linux/drivers/net/ethernet/chelsio/cxgb/sge.c
<<
>>
Prefs
   1/*****************************************************************************
   2 *                                                                           *
   3 * File: sge.c                                                               *
   4 * $Revision: 1.26 $                                                         *
   5 * $Date: 2005/06/21 18:29:48 $                                              *
   6 * Description:                                                              *
   7 *  DMA engine.                                                              *
   8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
   9 *                                                                           *
  10 * This program is free software; you can redistribute it and/or modify      *
  11 * it under the terms of the GNU General Public License, version 2, as       *
  12 * published by the Free Software Foundation.                                *
  13 *                                                                           *
  14 * You should have received a copy of the GNU General Public License along   *
  15 * with this program; if not, see <http://www.gnu.org/licenses/>.            *
  16 *                                                                           *
  17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
  18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
  19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
  20 *                                                                           *
  21 * http://www.chelsio.com                                                    *
  22 *                                                                           *
  23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
  24 * All rights reserved.                                                      *
  25 *                                                                           *
  26 * Maintainers: maintainers@chelsio.com                                      *
  27 *                                                                           *
  28 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
  29 *          Tina Yang               <tainay@chelsio.com>                     *
  30 *          Felix Marti             <felix@chelsio.com>                      *
  31 *          Scott Bardone           <sbardone@chelsio.com>                   *
  32 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
  33 *          Frank DiMambro          <frank@chelsio.com>                      *
  34 *                                                                           *
  35 * History:                                                                  *
  36 *                                                                           *
  37 ****************************************************************************/
  38
  39#include "common.h"
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/pci.h>
  44#include <linux/ktime.h>
  45#include <linux/netdevice.h>
  46#include <linux/etherdevice.h>
  47#include <linux/if_vlan.h>
  48#include <linux/skbuff.h>
  49#include <linux/mm.h>
  50#include <linux/tcp.h>
  51#include <linux/ip.h>
  52#include <linux/in.h>
  53#include <linux/if_arp.h>
  54#include <linux/slab.h>
  55#include <linux/prefetch.h>
  56
  57#include "cpl5_cmd.h"
  58#include "sge.h"
  59#include "regs.h"
  60#include "espi.h"
  61
  62/* This belongs in if_ether.h */
  63#define ETH_P_CPL5 0xf
  64
  65#define SGE_CMDQ_N              2
  66#define SGE_FREELQ_N            2
  67#define SGE_CMDQ0_E_N           1024
  68#define SGE_CMDQ1_E_N           128
  69#define SGE_FREEL_SIZE          4096
  70#define SGE_JUMBO_FREEL_SIZE    512
  71#define SGE_FREEL_REFILL_THRESH 16
  72#define SGE_RESPQ_E_N           1024
  73#define SGE_INTRTIMER_NRES      1000
  74#define SGE_RX_SM_BUF_SIZE      1536
  75#define SGE_TX_DESC_MAX_PLEN    16384
  76
  77#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  78
  79/*
  80 * Period of the TX buffer reclaim timer.  This timer does not need to run
  81 * frequently as TX buffers are usually reclaimed by new TX packets.
  82 */
  83#define TX_RECLAIM_PERIOD (HZ / 4)
  84
  85#define M_CMD_LEN       0x7fffffff
  86#define V_CMD_LEN(v)    (v)
  87#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
  88#define V_CMD_GEN1(v)   ((v) << 31)
  89#define V_CMD_GEN2(v)   (v)
  90#define F_CMD_DATAVALID (1 << 1)
  91#define F_CMD_SOP       (1 << 2)
  92#define V_CMD_EOP(v)    ((v) << 3)
  93
  94/*
  95 * Command queue, receive buffer list, and response queue descriptors.
  96 */
  97#if defined(__BIG_ENDIAN_BITFIELD)
  98struct cmdQ_e {
  99        u32 addr_lo;
 100        u32 len_gen;
 101        u32 flags;
 102        u32 addr_hi;
 103};
 104
 105struct freelQ_e {
 106        u32 addr_lo;
 107        u32 len_gen;
 108        u32 gen2;
 109        u32 addr_hi;
 110};
 111
 112struct respQ_e {
 113        u32 Qsleeping           : 4;
 114        u32 Cmdq1CreditReturn   : 5;
 115        u32 Cmdq1DmaComplete    : 5;
 116        u32 Cmdq0CreditReturn   : 5;
 117        u32 Cmdq0DmaComplete    : 5;
 118        u32 FreelistQid         : 2;
 119        u32 CreditValid         : 1;
 120        u32 DataValid           : 1;
 121        u32 Offload             : 1;
 122        u32 Eop                 : 1;
 123        u32 Sop                 : 1;
 124        u32 GenerationBit       : 1;
 125        u32 BufferLength;
 126};
 127#elif defined(__LITTLE_ENDIAN_BITFIELD)
 128struct cmdQ_e {
 129        u32 len_gen;
 130        u32 addr_lo;
 131        u32 addr_hi;
 132        u32 flags;
 133};
 134
 135struct freelQ_e {
 136        u32 len_gen;
 137        u32 addr_lo;
 138        u32 addr_hi;
 139        u32 gen2;
 140};
 141
 142struct respQ_e {
 143        u32 BufferLength;
 144        u32 GenerationBit       : 1;
 145        u32 Sop                 : 1;
 146        u32 Eop                 : 1;
 147        u32 Offload             : 1;
 148        u32 DataValid           : 1;
 149        u32 CreditValid         : 1;
 150        u32 FreelistQid         : 2;
 151        u32 Cmdq0DmaComplete    : 5;
 152        u32 Cmdq0CreditReturn   : 5;
 153        u32 Cmdq1DmaComplete    : 5;
 154        u32 Cmdq1CreditReturn   : 5;
 155        u32 Qsleeping           : 4;
 156} ;
 157#endif
 158
 159/*
 160 * SW Context Command and Freelist Queue Descriptors
 161 */
 162struct cmdQ_ce {
 163        struct sk_buff *skb;
 164        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 165        DEFINE_DMA_UNMAP_LEN(dma_len);
 166};
 167
 168struct freelQ_ce {
 169        struct sk_buff *skb;
 170        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 171        DEFINE_DMA_UNMAP_LEN(dma_len);
 172};
 173
 174/*
 175 * SW command, freelist and response rings
 176 */
 177struct cmdQ {
 178        unsigned long   status;         /* HW DMA fetch status */
 179        unsigned int    in_use;         /* # of in-use command descriptors */
 180        unsigned int    size;           /* # of descriptors */
 181        unsigned int    processed;      /* total # of descs HW has processed */
 182        unsigned int    cleaned;        /* total # of descs SW has reclaimed */
 183        unsigned int    stop_thres;     /* SW TX queue suspend threshold */
 184        u16             pidx;           /* producer index (SW) */
 185        u16             cidx;           /* consumer index (HW) */
 186        u8              genbit;         /* current generation (=valid) bit */
 187        u8              sop;            /* is next entry start of packet? */
 188        struct cmdQ_e  *entries;        /* HW command descriptor Q */
 189        struct cmdQ_ce *centries;       /* SW command context descriptor Q */
 190        dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
 191        spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
 192};
 193
 194struct freelQ {
 195        unsigned int    credits;        /* # of available RX buffers */
 196        unsigned int    size;           /* free list capacity */
 197        u16             pidx;           /* producer index (SW) */
 198        u16             cidx;           /* consumer index (HW) */
 199        u16             rx_buffer_size; /* Buffer size on this free list */
 200        u16             dma_offset;     /* DMA offset to align IP headers */
 201        u16             recycleq_idx;   /* skb recycle q to use */
 202        u8              genbit;         /* current generation (=valid) bit */
 203        struct freelQ_e *entries;       /* HW freelist descriptor Q */
 204        struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
 205        dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
 206};
 207
 208struct respQ {
 209        unsigned int    credits;        /* credits to be returned to SGE */
 210        unsigned int    size;           /* # of response Q descriptors */
 211        u16             cidx;           /* consumer index (SW) */
 212        u8              genbit;         /* current generation(=valid) bit */
 213        struct respQ_e *entries;        /* HW response descriptor Q */
 214        dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
 215};
 216
 217/* Bit flags for cmdQ.status */
 218enum {
 219        CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
 220        CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 221};
 222
 223/* T204 TX SW scheduler */
 224
 225/* Per T204 TX port */
 226struct sched_port {
 227        unsigned int    avail;          /* available bits - quota */
 228        unsigned int    drain_bits_per_1024ns; /* drain rate */
 229        unsigned int    speed;          /* drain rate, mbps */
 230        unsigned int    mtu;            /* mtu size */
 231        struct sk_buff_head skbq;       /* pending skbs */
 232};
 233
 234/* Per T204 device */
 235struct sched {
 236        ktime_t         last_updated;   /* last time quotas were computed */
 237        unsigned int    max_avail;      /* max bits to be sent to any port */
 238        unsigned int    port;           /* port index (round robin ports) */
 239        unsigned int    num;            /* num skbs in per port queues */
 240        struct sched_port p[MAX_NPORTS];
 241        struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
 242        struct sge *sge;
 243};
 244
 245static void restart_sched(struct tasklet_struct *t);
 246
 247
 248/*
 249 * Main SGE data structure
 250 *
 251 * Interrupts are handled by a single CPU and it is likely that on a MP system
 252 * the application is migrated to another CPU. In that scenario, we try to
 253 * separate the RX(in irq context) and TX state in order to decrease memory
 254 * contention.
