linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/delay.h>
  36#include "cxgb4.h"
  37#include "t4_regs.h"
  38#include "t4_values.h"
  39#include "t4fw_api.h"
  40#include "t4fw_version.h"
  41
  42/**
  43 *      t4_wait_op_done_val - wait until an operation is completed
  44 *      @adapter: the adapter performing the operation
  45 *      @reg: the register to check for completion
  46 *      @mask: a single-bit field within @reg that indicates completion
  47 *      @polarity: the value of the field when the operation is completed
  48 *      @attempts: number of check iterations
  49 *      @delay: delay in usecs between iterations
  50 *      @valp: where to store the value of the register at completion time
  51 *
  52 *      Wait until an operation is completed by checking a bit in a register
  53 *      up to @attempts times.  If @valp is not NULL the value of the register
  54 *      at the time it indicated completion is stored there.  Returns 0 if the
  55 *      operation completes and -EAGAIN otherwise.
  56 */
  57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  58                               int polarity, int attempts, int delay, u32 *valp)
  59{
  60        while (1) {
  61                u32 val = t4_read_reg(adapter, reg);
  62
  63                if (!!(val & mask) == polarity) {
  64                        if (valp)
  65                                *valp = val;
  66                        return 0;
  67                }
  68                if (--attempts == 0)
  69                        return -EAGAIN;
  70                if (delay)
  71                        udelay(delay);
  72        }
  73}
  74
  75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  76                                  int polarity, int attempts, int delay)
  77{
  78        return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  79                                   delay, NULL);
  80}
  81
  82/**
  83 *      t4_set_reg_field - set a register field to a value
  84 *      @adapter: the adapter to program
  85 *      @addr: the register address
  86 *      @mask: specifies the portion of the register to modify
  87 *      @val: the new value for the register field
  88 *
  89 *      Sets a register field specified by the supplied mask to the
  90 *      given value.
  91 */
  92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  93                      u32 val)
  94{
  95        u32 v = t4_read_reg(adapter, addr) & ~mask;
  96
  97        t4_write_reg(adapter, addr, v | val);
  98        (void) t4_read_reg(adapter, addr);      /* flush */
  99}
 100
 101/**
 102 *      t4_read_indirect - read indirectly addressed registers
 103 *      @adap: the adapter
 104 *      @addr_reg: register holding the indirect address
 105 *      @data_reg: register holding the value of the indirect register
 106 *      @vals: where the read register values are stored
 107 *      @nregs: how many indirect registers to read
 108 *      @start_idx: index of first indirect register to read
 109 *
 110 *      Reads registers that are accessed indirectly through an address/data
 111 *      register pair.
 112 */
 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
 114                             unsigned int data_reg, u32 *vals,
 115                             unsigned int nregs, unsigned int start_idx)
 116{
 117        while (nregs--) {
 118                t4_write_reg(adap, addr_reg, start_idx);
 119                *vals++ = t4_read_reg(adap, data_reg);
 120                start_idx++;
 121        }
 122}
 123
 124/**
 125 *      t4_write_indirect - write indirectly addressed registers
 126 *      @adap: the adapter
 127 *      @addr_reg: register holding the indirect addresses
 128 *      @data_reg: register holding the value for the indirect registers
 129 *      @vals: values to write
 130 *      @nregs: how many indirect registers to write
 131 *      @start_idx: address of first indirect register to write
 132 *
 133 *      Writes a sequential block of registers that are accessed indirectly
 134 *      through an address/data register pair.
 135 */
 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
 137                       unsigned int data_reg, const u32 *vals,
 138                       unsigned int nregs, unsigned int start_idx)
 139{
 140        while (nregs--) {
 141                t4_write_reg(adap, addr_reg, start_idx++);
 142                t4_write_reg(adap, data_reg, *vals++);
 143        }
 144}
 145
 146/*
 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 148 * mechanism.  This guarantees that we get the real value even if we're
 149 * operating within a Virtual Machine and the Hypervisor is trapping our
 150 * Configuration Space accesses.
 151 */
 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
 153{
 154        u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
 155
 156        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
 157                req |= ENABLE_F;
 158        else
 159                req |= T6_ENABLE_F;
 160
 161        if (is_t4(adap->params.chip))
 162                req |= LOCALCFG_F;
 163
 164        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
 165        *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
 166
 167        /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
 168         * Configuration Space read.  (None of the other fields matter when
 169         * ENABLE is 0 so a simple register write is easier than a
 170         * read-modify-write via t4_set_reg_field().)
 171         */
 172        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
 173}
 174
 175/*
 176 * t4_report_fw_error - report firmware error
 177 * @adap: the adapter
 178 *
 179 * The adapter firmware can indicate error conditions to the host.
 180 * If the firmware has indicated an error, print out the reason for
 181 * the firmware error.
 182 */
 183static void t4_report_fw_error(struct adapter *adap)
 184{
 185        static const char *const reason[] = {
 186                "Crash",                        /* PCIE_FW_EVAL_CRASH */
 187                "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
 188                "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
 189                "During Device Initialization", /* PCIE_FW_EVAL_INIT */
 190                "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
 191                "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
 192                "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
 193                "Reserved",                     /* reserved */
 194        };
 195        u32 pcie_fw;
 196
 197        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 198        if (pcie_fw & PCIE_FW_ERR_F) {
 199                dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
 200                        reason[PCIE_FW_EVAL_G(pcie_fw)]);
 201                adap->flags &= ~CXGB4_FW_OK;
 202        }
 203}
 204
 205/*
 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 207 */
 208static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
 209                         u32 mbox_addr)
 210{
 211        for ( ; nflit; nflit--, mbox_addr += 8)
 212                *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
 213}
 214
 215/*
 216 * Handle a FW assertion reported in a mailbox.
 217 */
 218static void fw_asrt(struct adapter *adap, u32 mbox_addr)
 219{
 220        struct fw_debug_cmd asrt;
 221
 222        get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
 223        dev_alert(adap->pdev_dev,
 224                  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
 225                  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
 226                  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
 227}
 228
 229/**
 230 *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
 231 *      @adapter: the adapter
 232 *      @cmd: the Firmware Mailbox Command or Reply
 233 *      @size: command length in bytes
 234 *      @access: the time (ms) needed to access the Firmware Mailbox
 235 *      @execute: the time (ms) the command spent being executed
 236 */
 237static void t4_record_mbox(struct adapter *adapter,
 238                           const __be64 *cmd, unsigned int size,
 239                           int access, int execute)
 240{
 241        struct mbox_cmd_log *log = adapter->mbox_log;
 242        struct mbox_cmd *entry;
 243        int i;
 244
 245        entry = mbox_cmd_log_entry(log, log->cursor++);
 246        if (log->cursor == log->size)
 247                log->cursor = 0;
 248
 249        for (i = 0; i < size / 8; i++)
 250                entry->cmd[i] = be64_to_cpu(cmd[i]);
 251        while (i < MBOX_LEN / 8)
 252                entry->cmd[i++] = 0;
 253        entry->timestamp = jiffies;
 254        entry->seqno = log->seqno++;
 255        entry->access = access;
 256        entry->execute = execute;
 257}
 258
 259/**
 260 *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
 261 *      @adap: the adapter
 262 *      @mbox: index of the mailbox to use
 263 *      @cmd: the command to write
 264 *      @size: command length in bytes
 265 *      @rpl: where to optionally store the reply
 266 *      @sleep_ok: if true we may sleep while awaiting command completion
 267 *      @timeout: time to wait for command to finish before timing out
 268 *
 269 *      Sends the given command to FW through the selected mailbox and waits
 270 *      for the FW to execute the command.  If @rpl is not %NULL it is used to
 271 *      store the FW's reply to the command.  The command and its optional
 272 *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 273 *      to respond.  @sleep_ok determines whether we may sleep while awaiting
 274 *      the response.  If sleeping is allowed we use progressive backoff
 275 *      otherwise we spin.
 276 *
 277 *      The return value is 0 on success or a negative errno on failure.  A
 278 *      failure can happen either because we are not able to execute the
 279 *      command or FW executes it but signals an error.  In the latter case
 280 *      the return value is the error code indicated by FW (negated).
 281 */
 282int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
 283                            int size, void *rpl, bool sleep_ok, int timeout)
 284{
 285        static const int delay[] = {
 286                1, 1, 3, 5, 10, 10, 20, 50, 100, 200
 287        };
 288
 289        struct mbox_list entry;
 290        u16 access = 0;
 291        u16 execute = 0;
 292        u32 v;
 293        u64 res;
 294        int i, ms, delay_idx, ret;
 295        const __be64 *p = cmd;
 296        u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
 297        u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
 298        __be64 cmd_rpl[MBOX_LEN / 8];
 299        u32 pcie_fw;
 300
 301        if ((size & 15) || size > MBOX_LEN)
 302                return -EINVAL;
 303
 304        /*
 305         * If the device is off-line, as in EEH, commands will time out.
 306         * Fail them early so we don't waste time waiting.
 307         */
 308        if (adap->pdev->error_state != pci_channel_io_normal)
 309                return -EIO;
 310
 311        /* If we have a negative timeout, that implies that we can't sleep. */
 312        if (timeout < 0) {
 313                sleep_ok = false;
 314                timeout = -timeout;
 315        }
 316
 317        /* Queue ourselves onto the mailbox access list.  When our entry is at
 318         * the front of the list, we have rights to access the mailbox.  So we
 319         * wait [for a while] till we're at the front [or bail out with an
 320         * EBUSY] ...
 321         */
 322        spin_lock_bh(&adap->mbox_lock);
 323        list_add_tail(&entry.list, &adap->mlist.list);
 324        spin_unlock_bh(&adap->mbox_lock);
 325
 326        delay_idx = 0;
 327        ms = delay[0];
 328
 329        for (i = 0; ; i += ms) {
 330                /* If we've waited too long, return a busy indication.  This
 331                 * really ought to be based on our initial position in the
 332                 * mailbox access list but this is a start.  We very rarely
 333                 * contend on access to the mailbox ...
 334                 */
 335                pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 336                if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
 337                        spin_lock_bh(&adap->mbox_lock);
 338                        list_del(&entry.list);
 339                        spin_unlock_bh(&adap->mbox_lock);
 340                        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
 341                        t4_record_mbox(adap, cmd, size, access, ret);
 342                        return ret;
 343                }
 344
 345                /* If we're at the head, break out and start the mailbox
 346                 * protocol.
 347                 */
 348                if (list_first_entry(&adap->mlist.list, struct mbox_list,
 349                                     list) == &entry)
 350                        break;
 351
 352                /* Delay for a bit before checking again ... */
 353                if (sleep_ok) {
 354                        ms = delay[delay_idx];  /* last element may repeat */
 355                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 356                                delay_idx++;
 357                        msleep(ms);
 358                } else {
 359                        mdelay(ms);
 360                }
 361        }
 362
 363        /* Loop trying to get ownership of the mailbox.  Return an error
 364         * if we can't gain ownership.
 365         */
 366        v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 367        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 368                v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 369        if (v != MBOX_OWNER_DRV) {
 370                spin_lock_bh(&adap->mbox_lock);
 371                list_del(&entry.list);
 372                spin_unlock_bh(&adap->mbox_lock);
 373                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 374                t4_record_mbox(adap, cmd, size, access, ret);
 375                return ret;
 376        }
 377
 378        /* Copy in the new mailbox command and send it on its way ... */
 379        t4_record_mbox(adap, cmd, size, access, 0);
 380        for (i = 0; i < size; i += 8)
 381                t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
 382
 383        t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 384        t4_read_reg(adap, ctl_reg);          /* flush write */
 385
 386        delay_idx = 0;
 387        ms = delay[0];
 388
 389        for (i = 0;
 390             !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
 391             i < timeout;
 392             i += ms) {
 393                if (sleep_ok) {
 394                        ms = delay[delay_idx];  /* last element may repeat */
 395                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 396                                delay_idx++;
 397                        msleep(ms);
 398                } else
 399                        mdelay(ms);
 400
 401                v = t4_read_reg(adap, ctl_reg);
 402                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 403                        if (!(v & MBMSGVALID_F)) {
 404                                t4_write_reg(adap, ctl_reg, 0);
 405                                continue;
 406                        }
 407
 408                        get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
 409                        res = be64_to_cpu(cmd_rpl[0]);
 410
 411                        if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
 412                                fw_asrt(adap, data_reg);
 413                                res = FW_CMD_RETVAL_V(EIO);
 414                        } else if (rpl) {
 415                                memcpy(rpl, cmd_rpl, size);
 416                        }
 417
 418                        t4_write_reg(adap, ctl_reg, 0);
 419
 420                        execute = i + ms;
 421                        t4_record_mbox(adap, cmd_rpl,
 422                                       MBOX_LEN, access, execute);
 423                        spin_lock_bh(&adap->mbox_lock);
 424                        list_del(&entry.list);
 425                        spin_unlock_bh(&adap->mbox_lock);
 426                        return -FW_CMD_RETVAL_G((int)res);
 427                }
 428        }
 429
 430        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
 431        t4_record_mbox(adap, cmd, size, access, ret);
 432        dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
 433                *(const u8 *)cmd, mbox);
 434        t4_report_fw_error(adap);
 435        spin_lock_bh(&adap->mbox_lock);
 436        list_del(&entry.list);
 437        spin_unlock_bh(&adap->mbox_lock);
 438        t4_fatal_err(adap);
 439        return ret;
 440}
 441
 442int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
 443                    void *rpl, bool sleep_ok)
 444{
 445        return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
 446                                       FW_CMD_MAX_TIMEOUT);
 447}
 448
 449static int t4_edc_err_read(struct adapter *adap, int idx)
 450{
 451        u32 edc_ecc_err_addr_reg;
 452        u32 rdata_reg;
 453
 454        if (is_t4(adap->params.chip)) {
 455                CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
 456                return 0;
 457        }
 458        if (idx != 0 && idx != 1) {
 459                CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
 460                return 0;
 461        }
 462
 463        edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
 464        rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
 465
 466        CH_WARN(adap,
 467                "edc%d err addr 0x%x: 0x%x.\n",
 468                idx, edc_ecc_err_addr_reg,
 469                t4_read_reg(adap, edc_ecc_err_addr_reg));
 470        CH_WARN(adap,
 471                "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
 472                rdata_reg,
 473                (unsigned long long)t4_read_reg64(adap, rdata_reg),
 474                (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
 475                (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
 476                (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
 477                (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
 478                (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
 479                (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
 480                (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
 481                (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
 482
 483        return 0;
 484}
 485
 486/**
 487 * t4_memory_rw_init - Get memory window relative offset, base, and size.
 488 * @adap: the adapter
 489 * @win: PCI-E Memory Window to use
 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
 491 * @mem_off: memory relative offset with respect to @mtype.
 492 * @mem_base: configured memory base address.
 493 * @mem_aperture: configured memory window aperture.
 494 *
 495 * Get the configured memory window's relative offset, base, and size.
 496 */
 497int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
 498                      u32 *mem_base, u32 *mem_aperture)
 499{
 500        u32 edc_size, mc_size, mem_reg;
 501
 502        /* Offset into the region of memory which is being accessed
 503         * MEM_EDC0 = 0
 504         * MEM_EDC1 = 1
 505         * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
 506         * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
 507         * MEM_HMA  = 4
 508         */
 509        edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
 510        if (mtype == MEM_HMA) {
 511                *mem_off = 2 * (edc_size * 1024 * 1024);
 512        } else if (mtype != MEM_MC1) {
 513                *mem_off = (mtype * (edc_size * 1024 * 1024));
 514        } else {
 515                mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
 516                                                      MA_EXT_MEMORY0_BAR_A));
 517                *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 518        }
 519
 520        /* Each PCI-E Memory Window is programmed with a window size -- or
 521         * "aperture" -- which controls the granularity of its mapping onto
 522         * adapter memory.  We need to grab that aperture in order to know
 523         * how to use the specified window.  The window is also programmed
 524         * with the base address of the Memory Window in BAR0's address
 525         * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 526         * the address is relative to BAR0.
 527         */
 528        mem_reg = t4_read_reg(adap,
 529                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
 530                                                  win));
 531        /* a dead adapter will return 0xffffffff for PIO reads */
 532        if (mem_reg == 0xffffffff)
 533                return -ENXIO;
 534
 535        *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
 536        *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
 537        if (is_t4(adap->params.chip))
 538                *mem_base -= adap->t4_bar0;
 539
 540        return 0;
 541}
 542
 543/**
 544 * t4_memory_update_win - Move memory window to specified address.
 545 * @adap: the adapter
 546 * @win: PCI-E Memory Window to use
 547 * @addr: location to move.
 548 *
 549 * Move memory window to specified address.
 550 */
 551void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
 552{
 553        t4_write_reg(adap,
 554                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
 555                     addr);
 556        /* Read it back to ensure that changes propagate before we
 557         * attempt to use the new value.
 558         */
 559        t4_read_reg(adap,
 560                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 561}
 562
 563/**
 564 * t4_memory_rw_residual - Read/Write residual data.
 565 * @adap: the adapter
 566 * @off: relative offset within residual to start read/write.
 567 * @addr: address within indicated memory type.
 568 * @buf: host memory buffer
 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 570 *
 571 * Read/Write residual data less than 32-bits.
 572 */
 573void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
 574                           int dir)
 575{
 576        union {
 577                u32 word;
 578                char byte[4];
 579        } last;
 580        unsigned char *bp;
 581        int i;
 582
 583        if (dir == T4_MEMORY_READ) {
 584                last.word = le32_to_cpu((__force __le32)
 585                                        t4_read_reg(adap, addr));
 586                for (bp = (unsigned char *)buf, i = off; i < 4; i++)
 587                        bp[i] = last.byte[i];
 588        } else {
 589                last.word = *buf;
 590                for (i = off; i < 4; i++)
 591                        last.byte[i] = 0;
 592                t4_write_reg(adap, addr,
 593                             (__force u32)cpu_to_le32(last.word));
 594        }
 595}
 596
 597/**
 598 *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 599 *      @adap: the adapter
 600 *      @win: PCI-E Memory Window to use
 601 *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 602 *      @addr: address within indicated memory type
 603 *      @len: amount of memory to transfer
 604 *      @hbuf: host memory buffer
 605 *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 606 *
 607 *      Reads/writes an [almost] arbitrary memory region in the firmware: the
 608 *      firmware memory address and host buffer must be aligned on 32-bit
 609 *      boundaries; the length may be arbitrary.  The memory is transferred as
 610 *      a raw byte sequence from/to the firmware's memory.  If this memory
 611 *      contains data structures which contain multi-byte integers, it's the
 612 *      caller's responsibility to perform appropriate byte order conversions.
 613 */
 614int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
 615                 u32 len, void *hbuf, int dir)
 616{
 617        u32 pos, offset, resid, memoffset;
 618        u32 win_pf, mem_aperture, mem_base;
 619        u32 *buf;
 620        int ret;
 621
 622        /* Argument sanity checks ...
 623         */
 624        if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
 625                return -EINVAL;
 626        buf = (u32 *)hbuf;
 627
 628        /* It's convenient to be able to handle lengths which aren't a
 629         * multiple of 32-bits because we often end up transferring files to
 630         * the firmware.  So we'll handle that by normalizing the length here
 631         * and then handling any residual transfer at the end.
 632         */
 633        resid = len & 0x3;
 634        len -= resid;
 635
 636        ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
 637                                &mem_aperture);
 638        if (ret)
 639                return ret;
 640
 641        /* Determine the PCIE_MEM_ACCESS_OFFSET */
 642        addr = addr + memoffset;
 643
 644        win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
 645
 646        /* Calculate our initial PCI-E Memory Window Position and Offset into
 647         * that Window.
 648         */
 649        pos = addr & ~(mem_aperture - 1);
 650        offset = addr - pos;
 651
 652        /* Set up initial PCI-E Memory Window to cover the start of our
 653         * transfer.
 654         */
 655        t4_memory_update_win(adap, win, pos | win_pf);
 656
 657        /* Transfer data to/from the adapter as long as there's an integral
 658         * number of 32-bit transfers to complete.
 659         *
 660         * A note on Endianness issues:
 661         *
 662         * The "register" reads and writes below from/to the PCI-E Memory
 663         * Window invoke the standard adapter Big-Endian to PCI-E Link
 664         * Little-Endian "swizzel."  As a result, if we have the following
 665         * data in adapter memory:
 666         *
 667         *     Memory:  ... | b0 | b1 | b2 | b3 | ...
 668         *     Address:      i+0  i+1  i+2  i+3
 669         *
 670         * Then a read of the adapter memory via the PCI-E Memory Window
 671         * will yield:
 672         *
 673         *     x = readl(i)
 674         *         31                  0
 675         *         [ b3 | b2 | b1 | b0 ]
 676         *
 677         * If this value is stored into local memory on a Little-Endian system
 678         * it will show up correctly in local memory as:
 679         *
 680         *     ( ..., b0, b1, b2, b3, ... )
 681         *
 682         * But on a Big-Endian system, the store will show up in memory
 683         * incorrectly swizzled as:
 684         *
 685         *     ( ..., b3, b2, b1, b0, ... )
 686         *
 687         * So we need to account for this in the reads and writes to the
 688         * PCI-E Memory Window below by undoing the register read/write
 689         * swizzels.
 690         */
 691        while (len > 0) {
 692                if (dir == T4_MEMORY_READ)
 693                        *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
 694                                                mem_base + offset));
 695                else
 696                        t4_write_reg(adap, mem_base + offset,
 697                                     (__force u32)cpu_to_le32(*buf++));
 698                offset += sizeof(__be32);
 699                len -= sizeof(__be32);
 700
 701                /* If we've reached the end of our current window aperture,
 702                 * move the PCI-E Memory Window on to the next.  Note that
 703                 * doing this here after "len" may be 0 allows us to set up
 704                 * the PCI-E Memory Window for a possible final residual
 705                 * transfer below ...
 706                 */
 707                if (offset == mem_aperture) {
 708                        pos += mem_aperture;
 709                        offset = 0;
 710                        t4_memory_update_win(adap, win, pos | win_pf);
 711                }
 712        }
 713
 714        /* If the original transfer had a length which wasn't a multiple of
 715         * 32-bits, now's where we need to finish off the transfer of the
 716         * residual amount.  The PCI-E Memory Window has already been moved
 717         * above (if necessary) to cover this final transfer.
 718         */
 719        if (resid)
 720                t4_memory_rw_residual(adap, resid, mem_base + offset,
 721                                      (u8 *)buf, dir);
 722
 723        return 0;
 724}
 725
 726/* Return the specified PCI-E Configuration Space register from our Physical
 727 * Function.  We try first via a Firmware LDST Command since we prefer to let
 728 * the firmware own all of these registers, but if that fails we go for it
 729 * directly ourselves.
