail
1122                         * to allocate a buffer, we're going to drop this
1123                         * packet and put it right back on the receive ring.
1124                         */
1125
1126                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127                                     -ENOBUFS)) {
1128                                dev->stats.rx_dropped++;
1129                                /* Re-add old buffer */
1130                                sbdma_add_rcvbuffer(sc, d, sb);
1131                                /* No point in continuing at the moment */
1132                                printk(KERN_ERR "dropped packet (1)\n");
1133                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134                                goto done;
1135                        } else {
1136                                /*
1137                                 * Set length into the packet
1138                                 */
1139                                skb_put(sb,len);
1140
1141                                /*
1142                                 * Buffer has been replaced on the
1143                                 * receive ring.  Pass the buffer to
1144                                 * the kernel
1145                                 */
1146                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147                                /* Check hw IPv4/TCP checksum if supported */
1148                                if (sc->rx_hw_checksum == ENABLE) {
1149                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1152                                                /* don't need to set sb->csum */
1153                                        } else {
1154                                                skb_checksum_none_assert(sb);
1155                                        }
1156                                }
1157                                prefetch(sb->data);
1158                                prefetch((const void *)(((char *)sb->data)+32));
1159                                if (poll)
1160                                        dropped = netif_receive_skb(sb);
1161                                else
1162                                        dropped = netif_rx(sb);
1163
1164                                if (dropped == NET_RX_DROP) {
1165                                        dev->stats.rx_dropped++;
1166                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167                                        goto done;
1168                                }
1169                                else {
1170                                        dev->stats.rx_bytes += len;
1171                                        dev->stats.rx_packets++;
1172                                }
1173                        }
1174                } else {
1175                        /*
1176                         * Packet was mangled somehow.  Just drop it and
1177                         * put it back on the receive ring.
1178                         */
1179                        dev->stats.rx_errors++;
1180                        sbdma_add_rcvbuffer(sc, d, sb);
1181                }
1182
1183
1184                /*
1185                 * .. and advance to the next buffer.
1186                 */
1187
1188                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189                work_done++;
1190        }
1191        if (!poll) {
1192                work_to_do = 32;
1193                goto again; /* collect fifo drop statistics again */
1194        }
1195done:
1196        return work_done;
1197}
1198
1199/**********************************************************************
1200 *  SBDMA_TX_PROCESS(sc,d)
1201 *
1202 *  Process "completed" transmit buffers on the specified DMA channel.
1203 *  This is normally called within the interrupt service routine.
1204 *  Note that this isn't really ideal for priority channels, since
1205 *  it processes all of the packets on a given channel before
1206 *  returning.
1207 *
1208 *  Input parameters:
1209 *      sc - softc structure
1210 *       d - DMA channel context
1211 *    poll - 1: using polling (for NAPI)
1212 *
1213 *  Return value:
1214 *         nothing
1215 ********************************************************************* */
1216
1217static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218                             int poll)
1219{
1220        struct net_device *dev = sc->sbm_dev;
1221        int curidx;
1222        int hwidx;
1223        struct sbdmadscr *dsc;
1224        struct sk_buff *sb;
1225        unsigned long flags;
1226        int packets_handled = 0;
1227
1228        spin_lock_irqsave(&(sc->sbm_lock), flags);
1229
1230        if (d->sbdma_remptr == d->sbdma_addptr)
1231          goto end_unlock;
1232
1233        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235
1236        for (;;) {
1237                /*
1238                 * figure out where we are (as an index) and where
1239                 * the hardware is (also as an index)
1240                 *
1241                 * This could be done faster if (for example) the
1242                 * descriptor table was page-aligned and contiguous in
1243                 * both virtual and physical memory -- you could then
1244                 * just compare the low-order bits of the virtual address
1245                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246                 */
1247
1248                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249
1250                /*
1251                 * If they're the same, that means we've processed all
1252                 * of the descriptors up to (but not including) the one that
1253                 * the hardware is working on right now.
1254                 */
1255
1256                if (curidx == hwidx)
1257                        break;
1258
1259                /*
1260                 * Otherwise, get the packet's sk_buff ptr back
1261                 */
1262
1263                dsc = &(d->sbdma_dscrtable[curidx]);
1264                sb = d->sbdma_ctxtable[curidx];
1265                d->sbdma_ctxtable[curidx] = NULL;
1266
1267                /*
1268                 * Stats
1269                 */
1270
1271                dev->stats.tx_bytes += sb->len;
1272                dev->stats.tx_packets++;
1273
1274                /*
1275                 * for transmits, we just free buffers.
1276                 */
1277
1278                dev_consume_skb_irq(sb);
1279
1280                /*
1281                 * .. and advance to the next buffer.
1282                 */
1283
1284                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285
1286                packets_handled++;
1287
1288        }
1289
1290        /*
1291         * Decide if we should wake up the protocol or not.
1292         * Other drivers seem to do this when we reach a low
1293         * watermark on the transmit queue.