 255 */
 256struct sge {
 257        struct adapter *adapter;        /* adapter backpointer */
 258        struct net_device *netdev;      /* netdevice backpointer */
 259        struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
 260        struct respQ    respQ;          /* response Q */
 261        unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 262        unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
 263        unsigned int    jumbo_fl;       /* jumbo freelist Q index */
 264        unsigned int    intrtimer_nres; /* no-resource interrupt timer */
 265        unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
 266        struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
 267        struct timer_list espibug_timer;
 268        unsigned long   espibug_timeout;
 269        struct sk_buff  *espibug_skb[MAX_NPORTS];
 270        u32             sge_control;    /* shadow value of sge control reg */
 271        struct sge_intr_counts stats;
 272        struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
 273        struct sched    *tx_sched;
 274        struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 275};
 276
 277static const u8 ch_mac_addr[ETH_ALEN] = {
 278        0x0, 0x7, 0x43, 0x0, 0x0, 0x0
 279};
 280
 281/*
 282 * stop tasklet and free all pending skb's
 283 */
 284static void tx_sched_stop(struct sge *sge)
 285{
 286        struct sched *s = sge->tx_sched;
 287        int i;
 288
 289        tasklet_kill(&s->sched_tsk);
 290
 291        for (i = 0; i < MAX_NPORTS; i++)
 292                __skb_queue_purge(&s->p[s->port].skbq);
 293}
 294
 295/*
 296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
 297 * re-computes scheduler parameters to scope with the change.
 298 */
 299unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
 300                                   unsigned int mtu, unsigned int speed)
 301{
 302        struct sched *s = sge->tx_sched;
 303        struct sched_port *p = &s->p[port];
 304        unsigned int max_avail_segs;
 305
 306        pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
 307        if (speed)
 308                p->speed = speed;
 309        if (mtu)
 310                p->mtu = mtu;
 311
 312        if (speed || mtu) {
 313                unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
 314                do_div(drain, (p->mtu + 50) * 1000);
 315                p->drain_bits_per_1024ns = (unsigned int) drain;
 316
 317                if (p->speed < 1000)
 318                        p->drain_bits_per_1024ns =
 319                                90 * p->drain_bits_per_1024ns / 100;
 320        }
 321
 322        if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
 323                p->drain_bits_per_1024ns -= 16;
 324                s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
 325                max_avail_segs = max(1U, 4096 / (p->mtu - 40));
 326        } else {
 327                s->max_avail = 16384;
 328                max_avail_segs = max(1U, 9000 / (p->mtu - 40));
 329        }
 330
 331        pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
 332                 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
 333                 p->speed, s->max_avail, max_avail_segs,
 334                 p->drain_bits_per_1024ns);
 335
 336        return max_avail_segs * (p->mtu - 40);
 337}
 338
 339#if 0
 340
 341/*
 342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 343 * data that can be pushed per port.
 344 */
 345void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
 346{
 347        struct sched *s = sge->tx_sched;
 348        unsigned int i;
 349
 350        s->max_avail = val;
 351        for (i = 0; i < MAX_NPORTS; i++)
 352                t1_sched_update_parms(sge, i, 0, 0);
 353}
 354
 355/*
 356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 357 * is draining.
 358 */
 359void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
 360                                         unsigned int val)
 361{
 362        struct sched *s = sge->tx_sched;
 363        struct sched_port *p = &s->p[port];
 364        p->drain_bits_per_1024ns = val * 1024 / 1000;
 365        t1_sched_update_parms(sge, port, 0, 0);
 366}
 367
 368#endif  /*  0  */
 369
 370/*
 371 * tx_sched_init() allocates resources and does basic initialization.
 372 */
 373static int tx_sched_init(struct sge *sge)
 374{
 375        struct sched *s;
 376        int i;
 377
 378        s = kzalloc(sizeof (struct sched), GFP_KERNEL);
 379        if (!s)
 380                return -ENOMEM;
 381
 382        pr_debug("tx_sched_init\n");
 383        tasklet_setup(&s->sched_tsk, restart_sched);
 384        s->sge = sge;
 385        sge->tx_sched = s;
 386
 387        for (i = 0; i < MAX_NPORTS; i++) {
 388                skb_queue_head_init(&s->p[i].skbq);
 389                t1_sched_update_parms(sge, i, 1500, 1000);
 390        }
 391
 392        return 0;
 393}
 394
 395/*
 396 * sched_update_avail() computes the delta since the last time it was called
 397 * and updates the per port quota (number of bits that can be sent to the any
 398 * port).
 399 */
 400static inline int sched_update_avail(struct sge *sge)
 401{
 402        struct sched *s = sge->tx_sched;
 403        ktime_t now = ktime_get();
 404        unsigned int i;
 405        long long delta_time_ns;
 406
 407        delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
 408
 409        pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
 410        if (delta_time_ns < 15000)
 411                return 0;
 412
 413        for (i = 0; i < MAX_NPORTS; i++) {
 414                struct sched_port *p = &s->p[i];
 415                unsigned int delta_avail;
 416
 417                delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
 418                p->avail = min(p->avail + delta_avail, s->max_avail);
 419        }
 420
 421        s->last_updated = now;
 422
 423        return 1;
 424}
 425
 426/*
 427 * sched_skb() is called from two different places. In the tx path, any
 428 * packet generating load on an output port will call sched_skb()
 429 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 430 * context (skb == NULL).
 431 * The scheduler only returns a skb (which will then be sent) if the
 432 * length of the skb is <= the current quota of the output port.
 433 */
 434static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
 435                                unsigned int credits)
 436{
 437        struct sched *s = sge->tx_sched;
 438        struct sk_buff_head *skbq;
 439        unsigned int i, len, update = 1;
 440
 441        pr_debug("sched_skb %p\n", skb);
 442        if (!skb) {
 443                if (!s->num)
 444                        return NULL;
 445        } else {
 446                skbq = &s->p[skb->dev->if_port].skbq;
 447                __skb_queue_tail(skbq, skb);
 448                s->num++;
 449                skb = NULL;
 450        }
 451
 452        if (credits < MAX_SKB_FRAGS + 1)
 453                goto out;
 454
 455again:
 456        for (i = 0; i < MAX_NPORTS; i++) {
 457                s->port = (s->port + 1) & (MAX_NPORTS - 1);
 458                skbq = &s->p[s->port].skbq;
 459
 460                skb = skb_peek(skbq);
 461
 462                if (!skb)
 463                        continue;
 464
 465                len = skb->len;
 466                if (len <= s->p[s->port].avail) {
 467                        s->p[s->port].avail -= len;
 468                        s->num--;
 469                        __skb_unlink(skb, skbq);
 470                        goto out;
 471                }
 472                skb = NULL;
 473        }
 474
 475        if (update-- && sched_update_avail(sge))
 476                goto again;
 477
 478out:
 479        /* If there are more pending skbs, we use the hardware to schedule us
 480         * again.
 481         */
 482        if (s->num && !skb) {
 483                struct cmdQ *q = &sge->cmdQ[0];
 484                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 485                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 486                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 487                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 488                }
 489        }
 490        pr_debug("sched_skb ret %p\n", skb);
 491
 492        return skb;
 493}
 494
 495/*
 496 * PIO to indicate that memory mapped Q contains valid descriptor(s).
 497 */
 498static inline void doorbell_pio(struct adapter *adapter, u32 val)
 499{
 500        wmb();
 501        writel(val, adapter->regs + A_SG_DOORBELL);
 502}
 503
 504/*
 505 * Frees all RX buffers on the freelist Q. The caller must make sure that
 506 * the SGE is turned off before calling this function.
 507 */
 508static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 509{
 510        unsigned int cidx = q->cidx;
 511
 512        while (q->credits--) {
 513                struct freelQ_ce *ce = &q->centries[cidx];
 514
 515                dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
 516                                 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
 517                dev_kfree_skb(ce->skb);
 518                ce->skb = NULL;
 519                if (++cidx == q->size)
 520                        cidx = 0;
 521        }
 522}
 523
 524/*
 525 * Free RX free list and response queue resources.