 730 */
 731u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
 732{
 733        u32 val, ldst_addrspace;
 734
 735        /* If fw_attach != 0, construct and send the Firmware LDST Command to
 736         * retrieve the specified PCI-E Configuration Space register.
 737         */
 738        struct fw_ldst_cmd ldst_cmd;
 739        int ret;
 740
 741        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
 742        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
 743        ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
 744                                               FW_CMD_REQUEST_F |
 745                                               FW_CMD_READ_F |
 746                                               ldst_addrspace);
 747        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
 748        ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
 749        ldst_cmd.u.pcie.ctrl_to_fn =
 750                (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
 751        ldst_cmd.u.pcie.r = reg;
 752
 753        /* If the LDST Command succeeds, return the result, otherwise
 754         * fall through to reading it directly ourselves ...
 755         */
 756        ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
 757                         &ldst_cmd);
 758        if (ret == 0)
 759                val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
 760        else
 761                /* Read the desired Configuration Space register via the PCI-E
 762                 * Backdoor mechanism.
 763                 */
 764                t4_hw_pci_read_cfg4(adap, reg, &val);
 765        return val;
 766}
 767
 768/* Get the window based on base passed to it.
 769 * Window aperture is currently unhandled, but there is no use case for it
 770 * right now
 771 */
 772static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
 773                         u32 memwin_base)
 774{
 775        u32 ret;
 776
 777        if (is_t4(adap->params.chip)) {
 778                u32 bar0;
 779
 780                /* Truncation intentional: we only read the bottom 32-bits of
 781                 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
 782                 * mechanism to read BAR0 instead of using
 783                 * pci_resource_start() because we could be operating from
 784                 * within a Virtual Machine which is trapping our accesses to
 785                 * our Configuration Space and we need to set up the PCI-E
 786                 * Memory Window decoders with the actual addresses which will
 787                 * be coming across the PCI-E link.
 788                 */
 789                bar0 = t4_read_pcie_cfg4(adap, pci_base);
 790                bar0 &= pci_mask;
 791                adap->t4_bar0 = bar0;
 792
 793                ret = bar0 + memwin_base;
 794        } else {
 795                /* For T5, only relative offset inside the PCIe BAR is passed */
 796                ret = memwin_base;
 797        }
 798        return ret;
 799}
 800
 801/* Get the default utility window (win0) used by everyone */
 802u32 t4_get_util_window(struct adapter *adap)
 803{
 804        return t4_get_window(adap, PCI_BASE_ADDRESS_0,
 805                             PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
 806}
 807
 808/* Set up memory window for accessing adapter memory ranges.  (Read
 809 * back MA register to ensure that changes propagate before we attempt
 810 * to use the new values.)
 811 */
 812void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
 813{
 814        t4_write_reg(adap,
 815                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
 816                     memwin_base | BIR_V(0) |
 817                     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
 818        t4_read_reg(adap,
 819                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
 820}
 821
 822/**
 823 *      t4_get_regs_len - return the size of the chips register set
 824 *      @adapter: the adapter
 825 *
 826 *      Returns the size of the chip's BAR0 register space.
 827 */
 828unsigned int t4_get_regs_len(struct adapter *adapter)
 829{
 830        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
 831
 832        switch (chip_version) {
 833        case CHELSIO_T4:
 834                return T4_REGMAP_SIZE;
 835
 836        case CHELSIO_T5:
 837        case CHELSIO_T6:
 838                return T5_REGMAP_SIZE;
 839        }
 840
 841        dev_err(adapter->pdev_dev,
 842                "Unsupported chip version %d\n", chip_version);
 843        return 0;
 844}
 845
 846/**
 847 *      t4_get_regs - read chip registers into provided buffer
 848 *      @adap: the adapter
 849 *      @buf: register buffer
 850 *      @buf_size: size (in bytes) of register buffer
 851 *
 852 *      If the provided register buffer isn't large enough for the chip's
 853 *      full register range, the register dump will be truncated to the
 854 *      register buffer's size.
 855 */
 856void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
 857{
 858        static const unsigned int t4_reg_ranges[] = {
 859                0x1008, 0x1108,
 860                0x1180, 0x1184,
 861                0x1190, 0x1194,
 862                0x11a0, 0x11a4,
 863                0x11b0, 0x11b4,
 864                0x11fc, 0x123c,
 865                0x1300, 0x173c,
 866                0x1800, 0x18fc,
 867                0x3000, 0x30d8,
 868                0x30e0, 0x30e4,
 869                0x30ec, 0x5910,
 870                0x5920, 0x5924,
 871                0x5960, 0x5960,
 872                0x5968, 0x5968,
 873                0x5970, 0x5970,
 874                0x5978, 0x5978,
 875                0x5980, 0x5980,
 876                0x5988, 0x5988,
 877                0x5990, 0x5990,
 878                0x5998, 0x5998,
 879                0x59a0, 0x59d4,
 880                0x5a00, 0x5ae0,
 881                0x5ae8, 0x5ae8,
 882                0x5af0, 0x5af0,
 883                0x5af8, 0x5af8,
 884                0x6000, 0x6098,
 885                0x6100, 0x6150,
 886                0x6200, 0x6208,
 887                0x6240, 0x6248,
 888                0x6280, 0x62b0,
 889                0x62c0, 0x6338,
 890                0x6370, 0x638c,
 891                0x6400, 0x643c,
 892                0x6500, 0x6524,
 893                0x6a00, 0x6a04,
 894                0x6a14, 0x6a38,
 895                0x6a60, 0x6a70,
 896                0x6a78, 0x6a78,
 897                0x6b00, 0x6b0c,
 898                0x6b1c, 0x6b84,
 899                0x6bf0, 0x6bf8,
 900                0x6c00, 0x6c0c,
 901                0x6c1c, 0x6c84,
 902                0x6cf0, 0x6cf8,
 903                0x6d00, 0x6d0c,
 904                0x6d1c, 0x6d84,
 905                0x6df0, 0x6df8,
 906                0x6e00, 0x6e0c,
 907                0x6e1c, 0x6e84,
 908                0x6ef0, 0x6ef8,
 909                0x6f00, 0x6f0c,
 910                0x6f1c, 0x6f84,
 911                0x6ff0, 0x6ff8,
 912                0x7000, 0x700c,
 913                0x701c, 0x7084,
 914                0x70f0, 0x70f8,
 915                0x7100, 0x710c,
 916                0x711c, 0x7184,
 917                0x71f0, 0x71f8,
 918                0x7200, 0x720c,
 919                0x721c, 0x7284,
 920                0x72f0, 0x72f8,
 921                0x7300, 0x730c,
 922                0x731c, 0x7384,
 923                0x73f0, 0x73f8,
 924                0x7400, 0x7450,
 925                0x7500, 0x7530,
 926                0x7600, 0x760c,
 927                0x7614, 0x761c,
 928                0x7680, 0x76cc,
 929                0x7700, 0x7798,
 930                0x77c0, 0x77fc,
 931                0x7900, 0x79fc,
 932                0x7b00, 0x7b58,
 933                0x7b60, 0x7b84,
 934                0x7b8c, 0x7c38,
 935                0x7d00, 0x7d38,
 936                0x7d40, 0x7d80,
 937                0x7d8c, 0x7ddc,
 938                0x7de4, 0x7e04,
 939                0x7e10, 0x7e1c,
 940                0x7e24, 0x7e38,
 941                0x7e40, 0x7e44,
 942                0x7e4c, 0x7e78,
 943                0x7e80, 0x7ea4,
 944                0x7eac, 0x7edc,
 945                0x7ee8, 0x7efc,
 946                0x8dc0, 0x8e04,
 947                0x8e10, 0x8e1c,
 948                0x8e30, 0x8e78,
 949                0x8ea0, 0x8eb8,
 950                0x8ec0, 0x8f6c,
 951                0x8fc0, 0x9008,
 952                0x9010, 0x9058,
 953                0x9060, 0x9060,
 954                0x9068, 0x9074,
 955                0x90fc, 0x90fc,
 956                0x9400, 0x9408,
 957                0x9410, 0x9458,
 958                0x9600, 0x9600,
 959                0x9608, 0x9638,
 960                0x9640, 0x96bc,
 961                0x9800, 0x9808,
 962                0x9820, 0x983c,
 963                0x9850, 0x9864,
 964                0x9c00, 0x9c6c,
 965                0x9c80, 0x9cec,
 966                0x9d00, 0x9d6c,
 967                0x9d80, 0x9dec,
 968                0x9e00, 0x9e6c,
 969                0x9e80, 0x9eec,
 970                0x9f00, 0x9f6c,
 971                0x9f80, 0x9fec,
 972                0xd004, 0xd004,
 973                0xd010, 0xd03c,
 974                0xdfc0, 0xdfe0,
 975                0xe000, 0xea7c,
 976                0xf000, 0x11110,
 977                0x11118, 0x11190,
 978                0x19040, 0x1906c,
 979                0x19078, 0x19080,
 980                0x1908c, 0x190e4,
 981                0x190f0, 0x190f8,
 982                0x19100, 0x19110,
 983                0x19120, 0x19124,
 984                0x19150, 0x19194,
 985                0x1919c, 0x191b0,
 986                0x191d0, 0x191e8,
 987                0x19238, 0x1924c,
 988                0x193f8, 0x1943c,
 989                0x1944c, 0x19474,
 990                0x19490, 0x194e0,
 991                0x194f0, 0x194f8,
 992                0x19800, 0x19c08,
 993                0x19c10, 0x19c90,
 994                0x19ca0, 0x19ce4,
 995                0x19cf0, 0x19d40,
 996                0x19d50, 0x19d94,
 997                0x19da0, 0x19de8,
 998                0x19df0, 0x19e40,
 999                0x19e50, 0x19e90,
1000                0x19ea0, 0x19f4c,
1001                0x1a000, 0x1a004,
1002                0x1a010, 0x1a06c,
1003                0x1a0b0, 0x1a0e4,
1004                0x1a0ec, 0x1a0f4,
1005                0x1a100, 0x1a108,
1006                0x1a114, 0x1a120,
1007                0x1a128, 0x1a130,
1008                0x1a138, 0x1a138,
1009                0x1a190, 0x1a1c4,
1010                0x1a1fc, 0x1a1fc,
1011                0x1e040, 0x1e04c,
1012                0x1e284, 0x1e28c,
1013                0x1e2c0, 0x1e2c0,
1014                0x1e2e0, 0x1e2e0,
1015                0x1e300, 0x1e384,
1016                0x1e3c0, 0x1e3c8,
1017                0x1e440, 0x1e44c,
1018                0x1e684, 0x1e68c,
1019                0x1e6c0, 0x1e6c0,
1020                0x1e6e0, 0x1e6e0,
1021                0x1e700, 0x1e784,
1022                0x1e7c0, 0x1e7c8,
1023                0x1e840, 0x1e84c,
1024                0x1ea84, 0x1ea8c,
1025                0x1eac0, 0x1eac0,
1026                0x1eae0, 0x1eae0,
1027                0x1eb00, 0x1eb84,
1028                0x1ebc0, 0x1ebc8,
1029                0x1ec40, 0x1ec4c,
1030                0x1ee84, 0x1ee8c,
1031                0x1eec0, 0x1eec0,
1032                0x1eee0, 0x1eee0,
1033                0x1ef00, 0x1ef84,
1034                0x1efc0, 0x1efc8,
1035                0x1f040, 0x1f04c,
1036                0x1f284, 0x1f28c,
1037                0x1f2c0, 0x1f2c0,
1038                0x1f2e0, 0x1f2e0,
1039                0x1f300, 0x1f384,
1040                0x1f3c0, 0x1f3c8,
1041                0x1f440, 0x1f44c,
1042                0x1f684, 0x1f68c,
1043                0x1f6c0, 0x1f6c0,
1044                0x1f6e0, 0x1f6e0,
1045                0x1f700, 0x1f784,
1046                0x1f7c0, 0x1f7c8,
1047                0x1f840, 0x1f84c,
1048                0x1fa84, 0x1fa8c,
1049                0x1fac0, 0x1fac0,
1050                0x1fae0, 0x1fae0,
1051                0x1fb00, 0x1fb84,
1052                0x1fbc0, 0x1fbc8,
1053                0x1fc40, 0x1fc4c,
1054                0x1fe84, 0x1fe8c,
1055                0x1fec0, 0x1fec0,
1056                0x1fee0, 0x1fee0,
1057                0x1ff00, 0x1ff84,
1058                0x1ffc0, 0x1ffc8,
1059                0x20000, 0x2002c,
1060                0x20100, 0x2013c,
1061                0x20190, 0x201a0,
1062                0x201a8, 0x201b8,
1063                0x201c4, 0x201c8,
1064                0x20200, 0x20318,
1065                0x20400, 0x204b4,
1066                0x204c0, 0x20528,
1067                0x20540, 0x20614,
1068                0x21000, 0x21040,
1069                0x2104c, 0x21060,
1070                0x210c0, 0x210ec,
1071                0x21200, 0x21268,
1072                0x21270, 0x21284,
1073                0x212fc, 0x21388,
1074                0x21400, 0x21404,
1075                0x21500, 0x21500,
1076                0x21510, 0x21518,
1077                0x2152c, 0x21530,
1078                0x2153c, 0x2153c,
1079                0x21550, 0x21554,
1080                0x21600, 0x21600,
1081                0x21608, 0x2161c,
1082                0x21624, 0x21628,
1083                0x21630, 0x21634,
1084                0x2163c, 0x2163c,
1085                0x21700, 0x2171c,
1086                0x21780, 0x2178c,
1087                0x21800, 0x21818,
1088                0x21820, 0x21828,
1089                0x21830, 0x21848,
1090                0x21850, 0x21854,
1091                0x21860, 0x21868,
1092                0x21870, 0x21870,
1093                0x21878, 0x21898,
1094                0x218a0, 0x218a8,
1095                0x218b0, 0x218c8,
1096                0x218d0, 0x218d4,
1097                0x218e0, 0x218e8,
1098                0x218f0, 0x218f0,
1099                0x218f8, 0x21a18,
1100                0x21a20, 0x21a28,
1101                0x21a30, 0x21a48,
1102                0x21a50, 0x21a54,
1103                0x21a60, 0x21a68,
1104                0x21a70, 0x21a70,
1105                0x21a78, 0x21a98,
1106                0x21aa0, 0x21aa8,
1107                0x21ab0, 0x21ac8,
1108                0x21ad0, 0x21ad4,
1109                0x21ae0, 0x21ae8,
1110                0x21af0, 0x21af0,
1111                0x21af8, 0x21c18,
1112                0x21c20, 0x21c20,
1113                0x21c28, 0x21c30,
1114                0x21c38, 0x21c38,
1115                0x21c80, 0x21c98,
1116                0x21ca0, 0x21ca8,
1117                0x21cb0, 0x21cc8,
1118                0x21cd0, 0x21cd4,
1119                0x21ce0, 0x21ce8,
1120                0x21cf0, 0x21cf0,
1121                0x21cf8, 0x21d7c,
1122                0x21e00, 0x21e04,
1123                0x22000, 0x2202c,
1124                0x22100, 0x2213c,
1125                0x22190, 0x221a0,
1126                0x221a8, 0x221b8,
1127                0x221c4, 0x221c8,
1128                0x22200, 0x22318,
1129                0x22400, 0x224b4,
1130                0x224c0, 0x22528,
1131                0x22540, 0x22614,
1132                0x23000, 0x23040,
1133                0x2304c, 0x23060,
1134                0x230c0, 0x230ec,
1135                0x23200, 0x23268,
1136                0x23270, 0x23284,
1137                0x232fc, 0x23388,
1138                0x23400, 0x23404,
1139                0x23500, 0x23500,
1140                0x23510, 0x23518,
1141                0x2352c, 0x23530,
1142                0x2353c, 0x2353c,
1143                0x23550, 0x23554,
1144                0x23600, 0x23600,
1145                0x23608, 0x2361c,
1146                0x23624, 0x23628,
1147                0x23630, 0x23634,
1148                0x2363c, 0x2363c,
1149                0x23700, 0x2371c,
1150                0x23780, 0x2378c,
1151                0x23800, 0x23818,
1152                0x23820, 0x23828,
1153                0x23830, 0x23848,
1154                0x23850, 0x23854,
1155                0x23860, 0x23868,
1156                0x23870, 0x23870,
1157                0x23878, 0x23898,
1158                0x238a0, 0x238a8,
1159                0x238b0, 0x238c8,
1160                0x238d0, 0x238d4,
1161                0x238e0, 0x238e8,
1162                0x238f0, 0x238f0,
1163                0x238f8, 0x23a18,
1164                0x23a20, 0x23a28,
1165                0x23a30, 0x23a48,
1166                0x23a50, 0x23a54,
1167                0x23a60, 0x23a68,
1168                0x23a70, 0x23a70,
1169                0x23a78, 0x23a98,
1170                0x23aa0, 0x23aa8,
1171                0x23ab0, 0x23ac8,
1172                0x23ad0, 0x23ad4,
1173                0x23ae0, 0x23ae8,
1174                0x23af0, 0x23af0,
1175                0x23af8, 0x23c18,
1176                0x23c20, 0x23c20,
1177                0x23c28, 0x23c30,
1178                0x23c38, 0x23c38,
1179                0x23c80, 0x23c98,
1180                0x23ca0, 0x23ca8,
1181                0x23cb0, 0x23cc8,
1182                0x23cd0, 0x23cd4,
1183                0x23ce0, 0x23ce8,
1184                0x23cf0, 0x23cf0,
1185                0x23cf8, 0x23d7c,
1186                0x23e00, 0x23e04,
1187                0x24000, 0x2402c,
1188                0x24100, 0x2413c,
1189                0x24190, 0x241a0,
1190                0x241a8, 0x241b8,
1191                0x241c4, 0x241c8,
1192                0x24200, 0x24318,
1193                0x24400, 0x244b4,
1194                0x244c0, 0x24528,
1195                0x24540, 0x24614,
1196                0x25000, 0x25040,
1197                0x2504c, 0x25060,
1198                0x250c0, 0x250ec,
1199                0x25200, 0x25268,
1200                0x25270, 0x25284,
1201                0x252fc, 0x25388,
1202                0x25400, 0x25404,
1203                0x25500, 0x25500,
1204                0x25510, 0x25518,
1205                0x2552c, 0x25530,
1206                0x2553c, 0x2553c,
1207                0x25550, 0x25554,
1208                0x25600, 0x25600,
1209                0x25608, 0x2561c,
1210                0x25624, 0x25628,
1211                0x25630, 0x25634,
1212                0x2563c, 0x2563c,
1213                0x25700, 0x2571c,
1214                0x25780, 0x2578c,
1215                0x25800, 0x25818,
1216                0x25820, 0x25828,
1217                0x25830, 0x25848,
1218                0x25850, 0x25854,
1219                0x25860, 0x25868,
1220                0x25870, 0x25870,
1221                0x25878, 0x25898,
1222                0x258a0, 0x258a8,
1223                0x258b0, 0x258c8,
1224                0x258d0, 0x258d4,
1225                0x258e0, 0x258e8,
1226                0x258f0, 0x258f0,
1227                0x258f8, 0x25a18,
1228                0x25a20, 0x25a28,
1229                0x25a30, 0x25a48,
1230                0x25a50, 0x25a54,
1231                0x25a60, 0x25a68,
1232                0x25a70, 0x25a70,
1233                0x25a78, 0x25a98,
1234                0x25aa0, 0x25aa8,
1235                0x25ab0, 0x25ac8,
1236                0x25ad0, 0x25ad4,
1237                0x25ae0, 0x25ae8,
1238                0x25af0, 0x25af0,
1239                0x25af8, 0x25c18,
1240                0x25c20, 0x25c20,
1241                0x25c28, 0x25c30,
1242                0x25c38, 0x25c38,
1243                0x25c80, 0x25c98,
1244                0x25ca0, 0x25ca8,
1245                0x25cb0, 0x25cc8,
1246                0x25cd0, 0x25cd4,
1247                0x25ce0, 0x25ce8,
1248                0x25cf0, 0x25cf0,
1249                0x25cf8, 0x25d7c,
1250                0x25e00, 0x25e04,
1251                0x26000, 0x2602c,
1252                0x26100, 0x2613c,
1253                0x26190, 0x261a0,
1254                0x261a8, 0x261b8,
1255                0x261c4, 0x261c8,
1256                0x26200, 0x26318,
1257                0x26400, 0x264b4,
1258                0x264c0, 0x26528,
1259                0x26540, 0x26614,
1260                0x27000, 0x27040,
1261                0x2704c, 0x27060,
1262                0x270c0, 0x270ec,
1263                0x27200, 0x27268,
1264                0x27270, 0x27284,
1265                0x272fc, 0x27388,
1266                0x27400, 0x27404,
1267                0x27500, 0x27500,
1268                0x27510, 0x27518,
1269                0x2752c, 0x27530,
1270                0x2753c, 0x2753c,
1271                0x27550, 0x27554,
1272                0x27600, 0x27600,
1273                0x27608, 0x2761c,
1274                0x27624, 0x27628,
1275                0x27630, 0x27634,
1276                0x2763c, 0x2763c,
1277                0x27700, 0x2771c,
1278                0x27780, 0x2778c,
1279                0x27800, 0x27818,
1280                0x27820, 0x27828,
1281                0x27830, 0x27848,
1282                0x27850, 0x27854,
1283                0x27860, 0x27868,
1284                0x27870, 0x27870,
1285                0x27878, 0x27898,
1286                0x278a0, 0x278a8,
1287                0x278b0, 0x278c8,
1288                0x278d0, 0x278d4,
1289                0x278e0, 0x278e8,
1290                0x278f0, 0x278f0,
1291                0x278f8, 0x27a18,
1292                0x27a20, 0x27a28,
1293                0x27a30, 0x27a48,
1294                0x27a50, 0x27a54,
1295                0x27a60, 0x27a68,
1296                0x27a70, 0x27a70,
1297                0x27a78, 0x27a98,
1298                0x27aa0, 0x27aa8,
1299                0x27ab0, 0x27ac8,
1300                0x27ad0, 0x27ad4,
1301                0x27ae0, 0x27ae8,
1302                0x27af0, 0x27af0,
1303                0x27af8, 0x27c18,