1294         */
1295
1296        if (packets_handled)
1297                netif_wake_queue(d->sbdma_eth->sbm_dev);
1298
1299end_unlock:
1300        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301
1302}
1303
1304
1305
1306/**********************************************************************
1307 *  SBMAC_INITCTX(s)
1308 *
1309 *  Initialize an Ethernet context structure - this is called
1310 *  once per MAC on the 1250.  Memory is allocated here, so don't
1311 *  call it again from inside the ioctl routines that bring the
1312 *  interface up/down
1313 *
1314 *  Input parameters:
1315 *         s - sbmac context structure
1316 *
1317 *  Return value:
1318 *         0
1319 ********************************************************************* */
1320
1321static int sbmac_initctx(struct sbmac_softc *s)
1322{
1323
1324        /*
1325         * figure out the addresses of some ports
1326         */
1327
1328        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1330        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1331        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1332        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1333        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1334        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1335        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1336
1337        /*
1338         * Initialize the DMA channels.  Right now, only one per MAC is used
1339         * Note: Only do this _once_, as it allocates memory from the kernel!
1340         */
1341
1342        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344
1345        /*
1346         * initial state is OFF
1347         */
1348
1349        s->sbm_state = sbmac_state_off;
1350
1351        return 0;
1352}
1353
1354
1355static void sbdma_uninitctx(struct sbmacdma *d)
1356{
1357        kfree(d->sbdma_dscrtable_unaligned);
1358        d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359
1360        kfree(d->sbdma_ctxtable);
1361        d->sbdma_ctxtable = NULL;
1362}
1363
1364
1365static void sbmac_uninitctx(struct sbmac_softc *sc)
1366{
1367        sbdma_uninitctx(&(sc->sbm_txdma));
1368        sbdma_uninitctx(&(sc->sbm_rxdma));
1369}
1370
1371
1372/**********************************************************************
1373 *  SBMAC_CHANNEL_START(s)
1374 *
1375 *  Start packet processing on this MAC.
1376 *
1377 *  Input parameters:
1378 *         s - sbmac structure
1379 *
1380 *  Return value:
1381 *         nothing
1382 ********************************************************************* */
1383
1384static void sbmac_channel_start(struct sbmac_softc *s)
1385{
1386        uint64_t reg;
1387        void __iomem *port;
1388        uint64_t cfg,fifo,framecfg;
1389        int idx, th_value;
1390
1391        /*
1392         * Don't do this if running
1393         */
1394
1395        if (s->sbm_state == sbmac_state_on)
1396                return;
1397
1398        /*
1399         * Bring the controller out of reset, but leave it off.
1400         */
1401
1402        __raw_writeq(0, s->sbm_macenable);
1403
1404        /*
1405         * Ignore all received packets
1406         */
1407
1408        __raw_writeq(0, s->sbm_rxfilter);
1409
1410        /*
1411         * Calculate values for various control registers.
1412         */
1413
1414        cfg = M_MAC_RETRY_EN |
1415                M_MAC_TX_HOLD_SOP_EN |
1416                V_MAC_TX_PAUSE_CNT_16K |
1417                M_MAC_AP_STAT_EN |
1418                M_MAC_FAST_SYNC |
1419                M_MAC_SS_EN |
1420                0;
1421
1422        /*
1423         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425         * Use a larger RD_THRSH for gigabit
1426         */
1427        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428                th_value = 28;
1429        else
1430                th_value = 64;
1431
1432        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1433                ((s->sbm_speed == sbmac_speed_1000)
1434                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435                V_MAC_TX_RL_THRSH(4) |
1436                V_MAC_RX_PL_THRSH(4) |
1437                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1438                V_MAC_RX_RL_THRSH(8) |
1439                0;
1440
1441        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442                V_MAC_MAX_FRAMESZ_DEFAULT |
1443                V_MAC_BACKOFF_SEL(1);
1444
1445        /*
1446         * Clear out the hash address map
1447         */
1448
1449        port = s->sbm_base + R_MAC_HASH_BASE;
1450        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451                __raw_writeq(0, port);
1452                port += sizeof(uint64_t);
1453        }
1454
1455        /*
1456         * Clear out the exact-match table
1457         */
1458
1459        port = s->sbm_base + R_MAC_ADDR_BASE;
1460        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461                __raw_writeq(0, port);
1462                port += sizeof(uint64_t);
1463        }
1464
1465        /*
1466         * Clear out the DMA Channel mapping table registers
1467         */
1468
1469        port = s->sbm_base + R_MAC_CHUP0_BASE;
1470        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471                __raw_writeq(0, port);
1472                port += sizeof(uint64_t);
1473        }
1474
1475
1476        port = s->sbm_base + R_MAC_CHLO0_BASE;
1477        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478                __raw_writeq(0, port);
1479                port += sizeof(uint64_t);
1480        }
1481
1482        /*
1483         * Program the hardware address.  It goes into the hardware-address
1484         * register as well as the first filter register.