 526 */
 527static void free_rx_resources(struct sge *sge)
 528{
 529        struct pci_dev *pdev = sge->adapter->pdev;
 530        unsigned int size, i;
 531
 532        if (sge->respQ.entries) {
 533                size = sizeof(struct respQ_e) * sge->respQ.size;
 534                dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
 535                                  sge->respQ.dma_addr);
 536        }
 537
 538        for (i = 0; i < SGE_FREELQ_N; i++) {
 539                struct freelQ *q = &sge->freelQ[i];
 540
 541                if (q->centries) {
 542                        free_freelQ_buffers(pdev, q);
 543                        kfree(q->centries);
 544                }
 545                if (q->entries) {
 546                        size = sizeof(struct freelQ_e) * q->size;
 547                        dma_free_coherent(&pdev->dev, size, q->entries,
 548                                          q->dma_addr);
 549                }
 550        }
 551}
 552
 553/*
 554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 555 * response queue.
 556 */
 557static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 558{
 559        struct pci_dev *pdev = sge->adapter->pdev;
 560        unsigned int size, i;
 561
 562        for (i = 0; i < SGE_FREELQ_N; i++) {
 563                struct freelQ *q = &sge->freelQ[i];
 564
 565                q->genbit = 1;
 566                q->size = p->freelQ_size[i];
 567                q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
 568                size = sizeof(struct freelQ_e) * q->size;
 569                q->entries = dma_alloc_coherent(&pdev->dev, size,
 570                                                &q->dma_addr, GFP_KERNEL);
 571                if (!q->entries)
 572                        goto err_no_mem;
 573
 574                size = sizeof(struct freelQ_ce) * q->size;
 575                q->centries = kzalloc(size, GFP_KERNEL);
 576                if (!q->centries)
 577                        goto err_no_mem;
 578        }
 579
 580        /*
 581         * Calculate the buffer sizes for the two free lists.  FL0 accommodates
 582         * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
 583         * including all the sk_buff overhead.
 584         *
 585         * Note: For T2 FL0 and FL1 are reversed.
 586         */
 587        sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
 588                sizeof(struct cpl_rx_data) +
 589                sge->freelQ[!sge->jumbo_fl].dma_offset;
 590
 591        size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 592
 593        sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
 594
 595        /*
 596         * Setup which skb recycle Q should be used when recycling buffers from
 597         * each free list.
 598         */
 599        sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
 600        sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
 601
 602        sge->respQ.genbit = 1;
 603        sge->respQ.size = SGE_RESPQ_E_N;
 604        sge->respQ.credits = 0;
 605        size = sizeof(struct respQ_e) * sge->respQ.size;
 606        sge->respQ.entries =
 607                dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
 608                                   GFP_KERNEL);
 609        if (!sge->respQ.entries)
 610                goto err_no_mem;
 611        return 0;
 612
 613err_no_mem:
 614        free_rx_resources(sge);
 615        return -ENOMEM;
 616}
 617
 618/*
 619 * Reclaims n TX descriptors and frees the buffers associated with them.
 620 */
 621static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 622{
 623        struct cmdQ_ce *ce;
 624        struct pci_dev *pdev = sge->adapter->pdev;
 625        unsigned int cidx = q->cidx;
 626
 627        q->in_use -= n;
 628        ce = &q->centries[cidx];
 629        while (n--) {
 630                if (likely(dma_unmap_len(ce, dma_len))) {
 631                        dma_unmap_single(&pdev->dev,
 632                                         dma_unmap_addr(ce, dma_addr),
 633                                         dma_unmap_len(ce, dma_len),
 634                                         DMA_TO_DEVICE);
 635                        if (q->sop)
 636                                q->sop = 0;
 637                }
 638                if (ce->skb) {
 639                        dev_kfree_skb_any(ce->skb);
 640                        q->sop = 1;
 641                }
 642                ce++;
 643                if (++cidx == q->size) {
 644                        cidx = 0;
 645                        ce = q->centries;
 646                }
 647        }
 648        q->cidx = cidx;
 649}
 650
 651/*
 652 * Free TX resources.
 653 *
 654 * Assumes that SGE is stopped and all interrupts are disabled.
 655 */
 656static void free_tx_resources(struct sge *sge)
 657{
 658        struct pci_dev *pdev = sge->adapter->pdev;
 659        unsigned int size, i;
 660
 661        for (i = 0; i < SGE_CMDQ_N; i++) {
 662                struct cmdQ *q = &sge->cmdQ[i];
 663
 664                if (q->centries) {
 665                        if (q->in_use)
 666                                free_cmdQ_buffers(sge, q, q->in_use);
 667                        kfree(q->centries);
 668                }
 669                if (q->entries) {
 670                        size = sizeof(struct cmdQ_e) * q->size;
 671                        dma_free_coherent(&pdev->dev, size, q->entries,
 672                                          q->dma_addr);
 673                }
 674        }
 675}
 676
 677/*
 678 * Allocates basic TX resources, consisting of memory mapped command Qs.
 679 */
 680static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
 681{
 682        struct pci_dev *pdev = sge->adapter->pdev;
 683        unsigned int size, i;
 684
 685        for (i = 0; i < SGE_CMDQ_N; i++) {
 686                struct cmdQ *q = &sge->cmdQ[i];
 687
 688                q->genbit = 1;
 689                q->sop = 1;
 690                q->size = p->cmdQ_size[i];
 691                q->in_use = 0;
 692                q->status = 0;
 693                q->processed = q->cleaned = 0;
 694                q->stop_thres = 0;
 695                spin_lock_init(&q->lock);
 696                size = sizeof(struct cmdQ_e) * q->size;
 697                q->entries = dma_alloc_coherent(&pdev->dev, size,
 698                                                &q->dma_addr, GFP_KERNEL);
 699                if (!q->entries)
 700                        goto err_no_mem;
 701
 702                size = sizeof(struct cmdQ_ce) * q->size;
 703                q->centries = kzalloc(size, GFP_KERNEL);
 704                if (!q->centries)
 705                        goto err_no_mem;
 706        }
 707
 708        /*
 709         * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
 710         * only.  For queue 0 set the stop threshold so we can handle one more
 711         * packet from each port, plus reserve an additional 24 entries for
 712         * Ethernet packets only.  Queue 1 never suspends nor do we reserve
 713         * space for Ethernet packets.
 714         */
 715        sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
 716                (MAX_SKB_FRAGS + 1);
 717        return 0;
 718
 719err_no_mem:
 720        free_tx_resources(sge);
 721        return -ENOMEM;
 722}
 723
 724static inline void setup_ring_params(struct adapter *adapter, u64 addr,
 725                                     u32 size, int base_reg_lo,
 726                                     int base_reg_hi, int size_reg)
 727{
 728        writel((u32)addr, adapter->regs + base_reg_lo);
 729        writel(addr >> 32, adapter->regs + base_reg_hi);
 730        writel(size, adapter->regs + size_reg);
 731}
 732
 733/*
 734 * Enable/disable VLAN acceleration.
 735 */
 736void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
 737{
 738        struct sge *sge = adapter->sge;
 739
 740        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 741                sge->sge_control |= F_VLAN_XTRACT;
 742        else
 743                sge->sge_control &= ~F_VLAN_XTRACT;
 744        if (adapter->open_device_map) {
 745                writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
 746                readl(adapter->regs + A_SG_CONTROL);   /* flush */
 747        }
 748}
 749
 750/*
 751 * Programs the various SGE registers. However, the engine is not yet enabled,
 752 * but sge->sge_control is setup and ready to go.
 753 */
 754static void configure_sge(struct sge *sge, struct sge_params *p)
 755{
 756        struct adapter *ap = sge->adapter;
 757
 758        writel(0, ap->regs + A_SG_CONTROL);
 759        setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 760                          A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
 761        setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 762                          A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 763        setup_ring_params(ap, sge->freelQ[0].dma_addr,
 764                          sge->freelQ[0].size, A_SG_FL0BASELWR,
 765                          A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 766        setup_ring_params(ap, sge->freelQ[1].dma_addr,
 767                          sge->freelQ[1].size, A_SG_FL1BASELWR,
 768                          A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 769
 770        /* The threshold comparison uses <. */
 771        writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 772
 773        setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
 774                          A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
 775        writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 776
 777        sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 778                F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 779                V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
 780                V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 781
 782#if defined(__BIG_ENDIAN_BITFIELD)
 783        sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 784#endif
 785
 786        /* Initialize no-resource timer */
 787        sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 788
 789        t1_sge_set_coalesce_params(sge, p);
 790}
 791
 792/*
 793 * Return the payload capacity of the jumbo free-list buffers.