1304                0x27c20, 0x27c20,
1305                0x27c28, 0x27c30,
1306                0x27c38, 0x27c38,
1307                0x27c80, 0x27c98,
1308                0x27ca0, 0x27ca8,
1309                0x27cb0, 0x27cc8,
1310                0x27cd0, 0x27cd4,
1311                0x27ce0, 0x27ce8,
1312                0x27cf0, 0x27cf0,
1313                0x27cf8, 0x27d7c,
1314                0x27e00, 0x27e04,
1315        };
1316
1317        static const unsigned int t5_reg_ranges[] = {
1318                0x1008, 0x10c0,
1319                0x10cc, 0x10f8,
1320                0x1100, 0x1100,
1321                0x110c, 0x1148,
1322                0x1180, 0x1184,
1323                0x1190, 0x1194,
1324                0x11a0, 0x11a4,
1325                0x11b0, 0x11b4,
1326                0x11fc, 0x123c,
1327                0x1280, 0x173c,
1328                0x1800, 0x18fc,
1329                0x3000, 0x3028,
1330                0x3060, 0x30b0,
1331                0x30b8, 0x30d8,
1332                0x30e0, 0x30fc,
1333                0x3140, 0x357c,
1334                0x35a8, 0x35cc,
1335                0x35ec, 0x35ec,
1336                0x3600, 0x5624,
1337                0x56cc, 0x56ec,
1338                0x56f4, 0x5720,
1339                0x5728, 0x575c,
1340                0x580c, 0x5814,
1341                0x5890, 0x589c,
1342                0x58a4, 0x58ac,
1343                0x58b8, 0x58bc,
1344                0x5940, 0x59c8,
1345                0x59d0, 0x59dc,
1346                0x59fc, 0x5a18,
1347                0x5a60, 0x5a70,
1348                0x5a80, 0x5a9c,
1349                0x5b94, 0x5bfc,
1350                0x6000, 0x6020,
1351                0x6028, 0x6040,
1352                0x6058, 0x609c,
1353                0x60a8, 0x614c,
1354                0x7700, 0x7798,
1355                0x77c0, 0x78fc,
1356                0x7b00, 0x7b58,
1357                0x7b60, 0x7b84,
1358                0x7b8c, 0x7c54,
1359                0x7d00, 0x7d38,
1360                0x7d40, 0x7d80,
1361                0x7d8c, 0x7ddc,
1362                0x7de4, 0x7e04,
1363                0x7e10, 0x7e1c,
1364                0x7e24, 0x7e38,
1365                0x7e40, 0x7e44,
1366                0x7e4c, 0x7e78,
1367                0x7e80, 0x7edc,
1368                0x7ee8, 0x7efc,
1369                0x8dc0, 0x8de0,
1370                0x8df8, 0x8e04,
1371                0x8e10, 0x8e84,
1372                0x8ea0, 0x8f84,
1373                0x8fc0, 0x9058,
1374                0x9060, 0x9060,
1375                0x9068, 0x90f8,
1376                0x9400, 0x9408,
1377                0x9410, 0x9470,
1378                0x9600, 0x9600,
1379                0x9608, 0x9638,
1380                0x9640, 0x96f4,
1381                0x9800, 0x9808,
1382                0x9810, 0x9864,
1383                0x9c00, 0x9c6c,
1384                0x9c80, 0x9cec,
1385                0x9d00, 0x9d6c,
1386                0x9d80, 0x9dec,
1387                0x9e00, 0x9e6c,
1388                0x9e80, 0x9eec,
1389                0x9f00, 0x9f6c,
1390                0x9f80, 0xa020,
1391                0xd000, 0xd004,
1392                0xd010, 0xd03c,
1393                0xdfc0, 0xdfe0,
1394                0xe000, 0x1106c,
1395                0x11074, 0x11088,
1396                0x1109c, 0x1117c,
1397                0x11190, 0x11204,
1398                0x19040, 0x1906c,
1399                0x19078, 0x19080,
1400                0x1908c, 0x190e8,
1401                0x190f0, 0x190f8,
1402                0x19100, 0x19110,
1403                0x19120, 0x19124,
1404                0x19150, 0x19194,
1405                0x1919c, 0x191b0,
1406                0x191d0, 0x191e8,
1407                0x19238, 0x19290,
1408                0x193f8, 0x19428,
1409                0x19430, 0x19444,
1410                0x1944c, 0x1946c,
1411                0x19474, 0x19474,
1412                0x19490, 0x194cc,
1413                0x194f0, 0x194f8,
1414                0x19c00, 0x19c08,
1415                0x19c10, 0x19c60,
1416                0x19c94, 0x19ce4,
1417                0x19cf0, 0x19d40,
1418                0x19d50, 0x19d94,
1419                0x19da0, 0x19de8,
1420                0x19df0, 0x19e10,
1421                0x19e50, 0x19e90,
1422                0x19ea0, 0x19f24,
1423                0x19f34, 0x19f34,
1424                0x19f40, 0x19f50,
1425                0x19f90, 0x19fb4,
1426                0x19fc4, 0x19fe4,
1427                0x1a000, 0x1a004,
1428                0x1a010, 0x1a06c,
1429                0x1a0b0, 0x1a0e4,
1430                0x1a0ec, 0x1a0f8,
1431                0x1a100, 0x1a108,
1432                0x1a114, 0x1a130,
1433                0x1a138, 0x1a1c4,
1434                0x1a1fc, 0x1a1fc,
1435                0x1e008, 0x1e00c,
1436                0x1e040, 0x1e044,
1437                0x1e04c, 0x1e04c,
1438                0x1e284, 0x1e290,
1439                0x1e2c0, 0x1e2c0,
1440                0x1e2e0, 0x1e2e0,
1441                0x1e300, 0x1e384,
1442                0x1e3c0, 0x1e3c8,
1443                0x1e408, 0x1e40c,
1444                0x1e440, 0x1e444,
1445                0x1e44c, 0x1e44c,
1446                0x1e684, 0x1e690,
1447                0x1e6c0, 0x1e6c0,
1448                0x1e6e0, 0x1e6e0,
1449                0x1e700, 0x1e784,
1450                0x1e7c0, 0x1e7c8,
1451                0x1e808, 0x1e80c,
1452                0x1e840, 0x1e844,
1453                0x1e84c, 0x1e84c,
1454                0x1ea84, 0x1ea90,
1455                0x1eac0, 0x1eac0,
1456                0x1eae0, 0x1eae0,
1457                0x1eb00, 0x1eb84,
1458                0x1ebc0, 0x1ebc8,
1459                0x1ec08, 0x1ec0c,
1460                0x1ec40, 0x1ec44,
1461                0x1ec4c, 0x1ec4c,
1462                0x1ee84, 0x1ee90,
1463                0x1eec0, 0x1eec0,
1464                0x1eee0, 0x1eee0,
1465                0x1ef00, 0x1ef84,
1466                0x1efc0, 0x1efc8,
1467                0x1f008, 0x1f00c,
1468                0x1f040, 0x1f044,
1469                0x1f04c, 0x1f04c,
1470                0x1f284, 0x1f290,
1471                0x1f2c0, 0x1f2c0,
1472                0x1f2e0, 0x1f2e0,
1473                0x1f300, 0x1f384,
1474                0x1f3c0, 0x1f3c8,
1475                0x1f408, 0x1f40c,
1476                0x1f440, 0x1f444,
1477                0x1f44c, 0x1f44c,
1478                0x1f684, 0x1f690,
1479                0x1f6c0, 0x1f6c0,
1480                0x1f6e0, 0x1f6e0,
1481                0x1f700, 0x1f784,
1482                0x1f7c0, 0x1f7c8,
1483                0x1f808, 0x1f80c,
1484                0x1f840, 0x1f844,
1485                0x1f84c, 0x1f84c,
1486                0x1fa84, 0x1fa90,
1487                0x1fac0, 0x1fac0,
1488                0x1fae0, 0x1fae0,
1489                0x1fb00, 0x1fb84,
1490                0x1fbc0, 0x1fbc8,
1491                0x1fc08, 0x1fc0c,
1492                0x1fc40, 0x1fc44,
1493                0x1fc4c, 0x1fc4c,
1494                0x1fe84, 0x1fe90,
1495                0x1fec0, 0x1fec0,
1496                0x1fee0, 0x1fee0,
1497                0x1ff00, 0x1ff84,
1498                0x1ffc0, 0x1ffc8,
1499                0x30000, 0x30030,
1500                0x30100, 0x30144,
1501                0x30190, 0x301a0,
1502                0x301a8, 0x301b8,
1503                0x301c4, 0x301c8,
1504                0x301d0, 0x301d0,
1505                0x30200, 0x30318,
1506                0x30400, 0x304b4,
1507                0x304c0, 0x3052c,
1508                0x30540, 0x3061c,
1509                0x30800, 0x30828,
1510                0x30834, 0x30834,
1511                0x308c0, 0x30908,
1512                0x30910, 0x309ac,
1513                0x30a00, 0x30a14,
1514                0x30a1c, 0x30a2c,
1515                0x30a44, 0x30a50,
1516                0x30a74, 0x30a74,
1517                0x30a7c, 0x30afc,
1518                0x30b08, 0x30c24,
1519                0x30d00, 0x30d00,
1520                0x30d08, 0x30d14,
1521                0x30d1c, 0x30d20,
1522                0x30d3c, 0x30d3c,
1523                0x30d48, 0x30d50,
1524                0x31200, 0x3120c,
1525                0x31220, 0x31220,
1526                0x31240, 0x31240,
1527                0x31600, 0x3160c,
1528                0x31a00, 0x31a1c,
1529                0x31e00, 0x31e20,
1530                0x31e38, 0x31e3c,
1531                0x31e80, 0x31e80,
1532                0x31e88, 0x31ea8,
1533                0x31eb0, 0x31eb4,
1534                0x31ec8, 0x31ed4,
1535                0x31fb8, 0x32004,
1536                0x32200, 0x32200,
1537                0x32208, 0x32240,
1538                0x32248, 0x32280,
1539                0x32288, 0x322c0,
1540                0x322c8, 0x322fc,
1541                0x32600, 0x32630,
1542                0x32a00, 0x32abc,
1543                0x32b00, 0x32b10,
1544                0x32b20, 0x32b30,
1545                0x32b40, 0x32b50,
1546                0x32b60, 0x32b70,
1547                0x33000, 0x33028,
1548                0x33030, 0x33048,
1549                0x33060, 0x33068,
1550                0x33070, 0x3309c,
1551                0x330f0, 0x33128,
1552                0x33130, 0x33148,
1553                0x33160, 0x33168,
1554                0x33170, 0x3319c,
1555                0x331f0, 0x33238,
1556                0x33240, 0x33240,
1557                0x33248, 0x33250,
1558                0x3325c, 0x33264,
1559                0x33270, 0x332b8,
1560                0x332c0, 0x332e4,
1561                0x332f8, 0x33338,
1562                0x33340, 0x33340,
1563                0x33348, 0x33350,
1564                0x3335c, 0x33364,
1565                0x33370, 0x333b8,
1566                0x333c0, 0x333e4,
1567                0x333f8, 0x33428,
1568                0x33430, 0x33448,
1569                0x33460, 0x33468,
1570                0x33470, 0x3349c,
1571                0x334f0, 0x33528,
1572                0x33530, 0x33548,
1573                0x33560, 0x33568,
1574                0x33570, 0x3359c,
1575                0x335f0, 0x33638,
1576                0x33640, 0x33640,
1577                0x33648, 0x33650,
1578                0x3365c, 0x33664,
1579                0x33670, 0x336b8,
1580                0x336c0, 0x336e4,
1581                0x336f8, 0x33738,
1582                0x33740, 0x33740,
1583                0x33748, 0x33750,
1584                0x3375c, 0x33764,
1585                0x33770, 0x337b8,
1586                0x337c0, 0x337e4,
1587                0x337f8, 0x337fc,
1588                0x33814, 0x33814,
1589                0x3382c, 0x3382c,
1590                0x33880, 0x3388c,
1591                0x338e8, 0x338ec,
1592                0x33900, 0x33928,
1593                0x33930, 0x33948,
1594                0x33960, 0x33968,
1595                0x33970, 0x3399c,
1596                0x339f0, 0x33a38,
1597                0x33a40, 0x33a40,
1598                0x33a48, 0x33a50,
1599                0x33a5c, 0x33a64,
1600                0x33a70, 0x33ab8,
1601                0x33ac0, 0x33ae4,
1602                0x33af8, 0x33b10,
1603                0x33b28, 0x33b28,
1604                0x33b3c, 0x33b50,
1605                0x33bf0, 0x33c10,
1606                0x33c28, 0x33c28,
1607                0x33c3c, 0x33c50,
1608                0x33cf0, 0x33cfc,
1609                0x34000, 0x34030,
1610                0x34100, 0x34144,
1611                0x34190, 0x341a0,
1612                0x341a8, 0x341b8,
1613                0x341c4, 0x341c8,
1614                0x341d0, 0x341d0,
1615                0x34200, 0x34318,
1616                0x34400, 0x344b4,
1617                0x344c0, 0x3452c,
1618                0x34540, 0x3461c,
1619                0x34800, 0x34828,
1620                0x34834, 0x34834,
1621                0x348c0, 0x34908,
1622                0x34910, 0x349ac,
1623                0x34a00, 0x34a14,
1624                0x34a1c, 0x34a2c,
1625                0x34a44, 0x34a50,
1626                0x34a74, 0x34a74,
1627                0x34a7c, 0x34afc,
1628                0x34b08, 0x34c24,
1629                0x34d00, 0x34d00,
1630                0x34d08, 0x34d14,
1631                0x34d1c, 0x34d20,
1632                0x34d3c, 0x34d3c,
1633                0x34d48, 0x34d50,
1634                0x35200, 0x3520c,
1635                0x35220, 0x35220,
1636                0x35240, 0x35240,
1637                0x35600, 0x3560c,
1638                0x35a00, 0x35a1c,
1639                0x35e00, 0x35e20,
1640                0x35e38, 0x35e3c,
1641                0x35e80, 0x35e80,
1642                0x35e88, 0x35ea8,
1643                0x35eb0, 0x35eb4,
1644                0x35ec8, 0x35ed4,
1645                0x35fb8, 0x36004,
1646                0x36200, 0x36200,
1647                0x36208, 0x36240,
1648                0x36248, 0x36280,
1649                0x36288, 0x362c0,
1650                0x362c8, 0x362fc,
1651                0x36600, 0x36630,
1652                0x36a00, 0x36abc,
1653                0x36b00, 0x36b10,
1654                0x36b20, 0x36b30,
1655                0x36b40, 0x36b50,
1656                0x36b60, 0x36b70,
1657                0x37000, 0x37028,
1658                0x37030, 0x37048,
1659                0x37060, 0x37068,
1660                0x37070, 0x3709c,
1661                0x370f0, 0x37128,
1662                0x37130, 0x37148,
1663                0x37160, 0x37168,
1664                0x37170, 0x3719c,
1665                0x371f0, 0x37238,
1666                0x37240, 0x37240,
1667                0x37248, 0x37250,
1668                0x3725c, 0x37264,
1669                0x37270, 0x372b8,
1670                0x372c0, 0x372e4,
1671                0x372f8, 0x37338,
1672                0x37340, 0x37340,
1673                0x37348, 0x37350,
1674                0x3735c, 0x37364,
1675                0x37370, 0x373b8,
1676                0x373c0, 0x373e4,
1677                0x373f8, 0x37428,
1678                0x37430, 0x37448,
1679                0x37460, 0x37468,
1680                0x37470, 0x3749c,
1681                0x374f0, 0x37528,
1682                0x37530, 0x37548,
1683                0x37560, 0x37568,
1684                0x37570, 0x3759c,
1685                0x375f0, 0x37638,
1686                0x37640, 0x37640,
1687                0x37648, 0x37650,
1688                0x3765c, 0x37664,
1689                0x37670, 0x376b8,
1690                0x376c0, 0x376e4,
1691                0x376f8, 0x37738,
1692                0x37740, 0x37740,
1693                0x37748, 0x37750,
1694                0x3775c, 0x37764,
1695                0x37770, 0x377b8,
1696                0x377c0, 0x377e4,
1697                0x377f8, 0x377fc,
1698                0x37814, 0x37814,
1699                0x3782c, 0x3782c,
1700                0x37880, 0x3788c,
1701                0x378e8, 0x378ec,
1702                0x37900, 0x37928,
1703                0x37930, 0x37948,
1704                0x37960, 0x37968,
1705                0x37970, 0x3799c,
1706                0x379f0, 0x37a38,
1707                0x37a40, 0x37a40,
1708                0x37a48, 0x37a50,
1709                0x37a5c, 0x37a64,
1710                0x37a70, 0x37ab8,
1711                0x37ac0, 0x37ae4,
1712                0x37af8, 0x37b10,
1713                0x37b28, 0x37b28,
1714                0x37b3c, 0x37b50,
1715                0x37bf0, 0x37c10,
1716                0x37c28, 0x37c28,
1717                0x37c3c, 0x37c50,
1718                0x37cf0, 0x37cfc,
1719                0x38000, 0x38030,
1720                0x38100, 0x38144,
1721                0x38190, 0x381a0,
1722                0x381a8, 0x381b8,
1723                0x381c4, 0x381c8,
1724                0x381d0, 0x381d0,
1725                0x38200, 0x38318,
1726                0x38400, 0x384b4,
1727                0x384c0, 0x3852c,
1728                0x38540, 0x3861c,
1729                0x38800, 0x38828,
1730                0x38834, 0x38834,
1731                0x388c0, 0x38908,
1732                0x38910, 0x389ac,
1733                0x38a00, 0x38a14,
1734                0x38a1c, 0x38a2c,
1735                0x38a44, 0x38a50,
1736                0x38a74, 0x38a74,
1737                0x38a7c, 0x38afc,
1738                0x38b08, 0x38c24,
1739                0x38d00, 0x38d00,
1740                0x38d08, 0x38d14,
1741                0x38d1c, 0x38d20,
1742                0x38d3c, 0x38d3c,
1743                0x38d48, 0x38d50,
1744                0x39200, 0x3920c,
1745                0x39220, 0x39220,
1746                0x39240, 0x39240,
1747                0x39600, 0x3960c,
1748                0x39a00, 0x39a1c,
1749                0x39e00, 0x39e20,
1750                0x39e38, 0x39e3c,
1751                0x39e80, 0x39e80,
1752                0x39e88, 0x39ea8,
1753                0x39eb0, 0x39eb4,
1754                0x39ec8, 0x39ed4,
1755                0x39fb8, 0x3a004,
1756                0x3a200, 0x3a200,
1757                0x3a208, 0x3a240,
1758                0x3a248, 0x3a280,
1759                0x3a288, 0x3a2c0,
1760                0x3a2c8, 0x3a2fc,
1761                0x3a600, 0x3a630,
1762                0x3aa00, 0x3aabc,
1763                0x3ab00, 0x3ab10,
1764                0x3ab20, 0x3ab30,
1765                0x3ab40, 0x3ab50,
1766                0x3ab60, 0x3ab70,
1767                0x3b000, 0x3b028,
1768                0x3b030, 0x3b048,
1769                0x3b060, 0x3b068,
1770                0x3b070, 0x3b09c,
1771                0x3b0f0, 0x3b128,
1772                0x3b130, 0x3b148,
1773                0x3b160, 0x3b168,
1774                0x3b170, 0x3b19c,
1775                0x3b1f0, 0x3b238,
1776                0x3b240, 0x3b240,
1777                0x3b248, 0x3b250,
1778                0x3b25c, 0x3b264,
1779                0x3b270, 0x3b2b8,
1780                0x3b2c0, 0x3b2e4,
1781                0x3b2f8, 0x3b338,
1782                0x3b340, 0x3b340,
1783                0x3b348, 0x3b350,
1784                0x3b35c, 0x3b364,
1785                0x3b370, 0x3b3b8,
1786                0x3b3c0, 0x3b3e4,
1787                0x3b3f8, 0x3b428,
1788                0x3b430, 0x3b448,
1789                0x3b460, 0x3b468,
1790                0x3b470, 0x3b49c,
1791                0x3b4f0, 0x3b528,
1792                0x3b530, 0x3b548,
1793                0x3b560, 0x3b568,
1794                0x3b570, 0x3b59c,
1795                0x3b5f0, 0x3b638,
1796                0x3b640, 0x3b640,
1797                0x3b648, 0x3b650,
1798                0x3b65c, 0x3b664,
1799                0x3b670, 0x3b6b8,
1800                0x3b6c0, 0x3b6e4,
1801                0x3b6f8, 0x3b738,
1802                0x3b740, 0x3b740,
1803                0x3b748, 0x3b750,
1804                0x3b75c, 0x3b764,
1805                0x3b770, 0x3b7b8,
1806                0x3b7c0, 0x3b7e4,
1807                0x3b7f8, 0x3b7fc,
1808                0x3b814, 0x3b814,
1809                0x3b82c, 0x3b82c,
1810                0x3b880, 0x3b88c,
1811                0x3b8e8, 0x3b8ec,
1812                0x3b900, 0x3b928,
1813                0x3b930, 0x3b948,
1814                0x3b960, 0x3b968,
1815                0x3b970, 0x3b99c,
1816                0x3b9f0, 0x3ba38,
1817                0x3ba40, 0x3ba40,
1818                0x3ba48, 0x3ba50,
1819                0x3ba5c, 0x3ba64,
1820                0x3ba70, 0x3bab8,
1821                0x3bac0, 0x3bae4,
1822                0x3baf8, 0x3bb10,
1823                0x3bb28, 0x3bb28,
1824                0x3bb3c, 0x3bb50,
1825                0x3bbf0, 0x3bc10,
1826                0x3bc28, 0x3bc28,
1827                0x3bc3c, 0x3bc50,
1828                0x3bcf0, 0x3bcfc,
1829                0x3c000, 0x3c030,
1830                0x3c100, 0x3c144,
1831                0x3c190, 0x3c1a0,
1832                0x3c1a8, 0x3c1b8,
1833                0x3c1c4, 0x3c1c8,
1834                0x3c1d0, 0x3c1d0,
1835                0x3c200, 0x3c318,
1836                0x3c400, 0x3c4b4,
1837                0x3c4c0, 0x3c52c,
1838                0x3c540, 0x3c61c,
1839                0x3c800, 0x3c828,
1840                0x3c834, 0x3c834,
1841                0x3c8c0, 0x3c908,
1842                0x3c910, 0x3c9ac,
1843                0x3ca00, 0x3ca14,
1844                0x3ca1c, 0x3ca2c,
1845                0x3ca44, 0x3ca50,
1846                0x3ca74, 0x3ca74,
1847                0x3ca7c, 0x3cafc,
1848                0x3cb08, 0x3cc24,
1849                0x3cd00, 0x3cd00,
1850                0x3cd08, 0x3cd14,
1851                0x3cd1c, 0x3cd20,
1852                0x3cd3c, 0x3cd3c,
1853                0x3cd48, 0x3cd50,
1854                0x3d200, 0x3d20c,
1855                0x3d220, 0x3d220,
1856                0x3d240, 0x3d240,
1857                0x3d600, 0x3d60c,
1858                0x3da00, 0x3da1c,
1859                0x3de00, 0x3de20,
1860                0x3de38, 0x3de3c,
1861                0x3de80, 0x3de80,
1862                0x3de88, 0x3dea8,
1863                0x3deb0, 0x3deb4,
1864                0x3dec8, 0x3ded4,
1865                0x3dfb8, 0x3e004,
1866                0x3e200, 0x3e200,
1867                0x3e208, 0x3e240,
1868                0x3e248, 0x3e280,
1869                0x3e288, 0x3e2c0,
1870                0x3e2c8, 0x3e2fc,
1871                0x3e600, 0x3e630,
1872                0x3ea00, 0x3eabc,
1873                0x3eb00, 0x3eb10,
1874                0x3eb20, 0x3eb30,
1875                0x3eb40, 0x3eb50,
1876                0x3eb60, 0x3eb70,
1877                0x3f000, 0x3f028,
1878                0x3f030, 0x3f048,
1879                0x3f060, 0x3f068,
1880                0x3f070, 0x3f09c,
1881                0x3f0f0, 0x3f128,
1882                0x3f130, 0x3f148,
