linux/drivers/net/ethernet/cavium/thunder/nicvf_queues.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Cavium, Inc.
   4 */
   5
   6#include <linux/pci.h>
   7#include <linux/netdevice.h>
   8#include <linux/ip.h>
   9#include <linux/etherdevice.h>
  10#include <linux/iommu.h>
  11#include <net/ip.h>
  12#include <net/tso.h>
  13
  14#include "nic_reg.h"
  15#include "nic.h"
  16#include "q_struct.h"
  17#include "nicvf_queues.h"
  18
  19static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
  20                                               int size, u64 data);
  21static void nicvf_get_page(struct nicvf *nic)
  22{
  23        if (!nic->rb_pageref || !nic->rb_page)
  24                return;
  25
  26        page_ref_add(nic->rb_page, nic->rb_pageref);
  27        nic->rb_pageref = 0;
  28}
  29
  30/* Poll a register for a specific value */
  31static int nicvf_poll_reg(struct nicvf *nic, int qidx,
  32                          u64 reg, int bit_pos, int bits, int val)
  33{
  34        u64 bit_mask;
  35        u64 reg_val;
  36        int timeout = 10;
  37
  38        bit_mask = (1ULL << bits) - 1;
  39        bit_mask = (bit_mask << bit_pos);
  40
  41        while (timeout) {
  42                reg_val = nicvf_queue_reg_read(nic, reg, qidx);
  43                if (((reg_val & bit_mask) >> bit_pos) == val)
  44                        return 0;
  45                usleep_range(1000, 2000);
  46                timeout--;
  47        }
  48        netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
  49        return 1;
  50}
  51
  52/* Allocate memory for a queue's descriptors */
  53static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
  54                                  int q_len, int desc_size, int align_bytes)
  55{
  56        dmem->q_len = q_len;
  57        dmem->size = (desc_size * q_len) + align_bytes;
  58        /* Save address, need it while freeing */
  59        dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
  60                                                &dmem->dma, GFP_KERNEL);
  61        if (!dmem->unalign_base)
  62                return -ENOMEM;
  63
  64        /* Align memory address for 'align_bytes' */
  65        dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
  66        dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
  67        return 0;
  68}
  69
  70/* Free queue's descriptor memory */
  71static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
  72{
  73        if (!dmem)
  74                return;
  75
  76        dma_free_coherent(&nic->pdev->dev, dmem->size,
  77                          dmem->unalign_base, dmem->dma);
  78        dmem->unalign_base = NULL;
  79        dmem->base = NULL;
  80}
  81
  82#define XDP_PAGE_REFCNT_REFILL 256
  83
  84/* Allocate a new page or recycle one if possible
  85 *
  86 * We cannot optimize dma mapping here, since
  87 * 1. It's only one RBDR ring for 8 Rx queues.
  88 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
  89 *    and not idx into RBDR ring, so can't refer to saved info.
  90 * 3. There are multiple receive buffers per page
  91 */
  92static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
  93                                               struct rbdr *rbdr, gfp_t gfp)
  94{
  95        int ref_count;
  96        struct page *page = NULL;
  97        struct pgcache *pgcache, *next;
  98
  99        /* Check if page is already allocated */
 100        pgcache = &rbdr->pgcache[rbdr->pgidx];
 101        page = pgcache->page;
 102        /* Check if page can be recycled */
 103        if (page) {
 104                ref_count = page_ref_count(page);
 105                /* This page can be recycled if internal ref_count and page's
 106                 * ref_count are equal, indicating that the page has been used
 107                 * once for packet transmission. For non-XDP mode, internal
 108                 * ref_count is always '1'.
 109                 */
 110                if (rbdr->is_xdp) {
 111                        if (ref_count == pgcache->ref_count)
 112                                pgcache->ref_count--;
 113                        else
 114                                page = NULL;
 115                } else if (ref_count != 1) {
 116                        page = NULL;
 117                }
 118        }
 119
 120        if (!page) {
 121                page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
 122                if (!page)
 123                        return NULL;
 124
 125                this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
 126
 127                /* Check for space */
 128                if (rbdr->pgalloc >= rbdr->pgcnt) {
 129                        /* Page can still be used */
 130                        nic->rb_page = page;
 131                        return NULL;
 132                }
 133
 134                /* Save the page in page cache */
 135                pgcache->page = page;
 136                pgcache->dma_addr = 0;
 137                pgcache->ref_count = 0;
 138                rbdr->pgalloc++;
 139        }
 140
 141        /* Take additional page references for recycling */
 142        if (rbdr->is_xdp) {
 143                /* Since there is single RBDR (i.e single core doing
 144                 * page recycling) per 8 Rx queues, in XDP mode adjusting
 145                 * page references atomically is the biggest bottleneck, so
 146                 * take bunch of references at a time.
 147                 *
 148                 * So here, below reference counts defer by '1'.
 149                 */
 150                if (!pgcache->ref_count) {
 151                        pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
 152                        page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
 153                }
 154        } else {
 155                /* In non-XDP case, single 64K page is divided across multiple
 156                 * receive buffers, so cost of recycling is less anyway.
 157                 * So we can do with just one extra reference.
 158                 */
 159                page_ref_add(page, 1);
 160        }
 161
 162        rbdr->pgidx++;
 163        rbdr->pgidx &= (rbdr->pgcnt - 1);
 164
 165        /* Prefetch refcount of next page in page cache */
 166        next = &rbdr->pgcache[rbdr->pgidx];
 167        page = next->page;
 168        if (page)
 169                prefetch(&page->_refcount);
 170
 171        return pgcache;
 172}
 173
 174/* Allocate buffer for packet reception */
 175static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
 176                                         gfp_t gfp, u32 buf_len, u64 *rbuf)
 177{
 178        struct pgcache *pgcache = NULL;
 179
 180        /* Check if request can be accomodated in previous allocated page.
 181         * But in XDP mode only one buffer per page is permitted.
 182         */
 183        if (!rbdr->is_xdp && nic->rb_page &&
 184            ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
 185                nic->rb_pageref++;
 186                goto ret;
 187        }
 188
 189        nicvf_get_page(nic);
 190        nic->rb_page = NULL;
 191
 192        /* Get new page, either recycled or new one */
 193        pgcache = nicvf_alloc_page(nic, rbdr, gfp);
 194        if (!pgcache && !nic->rb_page) {
 195                this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
 196                return -ENOMEM;
 197        }
 198
 199        nic->rb_page_offset = 0;
 200
 201        /* Reserve space for header modifications by BPF program */
 202        if (rbdr->is_xdp)
 203                buf_len += XDP_PACKET_HEADROOM;
 204
 205        /* Check if it's recycled */
 206        if (pgcache)
 207                nic->rb_page = pgcache->page;
 208ret:
 209        if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
 210                *rbuf = pgcache->dma_addr;
 211        } else {
 212                /* HW will ensure data coherency, CPU sync not required */
 213                *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
 214                                                nic->rb_page_offset, buf_len,
 215                                                DMA_FROM_DEVICE,
 216                                                DMA_ATTR_SKIP_CPU_SYNC);
 217                if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
 218                        if (!nic->rb_page_offset)
 219                                __free_pages(nic->rb_page, 0);
 220                        nic->rb_page = NULL;
 221                        return -ENOMEM;
 222                }
 223                if (pgcache)
 224                        pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
 225                nic->rb_page_offset += buf_len;
 226        }
 227
 228        return 0;
 229}
 230
 231/* Build skb around receive buffer */
 232static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
 233                                           u64 rb_ptr, int len)
 234{
 235        void *data;
 236        struct sk_buff *skb;
 237
 238        data = phys_to_virt(rb_ptr);
 239
 240        /* Now build an skb to give to stack */
 241        skb = build_skb(data, RCV_FRAG_LEN);
 242        if (!skb) {
 243                put_page(virt_to_page(data));
 244                return NULL;
 245        }
 246
 247        prefetch(skb->data);
 248        return skb;
 249}
 250
 251/* Allocate RBDR ring and populate receive buffers */
 252static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
 253                            int ring_len, int buf_size)
 254{
 255        int idx;
 256        u64 rbuf;
 257        struct rbdr_entry_t *desc;
 258        int err;
 259
 260        err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
 261                                     sizeof(struct rbdr_entry_t),
 262                                     NICVF_RCV_BUF_ALIGN_BYTES);
 263        if (err)
 264                return err;
 265
 266        rbdr->desc = rbdr->dmem.base;
 267        /* Buffer size has to be in multiples of 128 bytes */
 268        rbdr->dma_size = buf_size;
 269        rbdr->enable = true;
 270        rbdr->thresh = RBDR_THRESH;
 271        rbdr->head = 0;
 272        rbdr->tail = 0;
 273
 274        /* Initialize page recycling stuff.