 794 */
 795static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 796{
 797        return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
 798                sge->freelQ[sge->jumbo_fl].dma_offset -
 799                sizeof(struct cpl_rx_data);
 800}
 801
 802/*
 803 * Frees all SGE related resources and the sge structure itself
 804 */
 805void t1_sge_destroy(struct sge *sge)
 806{
 807        int i;
 808
 809        for_each_port(sge->adapter, i)
 810                free_percpu(sge->port_stats[i]);
 811
 812        kfree(sge->tx_sched);
 813        free_tx_resources(sge);
 814        free_rx_resources(sge);
 815        kfree(sge);
 816}
 817
 818/*
 819 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 820 * context Q) until the Q is full or alloc_skb fails.
 821 *
 822 * It is possible that the generation bits already match, indicating that the
 823 * buffer is already valid and nothing needs to be done. This happens when we
 824 * copied a received buffer into a new sk_buff during the interrupt processing.
 825 *
 826 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 827 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 828 * aligned.
 829 */
 830static void refill_free_list(struct sge *sge, struct freelQ *q)
 831{
 832        struct pci_dev *pdev = sge->adapter->pdev;
 833        struct freelQ_ce *ce = &q->centries[q->pidx];
 834        struct freelQ_e *e = &q->entries[q->pidx];
 835        unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
 836
 837        while (q->credits < q->size) {
 838                struct sk_buff *skb;
 839                dma_addr_t mapping;
 840
 841                skb = dev_alloc_skb(q->rx_buffer_size);
 842                if (!skb)
 843                        break;
 844
 845                skb_reserve(skb, q->dma_offset);
 846                mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
 847                                         DMA_FROM_DEVICE);
 848                skb_reserve(skb, sge->rx_pkt_pad);
 849
 850                ce->skb = skb;
 851                dma_unmap_addr_set(ce, dma_addr, mapping);
 852                dma_unmap_len_set(ce, dma_len, dma_len);
 853                e->addr_lo = (u32)mapping;
 854                e->addr_hi = (u64)mapping >> 32;
 855                e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
 856                wmb();
 857                e->gen2 = V_CMD_GEN2(q->genbit);
 858
 859                e++;
 860                ce++;
 861                if (++q->pidx == q->size) {
 862                        q->pidx = 0;
 863                        q->genbit ^= 1;
 864                        ce = q->centries;
 865                        e = q->entries;
 866                }
 867                q->credits++;
 868        }
 869}
 870
 871/*
 872 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 873 * of both rings, we go into 'few interrupt mode' in order to give the system
 874 * time to free up resources.
 875 */
 876static void freelQs_empty(struct sge *sge)
 877{
 878        struct adapter *adapter = sge->adapter;
 879        u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
 880        u32 irqholdoff_reg;
 881
 882        refill_free_list(sge, &sge->freelQ[0]);
 883        refill_free_list(sge, &sge->freelQ[1]);
 884
 885        if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
 886            sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
 887                irq_reg |= F_FL_EXHAUSTED;
 888                irqholdoff_reg = sge->fixed_intrtimer;
 889        } else {
 890                /* Clear the F_FL_EXHAUSTED interrupts for now */
 891                irq_reg &= ~F_FL_EXHAUSTED;
 892                irqholdoff_reg = sge->intrtimer_nres;
 893        }
 894        writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
 895        writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
 896
 897        /* We reenable the Qs to force a freelist GTS interrupt later */
 898        doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 899}
 900
 901#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
 902#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 903#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
 904                        F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 905
 906/*
 907 * Disable SGE Interrupts
 908 */
 909void t1_sge_intr_disable(struct sge *sge)
 910{
 911        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 912
 913        writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 914        writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
 915}
 916
 917/*
 918 * Enable SGE interrupts.
 919 */
 920void t1_sge_intr_enable(struct sge *sge)
 921{
 922        u32 en = SGE_INT_ENABLE;
 923        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 924
 925        if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
 926                en &= ~F_PACKET_TOO_BIG;
 927        writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
 928        writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 929}
 930
 931/*
 932 * Clear SGE interrupts.
 933 */
 934void t1_sge_intr_clear(struct sge *sge)
 935{
 936        writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
 937        writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
 938}
 939
 940/*
 941 * SGE 'Error' interrupt handler
 942 */
 943bool t1_sge_intr_error_handler(struct sge *sge)
 944{
 945        struct adapter *adapter = sge->adapter;
 946        u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
 947        bool wake = false;
 948
 949        if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
 950                cause &= ~F_PACKET_TOO_BIG;
 951        if (cause & F_RESPQ_EXHAUSTED)
 952                sge->stats.respQ_empty++;
 953        if (cause & F_RESPQ_OVERFLOW) {
 954                sge->stats.respQ_overflow++;
 955                pr_alert("%s: SGE response queue overflow\n",
 956                         adapter->name);
 957        }
 958        if (cause & F_FL_EXHAUSTED) {
 959                sge->stats.freelistQ_empty++;
 960                freelQs_empty(sge);
 961        }
 962        if (cause & F_PACKET_TOO_BIG) {
 963                sge->stats.pkt_too_big++;
 964                pr_alert("%s: SGE max packet size exceeded\n",
 965                         adapter->name);
 966        }
 967        if (cause & F_PACKET_MISMATCH) {
 968                sge->stats.pkt_mismatch++;
 969                pr_alert("%s: SGE packet mismatch\n", adapter->name);
 970        }
 971        if (cause & SGE_INT_FATAL) {
 972                t1_interrupts_disable(adapter);
 973                adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
 974                wake = true;
 975        }
 976
 977        writel(cause, adapter->regs + A_SG_INT_CAUSE);
 978        return wake;
 979}
 980
 981const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
 982{
 983        return &sge->stats;
 984}
 985
 986void t1_sge_get_port_stats(const struct sge *sge, int port,
 987                           struct sge_port_stats *ss)
 988{
 989        int cpu;
 990
 991        memset(ss, 0, sizeof(*ss));
 992        for_each_possible_cpu(cpu) {
 993                struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
 994
 995                ss->rx_cso_good += st->rx_cso_good;
 996                ss->tx_cso += st->tx_cso;
 997                ss->tx_tso += st->tx_tso;
 998                ss->tx_need_hdrroom += st->tx_need_hdrroom;
 999                ss->vlan_xtract += st->vlan_xtract;
1000                ss->vlan_insert += st->vlan_insert;
1001        }
1002}
1003
1004/**
1005 *      recycle_fl_buf - recycle a free list buffer
1006 *      @fl: the free list
1007 *      @idx: index of buffer to recycle
1008 *
1009 *      Recycles the specified buffer on the given free list by adding it at
1010 *      the next available slot on the list.
1011 */
1012static void recycle_fl_buf(struct freelQ *fl, int idx)
1013{
1014        struct freelQ_e *from = &fl->entries[idx];
1015        struct freelQ_e *to = &fl->entries[fl->pidx];
1016
1017        fl->centries[fl->pidx] = fl->centries[idx];
1018        to->addr_lo = from->addr_lo;
1019        to->addr_hi = from->addr_hi;
1020        to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1021        wmb();
1022        to->gen2 = V_CMD_GEN2(fl->genbit);
1023        fl->credits++;
1024
1025        if (++fl->pidx == fl->size) {
1026                fl->pidx = 0;
1027                fl->genbit ^= 1;
1028        }
1029}
1030
1031static int copybreak __read_mostly = 256;
1032module_param(copybreak, int, 0);
1033MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1034
1035/**
1036 *      get_packet - return the next ingress packet buffer
1037 *      @adapter: the adapter that received the packet
1038 *      @fl: the SGE free list holding the packet
1039 *      @len: the actual packet length, excluding any SGE padding
1040 *
1041 *      Get the next packet from a free list and complete setup of the
1042 *      sk_buff.  If the packet is small we make a copy and recycle the
1043 *      original buffer, otherwise we use the original buffer itself.  If a
1044 *      positive drop threshold is supplied packets are dropped and their
1045 *      buffers recycled if (a) the number of remaining buffers is under the
1046 *      threshold and the packet is too big to copy, or (b) the packet should
1047 *      be copied but there is no memory for the copy.