1883                0x3f160, 0x3f168,
1884                0x3f170, 0x3f19c,
1885                0x3f1f0, 0x3f238,
1886                0x3f240, 0x3f240,
1887                0x3f248, 0x3f250,
1888                0x3f25c, 0x3f264,
1889                0x3f270, 0x3f2b8,
1890                0x3f2c0, 0x3f2e4,
1891                0x3f2f8, 0x3f338,
1892                0x3f340, 0x3f340,
1893                0x3f348, 0x3f350,
1894                0x3f35c, 0x3f364,
1895                0x3f370, 0x3f3b8,
1896                0x3f3c0, 0x3f3e4,
1897                0x3f3f8, 0x3f428,
1898                0x3f430, 0x3f448,
1899                0x3f460, 0x3f468,
1900                0x3f470, 0x3f49c,
1901                0x3f4f0, 0x3f528,
1902                0x3f530, 0x3f548,
1903                0x3f560, 0x3f568,
1904                0x3f570, 0x3f59c,
1905                0x3f5f0, 0x3f638,
1906                0x3f640, 0x3f640,
1907                0x3f648, 0x3f650,
1908                0x3f65c, 0x3f664,
1909                0x3f670, 0x3f6b8,
1910                0x3f6c0, 0x3f6e4,
1911                0x3f6f8, 0x3f738,
1912                0x3f740, 0x3f740,
1913                0x3f748, 0x3f750,
1914                0x3f75c, 0x3f764,
1915                0x3f770, 0x3f7b8,
1916                0x3f7c0, 0x3f7e4,
1917                0x3f7f8, 0x3f7fc,
1918                0x3f814, 0x3f814,
1919                0x3f82c, 0x3f82c,
1920                0x3f880, 0x3f88c,
1921                0x3f8e8, 0x3f8ec,
1922                0x3f900, 0x3f928,
1923                0x3f930, 0x3f948,
1924                0x3f960, 0x3f968,
1925                0x3f970, 0x3f99c,
1926                0x3f9f0, 0x3fa38,
1927                0x3fa40, 0x3fa40,
1928                0x3fa48, 0x3fa50,
1929                0x3fa5c, 0x3fa64,
1930                0x3fa70, 0x3fab8,
1931                0x3fac0, 0x3fae4,
1932                0x3faf8, 0x3fb10,
1933                0x3fb28, 0x3fb28,
1934                0x3fb3c, 0x3fb50,
1935                0x3fbf0, 0x3fc10,
1936                0x3fc28, 0x3fc28,
1937                0x3fc3c, 0x3fc50,
1938                0x3fcf0, 0x3fcfc,
1939                0x40000, 0x4000c,
1940                0x40040, 0x40050,
1941                0x40060, 0x40068,
1942                0x4007c, 0x4008c,
1943                0x40094, 0x400b0,
1944                0x400c0, 0x40144,
1945                0x40180, 0x4018c,
1946                0x40200, 0x40254,
1947                0x40260, 0x40264,
1948                0x40270, 0x40288,
1949                0x40290, 0x40298,
1950                0x402ac, 0x402c8,
1951                0x402d0, 0x402e0,
1952                0x402f0, 0x402f0,
1953                0x40300, 0x4033c,
1954                0x403f8, 0x403fc,
1955                0x41304, 0x413c4,
1956                0x41400, 0x4140c,
1957                0x41414, 0x4141c,
1958                0x41480, 0x414d0,
1959                0x44000, 0x44054,
1960                0x4405c, 0x44078,
1961                0x440c0, 0x44174,
1962                0x44180, 0x441ac,
1963                0x441b4, 0x441b8,
1964                0x441c0, 0x44254,
1965                0x4425c, 0x44278,
1966                0x442c0, 0x44374,
1967                0x44380, 0x443ac,
1968                0x443b4, 0x443b8,
1969                0x443c0, 0x44454,
1970                0x4445c, 0x44478,
1971                0x444c0, 0x44574,
1972                0x44580, 0x445ac,
1973                0x445b4, 0x445b8,
1974                0x445c0, 0x44654,
1975                0x4465c, 0x44678,
1976                0x446c0, 0x44774,
1977                0x44780, 0x447ac,
1978                0x447b4, 0x447b8,
1979                0x447c0, 0x44854,
1980                0x4485c, 0x44878,
1981                0x448c0, 0x44974,
1982                0x44980, 0x449ac,
1983                0x449b4, 0x449b8,
1984                0x449c0, 0x449fc,
1985                0x45000, 0x45004,
1986                0x45010, 0x45030,
1987                0x45040, 0x45060,
1988                0x45068, 0x45068,
1989                0x45080, 0x45084,
1990                0x450a0, 0x450b0,
1991                0x45200, 0x45204,
1992                0x45210, 0x45230,
1993                0x45240, 0x45260,
1994                0x45268, 0x45268,
1995                0x45280, 0x45284,
1996                0x452a0, 0x452b0,
1997                0x460c0, 0x460e4,
1998                0x47000, 0x4703c,
1999                0x47044, 0x4708c,
2000                0x47200, 0x47250,
2001                0x47400, 0x47408,
2002                0x47414, 0x47420,
2003                0x47600, 0x47618,
2004                0x47800, 0x47814,
2005                0x48000, 0x4800c,
2006                0x48040, 0x48050,
2007                0x48060, 0x48068,
2008                0x4807c, 0x4808c,
2009                0x48094, 0x480b0,
2010                0x480c0, 0x48144,
2011                0x48180, 0x4818c,
2012                0x48200, 0x48254,
2013                0x48260, 0x48264,
2014                0x48270, 0x48288,
2015                0x48290, 0x48298,
2016                0x482ac, 0x482c8,
2017                0x482d0, 0x482e0,
2018                0x482f0, 0x482f0,
2019                0x48300, 0x4833c,
2020                0x483f8, 0x483fc,
2021                0x49304, 0x493c4,
2022                0x49400, 0x4940c,
2023                0x49414, 0x4941c,
2024                0x49480, 0x494d0,
2025                0x4c000, 0x4c054,
2026                0x4c05c, 0x4c078,
2027                0x4c0c0, 0x4c174,
2028                0x4c180, 0x4c1ac,
2029                0x4c1b4, 0x4c1b8,
2030                0x4c1c0, 0x4c254,
2031                0x4c25c, 0x4c278,
2032                0x4c2c0, 0x4c374,
2033                0x4c380, 0x4c3ac,
2034                0x4c3b4, 0x4c3b8,
2035                0x4c3c0, 0x4c454,
2036                0x4c45c, 0x4c478,
2037                0x4c4c0, 0x4c574,
2038                0x4c580, 0x4c5ac,
2039                0x4c5b4, 0x4c5b8,
2040                0x4c5c0, 0x4c654,
2041                0x4c65c, 0x4c678,
2042                0x4c6c0, 0x4c774,
2043                0x4c780, 0x4c7ac,
2044                0x4c7b4, 0x4c7b8,
2045                0x4c7c0, 0x4c854,
2046                0x4c85c, 0x4c878,
2047                0x4c8c0, 0x4c974,
2048                0x4c980, 0x4c9ac,
2049                0x4c9b4, 0x4c9b8,
2050                0x4c9c0, 0x4c9fc,
2051                0x4d000, 0x4d004,
2052                0x4d010, 0x4d030,
2053                0x4d040, 0x4d060,
2054                0x4d068, 0x4d068,
2055                0x4d080, 0x4d084,
2056                0x4d0a0, 0x4d0b0,
2057                0x4d200, 0x4d204,
2058                0x4d210, 0x4d230,
2059                0x4d240, 0x4d260,
2060                0x4d268, 0x4d268,
2061                0x4d280, 0x4d284,
2062                0x4d2a0, 0x4d2b0,
2063                0x4e0c0, 0x4e0e4,
2064                0x4f000, 0x4f03c,
2065                0x4f044, 0x4f08c,
2066                0x4f200, 0x4f250,
2067                0x4f400, 0x4f408,
2068                0x4f414, 0x4f420,
2069                0x4f600, 0x4f618,
2070                0x4f800, 0x4f814,
2071                0x50000, 0x50084,
2072                0x50090, 0x500cc,
2073                0x50400, 0x50400,
2074                0x50800, 0x50884,
2075                0x50890, 0x508cc,
2076                0x50c00, 0x50c00,
2077                0x51000, 0x5101c,
2078                0x51300, 0x51308,
2079        };
2080
2081        static const unsigned int t6_reg_ranges[] = {
2082                0x1008, 0x101c,
2083                0x1024, 0x10a8,
2084                0x10b4, 0x10f8,
2085                0x1100, 0x1114,
2086                0x111c, 0x112c,
2087                0x1138, 0x113c,
2088                0x1144, 0x114c,
2089                0x1180, 0x1184,
2090                0x1190, 0x1194,
2091                0x11a0, 0x11a4,
2092                0x11b0, 0x11b4,
2093                0x11fc, 0x123c,
2094                0x1254, 0x1274,
2095                0x1280, 0x133c,
2096                0x1800, 0x18fc,
2097                0x3000, 0x302c,
2098                0x3060, 0x30b0,
2099                0x30b8, 0x30d8,
2100                0x30e0, 0x30fc,
2101                0x3140, 0x357c,
2102                0x35a8, 0x35cc,
2103                0x35ec, 0x35ec,
2104                0x3600, 0x5624,
2105                0x56cc, 0x56ec,
2106                0x56f4, 0x5720,
2107                0x5728, 0x575c,
2108                0x580c, 0x5814,
2109                0x5890, 0x589c,
2110                0x58a4, 0x58ac,
2111                0x58b8, 0x58bc,
2112                0x5940, 0x595c,
2113                0x5980, 0x598c,
2114                0x59b0, 0x59c8,
2115                0x59d0, 0x59dc,
2116                0x59fc, 0x5a18,
2117                0x5a60, 0x5a6c,
2118                0x5a80, 0x5a8c,
2119                0x5a94, 0x5a9c,
2120                0x5b94, 0x5bfc,
2121                0x5c10, 0x5e48,
2122                0x5e50, 0x5e94,
2123                0x5ea0, 0x5eb0,
2124                0x5ec0, 0x5ec0,
2125                0x5ec8, 0x5ed0,
2126                0x5ee0, 0x5ee0,
2127                0x5ef0, 0x5ef0,
2128                0x5f00, 0x5f00,
2129                0x6000, 0x6020,
2130                0x6028, 0x6040,
2131                0x6058, 0x609c,
2132                0x60a8, 0x619c,
2133                0x7700, 0x7798,
2134                0x77c0, 0x7880,
2135                0x78cc, 0x78fc,
2136                0x7b00, 0x7b58,
2137                0x7b60, 0x7b84,
2138                0x7b8c, 0x7c54,
2139                0x7d00, 0x7d38,
2140                0x7d40, 0x7d84,
2141                0x7d8c, 0x7ddc,
2142                0x7de4, 0x7e04,
2143                0x7e10, 0x7e1c,
2144                0x7e24, 0x7e38,
2145                0x7e40, 0x7e44,
2146                0x7e4c, 0x7e78,
2147                0x7e80, 0x7edc,
2148                0x7ee8, 0x7efc,
2149                0x8dc0, 0x8de4,
2150                0x8df8, 0x8e04,
2151                0x8e10, 0x8e84,
2152                0x8ea0, 0x8f88,
2153                0x8fb8, 0x9058,
2154                0x9060, 0x9060,
2155                0x9068, 0x90f8,
2156                0x9100, 0x9124,
2157                0x9400, 0x9470,
2158                0x9600, 0x9600,
2159                0x9608, 0x9638,
2160                0x9640, 0x9704,
2161                0x9710, 0x971c,
2162                0x9800, 0x9808,
2163                0x9810, 0x9864,
2164                0x9c00, 0x9c6c,
2165                0x9c80, 0x9cec,
2166                0x9d00, 0x9d6c,
2167                0x9d80, 0x9dec,
2168                0x9e00, 0x9e6c,
2169                0x9e80, 0x9eec,
2170                0x9f00, 0x9f6c,
2171                0x9f80, 0xa020,
2172                0xd000, 0xd03c,
2173                0xd100, 0xd118,
2174                0xd200, 0xd214,
2175                0xd220, 0xd234,
2176                0xd240, 0xd254,
2177                0xd260, 0xd274,
2178                0xd280, 0xd294,
2179                0xd2a0, 0xd2b4,
2180                0xd2c0, 0xd2d4,
2181                0xd2e0, 0xd2f4,
2182                0xd300, 0xd31c,
2183                0xdfc0, 0xdfe0,
2184                0xe000, 0xf008,
2185                0xf010, 0xf018,
2186                0xf020, 0xf028,
2187                0x11000, 0x11014,
2188                0x11048, 0x1106c,
2189                0x11074, 0x11088,
2190                0x11098, 0x11120,
2191                0x1112c, 0x1117c,
2192                0x11190, 0x112e0,
2193                0x11300, 0x1130c,
2194                0x12000, 0x1206c,
2195                0x19040, 0x1906c,
2196                0x19078, 0x19080,
2197                0x1908c, 0x190e8,
2198                0x190f0, 0x190f8,
2199                0x19100, 0x19110,
2200                0x19120, 0x19124,
2201                0x19150, 0x19194,
2202                0x1919c, 0x191b0,
2203                0x191d0, 0x191e8,
2204                0x19238, 0x19290,
2205                0x192a4, 0x192b0,
2206                0x192bc, 0x192bc,
2207                0x19348, 0x1934c,
2208                0x193f8, 0x19418,
2209                0x19420, 0x19428,
2210                0x19430, 0x19444,
2211                0x1944c, 0x1946c,
2212                0x19474, 0x19474,
2213                0x19490, 0x194cc,
2214                0x194f0, 0x194f8,
2215                0x19c00, 0x19c48,
2216                0x19c50, 0x19c80,
2217                0x19c94, 0x19c98,
2218                0x19ca0, 0x19cbc,
2219                0x19ce4, 0x19ce4,
2220                0x19cf0, 0x19cf8,
2221                0x19d00, 0x19d28,
2222                0x19d50, 0x19d78,
2223                0x19d94, 0x19d98,
2224                0x19da0, 0x19dc8,
2225                0x19df0, 0x19e10,
2226                0x19e50, 0x19e6c,
2227                0x19ea0, 0x19ebc,
2228                0x19ec4, 0x19ef4,
2229                0x19f04, 0x19f2c,
2230                0x19f34, 0x19f34,
2231                0x19f40, 0x19f50,
2232                0x19f90, 0x19fac,
2233                0x19fc4, 0x19fc8,
2234                0x19fd0, 0x19fe4,
2235                0x1a000, 0x1a004,
2236                0x1a010, 0x1a06c,
2237                0x1a0b0, 0x1a0e4,
2238                0x1a0ec, 0x1a0f8,
2239                0x1a100, 0x1a108,
2240                0x1a114, 0x1a130,
2241                0x1a138, 0x1a1c4,
2242                0x1a1fc, 0x1a1fc,
2243                0x1e008, 0x1e00c,
2244                0x1e040, 0x1e044,
2245                0x1e04c, 0x1e04c,
2246                0x1e284, 0x1e290,
2247                0x1e2c0, 0x1e2c0,
2248                0x1e2e0, 0x1e2e0,
2249                0x1e300, 0x1e384,
2250                0x1e3c0, 0x1e3c8,
2251                0x1e408, 0x1e40c,
2252                0x1e440, 0x1e444,
2253                0x1e44c, 0x1e44c,
2254                0x1e684, 0x1e690,
2255                0x1e6c0, 0x1e6c0,
2256                0x1e6e0, 0x1e6e0,
2257                0x1e700, 0x1e784,
2258                0x1e7c0, 0x1e7c8,
2259                0x1e808, 0x1e80c,
2260                0x1e840, 0x1e844,
2261                0x1e84c, 0x1e84c,
2262                0x1ea84, 0x1ea90,
2263                0x1eac0, 0x1eac0,
2264                0x1eae0, 0x1eae0,
2265                0x1eb00, 0x1eb84,
2266                0x1ebc0, 0x1ebc8,
2267                0x1ec08, 0x1ec0c,
2268                0x1ec40, 0x1ec44,
2269                0x1ec4c, 0x1ec4c,
2270                0x1ee84, 0x1ee90,
2271                0x1eec0, 0x1eec0,
2272                0x1eee0, 0x1eee0,
2273                0x1ef00, 0x1ef84,
2274                0x1efc0, 0x1efc8,
2275                0x1f008, 0x1f00c,
2276                0x1f040, 0x1f044,
2277                0x1f04c, 0x1f04c,
2278                0x1f284, 0x1f290,
2279                0x1f2c0, 0x1f2c0,
2280                0x1f2e0, 0x1f2e0,
2281                0x1f300, 0x1f384,
2282                0x1f3c0, 0x1f3c8,
2283                0x1f408, 0x1f40c,
2284                0x1f440, 0x1f444,
2285                0x1f44c, 0x1f44c,
2286                0x1f684, 0x1f690,
2287                0x1f6c0, 0x1f6c0,
2288                0x1f6e0, 0x1f6e0,
2289                0x1f700, 0x1f784,
2290                0x1f7c0, 0x1f7c8,
2291                0x1f808, 0x1f80c,
2292                0x1f840, 0x1f844,
2293                0x1f84c, 0x1f84c,
2294                0x1fa84, 0x1fa90,
2295                0x1fac0, 0x1fac0,
2296                0x1fae0, 0x1fae0,
2297                0x1fb00, 0x1fb84,
2298                0x1fbc0, 0x1fbc8,
2299                0x1fc08, 0x1fc0c,
2300                0x1fc40, 0x1fc44,
2301                0x1fc4c, 0x1fc4c,
2302                0x1fe84, 0x1fe90,
2303                0x1fec0, 0x1fec0,
2304                0x1fee0, 0x1fee0,
2305                0x1ff00, 0x1ff84,
2306                0x1ffc0, 0x1ffc8,
2307                0x30000, 0x30030,
2308                0x30100, 0x30168,
2309                0x30190, 0x301a0,
2310                0x301a8, 0x301b8,
2311                0x301c4, 0x301c8,
2312                0x301d0, 0x301d0,
2313                0x30200, 0x30320,
2314                0x30400, 0x304b4,
2315                0x304c0, 0x3052c,
2316                0x30540, 0x3061c,
2317                0x30800, 0x308a0,
2318                0x308c0, 0x30908,
2319                0x30910, 0x309b8,
2320                0x30a00, 0x30a04,
2321                0x30a0c, 0x30a14,
2322                0x30a1c, 0x30a2c,
2323                0x30a44, 0x30a50,
2324                0x30a74, 0x30a74,
2325                0x30a7c, 0x30afc,
2326                0x30b08, 0x30c24,
2327                0x30d00, 0x30d14,
2328                0x30d1c, 0x30d3c,
2329                0x30d44, 0x30d4c,
2330                0x30d54, 0x30d74,
2331                0x30d7c, 0x30d7c,
2332                0x30de0, 0x30de0,
2333                0x30e00, 0x30ed4,
2334                0x30f00, 0x30fa4,
2335                0x30fc0, 0x30fc4,
2336                0x31000, 0x31004,
2337                0x31080, 0x310fc,
2338                0x31208, 0x31220,
2339                0x3123c, 0x31254,
2340                0x31300, 0x31300,
2341                0x31308, 0x3131c,
2342                0x31338, 0x3133c,
2343                0x31380, 0x31380,
2344                0x31388, 0x313a8,
2345                0x313b4, 0x313b4,
2346                0x31400, 0x31420,
2347                0x31438, 0x3143c,
2348                0x31480, 0x31480,
2349                0x314a8, 0x314a8,
2350                0x314b0, 0x314b4,
2351                0x314c8, 0x314d4,
2352                0x31a40, 0x31a4c,
2353                0x31af0, 0x31b20,
2354                0x31b38, 0x31b3c,
2355                0x31b80, 0x31b80,
2356                0x31ba8, 0x31ba8,
2357                0x31bb0, 0x31bb4,
2358                0x31bc8, 0x31bd4,
2359                0x32140, 0x3218c,
2360                0x321f0, 0x321f4,
2361                0x32200, 0x32200,
2362                0x32218, 0x32218,
2363                0x32400, 0x32400,
2364                0x32408, 0x3241c,
2365                0x32618, 0x32620,
2366                0x32664, 0x32664,
2367                0x326a8, 0x326a8,
2368                0x326ec, 0x326ec,
2369                0x32a00, 0x32abc,
2370                0x32b00, 0x32b18,
2371                0x32b20, 0x32b38,
2372                0x32b40, 0x32b58,
2373                0x32b60, 0x32b78,
2374                0x32c00, 0x32c00,
2375                0x32c08, 0x32c3c,
2376                0x33000, 0x3302c,
2377                0x33034, 0x33050,
2378                0x33058, 0x33058,
2379                0x33060, 0x3308c,
2380                0x3309c, 0x330ac,
2381                0x330c0, 0x330c0,
2382                0x330c8, 0x330d0,
2383                0x330d8, 0x330e0,
2384                0x330ec, 0x3312c,
2385                0x33134, 0x33150,
2386                0x33158, 0x33158,
2387                0x33160, 0x3318c,
2388                0x3319c, 0x331ac,
2389                0x331c0, 0x331c0,
2390                0x331c8, 0x331d0,
2391                0x331d8, 0x331e0,
2392                0x331ec, 0x33290,
2393                0x33298, 0x332c4,
2394                0x332e4, 0x33390,
2395                0x33398, 0x333c4,
2396                0x333e4, 0x3342c,
2397                0x33434, 0x33450,
2398                0x33458, 0x33458,
2399                0x33460, 0x3348c,
2400                0x3349c, 0x334ac,
2401                0x334c0, 0x334c0,
2402                0x334c8, 0x334d0,
2403                0x334d8, 0x334e0,
2404                0x334ec, 0x3352c,
2405                0x33534, 0x33550,
2406                0x33558, 0x33558,
2407                0x33560, 0x3358c,
2408                0x3359c, 0x335ac,
2409                0x335c0, 0x335c0,
2410                0x335c8, 0x335d0,
2411                0x335d8, 0x335e0,
2412                0x335ec, 0x33690,
2413                0x33698, 0x336c4,
2414                0x336e4, 0x33790,
2415                0x33798, 0x337c4,
2416                0x337e4, 0x337fc,
2417                0x33814, 0x33814,
2418                0x33854, 0x33868,
2419                0x33880, 0x3388c,
2420                0x338c0, 0x338d0,
2421                0x338e8, 0x338ec,
2422                0x33900, 0x3392c,
2423                0x33934, 0x33950,
2424                0x33958, 0x33958,
2425                0x33960, 0x3398c,
2426                0x3399c, 0x339ac,
2427                0x339c0, 0x339c0,
2428                0x339c8, 0x339d0,
2429                0x339d8, 0x339e0,
2430                0x339ec, 0x33a90,
2431                0x33a98, 0x33ac4,
2432                0x33ae4, 0x33b10,
2433                0x33b24, 0x33b28,
2434                0x33b38, 0x33b50,
2435                0x33bf0, 0x33c10,
2436                0x33c24, 0x33c28,
2437                0x33c38, 0x33c50,
2438                0x33cf0, 0x33cfc,
2439                0x34000, 0x34030,
2440                0x34100, 0x34168,
2441                0x34190, 0x341a0,
2442                0x341a8, 0x341b8,
2443                0x341c4, 0x341c8,
2444                0x341d0, 0x341d0,
2445                0x34200, 0x34320,
2446                0x34400, 0x344b4,
2447                0x344c0, 0x3452c,
2448                0x34540, 0x3461c,
2449                0x34800, 0x348a0,
2450                0x348c0, 0x34908,
2451                0x34910, 0x349b8,
2452                0x34a00, 0x34a04,
2453                0x34a0c, 0x34a14,
2454                0x34a1c, 0x34a2c,
2455                0x34a44, 0x34a50,
2456                0x34a74, 0x34a74,
2457                0x34a7c, 0x34afc,
2458                0x34b08, 0x34c24,
2459                0x34d00, 0x34d14,
2460                0x34d1c, 0x34d3c,
2461                0x34d44, 0x34d4c,
2462                0x34d54, 0x34d74,
2463                0x34d7c, 0x34d7c,