 275         *
 276         * Can't use single buffer per page especially with 64K pages.
 277         * On embedded platforms i.e 81xx/83xx available memory itself
 278         * is low and minimum ring size of RBDR is 8K, that takes away
 279         * lots of memory.
 280         *
 281         * But for XDP it has to be a single buffer per page.
 282         */
 283        if (!nic->pnicvf->xdp_prog) {
 284                rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
 285                rbdr->is_xdp = false;
 286        } else {
 287                rbdr->pgcnt = ring_len;
 288                rbdr->is_xdp = true;
 289        }
 290        rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
 291        rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
 292                                GFP_KERNEL);
 293        if (!rbdr->pgcache)
 294                return -ENOMEM;
 295        rbdr->pgidx = 0;
 296        rbdr->pgalloc = 0;
 297
 298        nic->rb_page = NULL;
 299        for (idx = 0; idx < ring_len; idx++) {
 300                err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
 301                                             RCV_FRAG_LEN, &rbuf);
 302                if (err) {
 303                        /* To free already allocated and mapped ones */
 304                        rbdr->tail = idx - 1;
 305                        return err;
 306                }
 307
 308                desc = GET_RBDR_DESC(rbdr, idx);
 309                desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
 310        }
 311
 312        nicvf_get_page(nic);
 313
 314        return 0;
 315}
 316
 317/* Free RBDR ring and its receive buffers */
 318static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
 319{
 320        int head, tail;
 321        u64 buf_addr, phys_addr;
 322        struct pgcache *pgcache;
 323        struct rbdr_entry_t *desc;
 324
 325        if (!rbdr)
 326                return;
 327
 328        rbdr->enable = false;
 329        if (!rbdr->dmem.base)
 330                return;
 331
 332        head = rbdr->head;
 333        tail = rbdr->tail;
 334
 335        /* Release page references */
 336        while (head != tail) {
 337                desc = GET_RBDR_DESC(rbdr, head);
 338                buf_addr = desc->buf_addr;
 339                phys_addr = nicvf_iova_to_phys(nic, buf_addr);
 340                dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
 341                                     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
 342                if (phys_addr)
 343                        put_page(virt_to_page(phys_to_virt(phys_addr)));
 344                head++;
 345                head &= (rbdr->dmem.q_len - 1);
 346        }
 347        /* Release buffer of tail desc */
 348        desc = GET_RBDR_DESC(rbdr, tail);
 349        buf_addr = desc->buf_addr;
 350        phys_addr = nicvf_iova_to_phys(nic, buf_addr);
 351        dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
 352                             DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
 353        if (phys_addr)
 354                put_page(virt_to_page(phys_to_virt(phys_addr)));
 355
 356        /* Sync page cache info */
 357        smp_rmb();
 358
 359        /* Release additional page references held for recycling */
 360        head = 0;
 361        while (head < rbdr->pgcnt) {
 362                pgcache = &rbdr->pgcache[head];
 363                if (pgcache->page && page_ref_count(pgcache->page) != 0) {
 364                        if (rbdr->is_xdp) {
 365                                page_ref_sub(pgcache->page,
 366                                             pgcache->ref_count - 1);
 367                        }
 368                        put_page(pgcache->page);
 369                }
 370                head++;
 371        }
 372
 373        /* Free RBDR ring */
 374        nicvf_free_q_desc_mem(nic, &rbdr->dmem);
 375}
 376
 377/* Refill receive buffer descriptors with new buffers.
 378 */
 379static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
 380{
 381        struct queue_set *qs = nic->qs;
 382        int rbdr_idx = qs->rbdr_cnt;
 383        int tail, qcount;
 384        int refill_rb_cnt;
 385        struct rbdr *rbdr;
 386        struct rbdr_entry_t *desc;
 387        u64 rbuf;
 388        int new_rb = 0;
 389
 390refill:
 391        if (!rbdr_idx)
 392                return;
 393        rbdr_idx--;
 394        rbdr = &qs->rbdr[rbdr_idx];
 395        /* Check if it's enabled */
 396        if (!rbdr->enable)
 397                goto next_rbdr;
 398
 399        /* Get no of desc's to be refilled */
 400        qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
 401        qcount &= 0x7FFFF;
 402        /* Doorbell can be ringed with a max of ring size minus 1 */
 403        if (qcount >= (qs->rbdr_len - 1))
 404                goto next_rbdr;
 405        else
 406                refill_rb_cnt = qs->rbdr_len - qcount - 1;
 407
 408        /* Sync page cache info */
 409        smp_rmb();
 410
 411        /* Start filling descs from tail */
 412        tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
 413        while (refill_rb_cnt) {
 414                tail++;
 415                tail &= (rbdr->dmem.q_len - 1);
 416
 417                if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
 418                        break;
 419
 420                desc = GET_RBDR_DESC(rbdr, tail);
 421                desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
 422                refill_rb_cnt--;
 423                new_rb++;
 424        }
 425
 426        nicvf_get_page(nic);
 427
 428        /* make sure all memory stores are done before ringing doorbell */
 429        smp_wmb();
 430
 431        /* Check if buffer allocation failed */
 432        if (refill_rb_cnt)
 433                nic->rb_alloc_fail = true;
 434        else
 435                nic->rb_alloc_fail = false;
 436
 437        /* Notify HW */
 438        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
 439                              rbdr_idx, new_rb);
 440next_rbdr:
 441        /* Re-enable RBDR interrupts only if buffer allocation is success */
 442        if (!nic->rb_alloc_fail && rbdr->enable &&
 443            netif_running(nic->pnicvf->netdev))
 444                nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
 445
 446        if (rbdr_idx)
 447                goto refill;
 448}
 449
 450/* Alloc rcv buffers in non-atomic mode for better success */
 451void nicvf_rbdr_work(struct work_struct *work)
 452{
 453        struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
 454
 455        nicvf_refill_rbdr(nic, GFP_KERNEL);
 456        if (nic->rb_alloc_fail)
 457                schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
 458        else
 459                nic->rb_work_scheduled = false;
 460}
 461
 462/* In Softirq context, alloc rcv buffers in atomic mode */
 463void nicvf_rbdr_task(struct tasklet_struct *t)
 464{
 465        struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
 466
 467        nicvf_refill_rbdr(nic, GFP_ATOMIC);
 468        if (nic->rb_alloc_fail) {
 469                nic->rb_work_scheduled = true;
 470                schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
 471        }
 472}
 473
 474/* Initialize completion queue */
 475static int nicvf_init_cmp_queue(struct nicvf *nic,
 476                                struct cmp_queue *cq, int q_len)
 477{
 478        int err;
 479
 480        err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