1048 */
1049static inline struct sk_buff *get_packet(struct adapter *adapter,
1050                                         struct freelQ *fl, unsigned int len)
1051{
1052        const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053        struct pci_dev *pdev = adapter->pdev;
1054        struct sk_buff *skb;
1055
1056        if (len < copybreak) {
1057                skb = napi_alloc_skb(&adapter->napi, len);
1058                if (!skb)
1059                        goto use_orig_buf;
1060
1061                skb_put(skb, len);
1062                dma_sync_single_for_cpu(&pdev->dev,
1063                                        dma_unmap_addr(ce, dma_addr),
1064                                        dma_unmap_len(ce, dma_len),
1065                                        DMA_FROM_DEVICE);
1066                skb_copy_from_linear_data(ce->skb, skb->data, len);
1067                dma_sync_single_for_device(&pdev->dev,
1068                                           dma_unmap_addr(ce, dma_addr),
1069                                           dma_unmap_len(ce, dma_len),
1070                                           DMA_FROM_DEVICE);
1071                recycle_fl_buf(fl, fl->cidx);
1072                return skb;
1073        }
1074
1075use_orig_buf:
1076        if (fl->credits < 2) {
1077                recycle_fl_buf(fl, fl->cidx);
1078                return NULL;
1079        }
1080
1081        dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1082                         dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1083        skb = ce->skb;
1084        prefetch(skb->data);
1085
1086        skb_put(skb, len);
1087        return skb;
1088}
1089
1090/**
1091 *      unexpected_offload - handle an unexpected offload packet
1092 *      @adapter: the adapter
1093 *      @fl: the free list that received the packet
1094 *
1095 *      Called when we receive an unexpected offload packet (e.g., the TOE
1096 *      function is disabled or the card is a NIC).  Prints a message and
1097 *      recycles the buffer.
1098 */
1099static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100{
1101        struct freelQ_ce *ce = &fl->centries[fl->cidx];
1102        struct sk_buff *skb = ce->skb;
1103
1104        dma_sync_single_for_cpu(&adapter->pdev->dev,
1105                                dma_unmap_addr(ce, dma_addr),
1106                                dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1107        pr_err("%s: unexpected offload packet, cmd %u\n",
1108               adapter->name, *skb->data);
1109        recycle_fl_buf(fl, fl->cidx);
1110}
1111
1112/*
1113 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1114 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1115 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1116 * Note that the *_large_page_tx_descs stuff will be optimized out when
1117 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1118 *
1119 * compute_large_page_descs() computes how many additional descriptors are
1120 * required to break down the stack's request.
1121 */
1122static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1123{
1124        unsigned int count = 0;
1125
1126        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1127                unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1128                unsigned int i, len = skb_headlen(skb);
1129                while (len > SGE_TX_DESC_MAX_PLEN) {
1130                        count++;
1131                        len -= SGE_TX_DESC_MAX_PLEN;
1132                }
1133                for (i = 0; nfrags--; i++) {
1134                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1135                        len = skb_frag_size(frag);
1136                        while (len > SGE_TX_DESC_MAX_PLEN) {
1137                                count++;
1138                                len -= SGE_TX_DESC_MAX_PLEN;
1139                        }
1140                }
1141        }
1142        return count;
1143}
1144
1145/*
1146 * Write a cmdQ entry.
1147 *
1148 * Since this function writes the 'flags' field, it must not be used to
1149 * write the first cmdQ entry.
1150 */
1151static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1152                                 unsigned int len, unsigned int gen,
1153                                 unsigned int eop)
1154{
1155        BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1156
1157        e->addr_lo = (u32)mapping;
1158        e->addr_hi = (u64)mapping >> 32;
1159        e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1160        e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1161}
1162
1163/*
1164 * See comment for previous function.
1165 *
1166 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1167 * *desc_len exceeds HW's capability.
1168 */
1169static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1170                                                     struct cmdQ_e **e,
1171                                                     struct cmdQ_ce **ce,
1172                                                     unsigned int *gen,
1173                                                     dma_addr_t *desc_mapping,
1174                                                     unsigned int *desc_len,
1175                                                     unsigned int nfrags,
1176                                                     struct cmdQ *q)
1177{
1178        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1179                struct cmdQ_e *e1 = *e;
1180                struct cmdQ_ce *ce1 = *ce;
1181
1182                while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1183                        *desc_len -= SGE_TX_DESC_MAX_PLEN;
1184                        write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1185                                      *gen, nfrags == 0 && *desc_len == 0);
1186                        ce1->skb = NULL;
1187                        dma_unmap_len_set(ce1, dma_len, 0);
1188                        *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1189                        if (*desc_len) {
1190                                ce1++;
1191                                e1++;
1192                                if (++pidx == q->size) {
1193                                        pidx = 0;
1194                                        *gen ^= 1;
1195                                        ce1 = q->centries;
1196                                        e1 = q->entries;
1197                                }
1198                        }
1199                }
1200                *e = e1;
1201                *ce = ce1;
1202        }
1203        return pidx;
1204}
1205
1206/*
1207 * Write the command descriptors to transmit the given skb starting at
1208 * descriptor pidx with the given generation.
1209 */
1210static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1211                                  unsigned int pidx, unsigned int gen,
1212                                  struct cmdQ *q)
1213{
1214        dma_addr_t mapping, desc_mapping;
1215        struct cmdQ_e *e, *e1;
1216        struct cmdQ_ce *ce;
1217        unsigned int i, flags, first_desc_len, desc_len,
1218            nfrags = skb_shinfo(skb)->nr_frags;
1219
1220        e = e1 = &q->entries[pidx];
1221        ce = &q->centries[pidx];
1222
1223        mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1224                                 skb_headlen(skb), DMA_TO_DEVICE);
1225
1226        desc_mapping = mapping;
1227        desc_len = skb_headlen(skb);
1228
1229        flags = F_CMD_DATAVALID | F_CMD_SOP |
1230            V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1231            V_CMD_GEN2(gen);
1232        first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1233            desc_len : SGE_TX_DESC_MAX_PLEN;
1234        e->addr_lo = (u32)desc_mapping;
1235        e->addr_hi = (u64)desc_mapping >> 32;
1236        e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1237        ce->skb = NULL;
1238        dma_unmap_len_set(ce, dma_len, 0);
1239
1240        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1241            desc_len > SGE_TX_DESC_MAX_PLEN) {
1242                desc_mapping += first_desc_len;
1243                desc_len -= first_desc_len;
1244                e1++;
1245                ce++;
1246                if (++pidx == q->size) {
1247                        pidx = 0;
1248                        gen ^= 1;
1249                        e1 = q->entries;
1250                        ce = q->centries;
1251                }
1252                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1253                                                 &desc_mapping, &desc_len,
1254                                                 nfrags, q);
1255
1256                if (likely(desc_len))
1257                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1258                                      nfrags == 0);
1259        }
1260
1261        ce->skb = NULL;
1262        dma_unmap_addr_set(ce, dma_addr, mapping);
1263        dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1264
1265        for (i = 0; nfrags--; i++) {
1266                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1267                e1++;
1268                ce++;
1269                if (++pidx == q->size) {
1270                        pidx = 0;
1271                        gen ^= 1;
1272                        e1 = q->entries;
1273                        ce = q->centries;
1274                }
1275
1276                mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1277                                           skb_frag_size(frag), DMA_TO_DEVICE);
1278                desc_mapping = mapping;
1279                desc_len = skb_frag_size(frag);
1280
1281                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1282                                                 &desc_mapping, &desc_len,
1283                                                 nfrags, q);
1284                if (likely(desc_len))
1285                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1286                                      nfrags == 0);
1287                ce->skb = NULL;
1288                dma_unmap_addr_set(ce, dma_addr, mapping);
1289                dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1290        }
1291        ce->skb = skb;
1292        wmb();
1293        e->flags = flags;
1294}
1295
1296/*
1297 * Clean up completed Tx buffers.
1298 */
1299static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300{
1301        unsigned int reclaim = q->processed - q->cleaned;
1302
1303        if (reclaim) {
1304                pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1305                         q->processed, q->cleaned);
1306                free_cmdQ_buffers(sge, q, reclaim);
1307                q->cleaned += reclaim;
1308        }
1309}
1310
1311/*
1312 * Called from tasklet. Checks the scheduler for any
1313 * pending skbs that can be sent.
1314 */
1315static void restart_sched(struct tasklet_struct *t)
1316{
1317        struct sched *s = from_tasklet(s, t, sched_tsk);
1318        struct sge *sge = s->sge;
1319        struct adapter *adapter = sge->adapter;
1320        struct cmdQ *q = &sge->cmdQ[0];
1321        struct sk_buff *skb;
1322        unsigned int credits, queued_skb = 0;
1323
1324        spin_lock(&q->lock);
1325        reclaim_completed_tx(sge, q);
1326
1327        credits = q->size - q->in_use;
1328        pr_debug("restart_sched credits=%d\n", credits);
1329        while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1330                unsigned int genbit, pidx, count;
1331                count = 1 + skb_shinfo(skb)->nr_frags;
1332                count += compute_large_page_tx_descs(skb);
1333                q->in_use += count;
1334                genbit = q->genbit;
1335                pidx = q->pidx;
1336                q->pidx += count;
1337                if (q->pidx >= q->size) {
1338                        q->pidx -= q->size;
1339                        q->genbit ^= 1;
1340                }
1341                write_tx_descs(adapter, skb, pidx, genbit, q);
1342                credits = q->size - q->in_use;
1343                queued_skb = 1;
1344        }
1345
1346        if (queued_skb) {
1347                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1349                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1350                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1351                }
1352        }
1353        spin_unlock(&q->lock);
1354}
1355
1356/**
1357 *      sge_rx - process an ingress ethernet packet
1358 *      @sge: the sge structure
1359 *      @fl: the free list that contains the packet buffer
1360 *      @len: the packet length
1361 *
1362 *      Process an ingress ethernet pakcet and deliver it to the stack.