2464                0x34de0, 0x34de0,
2465                0x34e00, 0x34ed4,
2466                0x34f00, 0x34fa4,
2467                0x34fc0, 0x34fc4,
2468                0x35000, 0x35004,
2469                0x35080, 0x350fc,
2470                0x35208, 0x35220,
2471                0x3523c, 0x35254,
2472                0x35300, 0x35300,
2473                0x35308, 0x3531c,
2474                0x35338, 0x3533c,
2475                0x35380, 0x35380,
2476                0x35388, 0x353a8,
2477                0x353b4, 0x353b4,
2478                0x35400, 0x35420,
2479                0x35438, 0x3543c,
2480                0x35480, 0x35480,
2481                0x354a8, 0x354a8,
2482                0x354b0, 0x354b4,
2483                0x354c8, 0x354d4,
2484                0x35a40, 0x35a4c,
2485                0x35af0, 0x35b20,
2486                0x35b38, 0x35b3c,
2487                0x35b80, 0x35b80,
2488                0x35ba8, 0x35ba8,
2489                0x35bb0, 0x35bb4,
2490                0x35bc8, 0x35bd4,
2491                0x36140, 0x3618c,
2492                0x361f0, 0x361f4,
2493                0x36200, 0x36200,
2494                0x36218, 0x36218,
2495                0x36400, 0x36400,
2496                0x36408, 0x3641c,
2497                0x36618, 0x36620,
2498                0x36664, 0x36664,
2499                0x366a8, 0x366a8,
2500                0x366ec, 0x366ec,
2501                0x36a00, 0x36abc,
2502                0x36b00, 0x36b18,
2503                0x36b20, 0x36b38,
2504                0x36b40, 0x36b58,
2505                0x36b60, 0x36b78,
2506                0x36c00, 0x36c00,
2507                0x36c08, 0x36c3c,
2508                0x37000, 0x3702c,
2509                0x37034, 0x37050,
2510                0x37058, 0x37058,
2511                0x37060, 0x3708c,
2512                0x3709c, 0x370ac,
2513                0x370c0, 0x370c0,
2514                0x370c8, 0x370d0,
2515                0x370d8, 0x370e0,
2516                0x370ec, 0x3712c,
2517                0x37134, 0x37150,
2518                0x37158, 0x37158,
2519                0x37160, 0x3718c,
2520                0x3719c, 0x371ac,
2521                0x371c0, 0x371c0,
2522                0x371c8, 0x371d0,
2523                0x371d8, 0x371e0,
2524                0x371ec, 0x37290,
2525                0x37298, 0x372c4,
2526                0x372e4, 0x37390,
2527                0x37398, 0x373c4,
2528                0x373e4, 0x3742c,
2529                0x37434, 0x37450,
2530                0x37458, 0x37458,
2531                0x37460, 0x3748c,
2532                0x3749c, 0x374ac,
2533                0x374c0, 0x374c0,
2534                0x374c8, 0x374d0,
2535                0x374d8, 0x374e0,
2536                0x374ec, 0x3752c,
2537                0x37534, 0x37550,
2538                0x37558, 0x37558,
2539                0x37560, 0x3758c,
2540                0x3759c, 0x375ac,
2541                0x375c0, 0x375c0,
2542                0x375c8, 0x375d0,
2543                0x375d8, 0x375e0,
2544                0x375ec, 0x37690,
2545                0x37698, 0x376c4,
2546                0x376e4, 0x37790,
2547                0x37798, 0x377c4,
2548                0x377e4, 0x377fc,
2549                0x37814, 0x37814,
2550                0x37854, 0x37868,
2551                0x37880, 0x3788c,
2552                0x378c0, 0x378d0,
2553                0x378e8, 0x378ec,
2554                0x37900, 0x3792c,
2555                0x37934, 0x37950,
2556                0x37958, 0x37958,
2557                0x37960, 0x3798c,
2558                0x3799c, 0x379ac,
2559                0x379c0, 0x379c0,
2560                0x379c8, 0x379d0,
2561                0x379d8, 0x379e0,
2562                0x379ec, 0x37a90,
2563                0x37a98, 0x37ac4,
2564                0x37ae4, 0x37b10,
2565                0x37b24, 0x37b28,
2566                0x37b38, 0x37b50,
2567                0x37bf0, 0x37c10,
2568                0x37c24, 0x37c28,
2569                0x37c38, 0x37c50,
2570                0x37cf0, 0x37cfc,
2571                0x40040, 0x40040,
2572                0x40080, 0x40084,
2573                0x40100, 0x40100,
2574                0x40140, 0x401bc,
2575                0x40200, 0x40214,
2576                0x40228, 0x40228,
2577                0x40240, 0x40258,
2578                0x40280, 0x40280,
2579                0x40304, 0x40304,
2580                0x40330, 0x4033c,
2581                0x41304, 0x413c8,
2582                0x413d0, 0x413dc,
2583                0x413f0, 0x413f0,
2584                0x41400, 0x4140c,
2585                0x41414, 0x4141c,
2586                0x41480, 0x414d0,
2587                0x44000, 0x4407c,
2588                0x440c0, 0x441ac,
2589                0x441b4, 0x4427c,
2590                0x442c0, 0x443ac,
2591                0x443b4, 0x4447c,
2592                0x444c0, 0x445ac,
2593                0x445b4, 0x4467c,
2594                0x446c0, 0x447ac,
2595                0x447b4, 0x4487c,
2596                0x448c0, 0x449ac,
2597                0x449b4, 0x44a7c,
2598                0x44ac0, 0x44bac,
2599                0x44bb4, 0x44c7c,
2600                0x44cc0, 0x44dac,
2601                0x44db4, 0x44e7c,
2602                0x44ec0, 0x44fac,
2603                0x44fb4, 0x4507c,
2604                0x450c0, 0x451ac,
2605                0x451b4, 0x451fc,
2606                0x45800, 0x45804,
2607                0x45810, 0x45830,
2608                0x45840, 0x45860,
2609                0x45868, 0x45868,
2610                0x45880, 0x45884,
2611                0x458a0, 0x458b0,
2612                0x45a00, 0x45a04,
2613                0x45a10, 0x45a30,
2614                0x45a40, 0x45a60,
2615                0x45a68, 0x45a68,
2616                0x45a80, 0x45a84,
2617                0x45aa0, 0x45ab0,
2618                0x460c0, 0x460e4,
2619                0x47000, 0x4703c,
2620                0x47044, 0x4708c,
2621                0x47200, 0x47250,
2622                0x47400, 0x47408,
2623                0x47414, 0x47420,
2624                0x47600, 0x47618,
2625                0x47800, 0x47814,
2626                0x47820, 0x4782c,
2627                0x50000, 0x50084,
2628                0x50090, 0x500cc,
2629                0x50300, 0x50384,
2630                0x50400, 0x50400,
2631                0x50800, 0x50884,
2632                0x50890, 0x508cc,
2633                0x50b00, 0x50b84,
2634                0x50c00, 0x50c00,
2635                0x51000, 0x51020,
2636                0x51028, 0x510b0,
2637                0x51300, 0x51324,
2638        };
2639
2640        u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641        const unsigned int *reg_ranges;
2642        int reg_ranges_size, range;
2643        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645        /* Select the right set of register ranges to dump depending on the
2646         * adapter chip type.
2647         */
2648        switch (chip_version) {
2649        case CHELSIO_T4:
2650                reg_ranges = t4_reg_ranges;
2651                reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                break;
2653
2654        case CHELSIO_T5:
2655                reg_ranges = t5_reg_ranges;
2656                reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                break;
2658
2659        case CHELSIO_T6:
2660                reg_ranges = t6_reg_ranges;
2661                reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                break;
2663
2664        default:
2665                dev_err(adap->pdev_dev,
2666                        "Unsupported chip version %d\n", chip_version);
2667                return;
2668        }
2669
2670        /* Clear the register buffer and insert the appropriate register
2671         * values selected by the above register ranges.
2672         */
2673        memset(buf, 0, buf_size);
2674        for (range = 0; range < reg_ranges_size; range += 2) {
2675                unsigned int reg = reg_ranges[range];
2676                unsigned int last_reg = reg_ranges[range + 1];
2677                u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                /* Iterate across the register range filling in the register
2680                 * buffer but don't write past the end of the register buffer.
2681                 */
2682                while (reg <= last_reg && bufp < buf_end) {
2683                        *bufp++ = t4_read_reg(adap, reg);
2684                        reg += sizeof(u32);
2685                }
2686        }
2687}
2688
2689#define EEPROM_STAT_ADDR   0x7bfc
2690#define VPD_BASE           0x400
2691#define VPD_BASE_OLD       0
2692#define VPD_LEN            1024
2693
2694/**
2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696 * @phys_addr: the physical EEPROM address
2697 * @fn: the PCI function number
2698 * @sz: size of function-specific area
2699 *
2700 * Translate a physical EEPROM address to virtual.  The first 1K is
2701 * accessed through virtual addresses starting at 31K, the rest is
2702 * accessed through virtual addresses starting at 0.
2703 *
2704 * The mapping is as follows:
2705 * [0..1K) -> [31K..32K)
2706 * [1K..1K+A) -> [31K-A..31K)
2707 * [1K+A..ES) -> [0..ES-A-1K)
2708 *
2709 * where A = @fn * @sz, and ES = EEPROM size.
2710 */
2711int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712{
2713        fn *= sz;
2714        if (phys_addr < 1024)
2715                return phys_addr + (31 << 10);
2716        if (phys_addr < 1024 + fn)
2717                return 31744 - fn + phys_addr - 1024;
2718        if (phys_addr < EEPROMSIZE)
2719                return phys_addr - 1024 - fn;
2720        return -EINVAL;
2721}
2722
2723/**
2724 *      t4_seeprom_wp - enable/disable EEPROM write protection
2725 *      @adapter: the adapter
2726 *      @enable: whether to enable or disable write protection
2727 *
2728 *      Enables or disables write protection on the serial EEPROM.
2729 */
2730int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731{
2732        unsigned int v = enable ? 0xc : 0;
2733        int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734        return ret < 0 ? ret : 0;
2735}
2736
2737/**
2738 *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739 *      @adapter: adapter to read
2740 *      @p: where to store the parameters
2741 *
2742 *      Reads card parameters stored in VPD EEPROM.
2743 */
2744int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745{
2746        unsigned int id_len, pn_len, sn_len, na_len;
2747        int id, sn, pn, na, addr, ret = 0;
2748        u8 *vpd, base_val = 0;
2749
2750        vpd = vmalloc(VPD_LEN);
2751        if (!vpd)
2752                return -ENOMEM;
2753
2754        /* Card information normally starts at VPD_BASE but early cards had
2755         * it at 0.
2756         */
2757        ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758        if (ret < 0)
2759                goto out;
2760
2761        addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762
2763        ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764        if (ret < 0)
2765                goto out;
2766
2767        ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768        if (ret < 0)
2769                goto out;
2770        id = ret;
2771
2772        ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773        if (ret) {
2774                dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775                ret = -EINVAL;
2776                goto out;
2777        }
2778
2779        ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780                                           PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781        if (ret < 0)
2782                goto out;
2783        sn = ret;
2784
2785        ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786                                           PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787        if (ret < 0)
2788                goto out;
2789        pn = ret;
2790
2791        ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792        if (ret < 0)
2793                goto out;
2794        na = ret;
2795
2796        memcpy(p->id, vpd + id, min_t(int, id_len, ID_LEN));
2797        strim(p->id);
2798        memcpy(p->sn, vpd + sn, min_t(int, sn_len, SERNUM_LEN));
2799        strim(p->sn);
2800        memcpy(p->pn, vpd + pn, min_t(int, pn_len, PN_LEN));
2801        strim(p->pn);
2802        memcpy(p->na, vpd + na, min_t(int, na_len, MACADDR_LEN));
2803        strim((char *)p->na);
2804
2805out:
2806        vfree(vpd);
2807        if (ret < 0) {
2808                dev_err(adapter->pdev_dev, "error reading VPD\n");
2809                return ret;
2810        }
2811
2812        return 0;
2813}
2814
2815/**
2816 *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817 *      @adapter: adapter to read
2818 *      @p: where to store the parameters
2819 *
2820 *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2821 *      Clock.  This can only be called after a connection to the firmware
2822 *      is established.
2823 */
2824int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825{
2826        u32 cclk_param, cclk_val;
2827        int ret;
2828
2829        /* Grab the raw VPD parameters.
2830         */
2831        ret = t4_get_raw_vpd_params(adapter, p);
2832        if (ret)
2833                return ret;
2834
2835        /* Ask firmware for the Core Clock since it knows how to translate the
2836         * Reference Clock ('V2') VPD field into a Core Clock value ...
2837         */
2838        cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841                              1, &cclk_param, &cclk_val);
2842
2843        if (ret)
2844                return ret;
2845        p->cclk = cclk_val;
2846
2847        return 0;
2848}
2849
2850/**
2851 *      t4_get_pfres - retrieve VF resource limits
2852 *      @adapter: the adapter
2853 *
2854 *      Retrieves configured resource limits and capabilities for a physical
2855 *      function.  The results are stored in @adapter->pfres.
2856 */
2857int t4_get_pfres(struct adapter *adapter)
2858{
2859        struct pf_resources *pfres = &adapter->params.pfres;
2860        struct fw_pfvf_cmd cmd, rpl;
2861        int v;
2862        u32 word;
2863
2864        /* Execute PFVF Read command to get VF resource limits; bail out early
2865         * with error on command failure.
2866         */
2867        memset(&cmd, 0, sizeof(cmd));
2868        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869                                    FW_CMD_REQUEST_F |
2870                                    FW_CMD_READ_F |
2871                                    FW_PFVF_CMD_PFN_V(adapter->pf) |
2872                                    FW_PFVF_CMD_VFN_V(0));
2873        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874        v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875        if (v != FW_SUCCESS)
2876                return v;
2877
2878        /* Extract PF resource limits and return success.
2879         */
2880        word = be32_to_cpu(rpl.niqflint_niq);
2881        pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882        pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883
2884        word = be32_to_cpu(rpl.type_to_neq);
2885        pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886        pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887
2888        word = be32_to_cpu(rpl.tc_to_nexactf);
2889        pfres->tc = FW_PFVF_CMD_TC_G(word);
2890        pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891        pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892
2893        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894        pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895        pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896        pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897
2898        return 0;
2899}
2900
2901/* serial flash and firmware constants */
2902enum {
2903        SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904
2905        /* flash command opcodes */
2906        SF_PROG_PAGE    = 2,          /* program page */
2907        SF_WR_DISABLE   = 4,          /* disable writes */
2908        SF_RD_STATUS    = 5,          /* read status register */
2909        SF_WR_ENABLE    = 6,          /* enable writes */
2910        SF_RD_DATA_FAST = 0xb,        /* read flash */
2911        SF_RD_ID        = 0x9f,       /* read ID */
2912        SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913};
2914
2915/**
2916 *      sf1_read - read data from the serial flash
2917 *      @adapter: the adapter
2918 *      @byte_cnt: number of bytes to read
2919 *      @cont: whether another operation will be chained
2920 *      @lock: whether to lock SF for PL access only
2921 *      @valp: where to store the read data
2922 *
2923 *      Reads up to 4 bytes of data from the serial flash.  The location of
2924 *      the read needs to be specified prior to calling this by issuing the
2925 *      appropriate commands to the serial flash.
2926 */
2927static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928                    int lock, u32 *valp)
2929{
2930        int ret;
2931
2932        if (!byte_cnt || byte_cnt > 4)
2933                return -EINVAL;
2934        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935                return -EBUSY;
2936        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938        ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939        if (!ret)
2940                *valp = t4_read_reg(adapter, SF_DATA_A);
2941        return ret;
2942}
2943
2944/**
2945 *      sf1_write - write data to the serial flash
2946 *      @adapter: the adapter
2947 *      @byte_cnt: number of bytes to write
2948 *      @cont: whether another operation will be chained
2949 *      @lock: whether to lock SF for PL access only
2950 *      @val: value to write
2951 *
2952 *      Writes up to 4 bytes of data to the serial flash.  The location of
2953 *      the write needs to be specified prior to calling this by issuing the
2954 *      appropriate commands to the serial flash.
2955 */
2956static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                     int lock, u32 val)
2958{
2959        if (!byte_cnt || byte_cnt > 4)
2960                return -EINVAL;
2961        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962                return -EBUSY;
2963        t4_write_reg(adapter, SF_DATA_A, val);
2964        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966        return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967}
2968
2969/**
2970 *      flash_wait_op - wait for a flash operation to complete
2971 *      @adapter: the adapter
2972 *      @attempts: max number of polls of the status register
2973 *      @delay: delay between polls in ms
2974 *
2975 *      Wait for a flash operation to complete by polling the status register.
2976 */
2977static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978{
2979        int ret;
2980        u32 status;
2981
2982        while (1) {
2983                if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984                    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985                        return ret;
2986                if (!(status & 1))
2987                        return 0;
2988                if (--attempts == 0)
2989                        return -EAGAIN;
2990                if (delay)
2991                        msleep(delay);
2992        }
2993}
2994
2995/**
2996 *      t4_read_flash - read words from serial flash
2997 *      @adapter: the adapter
2998 *      @addr: the start address for the read
2999 *      @nwords: how many 32-bit words to read
3000 *      @data: where to store the read data
3001 *      @byte_oriented: whether to store data as bytes or as words
3002 *
3003 *      Read the specified number of 32-bit words from the serial flash.
3004 *      If @byte_oriented is set the read data is stored as a byte array
3005 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3006 *      natural endianness.
3007 */
3008int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009                  unsigned int nwords, u32 *data, int byte_oriented)
3010{
3011        int ret;
3012
3013        if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014                return -EINVAL;
3015
3016        addr = swab32(addr) | SF_RD_DATA_FAST;
3017
3018        if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019            (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020                return ret;
3021
3022        for ( ; nwords; nwords--, data++) {
3023                ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024                if (nwords == 1)
3025                        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026                if (ret)
3027                        return ret;
3028                if (byte_oriented)
3029                        *data = (__force __u32)(cpu_to_be32(*data));
3030        }
3031        return 0;
3032}
3033
3034/**
3035 *      t4_write_flash - write up to a page of data to the serial flash
3036 *      @adapter: the adapter
3037 *      @addr: the start address to write
3038 *      @n: length of data to write in bytes
3039 *      @data: the data to write
3040 *      @byte_oriented: whether to store data as bytes or as words
3041 *
3042 *      Writes up to a page of data (256 bytes) to the serial flash starting
3043 *      at the given address.  All the data must be written to the same page.
3044 *      If @byte_oriented is set the write data is stored as byte stream
3045 *      (i.e. matches what on disk), otherwise in big-endian.