 481                                     NICVF_CQ_BASE_ALIGN_BYTES);
 482        if (err)
 483                return err;
 484
 485        cq->desc = cq->dmem.base;
 486        cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
 487        nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
 488
 489        return 0;
 490}
 491
 492static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
 493{
 494        if (!cq)
 495                return;
 496        if (!cq->dmem.base)
 497                return;
 498
 499        nicvf_free_q_desc_mem(nic, &cq->dmem);
 500}
 501
 502/* Initialize transmit queue */
 503static int nicvf_init_snd_queue(struct nicvf *nic,
 504                                struct snd_queue *sq, int q_len, int qidx)
 505{
 506        int err;
 507
 508        err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
 509                                     NICVF_SQ_BASE_ALIGN_BYTES);
 510        if (err)
 511                return err;
 512
 513        sq->desc = sq->dmem.base;
 514        sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
 515        if (!sq->skbuff)
 516                return -ENOMEM;
 517
 518        sq->head = 0;
 519        sq->tail = 0;
 520        sq->thresh = SND_QUEUE_THRESH;
 521
 522        /* Check if this SQ is a XDP TX queue */
 523        if (nic->sqs_mode)
 524                qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
 525        if (qidx < nic->pnicvf->xdp_tx_queues) {
 526                /* Alloc memory to save page pointers for XDP_TX */
 527                sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
 528                if (!sq->xdp_page)
 529                        return -ENOMEM;
 530                sq->xdp_desc_cnt = 0;
 531                sq->xdp_free_cnt = q_len - 1;
 532                sq->is_xdp = true;
 533        } else {
 534                sq->xdp_page = NULL;
 535                sq->xdp_desc_cnt = 0;
 536                sq->xdp_free_cnt = 0;
 537                sq->is_xdp = false;
 538
 539                atomic_set(&sq->free_cnt, q_len - 1);
 540
 541                /* Preallocate memory for TSO segment's header */
 542                sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
 543                                                  q_len * TSO_HEADER_SIZE,
 544                                                  &sq->tso_hdrs_phys,
 545                                                  GFP_KERNEL);
 546                if (!sq->tso_hdrs)
 547                        return -ENOMEM;
 548        }
 549
 550        return 0;
 551}
 552
 553void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
 554                              int hdr_sqe, u8 subdesc_cnt)
 555{
 556        u8 idx;
 557        struct sq_gather_subdesc *gather;
 558
 559        /* Unmap DMA mapped skb data buffers */
 560        for (idx = 0; idx < subdesc_cnt; idx++) {
 561                hdr_sqe++;
 562                hdr_sqe &= (sq->dmem.q_len - 1);
 563                gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
 564                /* HW will ensure data coherency, CPU sync not required */
 565                dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
 566                                     gather->size, DMA_TO_DEVICE,
 567                                     DMA_ATTR_SKIP_CPU_SYNC);
 568        }
 569}
 570
 571static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
 572{
 573        struct sk_buff *skb;
 574        struct page *page;
 575        struct sq_hdr_subdesc *hdr;
 576        struct sq_hdr_subdesc *tso_sqe;
 577
 578        if (!sq)
 579                return;
 580        if (!sq->dmem.base)
 581                return;
 582
 583        if (sq->tso_hdrs) {
 584                dma_free_coherent(&nic->pdev->dev,
 585                                  sq->dmem.q_len * TSO_HEADER_SIZE,
 586                                  sq->tso_hdrs, sq->tso_hdrs_phys);
 587                sq->tso_hdrs = NULL;
 588        }
 589
 590        /* Free pending skbs in the queue */
 591        smp_rmb();
 592        while (sq->head != sq->tail) {
 593                skb = (struct sk_buff *)sq->skbuff[sq->head];
 594                if (!skb || !sq->xdp_page)
 595                        goto next;
 596
 597                page = (struct page *)sq->xdp_page[sq->head];
 598                if (!page)
 599                        goto next;
 600                else
 601                        put_page(page);
 602
 603                hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
 604                /* Check for dummy descriptor used for HW TSO offload on 88xx */
 605                if (hdr->dont_send) {
 606                        /* Get actual TSO descriptors and unmap them */
 607                        tso_sqe =
 608                         (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
 609                        nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
 610                                                 tso_sqe->subdesc_cnt);
 611                } else {
 612                        nicvf_unmap_sndq_buffers(nic, sq, sq->head,
 613                                                 hdr->subdesc_cnt);
 614                }
 615                if (skb)
 616                        dev_kfree_skb_any(skb);
 617next:
 618                sq->head++;
 619                sq->head &= (sq->dmem.q_len - 1);
 620        }
 621        kfree(sq->skbuff);
 622        kfree(sq->xdp_page);
 623        nicvf_free_q_desc_mem(nic, &sq->dmem);
 624}
 625
 626static void nicvf_reclaim_snd_queue(struct nicvf *nic,
 627                                    struct queue_set *qs, int qidx)
 628{
 629        /* Disable send queue */
 630        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
 631        /* Check if SQ is stopped */
 632        if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
 633                return;
 634        /* Reset send queue */
 635        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
 636}
 637
 638static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
 639                                    struct queue_set *qs, int qidx)
 640{
 641        union nic_mbx mbx = {};
 642
 643        /* Make sure all packets in the pipeline are written back into mem */
 644        mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
 645        nicvf_send_msg_to_pf(nic, &mbx);
 646}
 647
 648static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
 649                                    struct queue_set *qs, int qidx)
 650{
 651        /* Disable timer threshold (doesn't get reset upon CQ reset */
 652        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
 653        /* Disable completion queue */
 654        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
 655        /* Reset completion queue */
 656        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
 657}
 658
 659static void nicvf_reclaim_rbdr(struct nicvf *nic,
 660                               struct rbdr *rbdr, int qidx)
 661{
 662        u64 tmp, fifo_state;
 663        int timeout = 10;
 664
 665        /* Save head and tail pointers for feeing up buffers */
 666        rbdr->head = nicvf_queue_reg_read(nic,
 667                                          NIC_QSET_RBDR_0_1_HEAD,
 668                                          qidx) >> 3;
 669        rbdr->tail = nicvf_queue_reg_read(nic,
 670                                          NIC_QSET_RBDR_0_1_TAIL,
 671                                          qidx) >> 3;
 672
 673        /* If RBDR FIFO is in 'FAIL' state then do a reset first
 674         * before relaiming.