1363 */
1364static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1365{
1366        struct sk_buff *skb;
1367        const struct cpl_rx_pkt *p;
1368        struct adapter *adapter = sge->adapter;
1369        struct sge_port_stats *st;
1370        struct net_device *dev;
1371
1372        skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1373        if (unlikely(!skb)) {
1374                sge->stats.rx_drops++;
1375                return;
1376        }
1377
1378        p = (const struct cpl_rx_pkt *) skb->data;
1379        if (p->iff >= adapter->params.nports) {
1380                kfree_skb(skb);
1381                return;
1382        }
1383        __skb_pull(skb, sizeof(*p));
1384
1385        st = this_cpu_ptr(sge->port_stats[p->iff]);
1386        dev = adapter->port[p->iff].dev;
1387
1388        skb->protocol = eth_type_trans(skb, dev);
1389        if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1390            skb->protocol == htons(ETH_P_IP) &&
1391            (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1392                ++st->rx_cso_good;
1393                skb->ip_summed = CHECKSUM_UNNECESSARY;
1394        } else
1395                skb_checksum_none_assert(skb);
1396
1397        if (p->vlan_valid) {
1398                st->vlan_xtract++;
1399                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1400        }
1401        netif_receive_skb(skb);
1402}
1403
1404/*
1405 * Returns true if a command queue has enough available descriptors that
1406 * we can resume Tx operation after temporarily disabling its packet queue.
1407 */
1408static inline int enough_free_Tx_descs(const struct cmdQ *q)
1409{
1410        unsigned int r = q->processed - q->cleaned;
1411
1412        return q->in_use - r < (q->size >> 1);
1413}
1414
1415/*
1416 * Called when sufficient space has become available in the SGE command queues
1417 * after the Tx packet schedulers have been suspended to restart the Tx path.
1418 */
1419static void restart_tx_queues(struct sge *sge)
1420{
1421        struct adapter *adap = sge->adapter;
1422        int i;
1423
1424        if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1425                return;
1426
1427        for_each_port(adap, i) {
1428                struct net_device *nd = adap->port[i].dev;
1429
1430                if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1431                    netif_running(nd)) {
1432                        sge->stats.cmdQ_restarted[2]++;
1433                        netif_wake_queue(nd);
1434                }
1435        }
1436}
1437
1438/*
1439 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1440 * information.
1441 */
1442static unsigned int update_tx_info(struct adapter *adapter,
1443                                          unsigned int flags,
1444                                          unsigned int pr0)
1445{
1446        struct sge *sge = adapter->sge;
1447        struct cmdQ *cmdq = &sge->cmdQ[0];
1448
1449        cmdq->processed += pr0;
1450        if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1451                freelQs_empty(sge);
1452                flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1453        }
1454        if (flags & F_CMDQ0_ENABLE) {
1455                clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1456
1457                if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1458                    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1459                        set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1460                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1461                }
1462                if (sge->tx_sched)
1463                        tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1464
1465                flags &= ~F_CMDQ0_ENABLE;
1466        }
1467
1468        if (unlikely(sge->stopped_tx_queues != 0))
1469                restart_tx_queues(sge);
1470
1471        return flags;
1472}
1473
1474/*
1475 * Process SGE responses, up to the supplied budget.  Returns the number of
1476 * responses processed.  A negative budget is effectively unlimited.
1477 */
1478static int process_responses(struct adapter *adapter, int budget)
1479{
1480        struct sge *sge = adapter->sge;
1481        struct respQ *q = &sge->respQ;
1482        struct respQ_e *e = &q->entries[q->cidx];
1483        int done = 0;
1484        unsigned int flags = 0;
1485        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1486
1487        while (done < budget && e->GenerationBit == q->genbit) {
1488                flags |= e->Qsleeping;
1489
1490                cmdq_processed[0] += e->Cmdq0CreditReturn;
1491                cmdq_processed[1] += e->Cmdq1CreditReturn;
1492
1493                /* We batch updates to the TX side to avoid cacheline
1494                 * ping-pong of TX state information on MP where the sender
1495                 * might run on a different CPU than this function...
1496                 */
1497                if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1498                        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1499                        cmdq_processed[0] = 0;
1500                }
1501
1502                if (unlikely(cmdq_processed[1] > 16)) {
1503                        sge->cmdQ[1].processed += cmdq_processed[1];
1504                        cmdq_processed[1] = 0;
1505                }
1506
1507                if (likely(e->DataValid)) {
1508                        struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1509
1510                        BUG_ON(!e->Sop || !e->Eop);
1511                        if (unlikely(e->Offload))
1512                                unexpected_offload(adapter, fl);
1513                        else
1514                                sge_rx(sge, fl, e->BufferLength);
1515
1516                        ++done;
1517
1518                        /*
1519                         * Note: this depends on each packet consuming a
1520                         * single free-list buffer; cf. the BUG above.
1521                         */
1522                        if (++fl->cidx == fl->size)
1523                                fl->cidx = 0;
1524                        prefetch(fl->centries[fl->cidx].skb);
1525
1526                        if (unlikely(--fl->credits <
1527                                     fl->size - SGE_FREEL_REFILL_THRESH))
1528                                refill_free_list(sge, fl);
1529                } else
1530                        sge->stats.pure_rsps++;
1531
1532                e++;
1533                if (unlikely(++q->cidx == q->size)) {
1534                        q->cidx = 0;
1535                        q->genbit ^= 1;
1536                        e = q->entries;
1537                }
1538                prefetch(e);
1539
1540                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1541                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1542                        q->credits = 0;
1543                }
1544        }
1545
1546        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1547        sge->cmdQ[1].processed += cmdq_processed[1];
1548
1549        return done;
1550}
1551
1552static inline int responses_pending(const struct adapter *adapter)
1553{
1554        const struct respQ *Q = &adapter->sge->respQ;
1555        const struct respQ_e *e = &Q->entries[Q->cidx];
1556
1557        return e->GenerationBit == Q->genbit;
1558}
1559
1560/*
1561 * A simpler version of process_responses() that handles only pure (i.e.,
1562 * non data-carrying) responses.  Such respones are too light-weight to justify
1563 * calling a softirq when using NAPI, so we handle them specially in hard
1564 * interrupt context.  The function is called with a pointer to a response,
1565 * which the caller must ensure is a valid pure response.  Returns 1 if it
1566 * encounters a valid data-carrying response, 0 otherwise.
1567 */
1568static int process_pure_responses(struct adapter *adapter)
1569{
1570        struct sge *sge = adapter->sge;
1571        struct respQ *q = &sge->respQ;
1572        struct respQ_e *e = &q->entries[q->cidx];
1573        const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1574        unsigned int flags = 0;
1575        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1576
1577        prefetch(fl->centries[fl->cidx].skb);
1578        if (e->DataValid)
1579                return 1;
1580
1581        do {
1582                flags |= e->Qsleeping;
1583
1584                cmdq_processed[0] += e->Cmdq0CreditReturn;
1585                cmdq_processed[1] += e->Cmdq1CreditReturn;
1586
1587                e++;
1588                if (unlikely(++q->cidx == q->size)) {
1589                        q->cidx = 0;
1590                        q->genbit ^= 1;
1591                        e = q->entries;
1592                }
1593                prefetch(e);
1594
1595                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1596                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1597                        q->credits = 0;
1598                }
1599                sge->stats.pure_rsps++;
1600        } while (e->GenerationBit == q->genbit && !e->DataValid);
1601
1602        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1603        sge->cmdQ[1].processed += cmdq_processed[1];
1604
1605        return e->GenerationBit == q->genbit;
1606}
1607
1608/*
1609 * Handler for new data events when using NAPI.  This does not need any locking
1610 * or protection from interrupts as data interrupts are off at this point and
1611 * other adapter interrupts do not interfere.