3046 */
3047static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048                          unsigned int n, const u8 *data, bool byte_oriented)
3049{
3050        unsigned int i, c, left, val, offset = addr & 0xff;
3051        u32 buf[64];
3052        int ret;
3053
3054        if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055                return -EINVAL;
3056
3057        val = swab32(addr) | SF_PROG_PAGE;
3058
3059        if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060            (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061                goto unlock;
3062
3063        for (left = n; left; left -= c, data += c) {
3064                c = min(left, 4U);
3065                for (val = 0, i = 0; i < c; ++i) {
3066                        if (byte_oriented)
3067                                val = (val << 8) + data[i];
3068                        else
3069                                val = (val << 8) + data[c - i - 1];
3070                }
3071
3072                ret = sf1_write(adapter, c, c != left, 1, val);
3073                if (ret)
3074                        goto unlock;
3075        }
3076        ret = flash_wait_op(adapter, 8, 1);
3077        if (ret)
3078                goto unlock;
3079
3080        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081
3082        /* Read the page to verify the write succeeded */
3083        ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084                            byte_oriented);
3085        if (ret)
3086                return ret;
3087
3088        if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089                dev_err(adapter->pdev_dev,
3090                        "failed to correctly write the flash page at %#x\n",
3091                        addr);
3092                return -EIO;
3093        }
3094        return 0;
3095
3096unlock:
3097        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098        return ret;
3099}
3100
3101/**
3102 *      t4_get_fw_version - read the firmware version
3103 *      @adapter: the adapter
3104 *      @vers: where to place the version
3105 *
3106 *      Reads the FW version from flash.
3107 */
3108int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109{
3110        return t4_read_flash(adapter, FLASH_FW_START +
3111                             offsetof(struct fw_hdr, fw_ver), 1,
3112                             vers, 0);
3113}
3114
3115/**
3116 *      t4_get_bs_version - read the firmware bootstrap version
3117 *      @adapter: the adapter
3118 *      @vers: where to place the version
3119 *
3120 *      Reads the FW Bootstrap version from flash.
3121 */
3122int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123{
3124        return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125                             offsetof(struct fw_hdr, fw_ver), 1,
3126                             vers, 0);
3127}
3128
3129/**
3130 *      t4_get_tp_version - read the TP microcode version
3131 *      @adapter: the adapter
3132 *      @vers: where to place the version
3133 *
3134 *      Reads the TP microcode version from flash.
3135 */
3136int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137{
3138        return t4_read_flash(adapter, FLASH_FW_START +
3139                             offsetof(struct fw_hdr, tp_microcode_ver),
3140                             1, vers, 0);
3141}
3142
3143/**
3144 *      t4_get_exprom_version - return the Expansion ROM version (if any)
3145 *      @adap: the adapter
3146 *      @vers: where to place the version
3147 *
3148 *      Reads the Expansion ROM header from FLASH and returns the version
3149 *      number (if present) through the @vers return value pointer.  We return
3150 *      this in the Firmware Version Format since it's convenient.  Return
3151 *      0 on success, -ENOENT if no Expansion ROM is present.
3152 */
3153int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154{
3155        struct exprom_header {
3156                unsigned char hdr_arr[16];      /* must start with 0x55aa */
3157                unsigned char hdr_ver[4];       /* Expansion ROM version */
3158        } *hdr;
3159        u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160                                           sizeof(u32))];
3161        int ret;
3162
3163        ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164                            ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165                            0);
3166        if (ret)
3167                return ret;
3168
3169        hdr = (struct exprom_header *)exprom_header_buf;
3170        if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171                return -ENOENT;
3172
3173        *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174                 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175                 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176                 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177        return 0;
3178}
3179
3180/**
3181 *      t4_get_vpd_version - return the VPD version
3182 *      @adapter: the adapter
3183 *      @vers: where to place the version
3184 *
3185 *      Reads the VPD via the Firmware interface (thus this can only be called
3186 *      once we're ready to issue Firmware commands).  The format of the
3187 *      VPD version is adapter specific.  Returns 0 on success, an error on
3188 *      failure.
3189 *
3190 *      Note that early versions of the Firmware didn't include the ability
3191 *      to retrieve the VPD version, so we zero-out the return-value parameter
3192 *      in that case to avoid leaving it with garbage in it.
3193 *
3194 *      Also note that the Firmware will return its cached copy of the VPD
3195 *      Revision ID, not the actual Revision ID as written in the Serial
3196 *      EEPROM.  This is only an issue if a new VPD has been written and the
3197 *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198 *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199 *      if the Host Driver will be performing a full adapter initialization.
3200 */
3201int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202{
3203        u32 vpdrev_param;
3204        int ret;
3205
3206        vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207                        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209                              1, &vpdrev_param, vers);
3210        if (ret)
3211                *vers = 0;
3212        return ret;
3213}
3214
3215/**
3216 *      t4_get_scfg_version - return the Serial Configuration version
3217 *      @adapter: the adapter
3218 *      @vers: where to place the version
3219 *
3220 *      Reads the Serial Configuration Version via the Firmware interface
3221 *      (thus this can only be called once we're ready to issue Firmware
3222 *      commands).  The format of the Serial Configuration version is
3223 *      adapter specific.  Returns 0 on success, an error on failure.
3224 *
3225 *      Note that early versions of the Firmware didn't include the ability
3226 *      to retrieve the Serial Configuration version, so we zero-out the
3227 *      return-value parameter in that case to avoid leaving it with
3228 *      garbage in it.
3229 *
3230 *      Also note that the Firmware will return its cached copy of the Serial
3231 *      Initialization Revision ID, not the actual Revision ID as written in
3232 *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233 *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234 *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235 *      been issued if the Host Driver will be performing a full adapter
3236 *      initialization.
3237 */
3238int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239{
3240        u32 scfgrev_param;
3241        int ret;
3242
3243        scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246                              1, &scfgrev_param, vers);
3247        if (ret)
3248                *vers = 0;
3249        return ret;
3250}
3251
3252/**
3253 *      t4_get_version_info - extract various chip/firmware version information
3254 *      @adapter: the adapter
3255 *
3256 *      Reads various chip/firmware version numbers and stores them into the
3257 *      adapter Adapter Parameters structure.  If any of the efforts fails
3258 *      the first failure will be returned, but all of the version numbers
3259 *      will be read.
3260 */
3261int t4_get_version_info(struct adapter *adapter)
3262{
3263        int ret = 0;
3264
3265        #define FIRST_RET(__getvinfo) \
3266        do { \
3267                int __ret = __getvinfo; \
3268                if (__ret && !ret) \
3269                        ret = __ret; \
3270        } while (0)
3271
3272        FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273        FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274        FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275        FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276        FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277        FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278
3279        #undef FIRST_RET
3280        return ret;
3281}
3282
3283/**
3284 *      t4_dump_version_info - dump all of the adapter configuration IDs
3285 *      @adapter: the adapter
3286 *
3287 *      Dumps all of the various bits of adapter configuration version/revision
3288 *      IDs information.  This is typically called at some point after
3289 *      t4_get_version_info() has been called.
3290 */
3291void t4_dump_version_info(struct adapter *adapter)
3292{
3293        /* Device information */
3294        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295                 adapter->params.vpd.id,
3296                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298                 adapter->params.vpd.sn, adapter->params.vpd.pn);
3299
3300        /* Firmware Version */
3301        if (!adapter->params.fw_vers)
3302                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303        else
3304                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309
3310        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311         * Firmware, so dev_info() is more appropriate here.)
3312         */
3313        if (!adapter->params.bs_vers)
3314                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315        else
3316                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321
3322        /* TP Microcode Version */
3323        if (!adapter->params.tp_vers)
3324                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325        else
3326                dev_info(adapter->pdev_dev,
3327                         "TP Microcode version: %u.%u.%u.%u\n",
3328                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332
3333        /* Expansion ROM version */
3334        if (!adapter->params.er_vers)
3335                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336        else
3337                dev_info(adapter->pdev_dev,
3338                         "Expansion ROM version: %u.%u.%u.%u\n",
3339                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343
3344        /* Serial Configuration version */
3345        dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346                 adapter->params.scfg_vers);
3347
3348        /* VPD Version */
3349        dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350                 adapter->params.vpd_vers);
3351}
3352
3353/**
3354 *      t4_check_fw_version - check if the FW is supported with this driver
3355 *      @adap: the adapter
3356 *
3357 *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3358 *      if there's exact match, a negative error if the version could not be
3359 *      read or there's a major version mismatch
3360 */
3361int t4_check_fw_version(struct adapter *adap)
3362{
3363        int i, ret, major, minor, micro;
3364        int exp_major, exp_minor, exp_micro;
3365        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366
3367        ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368        /* Try multiple times before returning error */
3369        for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371
3372        if (ret)
3373                return ret;
3374
3375        major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376        minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377        micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378
3379        switch (chip_version) {
3380        case CHELSIO_T4:
3381                exp_major = T4FW_MIN_VERSION_MAJOR;
3382                exp_minor = T4FW_MIN_VERSION_MINOR;
3383                exp_micro = T4FW_MIN_VERSION_MICRO;
3384                break;
3385        case CHELSIO_T5:
3386                exp_major = T5FW_MIN_VERSION_MAJOR;
3387                exp_minor = T5FW_MIN_VERSION_MINOR;
3388                exp_micro = T5FW_MIN_VERSION_MICRO;
3389                break;
3390        case CHELSIO_T6:
3391                exp_major = T6FW_MIN_VERSION_MAJOR;
3392                exp_minor = T6FW_MIN_VERSION_MINOR;
3393                exp_micro = T6FW_MIN_VERSION_MICRO;
3394                break;
3395        default:
3396                dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397                        adap->chip);
3398                return -EINVAL;
3399        }
3400
3401        if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402            (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403                dev_err(adap->pdev_dev,
3404                        "Card has firmware version %u.%u.%u, minimum "
3405                        "supported firmware is %u.%u.%u.\n", major, minor,
3406                        micro, exp_major, exp_minor, exp_micro);
3407                return -EFAULT;
3408        }
3409        return 0;
3410}
3411
3412/* Is the given firmware API compatible with the one the driver was compiled
3413 * with?
3414 */
3415static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416{
3417
3418        /* short circuit if it's the exact same firmware version */
3419        if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420                return 1;
3421
3422#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423        if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424            SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425                return 1;
3426#undef SAME_INTF
3427
3428        return 0;
3429}
3430
3431/* The firmware in the filesystem is usable, but should it be installed?
3432 * This routine explains itself in detail if it indicates the filesystem
3433 * firmware should be installed.
3434 */
3435static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436                                int k, int c)
3437{
3438        const char *reason;
3439
3440        if (!card_fw_usable) {
3441                reason = "incompatible or unusable";
3442                goto install;
3443        }
3444
3445        if (k > c) {
3446                reason = "older than the version supported with this driver";
3447                goto install;
3448        }
3449
3450        return 0;
3451
3452install:
3453        dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454                "installing firmware %u.%u.%u.%u on card.\n",
3455                FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456                FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457                FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458                FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459
3460        return 1;
3461}
3462
3463int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464               const u8 *fw_data, unsigned int fw_size,
3465               struct fw_hdr *card_fw, enum dev_state state,
3466               int *reset)
3467{
3468        int ret, card_fw_usable, fs_fw_usable;
3469        const struct fw_hdr *fs_fw;
3470        const struct fw_hdr *drv_fw;
3471
3472        drv_fw = &fw_info->fw_hdr;
3473
3474        /* Read the header of the firmware on the card */
3475        ret = t4_read_flash(adap, FLASH_FW_START,
3476                            sizeof(*card_fw) / sizeof(uint32_t),
3477                            (uint32_t *)card_fw, 1);
3478        if (ret == 0) {
3479                card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480        } else {
3481                dev_err(adap->pdev_dev,
3482                        "Unable to read card's firmware header: %d\n", ret);
3483                card_fw_usable = 0;
3484        }
3485
3486        if (fw_data != NULL) {
3487                fs_fw = (const void *)fw_data;
3488                fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489        } else {
3490                fs_fw = NULL;
3491                fs_fw_usable = 0;
3492        }
3493
3494        if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495            (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496                /* Common case: the firmware on the card is an exact match and
3497                 * the filesystem one is an exact match too, or the filesystem
3498                 * one is absent/incompatible.
3499                 */
3500        } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501                   should_install_fs_fw(adap, card_fw_usable,
3502                                        be32_to_cpu(fs_fw->fw_ver),
3503                                        be32_to_cpu(card_fw->fw_ver))) {
3504                ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505                                    fw_size, 0);
3506                if (ret != 0) {
3507                        dev_err(adap->pdev_dev,
3508                                "failed to install firmware: %d\n", ret);
3509                        goto bye;
3510                }
3511
3512                /* Installed successfully, update the cached header too. */
3513                *card_fw = *fs_fw;
3514                card_fw_usable = 1;
3515                *reset = 0;     /* already reset as part of load_fw */
3516        }
3517
3518        if (!card_fw_usable) {
3519                uint32_t d, c, k;
3520
3521                d = be32_to_cpu(drv_fw->fw_ver);
3522                c = be32_to_cpu(card_fw->fw_ver);
3523                k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524
3525                dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526                        "chip state %d, "
3527                        "driver compiled with %d.%d.%d.%d, "
3528                        "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529                        state,
3530                        FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531                        FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532                        FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533                        FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534                        FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535                        FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536                ret = -EINVAL;
3537                goto bye;
3538        }
3539
3540        /* We're using whatever's on the card and it's known to be good. */
3541        adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542        adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543
3544bye:
3545        return ret;
3546}
3547
3548/**
3549 *      t4_flash_erase_sectors - erase a range of flash sectors
3550 *      @adapter: the adapter
3551 *      @start: the first sector to erase
3552 *      @end: the last sector to erase
3553 *
3554 *      Erases the sectors in the given inclusive range.
3555 */
3556static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557{
3558        int ret = 0;
3559
3560        if (end >= adapter->params.sf_nsec)
3561                return -EINVAL;
3562
3563        while (start <= end) {
3564                if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565                    (ret = sf1_write(adapter, 4, 0, 1,
3566                                     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567                    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568                        dev_err(adapter->pdev_dev,
3569                                "erase of flash sector %d failed, error %d\n",
3570                                start, ret);
3571                        break;
3572                }
3573                start++;
3574        }
3575        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576        return ret;
3577}
3578
3579/**
3580 *      t4_flash_cfg_addr - return the address of the flash configuration file
3581 *      @adapter: the adapter
3582 *
3583 *      Return the address within the flash where the Firmware Configuration
3584 *      File is stored.
3585 */
3586unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587{
3588        if (adapter->params.sf_size == 0x100000)
3589                return FLASH_FPGA_CFG_START;
3590        else
3591                return FLASH_CFG_START;
3592}
3593
3594/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596 * and emit an error message for mismatched firmware to save our caller the
3597 * effort ...
3598 */
3599static bool t4_fw_matches_chip(const struct adapter *adap,
3600                               const struct fw_hdr *hdr)
3601{
3602        /* The expression below will return FALSE for any unsupported adapter
3603         * which will keep us "honest" in the future ...
3604         */
3605        if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606            (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607            (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608                return true;
3609
3610        dev_err(adap->pdev_dev,
3611                "FW image (%d) is not suitable for this adapter (%d)\n",
3612                hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613        return false;
3614}
3615
3616/**
3617 *      t4_load_fw - download firmware
3618 *      @adap: the adapter
3619 *      @fw_data: the firmware image to write
3620 *      @size: image size
3621 *
3622 *      Write the supplied firmware image to the card's serial flash.
3623 */
3624int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625{
3626        u32 csum;
3627        int ret, addr;
3628        unsigned int i;
3629        u8 first_page[SF_PAGE_SIZE];
3630        const __be32 *p = (const __be32 *)fw_data;
3631        const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633        unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634        unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635        unsigned int fw_start = FLASH_FW_START;
3636
3637        if (!size) {
3638                dev_err(adap->pdev_dev, "FW image has no data\n");
3639                return -EINVAL;
3640        }
3641        if (size & 511) {
3642                dev_err(adap->pdev_dev,
3643                        "FW image size not multiple of 512 bytes\n");
3644                return -EINVAL;
3645        }
3646        if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647                dev_err(adap->pdev_dev,
3648                        "FW image size differs from size in FW header\n");
3649                return -EINVAL;
3650        }
3651        if (size > fw_size) {
3652                dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653                        fw_size);
3654                return -EFBIG;
3655        }
3656        if (!t4_fw_matches_chip(adap, hdr))
3657                return -EINVAL;
3658
3659        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660                csum += be32_to_cpu(p[i]);
3661
3662        if (csum != 0xffffffff) {
3663                dev_err(adap->pdev_dev,
3664                        "corrupted firmware image, checksum %#x\n", csum);
3665                return -EINVAL;
3666        }
3667
3668        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669        ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670        if (ret)
3671                goto out;
3672
3673        /*
3674         * We write the correct version at the end so the driver can see a bad
3675         * version if the FW write fails.  Start by writing a copy of the
3676         * first page with a bad version.
3677         */
3678        memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679        ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680        ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681        if (ret)
3682                goto out;
3683
3684        addr = fw_start;
3685        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686                addr += SF_PAGE_SIZE;
3687                fw_data += SF_PAGE_SIZE;
3688                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689                if (ret)
3690                        goto out;
3691        }
3692
3693        ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694                             sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695                             true);
3696out:
3697        if (ret)
3698                dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699                        ret);
3700        else
3701                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702        return ret;
3703}
3704
3705/**
3706 *      t4_phy_fw_ver - return current PHY firmware version
3707 *      @adap: the adapter
3708 *      @phy_fw_ver: return value buffer for PHY firmware version
3709 *
3710 *      Returns the current version of external PHY firmware on the
3711 *      adapter.
3712 */
3713int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714{
3715        u32 param, val;
3716        int ret;
3717
3718        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723                              &param, &val);
3724        if (ret)
3725                return ret;
3726        *phy_fw_ver = val;
3727        return 0;
3728}
3729
3730/**
3731 *      t4_load_phy_fw - download port PHY firmware
3732 *      @adap: the adapter
3733 *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3734 *      @phy_fw_version: function to check PHY firmware versions
3735 *      @phy_fw_data: the PHY firmware image to write
3736 *      @phy_fw_size: image size
3737 *
3738 *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739 *      @phy_fw_version is supplied, then it will be used to determine if
3740 *      it's necessary to perform the transfer by comparing the version
3741 *      of any existing adapter PHY firmware with that of the passed in
3742 *      PHY firmware image.
3743 *
3744 *      A negative error number will be returned if an error occurs.  If
3745 *      version number support is available and there's no need to upgrade
3746 *      the firmware, 0 will be returned.  If firmware is successfully
3747 *      transferred to the adapter, 1 will be returned.
3748 *
3749 *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750 *      a result, a RESET of the adapter would cause that RAM to lose its
3751 *      contents.  Thus, loading PHY firmware on such adapters must happen
3752 *      after any FW_RESET_CMDs ...
3753 */
3754int t4_load_phy_fw(struct adapter *adap, int win,
3755                   int (*phy_fw_version)(const u8 *, size_t),
3756                   const u8 *phy_fw_data, size_t phy_fw_size)
3757{
3758        int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759        unsigned long mtype = 0, maddr = 0;
3760        u32 param, val;
3761        int ret;
3762
3763        /* If we have version number support, then check to see if the adapter
3764         * already has up-to-date PHY firmware loaded.
3765         */
3766        if (phy_fw_version) {
3767                new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769                if (ret < 0)
3770                        return ret;
3771
3772                if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773                        CH_WARN(adap, "PHY Firmware already up-to-date, "
3774                                "version %#x\n", cur_phy_fw_ver);
3775                        return 0;
3776                }
3777        }
3778
3779        /* Ask the firmware where it wants us to copy the PHY firmware image.
3780         * The size of the file requires a special version of the READ command
3781         * which will pass the file size via the values field in PARAMS_CMD and
3782         * retrieve the return value from firmware and place it in the same
3783         * buffer values
3784         */
3785        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789        val = phy_fw_size;
3790        ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791                                 &param, &val, 1, true);
3792        if (ret < 0)
3793                return ret;
3794        mtype = val >> 8;
3795        maddr = (val & 0xff) << 16;
3796
3797        /* Copy the supplied PHY Firmware image to the adapter memory location
3798         * allocated by the adapter firmware.
3799         */
3800        spin_lock_bh(&adap->win0_lock);
3801        ret = t4_memory_rw(adap, win, mtype, maddr,
3802                           phy_fw_size, (__be32 *)phy_fw_data,
3803                           T4_MEMORY_WRITE);
3804        spin_unlock_bh(&adap->win0_lock);
3805        if (ret)
3806                return ret;
3807
3808        /* Tell the firmware that the PHY firmware image has been written to
3809         * RAM and it can now start copying it over to the PHYs.  The chip
3810         * firmware will RESET the affected PHYs as part of this operation
3811         * leaving them running the new PHY firmware image.
3812         */
3813        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817        ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818                                    &param, &val, 30000);
3819
3820        /* If we have version number support, then check to see that the new
3821         * firmware got loaded properly.
3822         */
3823        if (phy_fw_version) {
3824                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3825                if (ret < 0)
3826                        return ret;
3827
3828                if (cur_phy_fw_ver != new_phy_fw_vers) {
3829                        CH_WARN(adap, "PHY Firmware did not update: "
3830                                "version on adapter %#x, "
3831                                "version flashed %#x\n",
3832                                cur_phy_fw_ver, new_phy_fw_vers);
3833                        return -ENXIO;
3834                }
3835        }
3836
3837        return 1;
3838}
3839
3840/**
3841 *      t4_fwcache - firmware cache operation
3842 *      @adap: the adapter
3843 *      @op  : the operation (flush or flush and invalidate)
3844 */
3845int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3846{
3847        struct fw_params_cmd c;
3848
3849        memset(&c, 0, sizeof(c));
3850        c.op_to_vfn =
3851                cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3852                            FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3853                            FW_PARAMS_CMD_PFN_V(adap->pf) |
3854                            FW_PARAMS_CMD_VFN_V(0));
3855        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3856        c.param[0].mnem =
3857                cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3858                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3859        c.param[0].val = cpu_to_be32(op);
3860
3861        return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3862}
3863
3864void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3865                        unsigned int *pif_req_wrptr,
3866                        unsigned int *pif_rsp_wrptr)
3867{
3868        int i, j;
3869        u32 cfg, val, req, rsp;
3870
3871        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3872        if (cfg & LADBGEN_F)
3873                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3874
3875        val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3876        req = POLADBGWRPTR_G(val);
3877        rsp = PILADBGWRPTR_G(val);
3878        if (pif_req_wrptr)
3879                *pif_req_wrptr = req;
3880        if (pif_rsp_wrptr)
3881                *pif_rsp_wrptr = rsp;
3882
3883        for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3884                for (j = 0; j < 6; j++) {
3885                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3886                                     PILADBGRDPTR_V(rsp));
3887                        *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3888                        *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3889                        req++;
3890                        rsp++;
3891                }
3892                req = (req + 2) & POLADBGRDPTR_M;
3893                rsp = (rsp + 2) & PILADBGRDPTR_M;
3894        }
3895        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3896}
3897
3898void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3899{
3900        u32 cfg;
3901        int i, j, idx;
3902
3903        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904        if (cfg & LADBGEN_F)
3905                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906
3907        for (i = 0; i < CIM_MALA_SIZE; i++) {
3908                for (j = 0; j < 5; j++) {
3909                        idx = 8 * i + j;
3910                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3911                                     PILADBGRDPTR_V(idx));
3912                        *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3913                        *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3914                }
3915        }
3916        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3917}
3918
3919void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3920{
3921        unsigned int i, j;
3922
3923        for (i = 0; i < 8; i++) {
3924                u32 *p = la_buf + i;
3925
3926                t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3927                j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3928                t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3929                for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3930                        *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3931        }
3932}
3933
3934/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3935 * Capabilities which we control with separate controls -- see, for instance,
3936 * Pause Frames and Forward Error Correction.  In order to determine what the
3937 * full set of Advertised Port Capabilities are, the base Advertised Port
3938 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3939 * Port Capabilities associated with those other controls.  See
3940 * t4_link_acaps() for how this is done.