 675         */
 676        fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
 677        if (((fifo_state >> 62) & 0x03) == 0x3)
 678                nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 679                                      qidx, NICVF_RBDR_RESET);
 680
 681        /* Disable RBDR */
 682        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
 683        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
 684                return;
 685        while (1) {
 686                tmp = nicvf_queue_reg_read(nic,
 687                                           NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
 688                                           qidx);
 689                if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
 690                        break;
 691                usleep_range(1000, 2000);
 692                timeout--;
 693                if (!timeout) {
 694                        netdev_err(nic->netdev,
 695                                   "Failed polling on prefetch status\n");
 696                        return;
 697                }
 698        }
 699        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 700                              qidx, NICVF_RBDR_RESET);
 701
 702        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
 703                return;
 704        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
 705        if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
 706                return;
 707}
 708
 709void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
 710{
 711        u64 rq_cfg;
 712        int sqs;
 713
 714        rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
 715
 716        /* Enable first VLAN stripping */
 717        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 718                rq_cfg |= (1ULL << 25);
 719        else
 720                rq_cfg &= ~(1ULL << 25);
 721        nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
 722
 723        /* Configure Secondary Qsets, if any */
 724        for (sqs = 0; sqs < nic->sqs_count; sqs++)
 725                if (nic->snicvf[sqs])
 726                        nicvf_queue_reg_write(nic->snicvf[sqs],
 727                                              NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
 728}
 729
 730static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
 731{
 732        union nic_mbx mbx = {};
 733
 734        /* Reset all RQ/SQ and VF stats */
 735        mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
 736        mbx.reset_stat.rx_stat_mask = 0x3FFF;
 737        mbx.reset_stat.tx_stat_mask = 0x1F;
 738        mbx.reset_stat.rq_stat_mask = 0xFFFF;
 739        mbx.reset_stat.sq_stat_mask = 0xFFFF;
 740        nicvf_send_msg_to_pf(nic, &mbx);
 741}
 742
 743/* Configures receive queue */
 744static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
 745                                   int qidx, bool enable)
 746{
 747        union nic_mbx mbx = {};
 748        struct rcv_queue *rq;
 749        struct rq_cfg rq_cfg;
 750
 751        rq = &qs->rq[qidx];
 752        rq->enable = enable;
 753
 754        /* Disable receive queue */
 755        nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
 756
 757        if (!rq->enable) {
 758                nicvf_reclaim_rcv_queue(nic, qs, qidx);
 759                xdp_rxq_info_unreg(&rq->xdp_rxq);
 760                return;
 761        }
 762
 763        rq->cq_qs = qs->vnic_id;
 764        rq->cq_idx = qidx;
 765        rq->start_rbdr_qs = qs->vnic_id;
 766        rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
 767        rq->cont_rbdr_qs = qs->vnic_id;
 768        rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
 769        /* all writes of RBDR data to be loaded into L2 Cache as well*/
 770        rq->caching = 1;
 771
 772        /* Driver have no proper error path for failed XDP RX-queue info reg */
 773        WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
 774
 775        /* Send a mailbox msg to PF to config RQ */
 776        mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
 777        mbx.rq.qs_num = qs->vnic_id;
 778        mbx.rq.rq_num = qidx;
 779        mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
 780                          (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
 781                          (rq->cont_qs_rbdr_idx << 8) |
 782                          (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
 783        nicvf_send_msg_to_pf(nic, &mbx);
 784
 785        mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
 786        mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
 787                     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
 788                     (qs->vnic_id << 0);
 789        nicvf_send_msg_to_pf(nic, &mbx);
 790
 791        /* RQ drop config
 792         * Enable CQ drop to reserve sufficient CQEs for all tx packets
 793         */
 794        mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
 795        mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
 796                     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
 797                     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
 798        nicvf_send_msg_to_pf(nic, &mbx);
 799
 800        if (!nic->sqs_mode && (qidx == 0)) {
 801                /* Enable checking L3/L4 length and TCP/UDP checksums
 802                 * Also allow IPv6 pkts with zero UDP checksum.
 803                 */
 804                nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
 805                                      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
 806                nicvf_config_vlan_stripping(nic, nic->netdev->features);
 807        }
 808
 809        /* Enable Receive queue */
 810        memset(&rq_cfg, 0, sizeof(struct rq_cfg));
 811        rq_cfg.ena = 1;
 812        rq_cfg.tcp_ena = 0;
 813        nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
 814}
 815
 816/* Configures completion queue */
 817void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
 818                            int qidx, bool enable)
 819{
 820        struct cmp_queue *cq;
 821        struct cq_cfg cq_cfg;
 822
 823        cq = &qs->cq[qidx];
 824        cq->enable = enable;
 825
 826        if (!cq->enable) {
 827                nicvf_reclaim_cmp_queue(nic, qs, qidx);
 828                return;
 829        }
 830
 831        /* Reset completion queue */
 832        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
 833
 834        if (!cq->enable)
 835                return;
 836
 837        spin_lock_init(&cq->lock);
 838        /* Set completion queue base address */
 839        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
 840                              qidx, (u64)(cq->dmem.phys_base));
 841
 842        /* Enable Completion queue */
 843        memset(&cq_cfg, 0, sizeof(struct cq_cfg));
 844        cq_cfg.ena = 1;
 845        cq_cfg.reset = 0;
 846        cq_cfg.caching = 0;
 847        cq_cfg.qsize = ilog2(qs->cq_len >> 10);
 848        cq_cfg.avg_con = 0;
 849        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
 850
 851        /* Set threshold value for interrupt generation */
 852        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
 853        nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
 854                              qidx, CMP_QUEUE_TIMER_THRESH);
 855}
 856
 857/* Configures transmit queue */
 858static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
 859                                   int qidx, bool enable)
 860{
 861        union nic_mbx mbx = {};
 862        struct snd_queue *sq;
 863        struct sq_cfg sq_cfg;
 864
 865        sq = &qs->sq[qidx];
 866        sq->enable = enable;
 867
 868        if (!sq->enable) {
 869                nicvf_reclaim_snd_queue(nic, qs, qidx);
 870                return;
 871        }
 872
 873        /* Reset send queue */
 874        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
 875
 876        sq->cq_qs = qs->vnic_id;
 877        sq->cq_idx = qidx;
 878
 879        /* Send a mailbox msg to PF to config SQ */
 880        mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
 881        mbx.sq.qs_num = qs->vnic_id;
 882        mbx.sq.sq_num = qidx;
 883        mbx.sq.sqs_mode = nic->sqs_mode;
 884        mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
 885        nicvf_send_msg_to_pf(nic, &mbx);
 886
 887        /* Set queue base address */
 888        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
 889                              qidx, (u64)(sq->dmem.phys_base));
 890
 891        /* Enable send queue  & set queue size */
 892        memset(&sq_cfg, 0, sizeof(struct sq_cfg));
 893        sq_cfg.ena = 1;
 894        sq_cfg.reset = 0;
 895        sq_cfg.ldwb = 0;
 896        sq_cfg.qsize = ilog2(qs->sq_len >> 10);
 897        sq_cfg.tstmp_bgx_intf = 0;
 898        /* CQ's level at which HW will stop processing SQEs to avoid
 899         * transmitting a pkt with no space in CQ to post CQE_TX.