1612 */
1613int t1_poll(struct napi_struct *napi, int budget)
1614{
1615        struct adapter *adapter = container_of(napi, struct adapter, napi);
1616        int work_done = process_responses(adapter, budget);
1617
1618        if (likely(work_done < budget)) {
1619                napi_complete_done(napi, work_done);
1620                writel(adapter->sge->respQ.cidx,
1621                       adapter->regs + A_SG_SLEEPING);
1622        }
1623        return work_done;
1624}
1625
1626irqreturn_t t1_interrupt_thread(int irq, void *data)
1627{
1628        struct adapter *adapter = data;
1629        u32 pending_thread_intr;
1630
1631        spin_lock_irq(&adapter->async_lock);
1632        pending_thread_intr = adapter->pending_thread_intr;
1633        adapter->pending_thread_intr = 0;
1634        spin_unlock_irq(&adapter->async_lock);
1635
1636        if (!pending_thread_intr)
1637                return IRQ_NONE;
1638
1639        if (pending_thread_intr & F_PL_INTR_EXT)
1640                t1_elmer0_ext_intr_handler(adapter);
1641
1642        /* This error is fatal, interrupts remain off */
1643        if (pending_thread_intr & F_PL_INTR_SGE_ERR) {
1644                pr_alert("%s: encountered fatal error, operation suspended\n",
1645                         adapter->name);
1646                t1_sge_stop(adapter->sge);
1647                return IRQ_HANDLED;
1648        }
1649
1650        spin_lock_irq(&adapter->async_lock);
1651        adapter->slow_intr_mask |= F_PL_INTR_EXT;
1652
1653        writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
1654        writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1655               adapter->regs + A_PL_ENABLE);
1656        spin_unlock_irq(&adapter->async_lock);
1657
1658        return IRQ_HANDLED;
1659}
1660
1661irqreturn_t t1_interrupt(int irq, void *data)
1662{
1663        struct adapter *adapter = data;
1664        struct sge *sge = adapter->sge;
1665        irqreturn_t handled;
1666
1667        if (likely(responses_pending(adapter))) {
1668                writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1669
1670                if (napi_schedule_prep(&adapter->napi)) {
1671                        if (process_pure_responses(adapter))
1672                                __napi_schedule(&adapter->napi);
1673                        else {
1674                                /* no data, no NAPI needed */
1675                                writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1676                                /* undo schedule_prep */
1677                                napi_enable(&adapter->napi);
1678                        }
1679                }
1680                return IRQ_HANDLED;
1681        }
1682
1683        spin_lock(&adapter->async_lock);
1684        handled = t1_slow_intr_handler(adapter);
1685        spin_unlock(&adapter->async_lock);
1686
1687        if (handled == IRQ_NONE)
1688                sge->stats.unhandled_irqs++;
1689
1690        return handled;
1691}
1692
1693/*
1694 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1695 *
1696 * The code figures out how many entries the sk_buff will require in the
1697 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1698 * has complete. Then, it doesn't access the global structure anymore, but
1699 * uses the corresponding fields on the stack. In conjunction with a spinlock
1700 * around that code, we can make the function reentrant without holding the
1701 * lock when we actually enqueue (which might be expensive, especially on
1702 * architectures with IO MMUs).
1703 *
1704 * This runs with softirqs disabled.
1705 */
1706static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1707                     unsigned int qid, struct net_device *dev)
1708{
1709        struct sge *sge = adapter->sge;
1710        struct cmdQ *q = &sge->cmdQ[qid];
1711        unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1712
1713        spin_lock(&q->lock);
1714
1715        reclaim_completed_tx(sge, q);
1716
1717        pidx = q->pidx;
1718        credits = q->size - q->in_use;
1719        count = 1 + skb_shinfo(skb)->nr_frags;
1720        count += compute_large_page_tx_descs(skb);
1721
1722        /* Ethernet packet */
1723        if (unlikely(credits < count)) {
1724                if (!netif_queue_stopped(dev)) {
1725                        netif_stop_queue(dev);
1726                        set_bit(dev->if_port, &sge->stopped_tx_queues);
1727                        sge->stats.cmdQ_full[2]++;
1728                        pr_err("%s: Tx ring full while queue awake!\n",
1729                               adapter->name);
1730                }
1731                spin_unlock(&q->lock);
1732                return NETDEV_TX_BUSY;
1733        }
1734
1735        if (unlikely(credits - count < q->stop_thres)) {
1736                netif_stop_queue(dev);
1737                set_bit(dev->if_port, &sge->stopped_tx_queues);
1738                sge->stats.cmdQ_full[2]++;
1739        }
1740
1741        /* T204 cmdQ0 skbs that are destined for a certain port have to go
1742         * through the scheduler.
1743         */
1744        if (sge->tx_sched && !qid && skb->dev) {
1745use_sched:
1746                use_sched_skb = 1;
1747                /* Note that the scheduler might return a different skb than
1748                 * the one passed in.
1749                 */
1750                skb = sched_skb(sge, skb, credits);
1751                if (!skb) {
1752                        spin_unlock(&q->lock);
1753                        return NETDEV_TX_OK;
1754                }
1755                pidx = q->pidx;
1756                count = 1 + skb_shinfo(skb)->nr_frags;
1757                count += compute_large_page_tx_descs(skb);
1758        }
1759
1760        q->in_use += count;
1761        genbit = q->genbit;
1762        pidx = q->pidx;
1763        q->pidx += count;
1764        if (q->pidx >= q->size) {
1765                q->pidx -= q->size;
1766                q->genbit ^= 1;
1767        }
1768        spin_unlock(&q->lock);
1769
1770        write_tx_descs(adapter, skb, pidx, genbit, q);
1771
1772        /*
1773         * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1774         * the doorbell if the Q is asleep. There is a natural race, where
1775         * the hardware is going to sleep just after we checked, however,
1776         * then the interrupt handler will detect the outstanding TX packet
1777         * and ring the doorbell for us.
1778         */
1779        if (qid)
1780                doorbell_pio(adapter, F_CMDQ1_ENABLE);
1781        else {
1782                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1783                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1784                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1785                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1786                }
1787        }
1788
1789        if (use_sched_skb) {
1790                if (spin_trylock(&q->lock)) {
1791                        credits = q->size - q->in_use;
1792                        skb = NULL;
1793                        goto use_sched;
1794                }
1795        }
1796        return NETDEV_TX_OK;
1797}
1798
1799#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1800
1801/*
1802 *      eth_hdr_len - return the length of an Ethernet header
1803 *      @data: pointer to the start of the Ethernet header
1804 *
1805 *      Returns the length of an Ethernet header, including optional VLAN tag.
1806 */
1807static inline int eth_hdr_len(const void *data)
1808{
1809        const struct ethhdr *e = data;
1810
1811        return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1812}
1813
1814/*
1815 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1816 */
1817netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1818{
1819        struct adapter *adapter = dev->ml_priv;
1820        struct sge *sge = adapter->sge;
1821        struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1822        struct cpl_tx_pkt *cpl;
1823        struct sk_buff *orig_skb = skb;
1824        int ret;
1825
1826        if (skb->protocol == htons(ETH_P_CPL5))
1827                goto send;
1828
1829        /*
1830         * We are using a non-standard hard_header_len.
1831         * Allocate more header room in the rare cases it is not big enough.
1832         */
1833        if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1834                skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1835                ++st->tx_need_hdrroom;
1836                dev_kfree_skb_any(orig_skb);
1837                if (!skb)
1838                        return NETDEV_TX_OK;
1839        }
1840
1841        if (skb_shinfo(skb)->gso_size) {
1842                int eth_type;
1843                struct cpl_tx_pkt_lso *hdr;
1844
1845                ++st->tx_tso;
1846
1847                eth_type = skb_network_offset(skb) == ETH_HLEN ?
1848                        CPL_ETH_II : CPL_ETH_II_VLAN;
1849
1850                hdr = skb_push(skb, sizeof(*hdr));
1851                hdr->opcode = CPL_TX_PKT_LSO;
1852                hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1853                hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1854                hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1855                hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1856                                                          skb_shinfo(skb)->gso_size));
1857                hdr->len = htonl(skb->len - sizeof(*hdr));
1858                cpl = (struct cpl_tx_pkt *)hdr;
1859        } else {
1860                /*
1861                 * Packets shorter than ETH_HLEN can break the MAC, drop them
1862                 * early.  Also, we may get oversized packets because some
1863                 * parts of the kernel don't handle our unusual hard_header_len
1864                 * right, drop those too.