3941 */
3942#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3943                     FW_PORT_CAP32_ANEG)
3944
3945/**
3946 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3947 *      @caps16: a 16-bit Port Capabilities value
3948 *
3949 *      Returns the equivalent 32-bit Port Capabilities value.
3950 */
3951static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3952{
3953        fw_port_cap32_t caps32 = 0;
3954
3955        #define CAP16_TO_CAP32(__cap) \
3956                do { \
3957                        if (caps16 & FW_PORT_CAP_##__cap) \
3958                                caps32 |= FW_PORT_CAP32_##__cap; \
3959                } while (0)
3960
3961        CAP16_TO_CAP32(SPEED_100M);
3962        CAP16_TO_CAP32(SPEED_1G);
3963        CAP16_TO_CAP32(SPEED_25G);
3964        CAP16_TO_CAP32(SPEED_10G);
3965        CAP16_TO_CAP32(SPEED_40G);
3966        CAP16_TO_CAP32(SPEED_100G);
3967        CAP16_TO_CAP32(FC_RX);
3968        CAP16_TO_CAP32(FC_TX);
3969        CAP16_TO_CAP32(ANEG);
3970        CAP16_TO_CAP32(FORCE_PAUSE);
3971        CAP16_TO_CAP32(MDIAUTO);
3972        CAP16_TO_CAP32(MDISTRAIGHT);
3973        CAP16_TO_CAP32(FEC_RS);
3974        CAP16_TO_CAP32(FEC_BASER_RS);
3975        CAP16_TO_CAP32(802_3_PAUSE);
3976        CAP16_TO_CAP32(802_3_ASM_DIR);
3977
3978        #undef CAP16_TO_CAP32
3979
3980        return caps32;
3981}
3982
3983/**
3984 *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3985 *      @caps32: a 32-bit Port Capabilities value
3986 *
3987 *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3988 *      not all 32-bit Port Capabilities can be represented in the 16-bit
3989 *      Port Capabilities and some fields/values may not make it.
3990 */
3991static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3992{
3993        fw_port_cap16_t caps16 = 0;
3994
3995        #define CAP32_TO_CAP16(__cap) \
3996                do { \
3997                        if (caps32 & FW_PORT_CAP32_##__cap) \
3998                                caps16 |= FW_PORT_CAP_##__cap; \
3999                } while (0)
4000
4001        CAP32_TO_CAP16(SPEED_100M);
4002        CAP32_TO_CAP16(SPEED_1G);
4003        CAP32_TO_CAP16(SPEED_10G);
4004        CAP32_TO_CAP16(SPEED_25G);
4005        CAP32_TO_CAP16(SPEED_40G);
4006        CAP32_TO_CAP16(SPEED_100G);
4007        CAP32_TO_CAP16(FC_RX);
4008        CAP32_TO_CAP16(FC_TX);
4009        CAP32_TO_CAP16(802_3_PAUSE);
4010        CAP32_TO_CAP16(802_3_ASM_DIR);
4011        CAP32_TO_CAP16(ANEG);
4012        CAP32_TO_CAP16(FORCE_PAUSE);
4013        CAP32_TO_CAP16(MDIAUTO);
4014        CAP32_TO_CAP16(MDISTRAIGHT);
4015        CAP32_TO_CAP16(FEC_RS);
4016        CAP32_TO_CAP16(FEC_BASER_RS);
4017
4018        #undef CAP32_TO_CAP16
4019
4020        return caps16;
4021}
4022
4023/* Translate Firmware Port Capabilities Pause specification to Common Code */
4024static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4025{
4026        enum cc_pause cc_pause = 0;
4027
4028        if (fw_pause & FW_PORT_CAP32_FC_RX)
4029                cc_pause |= PAUSE_RX;
4030        if (fw_pause & FW_PORT_CAP32_FC_TX)
4031                cc_pause |= PAUSE_TX;
4032
4033        return cc_pause;
4034}
4035
4036/* Translate Common Code Pause specification into Firmware Port Capabilities */
4037static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4038{
4039        /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4040         * commands, etc.
4041         */
4042        fw_port_cap32_t fw_pause = 0;
4043
4044        if (cc_pause & PAUSE_RX)
4045                fw_pause |= FW_PORT_CAP32_FC_RX;
4046        if (cc_pause & PAUSE_TX)
4047                fw_pause |= FW_PORT_CAP32_FC_TX;
4048        if (!(cc_pause & PAUSE_AUTONEG))
4049                fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4050
4051        /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4052         * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4053         * Note that these bits are ignored in L1 Configure commands.
4054         */
4055        if (cc_pause & PAUSE_RX) {
4056                if (cc_pause & PAUSE_TX)
4057                        fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4058                else
4059                        fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4060                                    FW_PORT_CAP32_802_3_PAUSE;
4061        } else if (cc_pause & PAUSE_TX) {
4062                fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4063        }
4064
4065        return fw_pause;
4066}
4067
4068/* Translate Firmware Forward Error Correction specification to Common Code */
4069static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4070{
4071        enum cc_fec cc_fec = 0;
4072
4073        if (fw_fec & FW_PORT_CAP32_FEC_RS)
4074                cc_fec |= FEC_RS;
4075        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4076                cc_fec |= FEC_BASER_RS;
4077
4078        return cc_fec;
4079}
4080
4081/* Translate Common Code Forward Error Correction specification to Firmware */
4082static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4083{
4084        fw_port_cap32_t fw_fec = 0;
4085
4086        if (cc_fec & FEC_RS)
4087                fw_fec |= FW_PORT_CAP32_FEC_RS;
4088        if (cc_fec & FEC_BASER_RS)
4089                fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4090
4091        return fw_fec;
4092}
4093
4094/**
4095 *      t4_link_acaps - compute Link Advertised Port Capabilities
4096 *      @adapter: the adapter
4097 *      @port: the Port ID
4098 *      @lc: the Port's Link Configuration
4099 *
4100 *      Synthesize the Advertised Port Capabilities we'll be using based on
4101 *      the base Advertised Port Capabilities (which have been filtered by
4102 *      ADVERT_MASK) plus the individual controls for things like Pause
4103 *      Frames, Forward Error Correction, MDI, etc.
4104 */
4105fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4106                              struct link_config *lc)
4107{
4108        fw_port_cap32_t fw_fc, fw_fec, acaps;
4109        unsigned int fw_mdi;
4110        char cc_fec;
4111
4112        fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4113
4114        /* Convert driver coding of Pause Frame Flow Control settings into the
4115         * Firmware's API.
4116         */
4117        fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4118
4119        /* Convert Common Code Forward Error Control settings into the
4120         * Firmware's API.  If the current Requested FEC has "Automatic"
4121         * (IEEE 802.3) specified, then we use whatever the Firmware
4122         * sent us as part of its IEEE 802.3-based interpretation of
4123         * the Transceiver Module EPROM FEC parameters.  Otherwise we
4124         * use whatever is in the current Requested FEC settings.
4125         */
4126        if (lc->requested_fec & FEC_AUTO)
4127                cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4128        else
4129                cc_fec = lc->requested_fec;
4130        fw_fec = cc_to_fwcap_fec(cc_fec);
4131
4132        /* Figure out what our Requested Port Capabilities are going to be.
4133         * Note parallel structure in t4_handle_get_port_info() and
4134         * init_link_config().
4135         */
4136        if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4137                acaps = lc->acaps | fw_fc | fw_fec;
4138                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4139                lc->fec = cc_fec;
4140        } else if (lc->autoneg == AUTONEG_DISABLE) {
4141                acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4142                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4143                lc->fec = cc_fec;
4144        } else {
4145                acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4146        }
4147
4148        /* Some Requested Port Capabilities are trivially wrong if they exceed
4149         * the Physical Port Capabilities.  We can check that here and provide
4150         * moderately useful feedback in the system log.
4151         *
4152         * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4153         * we need to exclude this from this check in order to maintain
4154         * compatibility ...
4155         */
4156        if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4157                dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4158                        acaps, lc->pcaps);
4159                return -EINVAL;
4160        }
4161
4162        return acaps;
4163}
4164
4165/**
4166 *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4167 *      @adapter: the adapter
4168 *      @mbox: the Firmware Mailbox to use
4169 *      @port: the Port ID
4170 *      @lc: the Port's Link Configuration
4171 *      @sleep_ok: if true we may sleep while awaiting command completion
4172 *      @timeout: time to wait for command to finish before timing out
4173 *              (negative implies @sleep_ok=false)
4174 *
4175 *      Set up a port's MAC and PHY according to a desired link configuration.
4176 *      - If the PHY can auto-negotiate first decide what to advertise, then
4177 *        enable/disable auto-negotiation as desired, and reset.
4178 *      - If the PHY does not auto-negotiate just reset it.
4179 *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4180 *        otherwise do it later based on the outcome of auto-negotiation.
4181 */
4182int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4183                       unsigned int port, struct link_config *lc,
4184                       u8 sleep_ok, int timeout)
4185{
4186        unsigned int fw_caps = adapter->params.fw_caps_support;
4187        struct fw_port_cmd cmd;
4188        fw_port_cap32_t rcap;
4189        int ret;
4190
4191        if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4192            lc->autoneg == AUTONEG_ENABLE) {
4193                return -EINVAL;
4194        }
4195
4196        /* Compute our Requested Port Capabilities and send that on to the
4197         * Firmware.
4198         */
4199        rcap = t4_link_acaps(adapter, port, lc);
4200        memset(&cmd, 0, sizeof(cmd));
4201        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4202                                       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4203                                       FW_PORT_CMD_PORTID_V(port));
4204        cmd.action_to_len16 =
4205                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4206                                                 ? FW_PORT_ACTION_L1_CFG
4207                                                 : FW_PORT_ACTION_L1_CFG32) |
4208                                                 FW_LEN16(cmd));
4209        if (fw_caps == FW_CAPS16)
4210                cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4211        else
4212                cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4213
4214        ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4215                                      sleep_ok, timeout);
4216
4217        /* Unfortunately, even if the Requested Port Capabilities "fit" within
4218         * the Physical Port Capabilities, some combinations of features may
4219         * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4220         * Error Correction.  So if the Firmware rejects the L1 Configure
4221         * request, flag that here.
4222         */
4223        if (ret) {
4224                dev_err(adapter->pdev_dev,
4225                        "Requested Port Capabilities %#x rejected, error %d\n",
4226                        rcap, -ret);
4227                return ret;
4228        }
4229        return 0;
4230}
4231
4232/**
4233 *      t4_restart_aneg - restart autonegotiation
4234 *      @adap: the adapter
4235 *      @mbox: mbox to use for the FW command
4236 *      @port: the port id
4237 *
4238 *      Restarts autonegotiation for the selected port.
4239 */
4240int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4241{
4242        unsigned int fw_caps = adap->params.fw_caps_support;
4243        struct fw_port_cmd c;
4244
4245        memset(&c, 0, sizeof(c));
4246        c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4247                                     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4248                                     FW_PORT_CMD_PORTID_V(port));
4249        c.action_to_len16 =
4250                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4251                                                 ? FW_PORT_ACTION_L1_CFG
4252                                                 : FW_PORT_ACTION_L1_CFG32) |
4253                            FW_LEN16(c));
4254        if (fw_caps == FW_CAPS16)
4255                c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4256        else
4257                c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4258        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4259}
4260
4261typedef void (*int_handler_t)(struct adapter *adap);
4262
4263struct intr_info {
4264        unsigned int mask;       /* bits to check in interrupt status */
4265        const char *msg;         /* message to print or NULL */
4266        short stat_idx;          /* stat counter to increment or -1 */
4267        unsigned short fatal;    /* whether the condition reported is fatal */
4268        int_handler_t int_handler; /* platform-specific int handler */
4269};
4270
4271/**
4272 *      t4_handle_intr_status - table driven interrupt handler
4273 *      @adapter: the adapter that generated the interrupt
4274 *      @reg: the interrupt status register to process
4275 *      @acts: table of interrupt actions
4276 *
4277 *      A table driven interrupt handler that applies a set of masks to an
4278 *      interrupt status word and performs the corresponding actions if the
4279 *      interrupts described by the mask have occurred.  The actions include
4280 *      optionally emitting a warning or alert message.  The table is terminated
4281 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4282 *      conditions.
4283 */
4284static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4285                                 const struct intr_info *acts)
4286{
4287        int fatal = 0;
4288        unsigned int mask = 0;
4289        unsigned int status = t4_read_reg(adapter, reg);
4290
4291        for ( ; acts->mask; ++acts) {
4292                if (!(status & acts->mask))
4293                        continue;
4294                if (acts->fatal) {
4295                        fatal++;
4296                        dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4297                                  status & acts->mask);
4298                } else if (acts->msg && printk_ratelimit())
4299                        dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4300                                 status & acts->mask);
4301                if (acts->int_handler)
4302                        acts->int_handler(adapter);
4303                mask |= acts->mask;
4304        }
4305        status &= mask;
4306        if (status)                           /* clear processed interrupts */
4307                t4_write_reg(adapter, reg, status);
4308        return fatal;
4309}
4310
4311/*
4312 * Interrupt handler for the PCIE module.
4313 */
4314static void pcie_intr_handler(struct adapter *adapter)
4315{
4316        static const struct intr_info sysbus_intr_info[] = {
4317                { RNPP_F, "RXNP array parity error", -1, 1 },
4318                { RPCP_F, "RXPC array parity error", -1, 1 },
4319                { RCIP_F, "RXCIF array parity error", -1, 1 },
4320                { RCCP_F, "Rx completions control array parity error", -1, 1 },
4321                { RFTP_F, "RXFT array parity error", -1, 1 },
4322                { 0 }
4323        };
4324        static const struct intr_info pcie_port_intr_info[] = {
4325                { TPCP_F, "TXPC array parity error", -1, 1 },
4326                { TNPP_F, "TXNP array parity error", -1, 1 },
4327                { TFTP_F, "TXFT array parity error", -1, 1 },
4328                { TCAP_F, "TXCA array parity error", -1, 1 },
4329                { TCIP_F, "TXCIF array parity error", -1, 1 },
4330                { RCAP_F, "RXCA array parity error", -1, 1 },
4331                { OTDD_F, "outbound request TLP discarded", -1, 1 },
4332                { RDPE_F, "Rx data parity error", -1, 1 },
4333                { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4334                { 0 }
4335        };
4336        static const struct intr_info pcie_intr_info[] = {
4337                { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4338                { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4339                { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4340                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4341                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4342                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4343                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4344                { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4345                { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4346                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4347                { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4348                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4349                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4350                { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4351                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4352                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4353                { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4354                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4355                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4356                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4357                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4358                { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4359                { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4360                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4361                { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4362                { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4363                { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4364                { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4365                { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4366                { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4367                  -1, 0 },
4368                { 0 }
4369        };
4370
4371        static struct intr_info t5_pcie_intr_info[] = {
4372                { MSTGRPPERR_F, "Master Response Read Queue parity error",
4373                  -1, 1 },
4374                { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4375                { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4376                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4377                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4378                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4379                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4380                { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4381                  -1, 1 },
4382                { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4383                  -1, 1 },
4384                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4385                { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4386                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4387                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4388                { DREQWRPERR_F, "PCI DMA channel write request parity error",
4389                  -1, 1 },
4390                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4391                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4392                { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4393                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4394                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4395                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4396                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4397                { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4398                { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4399                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4400                { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4401                  -1, 1 },
4402                { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4403                  -1, 1 },
4404                { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4405                { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4406                { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4407                { READRSPERR_F, "Outbound read error", -1, 0 },
4408                { 0 }
4409        };
4410
4411        int fat;
4412
4413        if (is_t4(adapter->params.chip))
4414                fat = t4_handle_intr_status(adapter,
4415                                PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4416                                sysbus_intr_info) +
4417                        t4_handle_intr_status(adapter,
4418                                        PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4419                                        pcie_port_intr_info) +
4420                        t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4421                                              pcie_intr_info);
4422        else
4423                fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4424                                            t5_pcie_intr_info);
4425
4426        if (fat)
4427                t4_fatal_err(adapter);
4428}
4429
4430/*
4431 * TP interrupt handler.
4432 */
4433static void tp_intr_handler(struct adapter *adapter)
4434{
4435        static const struct intr_info tp_intr_info[] = {
4436                { 0x3fffffff, "TP parity error", -1, 1 },
4437                { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4438                { 0 }
4439        };
4440
4441        if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4442                t4_fatal_err(adapter);
4443}
4444
4445/*
4446 * SGE interrupt handler.
4447 */
4448static void sge_intr_handler(struct adapter *adapter)
4449{
4450        u32 v = 0, perr;
4451        u32 err;
4452
4453        static const struct intr_info sge_intr_info[] = {
4454                { ERR_CPL_EXCEED_IQE_SIZE_F,
4455                  "SGE received CPL exceeding IQE size", -1, 1 },
4456                { ERR_INVALID_CIDX_INC_F,
4457                  "SGE GTS CIDX increment too large", -1, 0 },
4458                { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4459                { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4460                { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4461                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4462                { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4463                  0 },
4464                { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4465                  0 },
4466                { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4467                  0 },
4468                { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4469                  0 },
4470                { ERR_ING_CTXT_PRIO_F,
4471                  "SGE too many priority ingress contexts", -1, 0 },
4472                { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4473                { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4474                { 0 }
4475        };
4476
4477        static struct intr_info t4t5_sge_intr_info[] = {
4478                { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4479                { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4480                { ERR_EGR_CTXT_PRIO_F,
4481                  "SGE too many priority egress contexts", -1, 0 },
4482                { 0 }
4483        };
4484
4485        perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4486        if (perr) {
4487                v |= perr;
4488                dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4489                          perr);
4490        }
4491
4492        perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4493        if (perr) {
4494                v |= perr;
4495                dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4496                          perr);
4497        }
4498
4499        if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4500                perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4501                /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4502                perr &= ~ERR_T_RXCRC_F;
4503                if (perr) {
4504                        v |= perr;
4505                        dev_alert(adapter->pdev_dev,
4506                                  "SGE Cause5 Parity Error %#x\n", perr);
4507                }
4508        }
4509
4510        v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4511        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4512                v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4513                                           t4t5_sge_intr_info);
4514
4515        err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4516        if (err & ERROR_QID_VALID_F) {
4517                dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4518                        ERROR_QID_G(err));
4519                if (err & UNCAPTURED_ERROR_F)
4520                        dev_err(adapter->pdev_dev,
4521                                "SGE UNCAPTURED_ERROR set (clearing)\n");
4522                t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4523                             UNCAPTURED_ERROR_F);
4524        }
4525
4526        if (v != 0)
4527                t4_fatal_err(adapter);
4528}
4529
4530#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4531                      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4532#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4533                      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4534
4535/*
4536 * CIM interrupt handler.
4537 */
4538static void cim_intr_handler(struct adapter *adapter)
4539{
4540        static const struct intr_info cim_intr_info[] = {
4541                { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4542                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4543                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4544                { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4545                { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4546                { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4547                { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4548                { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4549                { 0 }
4550        };
4551        static const struct intr_info cim_upintr_info[] = {
4552                { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4553                { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4554                { ILLWRINT_F, "CIM illegal write", -1, 1 },
4555                { ILLRDINT_F, "CIM illegal read", -1, 1 },
4556                { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4557                { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4558                { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4559                { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4560                { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4561                { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4562                { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4563                { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4564                { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4565                { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4566                { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4567                { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4568                { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4569                { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4570                { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4571                { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4572                { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4573                { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4574                { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4575                { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4576                { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4577                { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4578                { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4579                { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4580                { 0 }
4581        };
4582
4583        u32 val, fw_err;
4584        int fat;
4585
4586        fw_err = t4_read_reg(adapter, PCIE_FW_A);
4587        if (fw_err & PCIE_FW_ERR_F)
4588                t4_report_fw_error(adapter);
4589
4590        /* When the Firmware detects an internal error which normally
4591         * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4592         * in order to make sure the Host sees the Firmware Crash.  So
4593         * if we have a Timer0 interrupt and don't see a Firmware Crash,
4594         * ignore the Timer0 interrupt.
4595         */
4596
4597        val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4598        if (val & TIMER0INT_F)
4599                if (!(fw_err & PCIE_FW_ERR_F) ||
4600                    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4601                        t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4602                                     TIMER0INT_F);
4603
4604        fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4605                                    cim_intr_info) +
4606              t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4607                                    cim_upintr_info);
4608        if (fat)
4609                t4_fatal_err(adapter);
4610}
4611
4612/*
4613 * ULP RX interrupt handler.
4614 */
4615static void ulprx_intr_handler(struct adapter *adapter)
4616{
4617        static const struct intr_info ulprx_intr_info[] = {
4618                { 0x1800000, "ULPRX context error", -1, 1 },
4619                { 0x7fffff, "ULPRX parity error", -1, 1 },
4620                { 0 }
4621        };
4622
4623        if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4624                t4_fatal_err(adapter);
4625}
4626
4627/*
4628 * ULP TX interrupt handler.
4629 */
4630static void ulptx_intr_handler(struct adapter *adapter)
4631{
4632        static const struct intr_info ulptx_intr_info[] = {
4633                { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4634                  0 },
4635                { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4636                  0 },
4637                { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4638                  0 },
4639                { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4640                  0 },
4641                { 0xfffffff, "ULPTX parity error", -1, 1 },
4642                { 0 }
4643        };
4644
4645        if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4646                t4_fatal_err(adapter);
4647}
4648
4649/*
4650 * PM TX interrupt handler.