 900         */
 901        sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
 902        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
 903
 904        /* Set threshold value for interrupt generation */
 905        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
 906
 907        /* Set queue:cpu affinity for better load distribution */
 908        if (cpu_online(qidx)) {
 909                cpumask_set_cpu(qidx, &sq->affinity_mask);
 910                netif_set_xps_queue(nic->netdev,
 911                                    &sq->affinity_mask, qidx);
 912        }
 913}
 914
 915/* Configures receive buffer descriptor ring */
 916static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
 917                              int qidx, bool enable)
 918{
 919        struct rbdr *rbdr;
 920        struct rbdr_cfg rbdr_cfg;
 921
 922        rbdr = &qs->rbdr[qidx];
 923        nicvf_reclaim_rbdr(nic, rbdr, qidx);
 924        if (!enable)
 925                return;
 926
 927        /* Set descriptor base address */
 928        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
 929                              qidx, (u64)(rbdr->dmem.phys_base));
 930
 931        /* Enable RBDR  & set queue size */
 932        /* Buffer size should be in multiples of 128 bytes */
 933        memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
 934        rbdr_cfg.ena = 1;
 935        rbdr_cfg.reset = 0;
 936        rbdr_cfg.ldwb = 0;
 937        rbdr_cfg.qsize = RBDR_SIZE;
 938        rbdr_cfg.avg_con = 0;
 939        rbdr_cfg.lines = rbdr->dma_size / 128;
 940        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
 941                              qidx, *(u64 *)&rbdr_cfg);
 942
 943        /* Notify HW */
 944        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
 945                              qidx, qs->rbdr_len - 1);
 946
 947        /* Set threshold value for interrupt generation */
 948        nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
 949                              qidx, rbdr->thresh - 1);
 950}
 951
 952/* Requests PF to assign and enable Qset */
 953void nicvf_qset_config(struct nicvf *nic, bool enable)
 954{
 955        union nic_mbx mbx = {};
 956        struct queue_set *qs = nic->qs;
 957        struct qs_cfg *qs_cfg;
 958
 959        if (!qs) {
 960                netdev_warn(nic->netdev,
 961                            "Qset is still not allocated, don't init queues\n");
 962                return;
 963        }
 964
 965        qs->enable = enable;
 966        qs->vnic_id = nic->vf_id;
 967
 968        /* Send a mailbox msg to PF to config Qset */
 969        mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
 970        mbx.qs.num = qs->vnic_id;
 971        mbx.qs.sqs_count = nic->sqs_count;
 972
 973        mbx.qs.cfg = 0;
 974        qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
 975        if (qs->enable) {
 976                qs_cfg->ena = 1;
 977#ifdef __BIG_ENDIAN
 978                qs_cfg->be = 1;
 979#endif
 980                qs_cfg->vnic = qs->vnic_id;
 981                /* Enable Tx timestamping capability */
 982                if (nic->ptp_clock)
 983                        qs_cfg->send_tstmp_ena = 1;
 984        }
 985        nicvf_send_msg_to_pf(nic, &mbx);
 986}
 987
 988static void nicvf_free_resources(struct nicvf *nic)
 989{
 990        int qidx;
 991        struct queue_set *qs = nic->qs;
 992
 993        /* Free receive buffer descriptor ring */
 994        for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
 995                nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
 996
 997        /* Free completion queue */
 998        for (qidx = 0; qidx < qs->cq_cnt; qidx++)
 999                nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1000
1001        /* Free send queue */
1002        for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1003                nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1004}
1005
1006static int nicvf_alloc_resources(struct nicvf *nic)
1007{
1008        int qidx;
1009        struct queue_set *qs = nic->qs;
1010
1011        /* Alloc receive buffer descriptor ring */
1012        for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1013                if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1014                                    DMA_BUFFER_LEN))
1015                        goto alloc_fail;
1016        }
1017
1018        /* Alloc send queue */
1019        for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1020                if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1021                        goto alloc_fail;
1022        }
1023
1024        /* Alloc completion queue */
1025        for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1026                if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1027                        goto alloc_fail;
1028        }
1029
1030        return 0;
1031alloc_fail:
1032        nicvf_free_resources(nic);
1033        return -ENOMEM;
1034}
1035
1036int nicvf_set_qset_resources(struct nicvf *nic)
1037{
1038        struct queue_set *qs;
1039
1040        qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1041        if (!qs)
1042                return -ENOMEM;
1043        nic->qs = qs;
1044
1045        /* Set count of each queue */
1046        qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1047        qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1048        qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1049        qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1050
1051        /* Set queue lengths */
1052        qs->rbdr_len = RCV_BUF_COUNT;
1053        qs->sq_len = SND_QUEUE_LEN;
1054        qs->cq_len = CMP_QUEUE_LEN;
1055
1056        nic->rx_queues = qs->rq_cnt;
1057        nic->tx_queues = qs->sq_cnt;
1058        nic->xdp_tx_queues = 0;
1059
1060        return 0;
1061}
1062
1063int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1064{
1065        bool disable = false;
1066        struct queue_set *qs = nic->qs;
1067        struct queue_set *pqs = nic->pnicvf->qs;
1068        int qidx;
1069
1070        if (!qs)
1071                return 0;
1072
1073        /* Take primary VF's queue lengths.
1074         * This is needed to take queue lengths set from ethtool
1075         * into consideration.
1076         */
1077        if (nic->sqs_mode && pqs) {
1078                qs->cq_len = pqs->cq_len;
1079                qs->sq_len = pqs->sq_len;
1080        }
1081
1082        if (enable) {
1083                if (nicvf_alloc_resources(nic))
1084                        return -ENOMEM;
1085
1086                for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1087                        nicvf_snd_queue_config(nic, qs, qidx, enable);
1088                for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1089                        nicvf_cmp_queue_config(nic, qs, qidx, enable);
1090                for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1091                        nicvf_rbdr_config(nic, qs, qidx, enable);
1092                for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1093                        nicvf_rcv_queue_config(nic, qs, qidx, enable);
1094        } else {
1095                for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1096                        nicvf_rcv_queue_config(nic, qs, qidx, disable);
1097                for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1098                        nicvf_rbdr_config(nic, qs, qidx, disable);
1099                for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1100                        nicvf_snd_queue_config(nic, qs, qidx, disable);
1101                for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1102                        nicvf_cmp_queue_config(nic, qs, qidx, disable);
1103
1104                nicvf_free_resources(nic);
1105        }
1106
1107        /* Reset RXQ's stats.
1108         * SQ's stats will get reset automatically once SQ is reset.