1485         */
1486
1487        reg = sbmac_addr2reg(s->sbm_hwaddr);
1488
1489        port = s->sbm_base + R_MAC_ADDR_BASE;
1490        __raw_writeq(reg, port);
1491        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492
1493        __raw_writeq(reg, port);
1494
1495        /*
1496         * Set the receive filter for no packets, and write values
1497         * to the various config registers
1498         */
1499
1500        __raw_writeq(0, s->sbm_rxfilter);
1501        __raw_writeq(0, s->sbm_imr);
1502        __raw_writeq(framecfg, s->sbm_framecfg);
1503        __raw_writeq(fifo, s->sbm_fifocfg);
1504        __raw_writeq(cfg, s->sbm_maccfg);
1505
1506        /*
1507         * Initialize DMA channels (rings should be ok now)
1508         */
1509
1510        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512
1513        /*
1514         * Configure the speed, duplex, and flow control
1515         */
1516
1517        sbmac_set_speed(s,s->sbm_speed);
1518        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519
1520        /*
1521         * Fill the receive ring
1522         */
1523
1524        sbdma_fillring(s, &(s->sbm_rxdma));
1525
1526        /*
1527         * Turn on the rest of the bits in the enable register
1528         */
1529
1530#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1531        __raw_writeq(M_MAC_RXDMA_EN0 |
1532                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1533#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534        __raw_writeq(M_MAC_RXDMA_EN0 |
1535                       M_MAC_TXDMA_EN0 |
1536                       M_MAC_RX_ENABLE |
1537                       M_MAC_TX_ENABLE, s->sbm_macenable);
1538#else
1539#error invalid SiByte MAC configuration
1540#endif
1541
1542#ifdef CONFIG_SBMAC_COALESCE
1543        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545#else
1546        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548#endif
1549
1550        /*
1551         * Enable receiving unicasts and broadcasts
1552         */
1553
1554        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555
1556        /*
1557         * we're running now.
1558         */
1559
1560        s->sbm_state = sbmac_state_on;
1561
1562        /*
1563         * Program multicast addresses
1564         */
1565
1566        sbmac_setmulti(s);
1567
1568        /*
1569         * If channel was in promiscuous mode before, turn that on
1570         */
1571
1572        if (s->sbm_devflags & IFF_PROMISC) {
1573                sbmac_promiscuous_mode(s,1);
1574        }
1575
1576}
1577
1578
1579/**********************************************************************
1580 *  SBMAC_CHANNEL_STOP(s)
1581 *
1582 *  Stop packet processing on this MAC.
1583 *
1584 *  Input parameters:
1585 *         s - sbmac structure
1586 *
1587 *  Return value:
1588 *         nothing
1589 ********************************************************************* */
1590
1591static void sbmac_channel_stop(struct sbmac_softc *s)
1592{
1593        /* don't do this if already stopped */
1594
1595        if (s->sbm_state == sbmac_state_off)
1596                return;
1597
1598        /* don't accept any packets, disable all interrupts */
1599
1600        __raw_writeq(0, s->sbm_rxfilter);
1601        __raw_writeq(0, s->sbm_imr);
1602
1603        /* Turn off ticker */
1604
1605        /* XXX */
1606
1607        /* turn off receiver and transmitter */
1608
1609        __raw_writeq(0, s->sbm_macenable);
1610
1611        /* We're stopped now. */
1612
1613        s->sbm_state = sbmac_state_off;
1614
1615        /*
1616         * Stop DMA channels (rings should be ok now)
1617         */
1618
1619        sbdma_channel_stop(&(s->sbm_rxdma));
1620        sbdma_channel_stop(&(s->sbm_txdma));
1621
1622        /* Empty the receive and transmit rings */
1623
1624        sbdma_emptyring(&(s->sbm_rxdma));
1625        sbdma_emptyring(&(s->sbm_txdma));
1626
1627}
1628
1629/**********************************************************************
1630 *  SBMAC_SET_CHANNEL_STATE(state)
1631 *
1632 *  Set the channel's state ON or OFF
1633 *
1634 *  Input parameters:
1635 *         state - new state
1636 *
1637 *  Return value:
1638 *         old state
1639 ********************************************************************* */
1640static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641                                                enum sbmac_state state)
1642{
1643        enum sbmac_state oldstate = sc->sbm_state;
1644
1645        /*
1646         * If same as previous state, return
1647         */
1648
1649        if (state == oldstate) {
1650                return oldstate;
1651        }
1652
1653        /*
1654         * If new state is ON, turn channel on
1655         */
1656
1657        if (state == sbmac_state_on) {
1658                sbmac_channel_start(sc);
1659        }
1660        else {
1661                sbmac_channel_stop(sc);
1662        }
1663
1664        /*
1665         * Return previous state
1666         */
1667
1668        return oldstate;
1669}
1670
1671
1672/**********************************************************************
1673 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674 *
1675 *  Turn on or off promiscuous mode
1676 *
1677 *  Input parameters:
1678 *         sc - softc
1679 *      onoff - 1 to turn on, 0 to turn off
1680 *
1681 *  Return value:
1682 *         nothing
1683 ********************************************************************* */
1684