1865                 */
1866                if (unlikely(skb->len < ETH_HLEN ||
1867                             skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1868                        netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1869                                   skb->len, eth_hdr_len(skb->data), dev->mtu);
1870                        dev_kfree_skb_any(skb);
1871                        return NETDEV_TX_OK;
1872                }
1873
1874                if (skb->ip_summed == CHECKSUM_PARTIAL &&
1875                    ip_hdr(skb)->protocol == IPPROTO_UDP) {
1876                        if (unlikely(skb_checksum_help(skb))) {
1877                                netdev_dbg(dev, "unable to do udp checksum\n");
1878                                dev_kfree_skb_any(skb);
1879                                return NETDEV_TX_OK;
1880                        }
1881                }
1882
1883                /* Hmmm, assuming to catch the gratious arp... and we'll use
1884                 * it to flush out stuck espi packets...
1885                 */
1886                if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1887                        if (skb->protocol == htons(ETH_P_ARP) &&
1888                            arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1889                                adapter->sge->espibug_skb[dev->if_port] = skb;
1890                                /* We want to re-use this skb later. We
1891                                 * simply bump the reference count and it
1892                                 * will not be freed...
1893                                 */
1894                                skb = skb_get(skb);
1895                        }
1896                }
1897
1898                cpl = __skb_push(skb, sizeof(*cpl));
1899                cpl->opcode = CPL_TX_PKT;
1900                cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1901                cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1902                /* the length field isn't used so don't bother setting it */
1903
1904                st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1905        }
1906        cpl->iff = dev->if_port;
1907
1908        if (skb_vlan_tag_present(skb)) {
1909                cpl->vlan_valid = 1;
1910                cpl->vlan = htons(skb_vlan_tag_get(skb));
1911                st->vlan_insert++;
1912        } else
1913                cpl->vlan_valid = 0;
1914
1915send:
1916        ret = t1_sge_tx(skb, adapter, 0, dev);
1917
1918        /* If transmit busy, and we reallocated skb's due to headroom limit,
1919         * then silently discard to avoid leak.
1920         */
1921        if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1922                dev_kfree_skb_any(skb);
1923                ret = NETDEV_TX_OK;
1924        }
1925        return ret;
1926}
1927
1928/*
1929 * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1930 */
1931static void sge_tx_reclaim_cb(struct timer_list *t)
1932{
1933        int i;
1934        struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1935
1936        for (i = 0; i < SGE_CMDQ_N; ++i) {
1937                struct cmdQ *q = &sge->cmdQ[i];
1938
1939                if (!spin_trylock(&q->lock))
1940                        continue;
1941
1942                reclaim_completed_tx(sge, q);
1943                if (i == 0 && q->in_use) {    /* flush pending credits */
1944                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1945                }
1946                spin_unlock(&q->lock);
1947        }
1948        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1949}
1950
1951/*
1952 * Propagate changes of the SGE coalescing parameters to the HW.
1953 */
1954int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1955{
1956        sge->fixed_intrtimer = p->rx_coalesce_usecs *
1957                core_ticks_per_usec(sge->adapter);
1958        writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1959        return 0;
1960}
1961
1962/*
1963 * Allocates both RX and TX resources and configures the SGE. However,
1964 * the hardware is not enabled yet.
1965 */
1966int t1_sge_configure(struct sge *sge, struct sge_params *p)
1967{
1968        if (alloc_rx_resources(sge, p))
1969                return -ENOMEM;
1970        if (alloc_tx_resources(sge, p)) {
1971                free_rx_resources(sge);
1972                return -ENOMEM;
1973        }
1974        configure_sge(sge, p);
1975
1976        /*
1977         * Now that we have sized the free lists calculate the payload
1978         * capacity of the large buffers.  Other parts of the driver use
1979         * this to set the max offload coalescing size so that RX packets
1980         * do not overflow our large buffers.
1981         */
1982        p->large_buf_capacity = jumbo_payload_capacity(sge);
1983        return 0;
1984}
1985
1986/*
1987 * Disables the DMA engine.
1988 */
1989void t1_sge_stop(struct sge *sge)
1990{
1991        int i;
1992        writel(0, sge->adapter->regs + A_SG_CONTROL);
1993        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1994
1995        if (is_T2(sge->adapter))
1996                del_timer_sync(&sge->espibug_timer);
1997
1998        del_timer_sync(&sge->tx_reclaim_timer);
1999        if (sge->tx_sched)
2000                tx_sched_stop(sge);
2001
2002        for (i = 0; i < MAX_NPORTS; i++)
2003                kfree_skb(sge->espibug_skb[i]);
2004}
2005
2006/*
2007 * Enables the DMA engine.
2008 */
2009void t1_sge_start(struct sge *sge)
2010{
2011        refill_free_list(sge, &sge->freelQ[0]);
2012        refill_free_list(sge, &sge->freelQ[1]);
2013
2014        writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2015        doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2016        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2017
2018        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2019
2020        if (is_T2(sge->adapter))
2021                mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2022}
2023
2024/*
2025 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2026 */
2027static void espibug_workaround_t204(struct timer_list *t)
2028{
2029        struct sge *sge = from_timer(sge, t, espibug_timer);
2030        struct adapter *adapter = sge->adapter;
2031        unsigned int nports = adapter->params.nports;
2032        u32 seop[MAX_NPORTS];
2033
2034        if (adapter->open_device_map & PORT_MASK) {
2035                int i;
2036
2037                if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2038                        return;
2039
2040                for (i = 0; i < nports; i++) {
2041                        struct sk_buff *skb = sge->espibug_skb[i];
2042
2043                        if (!netif_running(adapter->port[i].dev) ||
2044                            netif_queue_stopped(adapter->port[i].dev) ||
2045                            !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2046                                continue;
2047
2048                        if (!skb->cb[0]) {
2049                                skb_copy_to_linear_data_offset(skb,
2050                                                    sizeof(struct cpl_tx_pkt),
2051                                                               ch_mac_addr,
2052                                                               ETH_ALEN);
2053                                skb_copy_to_linear_data_offset(skb,
2054                                                               skb->len - 10,
2055                                                               ch_mac_addr,
2056                                                               ETH_ALEN);
2057                                skb->cb[0] = 0xff;
2058                        }
2059
2060                        /* bump the reference count to avoid freeing of
2061                         * the skb once the DMA has completed.
2062                         */
2063                        skb = skb_get(skb);
2064                        t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2065                }
2066        }
2067        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2068}
2069
2070static void espibug_workaround(struct timer_list *t)
2071{
2072        struct sge *sge = from_timer(sge, t, espibug_timer);
2073        struct adapter *adapter = sge->adapter;
2074
2075        if (netif_running(adapter->port[0].dev)) {
2076                struct sk_buff *skb = sge->espibug_skb[0];
2077                u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2078
2079                if ((seop & 0xfff0fff) == 0xfff && skb) {
2080                        if (!skb->cb[0]) {
2081                                skb_copy_to_linear_data_offset(skb,
2082                                                     sizeof(struct cpl_tx_pkt),
2083                                                               ch_mac_addr,
2084                                                               ETH_ALEN);
2085                                skb_copy_to_linear_data_offset(skb,
2086                                                               skb->len - 10,
2087                                                               ch_mac_addr,
2088                                                               ETH_ALEN);
2089                                skb->cb[0] = 0xff;
2090                        }
2091
2092                        /* bump the reference count to avoid freeing of the
2093                         * skb once the DMA has completed.
2094                         */
2095                        skb = skb_get(skb);
2096                        t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2097                }
2098        }
2099        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2100}
2101
2102/*
2103 * Creates a t1_sge structure and returns suggested resource parameters.
2104 */
2105struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2106{
2107        struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2108        int i;
2109
2110        if (!sge)
2111                return NULL;
2112
2113        sge->adapter = adapter;
2114        sge->netdev = adapter->port[0].dev;
2115        sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2116        sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2117
2118        for_each_port(adapter, i) {
2119                sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2120                if (!sge->port_stats[i])
2121                        goto nomem_port;
2122        }
2123
2124        timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2125
2126        if (is_T2(sge->adapter)) {
2127                timer_setup(&sge->espibug_timer,
2128                            adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2129                            0);
2130
2131                if (adapter->params.nports > 1)
2132                        tx_sched_init(sge);
2133
2134                sge->espibug_timeout = 1;
2135                /* for T204, every 10ms */
2136                if (adapter->params.nports > 1)
2137                        sge->espibug_timeout = HZ/100;
2138        }
2139
2140
2141        p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2142        p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2143        p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2144        p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2145        if (sge->tx_sched) {
2146                if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2147                        p->rx_coalesce_usecs = 15;
2148                else
2149                        p->rx_coalesce_usecs = 50;
2150        } else
2151                p->rx_coalesce_usecs = 50;
2152
2153        p->coalesce_enable = 0;
2154        p->sample_interval_usecs = 0;
2155
2156        return sge;
2157nomem_port:
2158        while (i >= 0) {
2159                free_percpu(sge->port_stats[i]);
2160                --i;
2161        }
2162        kfree(sge);
2163        return NULL;
2164
2165}
2166