1109         */
1110        nicvf_reset_rcv_queue_stats(nic);
1111
1112        return 0;
1113}
1114
1115/* Get a free desc from SQ
1116 * returns descriptor ponter & descriptor number
1117 */
1118static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1119{
1120        int qentry;
1121
1122        qentry = sq->tail;
1123        if (!sq->is_xdp)
1124                atomic_sub(desc_cnt, &sq->free_cnt);
1125        else
1126                sq->xdp_free_cnt -= desc_cnt;
1127        sq->tail += desc_cnt;
1128        sq->tail &= (sq->dmem.q_len - 1);
1129
1130        return qentry;
1131}
1132
1133/* Rollback to previous tail pointer when descriptors not used */
1134static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1135                                          int qentry, int desc_cnt)
1136{
1137        sq->tail = qentry;
1138        atomic_add(desc_cnt, &sq->free_cnt);
1139}
1140
1141/* Free descriptor back to SQ for future use */
1142void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1143{
1144        if (!sq->is_xdp)
1145                atomic_add(desc_cnt, &sq->free_cnt);
1146        else
1147                sq->xdp_free_cnt += desc_cnt;
1148        sq->head += desc_cnt;
1149        sq->head &= (sq->dmem.q_len - 1);
1150}
1151
1152static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1153{
1154        qentry++;
1155        qentry &= (sq->dmem.q_len - 1);
1156        return qentry;
1157}
1158
1159void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1160{
1161        u64 sq_cfg;
1162
1163        sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1164        sq_cfg |= NICVF_SQ_EN;
1165        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1166        /* Ring doorbell so that H/W restarts processing SQEs */
1167        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1168}
1169
1170void nicvf_sq_disable(struct nicvf *nic, int qidx)
1171{
1172        u64 sq_cfg;
1173
1174        sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1175        sq_cfg &= ~NICVF_SQ_EN;
1176        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1177}
1178
1179void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1180                              int qidx)
1181{
1182        u64 head;
1183        struct sk_buff *skb;
1184        struct nicvf *nic = netdev_priv(netdev);
1185        struct sq_hdr_subdesc *hdr;
1186
1187        head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1188        while (sq->head != head) {
1189                hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1190                if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1191                        nicvf_put_sq_desc(sq, 1);
1192                        continue;
1193                }
1194                skb = (struct sk_buff *)sq->skbuff[sq->head];
1195                if (skb)
1196                        dev_kfree_skb_any(skb);
1197                atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1198                atomic64_add(hdr->tot_len,
1199                             (atomic64_t *)&netdev->stats.tx_bytes);
1200                nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1201        }
1202}
1203
1204/* XDP Transmit APIs */
1205void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1206                           struct snd_queue *sq, int sq_num)
1207{
1208        if (!sq->xdp_desc_cnt)
1209                return;
1210
1211        /* make sure all memory stores are done before ringing doorbell */
1212        wmb();
1213
1214        /* Inform HW to xmit all TSO segments */
1215        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1216                              sq_num, sq->xdp_desc_cnt);
1217        sq->xdp_desc_cnt = 0;
1218}
1219
1220static inline void
1221nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1222                             int subdesc_cnt, u64 data, int len)
1223{
1224        struct sq_hdr_subdesc *hdr;
1225
1226        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1227        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1228        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1229        hdr->subdesc_cnt = subdesc_cnt;
1230        hdr->tot_len = len;
1231        hdr->post_cqe = 1;
1232        sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1233}
1234
1235int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1236                            u64 bufaddr, u64 dma_addr, u16 len)
1237{
1238        int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1239        int qentry;
1240
1241        if (subdesc_cnt > sq->xdp_free_cnt)
1242                return 0;
1243
1244        qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1245
1246        nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1247
1248        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1249        nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1250
1251        sq->xdp_desc_cnt += subdesc_cnt;
1252
1253        return 1;
1254}
1255
1256/* Calculate no of SQ subdescriptors needed to transmit all
1257 * segments of this TSO packet.
1258 * Taken from 'Tilera network driver' with a minor modification.
1259 */
1260static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1261{
1262        struct skb_shared_info *sh = skb_shinfo(skb);
1263        unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1264        unsigned int data_len = skb->len - sh_len;
1265        unsigned int p_len = sh->gso_size;
1266        long f_id = -1;    /* id of the current fragment */
1267        long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1268        long f_used = 0;  /* bytes used from the current fragment */
1269        long n;            /* size of the current piece of payload */
1270        int num_edescs = 0;
1271        int segment;
1272
1273        for (segment = 0; segment < sh->gso_segs; segment++) {
1274                unsigned int p_used = 0;
1275
1276                /* One edesc for header and for each piece of the payload. */
1277                for (num_edescs++; p_used < p_len; num_edescs++) {
1278                        /* Advance as needed. */
1279                        while (f_used >= f_size) {
1280                                f_id++;
1281                                f_size = skb_frag_size(&sh->frags[f_id]);
1282                                f_used = 0;
1283                        }
1284
1285                        /* Use bytes from the current fragment. */
1286                        n = p_len - p_used;
1287                        if (n > f_size - f_used)
1288                                n = f_size - f_used;
1289                        f_used += n;
1290                        p_used += n;
1291                }
1292
1293                /* The last segment may be less than gso_size. */
1294                data_len -= p_len;
1295                if (data_len < p_len)
1296                        p_len = data_len;
1297        }
1298
1299        /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1300        return num_edescs + sh->gso_segs;
1301}
1302
1303#define POST_CQE_DESC_COUNT 2
1304
1305/* Get the number of SQ descriptors needed to xmit this skb */
1306static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1307{
1308        int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1309
1310        if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1311                subdesc_cnt = nicvf_tso_count_subdescs(skb);
1312                return subdesc_cnt;
1313        }
1314
1315        /* Dummy descriptors to get TSO pkt completion notification */
1316        if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1317                subdesc_cnt += POST_CQE_DESC_COUNT;
1318
1319        if (skb_shinfo(skb)->nr_frags)
1320                subdesc_cnt += skb_shinfo(skb)->nr_frags;
1321
1322        return subdesc_cnt;
1323}
1324
1325/* Add SQ HEADER subdescriptor.
1326 * First subdescriptor for every send descriptor.
1327 */
1328static inline void
1329nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1330                         int subdesc_cnt, struct sk_buff *skb, int len)
1331{
1332        int proto;
1333        struct sq_hdr_subdesc *hdr;
1334        union {
1335                struct iphdr *v4;
1336                struct ipv6hdr *v6;
1337                unsigned char *hdr;
1338        } ip;
1339
1340        ip.hdr = skb_network_header(skb);
1341        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1342        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1343        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1344
1345        if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1346                /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1347                 * segment transmitted on 88xx.
1348                 */
1349                hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1350        } else {
1351                sq->skbuff[qentry] = (u64)skb;
1352                /* Enable notification via CQE after processing SQE */
1353                hdr->post_cqe = 1;
1354                /* No of subdescriptors following this */
1355                hdr->subdesc_cnt = subdesc_cnt;
1356        }
1357        hdr->tot_len = len;
1358
1359        /* Offload checksum calculation to HW */
1360        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1361                if (ip.v4->version == 4)
1362                        hdr->csum_l3 = 1; /* Enable IP csum calculation */
1363                hdr->l3_offset = skb_network_offset(skb);
1364                hdr->l4_offset = skb_transport_offset(skb);
1365
1366                proto = (ip.v4->version == 4) ? ip.v4->protocol :
1367                        ip.v6->nexthdr;
1368
1369                switch (proto) {
1370                case IPPROTO_TCP:
1371                        hdr->csum_l4 = SEND_L4_CSUM_TCP;
1372                        break;
1373                case IPPROTO_UDP:
1374                        hdr->csum_l4 = SEND_L4_CSUM_UDP;
1375                        break;
1376                case IPPROTO_SCTP:
1377                        hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1378                        break;
1379                }
1380        }
1381
1382        if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1383                hdr->tso = 1;
1384                hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1385                hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1386                /* For non-tunneled pkts, point this to L2 ethertype */
1387                hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1388                this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1389        }
1390
1391        /* Check if timestamp is requested */
1392        if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1393                skb_tx_timestamp(skb);
1394                return;
1395        }
1396
1397        /* Tx timestamping not supported along with TSO, so ignore request */
1398        if (skb_shinfo(skb)->gso_size)
1399                return;
1400
1401        /* HW supports only a single outstanding packet to timestamp */
1402        if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1403                return;
1404
1405        /* Mark the SKB for later reference */
1406        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1407
1408        /* Finally enable timestamp generation
1409         * Since 'post_cqe' is also set, two CQEs will be posted
1410         * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1411         */
1412        hdr->tstmp = 1;
1413}
1414
1415/* SQ GATHER subdescriptor
1416 * Must follow HDR descriptor
1417 */
1418static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1419                                               int size, u64 data)
1420{
1421        struct sq_gather_subdesc *gather;
1422
1423        qentry &= (sq->dmem.q_len - 1);
1424        gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1425
1426        memset(gather, 0, SND_QUEUE_DESC_SIZE);
1427        gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1428        gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1429        gather->size = size;
1430        gather->addr = data;
1431}
1432
1433/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1434 * packet so that a CQE is posted as a notifation for transmission of
1435 * TSO packet.