1685static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686{
1687        uint64_t reg;
1688
1689        if (sc->sbm_state != sbmac_state_on)
1690                return;
1691
1692        if (onoff) {
1693                reg = __raw_readq(sc->sbm_rxfilter);
1694                reg |= M_MAC_ALLPKT_EN;
1695                __raw_writeq(reg, sc->sbm_rxfilter);
1696        }
1697        else {
1698                reg = __raw_readq(sc->sbm_rxfilter);
1699                reg &= ~M_MAC_ALLPKT_EN;
1700                __raw_writeq(reg, sc->sbm_rxfilter);
1701        }
1702}
1703
1704/**********************************************************************
1705 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706 *
1707 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1708 *
1709 *  Input parameters:
1710 *         sc - softc
1711 *
1712 *  Return value:
1713 *         nothing
1714 ********************************************************************* */
1715
1716static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717{
1718        uint64_t reg;
1719
1720        /* Hard code the off set to 15 for now */
1721        reg = __raw_readq(sc->sbm_rxfilter);
1722        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723        __raw_writeq(reg, sc->sbm_rxfilter);
1724
1725        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1726           later does.  */
1727        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728                sc->rx_hw_checksum = DISABLE;
1729        } else {
1730                sc->rx_hw_checksum = ENABLE;
1731        }
1732}
1733
1734
1735/**********************************************************************
1736 *  SBMAC_ADDR2REG(ptr)
1737 *
1738 *  Convert six bytes into the 64-bit register value that
1739 *  we typically write into the SBMAC's address/mcast registers
1740 *
1741 *  Input parameters:
1742 *         ptr - pointer to 6 bytes
1743 *
1744 *  Return value:
1745 *         register value
1746 ********************************************************************* */
1747
1748static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749{
1750        uint64_t reg = 0;
1751
1752        ptr += 6;
1753
1754        reg |= (uint64_t) *(--ptr);
1755        reg <<= 8;
1756        reg |= (uint64_t) *(--ptr);
1757        reg <<= 8;
1758        reg |= (uint64_t) *(--ptr);
1759        reg <<= 8;
1760        reg |= (uint64_t) *(--ptr);
1761        reg <<= 8;
1762        reg |= (uint64_t) *(--ptr);
1763        reg <<= 8;
1764        reg |= (uint64_t) *(--ptr);
1765
1766        return reg;
1767}
1768
1769
1770/**********************************************************************
1771 *  SBMAC_SET_SPEED(s,speed)
1772 *
1773 *  Configure LAN speed for the specified MAC.
1774 *  Warning: must be called when MAC is off!
1775 *
1776 *  Input parameters:
1777 *         s - sbmac structure
1778 *         speed - speed to set MAC to (see enum sbmac_speed)
1779 *
1780 *  Return value:
1781 *         1 if successful
1782 *      0 indicates invalid parameters
1783 ********************************************************************* */
1784
1785static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786{
1787        uint64_t cfg;
1788        uint64_t framecfg;
1789
1790        /*
1791         * Save new current values
1792         */
1793
1794        s->sbm_speed = speed;
1795
1796        if (s->sbm_state == sbmac_state_on)
1797                return 0;       /* save for next restart */
1798
1799        /*
1800         * Read current register values
1801         */
1802
1803        cfg = __raw_readq(s->sbm_maccfg);
1804        framecfg = __raw_readq(s->sbm_framecfg);
1805
1806        /*
1807         * Mask out the stuff we want to change
1808         */
1809
1810        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812                      M_MAC_SLOT_SIZE);
1813
1814        /*
1815         * Now add in the new bits
1816         */
1817
1818        switch (speed) {
1819        case sbmac_speed_10:
1820                framecfg |= V_MAC_IFG_RX_10 |
1821                        V_MAC_IFG_TX_10 |
1822                        K_MAC_IFG_THRSH_10 |
1823                        V_MAC_SLOT_SIZE_10;
1824                cfg |= V_MAC_SPEED_SEL_10MBPS;
1825                break;
1826
1827        case sbmac_speed_100:
1828                framecfg |= V_MAC_IFG_RX_100 |
1829                        V_MAC_IFG_TX_100 |
1830                        V_MAC_IFG_THRSH_100 |
1831                        V_MAC_SLOT_SIZE_100;
1832                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833                break;
1834
1835        case sbmac_speed_1000:
1836                framecfg |= V_MAC_IFG_RX_1000 |
1837                        V_MAC_IFG_TX_1000 |
1838                        V_MAC_IFG_THRSH_1000 |
1839                        V_MAC_SLOT_SIZE_1000;
1840                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841                break;
1842
1843        default:
1844                return 0;
1845        }
1846
1847        /*
1848         * Send the bits back to the hardware
1849         */
1850
1851        __raw_writeq(framecfg, s->sbm_framecfg);
1852        __raw_writeq(cfg, s->sbm_maccfg);
1853
1854        return 1;
1855}
1856
1857/**********************************************************************
1858 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1859 *
1860 *  Set Ethernet duplex and flow control options for this MAC
1861 *  Warning: must be called when MAC is off!