1436 */
1437static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1438                                            int tso_sqe, struct sk_buff *skb)
1439{
1440        struct sq_imm_subdesc *imm;
1441        struct sq_hdr_subdesc *hdr;
1442
1443        sq->skbuff[qentry] = (u64)skb;
1444
1445        hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1446        memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1447        hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1448        /* Enable notification via CQE after processing SQE */
1449        hdr->post_cqe = 1;
1450        /* There is no packet to transmit here */
1451        hdr->dont_send = 1;
1452        hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1453        hdr->tot_len = 1;
1454        /* Actual TSO header SQE index, needed for cleanup */
1455        hdr->rsvd2 = tso_sqe;
1456
1457        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1458        imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1459        memset(imm, 0, SND_QUEUE_DESC_SIZE);
1460        imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1461        imm->len = 1;
1462}
1463
1464static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1465                                     int sq_num, int desc_cnt)
1466{
1467        struct netdev_queue *txq;
1468
1469        txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1470                                  skb_get_queue_mapping(skb));
1471
1472        netdev_tx_sent_queue(txq, skb->len);
1473
1474        /* make sure all memory stores are done before ringing doorbell */
1475        smp_wmb();
1476
1477        /* Inform HW to xmit all TSO segments */
1478        nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1479                              sq_num, desc_cnt);
1480}
1481
1482/* Segment a TSO packet into 'gso_size' segments and append
1483 * them to SQ for transfer
1484 */
1485static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1486                               int sq_num, int qentry, struct sk_buff *skb)
1487{
1488        struct tso_t tso;
1489        int seg_subdescs = 0, desc_cnt = 0;
1490        int seg_len, total_len, data_left;
1491        int hdr_qentry = qentry;
1492        int hdr_len;
1493
1494        hdr_len = tso_start(skb, &tso);
1495
1496        total_len = skb->len - hdr_len;
1497        while (total_len > 0) {
1498                char *hdr;
1499
1500                /* Save Qentry for adding HDR_SUBDESC at the end */
1501                hdr_qentry = qentry;
1502
1503                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1504                total_len -= data_left;
1505
1506                /* Add segment's header */
1507                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1508                hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1509                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1510                nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1511                                            sq->tso_hdrs_phys +
1512                                            qentry * TSO_HEADER_SIZE);
1513                /* HDR_SUDESC + GATHER */
1514                seg_subdescs = 2;
1515                seg_len = hdr_len;
1516
1517                /* Add segment's payload fragments */
1518                while (data_left > 0) {
1519                        int size;
1520
1521                        size = min_t(int, tso.size, data_left);
1522
1523                        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1524                        nicvf_sq_add_gather_subdesc(sq, qentry, size,
1525                                                    virt_to_phys(tso.data));
1526                        seg_subdescs++;
1527                        seg_len += size;
1528
1529                        data_left -= size;
1530                        tso_build_data(skb, &tso, size);
1531                }
1532                nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1533                                         seg_subdescs - 1, skb, seg_len);
1534                sq->skbuff[hdr_qentry] = (u64)NULL;
1535                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1536
1537                desc_cnt += seg_subdescs;
1538        }
1539        /* Save SKB in the last segment for freeing */
1540        sq->skbuff[hdr_qentry] = (u64)skb;
1541
1542        nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1543
1544        this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1545        return 1;
1546}
1547
1548/* Append an skb to a SQ for packet transfer. */
1549int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1550                        struct sk_buff *skb, u8 sq_num)
1551{
1552        int i, size;
1553        int subdesc_cnt, hdr_sqe = 0;
1554        int qentry;
1555        u64 dma_addr;
1556
1557        subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1558        if (subdesc_cnt > atomic_read(&sq->free_cnt))
1559                goto append_fail;
1560
1561        qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1562
1563        /* Check if its a TSO packet */
1564        if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1565                return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1566
1567        /* Add SQ header subdesc */
1568        nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1569                                 skb, skb->len);
1570        hdr_sqe = qentry;
1571
1572        /* Add SQ gather subdescs */
1573        qentry = nicvf_get_nxt_sqentry(sq, qentry);
1574        size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1575        /* HW will ensure data coherency, CPU sync not required */
1576        dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1577                                      offset_in_page(skb->data), size,
1578                                      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1579        if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1580                nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1581                return 0;
1582        }
1583
1584        nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1585
1586        /* Check for scattered buffer */
1587        if (!skb_is_nonlinear(skb))
1588                goto doorbell;
1589
1590        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1592
1593                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1594                size = skb_frag_size(frag);
1595                dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1596                                              skb_frag_page(frag),
1597                                              skb_frag_off(frag), size,
1598                                              DMA_TO_DEVICE,
1599                                              DMA_ATTR_SKIP_CPU_SYNC);
1600                if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1601                        /* Free entire chain of mapped buffers
1602                         * here 'i' = frags mapped + above mapped skb->data
1603                         */
1604                        nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1605                        nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1606                        return 0;
1607                }
1608                nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1609        }
1610
1611doorbell:
1612        if (nic->t88 && skb_shinfo(skb)->gso_size) {
1613                qentry = nicvf_get_nxt_sqentry(sq, qentry);
1614                nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1615        }
1616
1617        nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1618
1619        return 1;
1620
1621append_fail:
1622        /* Use original PCI dev for debug log */
1623        nic = nic->pnicvf;
1624        netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1625        return 0;
1626}
1627
1628static inline unsigned frag_num(unsigned i)
1629{
1630#ifdef __BIG_ENDIAN
1631        return (i & ~3) + 3 - (i & 3);
1632#else
1633        return i;
1634#endif
1635}
1636
1637static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1638                                   u64 buf_addr, bool xdp)
1639{
1640        struct page *page = NULL;
1641        int len = RCV_FRAG_LEN;
1642
1643        if (xdp) {
1644                page = virt_to_page(phys_to_virt(buf_addr));
1645                /* Check if it's a recycled page, if not
1646                 * unmap the DMA mapping.
1647                 *
1648                 * Recycled page holds an extra reference.
1649                 */
1650                if (page_ref_count(page) != 1)
1651                        return;
1652
1653                len += XDP_PACKET_HEADROOM;
1654                /* Receive buffers in XDP mode are mapped from page start */
1655                dma_addr &= PAGE_MASK;
1656        }
1657        dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1658                             DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1659}
1660
1661/* Returns SKB for a received packet */
1662struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1663                                  struct cqe_rx_t *cqe_rx, bool xdp)
1664{
1665        int frag;
1666        int payload_len = 0;
1667        struct sk_buff *skb = NULL;
1668        struct page *page;
1669        int offset;
1670        u16 *rb_lens = NULL;
1671        u64 *rb_ptrs = NULL;
1672        u64 phys_addr;
1673
1674        rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1675        /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1676         * CQE_RX at word6, hence buffer pointers move by word
1677         *
1678         * Use existing 'hw_tso' flag which will be set for all chips
1679         * except 88xx pass1 instead of a additional cache line
1680         * access (or miss) by using pci dev's revision.