1862 *
1863 *  Input parameters:
1864 *         s - sbmac structure
1865 *         duplex - duplex setting (see enum sbmac_duplex)
1866 *         fc - flow control setting (see enum sbmac_fc)
1867 *
1868 *  Return value:
1869 *         1 if ok
1870 *         0 if an invalid parameter combination was specified
1871 ********************************************************************* */
1872
1873static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874                            enum sbmac_fc fc)
1875{
1876        uint64_t cfg;
1877
1878        /*
1879         * Save new current values
1880         */
1881
1882        s->sbm_duplex = duplex;
1883        s->sbm_fc = fc;
1884
1885        if (s->sbm_state == sbmac_state_on)
1886                return 0;       /* save for next restart */
1887
1888        /*
1889         * Read current register values
1890         */
1891
1892        cfg = __raw_readq(s->sbm_maccfg);
1893
1894        /*
1895         * Mask off the stuff we're about to change
1896         */
1897
1898        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899
1900
1901        switch (duplex) {
1902        case sbmac_duplex_half:
1903                switch (fc) {
1904                case sbmac_fc_disabled:
1905                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906                        break;
1907
1908                case sbmac_fc_collision:
1909                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910                        break;
1911
1912                case sbmac_fc_carrier:
1913                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914                        break;
1915
1916                case sbmac_fc_frame:            /* not valid in half duplex */
1917                default:                        /* invalid selection */
1918                        return 0;
1919                }
1920                break;
1921
1922        case sbmac_duplex_full:
1923                switch (fc) {
1924                case sbmac_fc_disabled:
1925                        cfg |= V_MAC_FC_CMD_DISABLED;
1926                        break;
1927
1928                case sbmac_fc_frame:
1929                        cfg |= V_MAC_FC_CMD_ENABLED;
1930                        break;
1931
1932                case sbmac_fc_collision:        /* not valid in full duplex */
1933                case sbmac_fc_carrier:          /* not valid in full duplex */
1934                default:
1935                        return 0;
1936                }
1937                break;
1938        default:
1939                return 0;
1940        }
1941
1942        /*
1943         * Send the bits back to the hardware
1944         */
1945
1946        __raw_writeq(cfg, s->sbm_maccfg);
1947
1948        return 1;
1949}
1950
1951
1952
1953
1954/**********************************************************************
1955 *  SBMAC_INTR()
1956 *
1957 *  Interrupt handler for MAC interrupts
1958 *
1959 *  Input parameters:
1960 *         MAC structure
1961 *
1962 *  Return value:
1963 *         nothing
1964 ********************************************************************* */
1965static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966{
1967        struct net_device *dev = (struct net_device *) dev_instance;
1968        struct sbmac_softc *sc = netdev_priv(dev);
1969        uint64_t isr;
1970        int handled = 0;
1971
1972        /*
1973         * Read the ISR (this clears the bits in the real
1974         * register, except for counter addr)
1975         */
1976
1977        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978
1979        if (isr == 0)
1980                return IRQ_RETVAL(0);
1981        handled = 1;
1982
1983        /*
1984         * Transmits on channel 0
1985         */
1986
1987        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989
1990        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991                if (napi_schedule_prep(&sc->napi)) {
1992                        __raw_writeq(0, sc->sbm_imr);
1993                        __napi_schedule(&sc->napi);
1994                        /* Depend on the exit from poll to reenable intr */
1995                }
1996                else {
1997                        /* may leave some packets behind */
1998                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999                                         SBMAC_MAX_RXDESCR * 2, 0);
2000                }
2001        }
2002        return IRQ_RETVAL(handled);
2003}
2004
2005/**********************************************************************
2006 *  SBMAC_START_TX(skb,dev)
2007 *
2008 *  Start output on the specified interface.  Basically, we
2009 *  queue as many buffers as we can until the ring fills up, or
2010 *  we run off the end of the queue, whichever comes first.
2011 *
2012 *  Input parameters:
2013 *
2014 *
2015 *  Return value:
2016 *         nothing
2017 ********************************************************************* */
2018static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019{
2020        struct sbmac_softc *sc = netdev_priv(dev);
2021        unsigned long flags;
2022
2023        /* lock eth irq */
2024        spin_lock_irqsave(&sc->sbm_lock, flags);
2025
2026        /*
2027         * Put the buffer on the transmit ring.  If we
2028         * don't have room, stop the queue.
2029         */
2030
2031        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032                /* XXX save skb that we could not send */
2033                netif_stop_queue(dev);
2034                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035
2036                return NETDEV_TX_BUSY;
2037        }
2038
2039        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040
2041        return NETDEV_TX_OK;
2042}
2043
2044/**********************************************************************
2045 *  SBMAC_SETMULTI(sc)
2046 *
2047 *  Reprogram the multicast table into the hardware, given
2048 *  the list of multicasts associated with the interface
2049 *  structure.
2050 *
2051 *  Input parameters:
2052 *         sc - softc
2053 *
2054 *  Return value:
2055 *         nothing
2056 ********************************************************************* */
2057
2058static void sbmac_setmulti(struct sbmac_softc *sc)
2059{
2060        uint64_t reg;
2061        void __iomem *port;
2062        int idx;
2063        struct netdev_hw_addr *ha;
2064        struct net_device *dev = sc->sbm_dev;
2065
2066        /*
2067         * Clear out entire multicast table.  We do this by nuking
2068         * the entire hash table and all the direct matches except
2069         * the first one, which is used for our station address
2070         */
2071
2072        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074                __raw_writeq(0, port);
2075        }
2076
2077        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079                __raw_writeq(0, port);
2080        }
2081
2082        /*
2083         * Clear the filter to say we don't want any multicasts.