1681         */
1682        if (!nic->hw_tso)
1683                rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1684        else
1685                rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1686
1687        for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1688                payload_len = rb_lens[frag_num(frag)];
1689                phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1690                if (!phys_addr) {
1691                        if (skb)
1692                                dev_kfree_skb_any(skb);
1693                        return NULL;
1694                }
1695
1696                if (!frag) {
1697                        /* First fragment */
1698                        nicvf_unmap_rcv_buffer(nic,
1699                                               *rb_ptrs - cqe_rx->align_pad,
1700                                               phys_addr, xdp);
1701                        skb = nicvf_rb_ptr_to_skb(nic,
1702                                                  phys_addr - cqe_rx->align_pad,
1703                                                  payload_len);
1704                        if (!skb)
1705                                return NULL;
1706                        skb_reserve(skb, cqe_rx->align_pad);
1707                        skb_put(skb, payload_len);
1708                } else {
1709                        /* Add fragments */
1710                        nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1711                        page = virt_to_page(phys_to_virt(phys_addr));
1712                        offset = phys_to_virt(phys_addr) - page_address(page);
1713                        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1714                                        offset, payload_len, RCV_FRAG_LEN);
1715                }
1716                /* Next buffer pointer */
1717                rb_ptrs++;
1718        }
1719        return skb;
1720}
1721
1722static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1723{
1724        u64 reg_val;
1725
1726        switch (int_type) {
1727        case NICVF_INTR_CQ:
1728                reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1729                break;
1730        case NICVF_INTR_SQ:
1731                reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1732                break;
1733        case NICVF_INTR_RBDR:
1734                reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1735                break;
1736        case NICVF_INTR_PKT_DROP:
1737                reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1738                break;
1739        case NICVF_INTR_TCP_TIMER:
1740                reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1741                break;
1742        case NICVF_INTR_MBOX:
1743                reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1744                break;
1745        case NICVF_INTR_QS_ERR:
1746                reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1747                break;
1748        default:
1749                reg_val = 0;
1750        }
1751
1752        return reg_val;
1753}
1754
1755/* Enable interrupt */
1756void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1757{
1758        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1759
1760        if (!mask) {
1761                netdev_dbg(nic->netdev,
1762                           "Failed to enable interrupt: unknown type\n");
1763                return;
1764        }
1765        nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1766                        nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1767}
1768
1769/* Disable interrupt */
1770void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1771{
1772        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1773
1774        if (!mask) {
1775                netdev_dbg(nic->netdev,
1776                           "Failed to disable interrupt: unknown type\n");
1777                return;
1778        }
1779
1780        nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1781}
1782
1783/* Clear interrupt */
1784void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1785{
1786        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1787
1788        if (!mask) {
1789                netdev_dbg(nic->netdev,
1790                           "Failed to clear interrupt: unknown type\n");
1791                return;
1792        }
1793
1794        nicvf_reg_write(nic, NIC_VF_INT, mask);
1795}
1796
1797/* Check if interrupt is enabled */
1798int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1799{
1800        u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1801        /* If interrupt type is unknown, we treat it disabled. */
1802        if (!mask) {
1803                netdev_dbg(nic->netdev,
1804                           "Failed to check interrupt enable: unknown type\n");
1805                return 0;
1806        }
1807
1808        return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1809}
1810
1811void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1812{
1813        struct rcv_queue *rq;
1814
1815#define GET_RQ_STATS(reg) \
1816        nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1817                            (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1818
1819        rq = &nic->qs->rq[rq_idx];
1820        rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1821        rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1822}
1823
1824void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1825{
1826        struct snd_queue *sq;
1827
1828#define GET_SQ_STATS(reg) \
1829        nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1830                            (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1831
1832        sq = &nic->qs->sq[sq_idx];
1833        sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1834        sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1835}
1836
1837/* Check for errors in the receive cmp.queue entry */
1838int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1839{
1840        netif_err(nic, rx_err, nic->netdev,
1841                  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1842                  cqe_rx->err_level, cqe_rx->err_opcode);
1843
1844        switch (cqe_rx->err_opcode) {
1845        case CQ_RX_ERROP_RE_PARTIAL:
1846                this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1847                break;
1848        case CQ_RX_ERROP_RE_JABBER:
1849                this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1850                break;
1851        case CQ_RX_ERROP_RE_FCS:
1852                this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1853                break;
1854        case CQ_RX_ERROP_RE_RX_CTL:
1855                this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1856                break;
1857        case CQ_RX_ERROP_PREL2_ERR:
1858                this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1859                break;
1860        case CQ_RX_ERROP_L2_MAL:
1861                this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1862                break;
1863        case CQ_RX_ERROP_L2_OVERSIZE:
1864                this_cpu_inc(nic->drv_stats->rx_oversize);
1865                break;
1866        case CQ_RX_ERROP_L2_UNDERSIZE:
1867                this_cpu_inc(nic->drv_stats->rx_undersize);
1868                break;
1869        case CQ_RX_ERROP_L2_LENMISM:
1870                this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1871                break;
1872        case CQ_RX_ERROP_L2_PCLP:
1873                this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1874                break;
1875        case CQ_RX_ERROP_IP_NOT:
1876                this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1877                break;
1878        case CQ_RX_ERROP_IP_CSUM_ERR:
1879                this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1880                break;
1881        case CQ_RX_ERROP_IP_MAL:
1882                this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1883                break;
1884        case CQ_RX_ERROP_IP_MALD:
1885                this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1886                break;
1887        case CQ_RX_ERROP_IP_HOP:
1888                this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1889                break;
1890        case CQ_RX_ERROP_L3_PCLP:
1891                this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1892                break;
1893        case CQ_RX_ERROP_L4_MAL:
1894                this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1895                break;
1896        case CQ_RX_ERROP_L4_CHK:
1897                this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1898                break;
1899        case CQ_RX_ERROP_UDP_LEN:
1900                this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1901                break;
1902        case CQ_RX_ERROP_L4_PORT:
1903                this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1904                break;
1905        case CQ_RX_ERROP_TCP_FLAG:
1906                this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1907                break;
1908        case CQ_RX_ERROP_TCP_OFFSET:
1909                this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1910                break;
1911        case CQ_RX_ERROP_L4_PCLP:
1912                this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1913                break;
1914        case CQ_RX_ERROP_RBDR_TRUNC:
1915                this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1916                break;
1917        }
1918
1919        return 1;
1920}
1921
1922/* Check for errors in the send cmp.queue entry */
1923int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1924{
1925        switch (cqe_tx->send_status) {
1926        case CQ_TX_ERROP_DESC_FAULT:
1927                this_cpu_inc(nic->drv_stats->tx_desc_fault);
1928                break;
1929        case CQ_TX_ERROP_HDR_CONS_ERR:
1930                this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1931                break;
1932        case CQ_TX_ERROP_SUBDC_ERR:
1933                this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1934                break;
1935        case CQ_TX_ERROP_MAX_SIZE_VIOL:
1936                this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1937                break;
1938        case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1939                this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1940                break;
1941        case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1942                this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1943                break;
1944        case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1945                this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1946                break;
1947        case CQ_TX_ERROP_LOCK_VIOL:
1948                this_cpu_inc(nic->drv_stats->tx_lock_viol);
1949                break;
1950        case CQ_TX_ERROP_DATA_FAULT:
1951                this_cpu_inc(nic->drv_stats->tx_data_fault);
1952                break;
1953        case CQ_TX_ERROP_TSTMP_CONFLICT:
1954                this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1955                break;
1956        case CQ_TX_ERROP_TSTMP_TIMEOUT:
1957                this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1958                break;
1959        case CQ_TX_ERROP_MEM_FAULT:
1960                this_cpu_inc(nic->drv_stats->tx_mem_fault);
1961                break;
1962        case CQ_TX_ERROP_CK_OVERLAP:
1963                this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1964                break;
1965        case CQ_TX_ERROP_CK_OFLOW:
1966                this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1967                break;
1968        }
1969
1970        return 1;
1971}
1972