2084         */
2085
2086        reg = __raw_readq(sc->sbm_rxfilter);
2087        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088        __raw_writeq(reg, sc->sbm_rxfilter);
2089
2090        if (dev->flags & IFF_ALLMULTI) {
2091                /*
2092                 * Enable ALL multicasts.  Do this by inverting the
2093                 * multicast enable bit.
2094                 */
2095                reg = __raw_readq(sc->sbm_rxfilter);
2096                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097                __raw_writeq(reg, sc->sbm_rxfilter);
2098                return;
2099        }
2100
2101
2102        /*
2103         * Progam new multicast entries.  For now, only use the
2104         * perfect filter.  In the future we'll need to use the
2105         * hash filter if the perfect filter overflows
2106         */
2107
2108        /* XXX only using perfect filter for now, need to use hash
2109         * XXX if the table overflows */
2110
2111        idx = 1;                /* skip station address */
2112        netdev_for_each_mc_addr(ha, dev) {
2113                if (idx == MAC_ADDR_COUNT)
2114                        break;
2115                reg = sbmac_addr2reg(ha->addr);
2116                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117                __raw_writeq(reg, port);
2118                idx++;
2119        }
2120
2121        /*
2122         * Enable the "accept multicast bits" if we programmed at least one
2123         * multicast.
2124         */
2125
2126        if (idx > 1) {
2127                reg = __raw_readq(sc->sbm_rxfilter);
2128                reg |= M_MAC_MCAST_EN;
2129                __raw_writeq(reg, sc->sbm_rxfilter);
2130        }
2131}
2132
2133static const struct net_device_ops sbmac_netdev_ops = {
2134        .ndo_open               = sbmac_open,
2135        .ndo_stop               = sbmac_close,
2136        .ndo_start_xmit         = sbmac_start_tx,
2137        .ndo_set_rx_mode        = sbmac_set_rx_mode,
2138        .ndo_tx_timeout         = sbmac_tx_timeout,
2139        .ndo_eth_ioctl          = sbmac_mii_ioctl,
2140        .ndo_validate_addr      = eth_validate_addr,
2141        .ndo_set_mac_address    = eth_mac_addr,
2142#ifdef CONFIG_NET_POLL_CONTROLLER
2143        .ndo_poll_controller    = sbmac_netpoll,
2144#endif
2145};
2146
2147/**********************************************************************
2148 *  SBMAC_INIT(dev)
2149 *
2150 *  Attach routine - init hardware and hook ourselves into linux
2151 *
2152 *  Input parameters:
2153 *         dev - net_device structure
2154 *
2155 *  Return value:
2156 *         status
2157 ********************************************************************* */
2158
2159static int sbmac_init(struct platform_device *pldev, long long base)
2160{
2161        struct net_device *dev = platform_get_drvdata(pldev);
2162        int idx = pldev->id;
2163        struct sbmac_softc *sc = netdev_priv(dev);
2164        unsigned char *eaddr;
2165        uint64_t ea_reg;
2166        int i;
2167        int err;
2168
2169        sc->sbm_dev = dev;
2170        sc->sbe_idx = idx;
2171
2172        eaddr = sc->sbm_hwaddr;
2173
2174        /*
2175         * Read the ethernet address.  The firmware left this programmed
2176         * for us in the ethernet address register for each mac.
2177         */
2178
2179        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181        for (i = 0; i < 6; i++) {
2182                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183                ea_reg >>= 8;
2184        }
2185
2186        for (i = 0; i < 6; i++) {
2187                dev->dev_addr[i] = eaddr[i];
2188        }
2189
2190        /*
2191         * Initialize context (get pointers to registers and stuff), then
2192         * allocate the memory for the descriptor tables.
2193         */
2194
2195        sbmac_initctx(sc);
2196
2197        /*
2198         * Set up Linux device callins
2199         */
2200
2201        spin_lock_init(&(sc->sbm_lock));
2202
2203        dev->netdev_ops = &sbmac_netdev_ops;
2204        dev->watchdog_timeo = TX_TIMEOUT;
2205        dev->min_mtu = 0;
2206        dev->max_mtu = ENET_PACKET_SIZE;
2207
2208        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2209
2210        dev->irq                = UNIT_INT(idx);
2211
2212        /* This is needed for PASS2 for Rx H/W checksum feature */
2213        sbmac_set_iphdr_offset(sc);
2214
2215        sc->mii_bus = mdiobus_alloc();
2216        if (sc->mii_bus == NULL) {
2217                err = -ENOMEM;
2218                goto uninit_ctx;
2219        }
2220
2221        sc->mii_bus->name = sbmac_mdio_string;
2222        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2223                pldev->name, idx);
2224        sc->mii_bus->priv = sc;
2225        sc->mii_bus->read = sbmac_mii_read;
2226        sc->mii_bus->write = sbmac_mii_write;
2227
2228        sc->mii_bus->parent = &pldev->dev;
2229        /*
2230         * Probe PHY address
2231         */
2232        err = mdiobus_register(sc->mii_bus);
2233        if (err) {
2234                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2235                       dev->name);
2236                goto free_mdio;
2237        }
2238        platform_set_drvdata(pldev, sc->mii_bus);
2239
2240        err = register_netdev(dev);
2241        if (err) {
2242                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2243                       sbmac_string, idx);
2244                goto unreg_mdio;
2245        }
2246
2247        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2248
2249        if (sc->rx_hw_checksum == ENABLE)
2250                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2251
2252        /*
2253         * Display Ethernet address (this is called during the config
2254         * process so we need to finish off the config message that
2255         * was being displayed)
2256         */
2257        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2258               dev->name, base, eaddr);
2259
2260        return 0;
2261unreg_mdio:
2262        mdiobus_unregister(sc->mii_bus);
2263free_mdio:
2264        mdiobus_free(sc->mii_bus);
2265uninit_ctx:
2266        sbmac_uninitctx(sc);
2267        return err;
2268}
2269
2270
2271static int sbmac_open(struct net_device *dev)
2272{
2273        struct sbmac_softc *sc = netdev_priv(dev);
2274        int err;
2275
2276        if (debug > 1)
2277                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2278
2279        /*
2280         * map/route interrupt (clear status first, in case something
2281         * weird is pending; we haven't initialized the mac registers
2282         * yet)
2283         */
2284
2285        __raw_readq(sc->sbm_isr);
2286        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2287        if (err) {
2288                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2289                       dev->irq);
2290                goto out_err;
2291        }
2292
2293        sc->sbm_speed = sbmac_speed_none;
2294        sc->sbm_duplex = sbmac_duplex_none;
2295        sc->sbm_fc = sbmac_fc_none;
2296        sc->sbm_pause = -1;
2297        sc->sbm_link = 0;
2298
2299        /*
2300         * Attach to the PHY
2301         */
2302        err = sbmac_mii_probe(dev);
2303        if (err)
2304                goto out_unregister;
2305
2306        /*
2307         * Turn on the channel
2308         */
2309
2310        sbmac_set_channel_state(sc,sbmac_state_on);
2311
2312        netif_start_queue(dev);
2313
2314        sbmac_set_rx_mode(dev);
2315
2316        phy_start(sc->phy_dev);
2317
2318        napi_enable(&sc->napi);
2319
2320        return 0;
2321
2322out_unregister:
2323        free_irq(dev->irq, dev);
2324out_err:
2325        return err;
2326}
2327
2328static int sbmac_mii_probe(struct net_device *dev)
2329{
2330        struct sbmac_softc *sc = netdev_priv(dev);
2331        struct phy_device *phy_dev;
2332
2333        phy_dev = phy_find_first(sc->mii_bus);
2334        if (!phy_dev) {
2335                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2336                return -ENXIO;
2337        }
2338
2339        phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2340                              &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2341        if (IS_ERR(phy_dev)) {
2342                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2343                return PTR_ERR(phy_dev);
2344        }
2345
2346        /* Remove any features not supported by the controller */
2347        phy_set_max_speed(phy_dev, SPEED_1000);
2348        phy_support_asym_pause(phy_dev);
2349
2350        phy_attached_info(phy_dev);
2351
2352        sc->phy_dev = phy_dev;
2353
2354        return 0;
2355}
2356
2357
2358static void sbmac_mii_poll(struct net_device *dev)
2359{
2360        struct sbmac_softc *sc = netdev_priv(dev);
2361        struct phy_device *phy_dev = sc->phy_dev;
2362        unsigned long flags;
2363        enum sbmac_fc fc;
2364        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2365
2366        link_chg = (sc->sbm_link != phy_dev->link);
2367        speed_chg = (sc->sbm_speed != phy_dev->speed);
2368        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2369        pause_chg = (sc->sbm_pause != phy_dev->pause);
2370
2371        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2372                return;                                 /* Hmmm... */
2373
2374        if (!phy_dev->link) {
2375                if (link_chg) {
2376                        sc->sbm_link = phy_dev->link;
2377                        sc->sbm_speed = sbmac_speed_none;
2378                        sc->sbm_duplex = sbmac_duplex_none;
2379                        sc->sbm_fc = sbmac_fc_disabled;
2380                        sc->sbm_pause = -1;
2381                        pr_info("%s: link unavailable\n", dev->name);
2382                }
2383                return;
2384        }
2385
2386        if (phy_dev->duplex == DUPLEX_FULL) {
2387                if (phy_dev->pause)
2388                        fc = sbmac_fc_frame;
2389                else
2390                        fc = sbmac_fc_disabled;
2391        } else
2392                fc = sbmac_fc_collision;
2393        fc_chg = (sc->sbm_fc != fc);
2394
2395        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2396                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2397
2398        spin_lock_irqsave(&sc->sbm_lock, flags);
2399
2400        sc->sbm_speed = phy_dev->speed;
2401        sc->sbm_duplex = phy_dev->duplex;
2402        sc->sbm_fc = fc;
2403        sc->sbm_pause = phy_dev->pause;
2404        sc->sbm_link = phy_dev->link;
2405
2406        if ((speed_chg || duplex_chg || fc_chg) &&
2407            sc->sbm_state != sbmac_state_off) {
2408                /*
2409                 * something changed, restart the channel
2410                 */
2411                if (debug > 1)
2412                        pr_debug("%s: restarting channel "
2413                                 "because PHY state changed\n", dev->name);
2414                sbmac_channel_stop(sc);
2415                sbmac_channel_start(sc);
2416        }
2417
2418        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2419}
2420
2421
2422static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue)
2423{
2424        struct sbmac_softc *sc = netdev_priv(dev);
2425        unsigned long flags;
2426
2427        spin_lock_irqsave(&sc->sbm_lock, flags);
2428
2429
2430        netif_trans_update(dev); /* prevent tx timeout */
2431        dev->stats.tx_errors++;
2432
2433        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2434
2435        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2436}
2437
2438
2439
2440
2441static void sbmac_set_rx_mode(struct net_device *dev)
2442{
2443        unsigned long flags;
2444        struct sbmac_softc *sc = netdev_priv(dev);
2445
2446        spin_lock_irqsave(&sc->sbm_lock, flags);
2447        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2448                /*
2449                 * Promiscuous changed.
2450                 */
2451
2452                if (dev->flags & IFF_PROMISC) {
2453                        sbmac_promiscuous_mode(sc,1);
2454                }
2455                else {
2456                        sbmac_promiscuous_mode(sc,0);
2457                }
2458        }
2459        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2460
2461        /*
2462         * Program the multicasts.  Do this every time.
2463         */
2464
2465        sbmac_setmulti(sc);
2466
2467}
2468
2469static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2470{
2471        struct sbmac_softc *sc = netdev_priv(dev);
2472
2473        if (!netif_running(dev) || !sc->phy_dev)
2474                return -EINVAL;
2475
2476        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2477}
2478
2479static int sbmac_close(struct net_device *dev)
2480{
2481        struct sbmac_softc *sc = netdev_priv(dev);
2482
2483        napi_disable(&sc->napi);
2484
2485        phy_stop(sc->phy_dev);
2486
2487        sbmac_set_channel_state(sc, sbmac_state_off);
2488
2489        netif_stop_queue(dev);
2490
2491        if (debug > 1)
2492                pr_debug("%s: Shutting down ethercard\n", dev->name);
2493
2494        phy_disconnect(sc->phy_dev);
2495        sc->phy_dev = NULL;
2496        free_irq(dev->irq, dev);
2497
2498        sbdma_emptyring(&(sc->sbm_txdma));
2499        sbdma_emptyring(&(sc->sbm_rxdma));
2500
2501        return 0;
2502}
2503
2504static int sbmac_poll(struct napi_struct *napi, int budget)
2505{
2506        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2507        int work_done;
2508
2509        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2510        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2511
2512        if (work_done < budget) {
2513                napi_complete_done(napi, work_done);
2514
2515#ifdef CONFIG_SBMAC_COALESCE
2516                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2517                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2518                             sc->sbm_imr);
2519#else
2520                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2521                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2522#endif
2523        }
2524
2525        return work_done;
2526}
2527
2528
2529static int sbmac_probe(struct platform_device *pldev)
2530{
2531        struct net_device *dev;
2532        struct sbmac_softc *sc;
2533        void __iomem *sbm_base;
2534        struct resource *res;
2535        u64 sbmac_orig_hwaddr;
2536        int err;
2537
2538        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2539        BUG_ON(!res);
2540        sbm_base = ioremap(res->start, resource_size(res));
2541        if (!sbm_base) {
2542                printk(KERN_ERR "%s: unable to map device registers\n",
2543                       dev_name(&pldev->dev));
2544                err = -ENOMEM;
2545                goto out_out;
2546        }
2547
2548        /*
2549         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2550         * value for us by the firmware if we're going to use this MAC.
2551         * If we find a zero, skip this MAC.
2552         */
2553        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2554        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2555                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2556        if (sbmac_orig_hwaddr == 0) {
2557                err = 0;
2558                goto out_unmap;
2559        }
2560
2561        /*
2562         * Okay, cool.  Initialize this MAC.
2563         */
2564        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2565        if (!dev) {
2566                err = -ENOMEM;
2567                goto out_unmap;
2568        }
2569
2570        platform_set_drvdata(pldev, dev);
2571        SET_NETDEV_DEV(dev, &pldev->dev);
2572
2573        sc = netdev_priv(dev);
2574        sc->sbm_base = sbm_base;
2575
2576        err = sbmac_init(pldev, res->start);
2577        if (err)
2578                goto out_kfree;
2579
2580        return 0;
2581
2582out_kfree:
2583        free_netdev(dev);
2584        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2585
2586out_unmap:
2587        iounmap(sbm_base);
2588
2589out_out:
2590        return err;
2591}
2592
2593static int sbmac_remove(struct platform_device *pldev)
2594{
2595        struct net_device *dev = platform_get_drvdata(pldev);
2596        struct sbmac_softc *sc = netdev_priv(dev);
2597
2598        unregister_netdev(dev);
2599        sbmac_uninitctx(sc);
2600        mdiobus_unregister(sc->mii_bus);
2601        mdiobus_free(sc->mii_bus);
2602        iounmap(sc->sbm_base);
2603        free_netdev(dev);
2604
2605        return 0;
2606}
2607
2608static struct platform_driver sbmac_driver = {
2609        .probe = sbmac_probe,
2610        .remove = sbmac_remove,
2611        .driver = {
2612                .name = sbmac_string,
2613        },
2614};
2615
2616module_platform_driver(sbmac_driver);
2617MODULE_LICENSE("GPL");
2618