4651 */
4652static void pmtx_intr_handler(struct adapter *adapter)
4653{
4654        static const struct intr_info pmtx_intr_info[] = {
4655                { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4656                { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4657                { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4658                { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4659                { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4660                { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4661                { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4662                  -1, 1 },
4663                { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4664                { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4665                { 0 }
4666        };
4667
4668        if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4669                t4_fatal_err(adapter);
4670}
4671
4672/*
4673 * PM RX interrupt handler.
4674 */
4675static void pmrx_intr_handler(struct adapter *adapter)
4676{
4677        static const struct intr_info pmrx_intr_info[] = {
4678                { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4679                { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4680                { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4681                { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4682                  -1, 1 },
4683                { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4684                { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4685                { 0 }
4686        };
4687
4688        if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4689                t4_fatal_err(adapter);
4690}
4691
4692/*
4693 * CPL switch interrupt handler.
4694 */
4695static void cplsw_intr_handler(struct adapter *adapter)
4696{
4697        static const struct intr_info cplsw_intr_info[] = {
4698                { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4699                { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4700                { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4701                { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4702                { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4703                { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4704                { 0 }
4705        };
4706
4707        if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4708                t4_fatal_err(adapter);
4709}
4710
4711/*
4712 * LE interrupt handler.
4713 */
4714static void le_intr_handler(struct adapter *adap)
4715{
4716        enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4717        static const struct intr_info le_intr_info[] = {
4718                { LIPMISS_F, "LE LIP miss", -1, 0 },
4719                { LIP0_F, "LE 0 LIP error", -1, 0 },
4720                { PARITYERR_F, "LE parity error", -1, 1 },
4721                { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4722                { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4723                { 0 }
4724        };
4725
4726        static struct intr_info t6_le_intr_info[] = {
4727                { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4728                { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4729                { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4730                { TCAMINTPERR_F, "LE parity error", -1, 1 },
4731                { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4732                { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4733                { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4734                { 0 }
4735        };
4736
4737        if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4738                                  (chip <= CHELSIO_T5) ?
4739                                  le_intr_info : t6_le_intr_info))
4740                t4_fatal_err(adap);
4741}
4742
4743/*
4744 * MPS interrupt handler.
4745 */
4746static void mps_intr_handler(struct adapter *adapter)
4747{
4748        static const struct intr_info mps_rx_intr_info[] = {
4749                { 0xffffff, "MPS Rx parity error", -1, 1 },
4750                { 0 }
4751        };
4752        static const struct intr_info mps_tx_intr_info[] = {
4753                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4754                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4755                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4756                  -1, 1 },
4757                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4758                  -1, 1 },
4759                { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4760                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4761                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4762                { 0 }
4763        };
4764        static const struct intr_info t6_mps_tx_intr_info[] = {
4765                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768                  -1, 1 },
4769                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770                  -1, 1 },
4771                /* MPS Tx Bubble is normal for T6 */
4772                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4774                { 0 }
4775        };
4776        static const struct intr_info mps_trc_intr_info[] = {
4777                { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4778                { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4779                  -1, 1 },
4780                { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4781                { 0 }
4782        };
4783        static const struct intr_info mps_stat_sram_intr_info[] = {
4784                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4785                { 0 }
4786        };
4787        static const struct intr_info mps_stat_tx_intr_info[] = {
4788                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4789                { 0 }
4790        };
4791        static const struct intr_info mps_stat_rx_intr_info[] = {
4792                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4793                { 0 }
4794        };
4795        static const struct intr_info mps_cls_intr_info[] = {
4796                { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4797                { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4798                { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4799                { 0 }
4800        };
4801
4802        int fat;
4803
4804        fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4805                                    mps_rx_intr_info) +
4806              t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4807                                    is_t6(adapter->params.chip)
4808                                    ? t6_mps_tx_intr_info
4809                                    : mps_tx_intr_info) +
4810              t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4811                                    mps_trc_intr_info) +
4812              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4813                                    mps_stat_sram_intr_info) +
4814              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4815                                    mps_stat_tx_intr_info) +
4816              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4817                                    mps_stat_rx_intr_info) +
4818              t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4819                                    mps_cls_intr_info);
4820
4821        t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4822        t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4823        if (fat)
4824                t4_fatal_err(adapter);
4825}
4826
4827#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4828                      ECC_UE_INT_CAUSE_F)
4829
4830/*
4831 * EDC/MC interrupt handler.
4832 */
4833static void mem_intr_handler(struct adapter *adapter, int idx)
4834{
4835        static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4836
4837        unsigned int addr, cnt_addr, v;
4838
4839        if (idx <= MEM_EDC1) {
4840                addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4841                cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4842        } else if (idx == MEM_MC) {
4843                if (is_t4(adapter->params.chip)) {
4844                        addr = MC_INT_CAUSE_A;
4845                        cnt_addr = MC_ECC_STATUS_A;
4846                } else {
4847                        addr = MC_P_INT_CAUSE_A;
4848                        cnt_addr = MC_P_ECC_STATUS_A;
4849                }
4850        } else {
4851                addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4852                cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4853        }
4854
4855        v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4856        if (v & PERR_INT_CAUSE_F)
4857                dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4858                          name[idx]);
4859        if (v & ECC_CE_INT_CAUSE_F) {
4860                u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4861
4862                t4_edc_err_read(adapter, idx);
4863
4864                t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4865                if (printk_ratelimit())
4866                        dev_warn(adapter->pdev_dev,
4867                                 "%u %s correctable ECC data error%s\n",
4868                                 cnt, name[idx], cnt > 1 ? "s" : "");
4869        }
4870        if (v & ECC_UE_INT_CAUSE_F)
4871                dev_alert(adapter->pdev_dev,
4872                          "%s uncorrectable ECC data error\n", name[idx]);
4873
4874        t4_write_reg(adapter, addr, v);
4875        if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4876                t4_fatal_err(adapter);
4877}
4878
4879/*
4880 * MA interrupt handler.
4881 */
4882static void ma_intr_handler(struct adapter *adap)
4883{
4884        u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4885
4886        if (status & MEM_PERR_INT_CAUSE_F) {
4887                dev_alert(adap->pdev_dev,
4888                          "MA parity error, parity status %#x\n",
4889                          t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4890                if (is_t5(adap->params.chip))
4891                        dev_alert(adap->pdev_dev,
4892                                  "MA parity error, parity status %#x\n",
4893                                  t4_read_reg(adap,
4894                                              MA_PARITY_ERROR_STATUS2_A));
4895        }
4896        if (status & MEM_WRAP_INT_CAUSE_F) {
4897                v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4898                dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4899                          "client %u to address %#x\n",
4900                          MEM_WRAP_CLIENT_NUM_G(v),
4901                          MEM_WRAP_ADDRESS_G(v) << 4);
4902        }
4903        t4_write_reg(adap, MA_INT_CAUSE_A, status);
4904        t4_fatal_err(adap);
4905}
4906
4907/*
4908 * SMB interrupt handler.
4909 */
4910static void smb_intr_handler(struct adapter *adap)
4911{
4912        static const struct intr_info smb_intr_info[] = {
4913                { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4914                { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4915                { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4916                { 0 }
4917        };
4918
4919        if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4920                t4_fatal_err(adap);
4921}
4922
4923/*
4924 * NC-SI interrupt handler.
4925 */
4926static void ncsi_intr_handler(struct adapter *adap)
4927{
4928        static const struct intr_info ncsi_intr_info[] = {
4929                { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4930                { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4931                { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4932                { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4933                { 0 }
4934        };
4935
4936        if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4937                t4_fatal_err(adap);
4938}
4939
4940/*
4941 * XGMAC interrupt handler.
4942 */
4943static void xgmac_intr_handler(struct adapter *adap, int port)
4944{
4945        u32 v, int_cause_reg;
4946
4947        if (is_t4(adap->params.chip))
4948                int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4949        else
4950                int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4951
4952        v = t4_read_reg(adap, int_cause_reg);
4953
4954        v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4955        if (!v)
4956                return;
4957
4958        if (v & TXFIFO_PRTY_ERR_F)
4959                dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4960                          port);
4961        if (v & RXFIFO_PRTY_ERR_F)
4962                dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4963                          port);
4964        t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4965        t4_fatal_err(adap);
4966}
4967
4968/*
4969 * PL interrupt handler.
4970 */
4971static void pl_intr_handler(struct adapter *adap)
4972{
4973        static const struct intr_info pl_intr_info[] = {
4974                { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4975                { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4976                { 0 }
4977        };
4978
4979        if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4980                t4_fatal_err(adap);
4981}
4982
4983#define PF_INTR_MASK (PFSW_F)
4984#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4985                EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4986                CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4987
4988/**
4989 *      t4_slow_intr_handler - control path interrupt handler
4990 *      @adapter: the adapter
4991 *
4992 *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4993 *      The designation 'slow' is because it involves register reads, while
4994 *      data interrupts typically don't involve any MMIOs.
4995 */
4996int t4_slow_intr_handler(struct adapter *adapter)
4997{
4998        /* There are rare cases where a PL_INT_CAUSE bit may end up getting
4999         * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5000         * easiest just to mask that case here.
5001         */
5002        u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5003        u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5004        u32 cause = raw_cause & enable;
5005
5006        if (!(cause & GLBL_INTR_MASK))
5007                return 0;
5008        if (cause & CIM_F)
5009                cim_intr_handler(adapter);
5010        if (cause & MPS_F)
5011                mps_intr_handler(adapter);
5012        if (cause & NCSI_F)
5013                ncsi_intr_handler(adapter);
5014        if (cause & PL_F)
5015                pl_intr_handler(adapter);
5016        if (cause & SMB_F)
5017                smb_intr_handler(adapter);
5018        if (cause & XGMAC0_F)
5019                xgmac_intr_handler(adapter, 0);
5020        if (cause & XGMAC1_F)
5021                xgmac_intr_handler(adapter, 1);
5022        if (cause & XGMAC_KR0_F)
5023                xgmac_intr_handler(adapter, 2);
5024        if (cause & XGMAC_KR1_F)
5025                xgmac_intr_handler(adapter, 3);
5026        if (cause & PCIE_F)
5027                pcie_intr_handler(adapter);
5028        if (cause & MC_F)
5029                mem_intr_handler(adapter, MEM_MC);
5030        if (is_t5(adapter->params.chip) && (cause & MC1_F))
5031                mem_intr_handler(adapter, MEM_MC1);
5032        if (cause & EDC0_F)
5033                mem_intr_handler(adapter, MEM_EDC0);
5034        if (cause & EDC1_F)
5035                mem_intr_handler(adapter, MEM_EDC1);
5036        if (cause & LE_F)
5037                le_intr_handler(adapter);
5038        if (cause & TP_F)
5039                tp_intr_handler(adapter);
5040        if (cause & MA_F)
5041                ma_intr_handler(adapter);
5042        if (cause & PM_TX_F)
5043                pmtx_intr_handler(adapter);
5044        if (cause & PM_RX_F)
5045                pmrx_intr_handler(adapter);
5046        if (cause & ULP_RX_F)
5047                ulprx_intr_handler(adapter);
5048        if (cause & CPL_SWITCH_F)
5049                cplsw_intr_handler(adapter);
5050        if (cause & SGE_F)
5051                sge_intr_handler(adapter);
5052        if (cause & ULP_TX_F)
5053                ulptx_intr_handler(adapter);
5054
5055        /* Clear the interrupts just processed for which we are the master. */
5056        t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5057        (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5058        return 1;
5059}
5060
5061/**
5062 *      t4_intr_enable - enable interrupts
5063 *      @adapter: the adapter whose interrupts should be enabled
5064 *
5065 *      Enable PF-specific interrupts for the calling function and the top-level
5066 *      interrupt concentrator for global interrupts.  Interrupts are already
5067 *      enabled at each module, here we just enable the roots of the interrupt
5068 *      hierarchies.
5069 *
5070 *      Note: this function should be called only when the driver manages
5071 *      non PF-specific interrupts from the various HW modules.  Only one PCI
5072 *      function at a time should be doing this.
5073 */
5074void t4_intr_enable(struct adapter *adapter)
5075{
5076        u32 val = 0;
5077        u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5078        u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5079                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5080
5081        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5082                val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5083        t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5084                     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5085                     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5086                     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5087                     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5088                     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5089                     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5090        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5091        t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5092}
5093
5094/**
5095 *      t4_intr_disable - disable interrupts
5096 *      @adapter: the adapter whose interrupts should be disabled
5097 *
5098 *      Disable interrupts.  We only disable the top-level interrupt
5099 *      concentrators.  The caller must be a PCI function managing global
5100 *      interrupts.
5101 */
5102void t4_intr_disable(struct adapter *adapter)
5103{
5104        u32 whoami, pf;
5105
5106        if (pci_channel_offline(adapter->pdev))
5107                return;
5108
5109        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110        pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112
5113        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5114        t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5115}
5116
5117unsigned int t4_chip_rss_size(struct adapter *adap)
5118{
5119        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5120                return RSS_NENTRIES;
5121        else
5122                return T6_RSS_NENTRIES;
5123}
5124
5125/**
5126 *      t4_config_rss_range - configure a portion of the RSS mapping table
5127 *      @adapter: the adapter
5128 *      @mbox: mbox to use for the FW command
5129 *      @viid: virtual interface whose RSS subtable is to be written
5130 *      @start: start entry in the table to write
5131 *      @n: how many table entries to write
5132 *      @rspq: values for the response queue lookup table
5133 *      @nrspq: number of values in @rspq
5134 *
5135 *      Programs the selected part of the VI's RSS mapping table with the
5136 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5137 *      until the full table range is populated.
5138 *
5139 *      The caller must ensure the values in @rspq are in the range allowed for
5140 *      @viid.
5141 */
5142int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5143                        int start, int n, const u16 *rspq, unsigned int nrspq)
5144{
5145        int ret;
5146        const u16 *rsp = rspq;
5147        const u16 *rsp_end = rspq + nrspq;
5148        struct fw_rss_ind_tbl_cmd cmd;
5149
5150        memset(&cmd, 0, sizeof(cmd));
5151        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5152                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5153                               FW_RSS_IND_TBL_CMD_VIID_V(viid));
5154        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5155
5156        /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5157        while (n > 0) {
5158                int nq = min(n, 32);
5159                __be32 *qp = &cmd.iq0_to_iq2;
5160
5161                cmd.niqid = cpu_to_be16(nq);
5162                cmd.startidx = cpu_to_be16(start);
5163
5164                start += nq;
5165                n -= nq;
5166
5167                while (nq > 0) {
5168                        unsigned int v;
5169
5170                        v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5171                        if (++rsp >= rsp_end)
5172                                rsp = rspq;
5173                        v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5174                        if (++rsp >= rsp_end)
5175                                rsp = rspq;
5176                        v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5177                        if (++rsp >= rsp_end)
5178                                rsp = rspq;
5179
5180                        *qp++ = cpu_to_be32(v);
5181                        nq -= 3;
5182                }
5183
5184                ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5185                if (ret)
5186                        return ret;
5187        }
5188        return 0;
5189}
5190
5191/**
5192 *      t4_config_glbl_rss - configure the global RSS mode
5193 *      @adapter: the adapter
5194 *      @mbox: mbox to use for the FW command
5195 *      @mode: global RSS mode
5196 *      @flags: mode-specific flags
5197 *
5198 *      Sets the global RSS mode.
5199 */
5200int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5201                       unsigned int flags)
5202{
5203        struct fw_rss_glb_config_cmd c;
5204
5205        memset(&c, 0, sizeof(c));
5206        c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5207                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5208        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5209        if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5210                c.u.manual.mode_pkd =
5211                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5212        } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5213                c.u.basicvirtual.mode_pkd =
5214                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5215                c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5216        } else
5217                return -EINVAL;
5218        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5219}
5220
5221/**
5222 *      t4_config_vi_rss - configure per VI RSS settings
5223 *      @adapter: the adapter
5224 *      @mbox: mbox to use for the FW command
5225 *      @viid: the VI id
5226 *      @flags: RSS flags
5227 *      @defq: id of the default RSS queue for the VI.
5228 *
5229 *      Configures VI-specific RSS properties.
5230 */
5231int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5232                     unsigned int flags, unsigned int defq)
5233{
5234        struct fw_rss_vi_config_cmd c;
5235
5236        memset(&c, 0, sizeof(c));
5237        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5238                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5239                                   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5240        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241        c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5242                                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5243        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244}
5245
5246/* Read an RSS table row */
5247static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5248{
5249        t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5250        return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5251                                   5, 0, val);
5252}
5253
5254/**
5255 *      t4_read_rss - read the contents of the RSS mapping table
5256 *      @adapter: the adapter
5257 *      @map: holds the contents of the RSS mapping table
5258 *
5259 *      Reads the contents of the RSS hash->queue mapping table.
5260 */
5261int t4_read_rss(struct adapter *adapter, u16 *map)
5262{
5263        int i, ret, nentries;
5264        u32 val;
5265
5266        nentries = t4_chip_rss_size(adapter);
5267        for (i = 0; i < nentries / 2; ++i) {
5268                ret = rd_rss_row(adapter, i, &val);
5269                if (ret)
5270                        return ret;
5271                *map++ = LKPTBLQUEUE0_G(val);
5272                *map++ = LKPTBLQUEUE1_G(val);
5273        }
5274        return 0;
5275}
5276
5277static unsigned int t4_use_ldst(struct adapter *adap)
5278{
5279        return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5280}
5281
5282/**
5283 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5284 * @adap: the adapter
5285 * @cmd: TP fw ldst address space type
5286 * @vals: where the indirect register values are stored/written
5287 * @nregs: how many indirect registers to read/write
5288 * @start_index: index of first indirect register to read/write
5289 * @rw: Read (1) or Write (0)
5290 * @sleep_ok: if true we may sleep while awaiting command completion
5291 *
5292 * Access TP indirect registers through LDST
5293 */
5294static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5295                            unsigned int nregs, unsigned int start_index,
5296                            unsigned int rw, bool sleep_ok)
5297{
5298        int ret = 0;
5299        unsigned int i;
5300        struct fw_ldst_cmd c;
5301
5302        for (i = 0; i < nregs; i++) {
5303                memset(&c, 0, sizeof(c));
5304                c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5305                                                FW_CMD_REQUEST_F |
5306                                                (rw ? FW_CMD_READ_F :
5307                                                      FW_CMD_WRITE_F) |
5308                                                FW_LDST_CMD_ADDRSPACE_V(cmd));
5309                c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5310
5311                c.u.addrval.addr = cpu_to_be32(start_index + i);
5312                c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5313                ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5314                                      sleep_ok);
5315                if (ret)
5316                        return ret;
5317
5318                if (rw)
5319                        vals[i] = be32_to_cpu(c.u.addrval.val);
5320        }
5321        return 0;
5322}
5323
5324/**
5325 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5326 * @adap: the adapter
5327 * @reg_addr: Address Register
5328 * @reg_data: Data register
5329 * @buff: where the indirect register values are stored/written
5330 * @nregs: how many indirect registers to read/write
5331 * @start_index: index of first indirect register to read/write
5332 * @rw: READ(1) or WRITE(0)
5333 * @sleep_ok: if true we may sleep while awaiting command completion
5334 *
5335 * Read/Write TP indirect registers through LDST if possible.
5336 * Else, use backdoor access
5337 **/
5338static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5339                              u32 *buff, u32 nregs, u32 start_index, int rw,
5340                              bool sleep_ok)
5341{
5342        int rc = -EINVAL;
5343        int cmd;
5344
5345        switch (reg_addr) {
5346        case TP_PIO_ADDR_A:
5347                cmd = FW_LDST_ADDRSPC_TP_PIO;
5348                break;
5349        case TP_TM_PIO_ADDR_A:
5350                cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5351                break;
5352        case TP_MIB_INDEX_A:
5353                cmd = FW_LDST_ADDRSPC_TP_MIB;
5354                break;
5355        default:
5356                goto indirect_access;
5357        }
5358
5359        if (t4_use_ldst(adap))
5360                rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5361                                      sleep_ok);
5362
5363indirect_access:
5364
5365        if (rc) {
5366                if (rw)
5367                        t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5368                                         start_index);
5369                else
5370                        t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5371                                          start_index);
5372        }
5373}
5374
5375/**
5376 * t4_tp_pio_read - Read TP PIO registers
5377 * @adap: the adapter
5378 * @buff: where the indirect register values are written
5379 * @nregs: how many indirect registers to read
5380 * @start_index: index of first indirect register to read
5381 * @sleep_ok: if true we may sleep while awaiting command completion
5382 *
5383 * Read TP PIO Registers
5384 **/
5385void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5386                    u32 start_index, bool sleep_ok)
5387{
5388        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5389                          start_index, 1, sleep_ok);
5390}
5391
5392/**
5393 * t4_tp_pio_write - Write TP PIO registers
5394 * @adap: the adapter
5395 * @buff: where the indirect register values are stored
5396 * @nregs: how many indirect registers to write
5397 * @start_index: index of first indirect register to write
5398 * @sleep_ok: if true we may sleep while awaiting command completion
5399 *
5400 * Write TP PIO Registers
5401 **/
5402static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5403                            u32 start_index, bool sleep_ok)
5404{
5405        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406                          start_index, 0, sleep_ok);
5407}
5408
5409/**
5410 * t4_tp_tm_pio_read - Read TP TM PIO registers
5411 * @adap: the adapter
5412 * @buff: where the indirect register values are written
5413 * @nregs: how many indirect registers to read
5414 * @start_index: index of first indirect register to read
5415 * @sleep_ok: if true we may sleep while awaiting command completion
5416 *
5417 * Read TP TM PIO Registers
5418 **/
5419void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5420                       u32 start_index, bool sleep_ok)
5421{
5422        t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5423                          nregs, start_index, 1, sleep_ok);
5424}
5425
5426/**
5427 * t4_tp_mib_read - Read TP MIB registers
5428 * @adap: the adapter
5429 * @buff: where the indirect register values are written
5430 * @nregs: how many indirect registers to read
5431 * @start_index: index of first indirect register to read
5432 * @sleep_ok: if true we may sleep while awaiting command completion
5433 *
5434 * Read TP MIB Registers
5435 **/
5436void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5437                    bool sleep_ok)
5438{
5439        t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5440                          start_index, 1, sleep_ok);
5441}
5442
5443/**
5444 *      t4_read_rss_key - read the global RSS key
5445 *      @adap: the adapter
5446 *      @key: 10-entry array holding the 320-bit RSS key
5447 *      @sleep_ok: if true we may sleep while awaiting command completion
5448 *
5449 *      Reads the global 320-bit RSS key.
5450 */
5451void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5452{
5453        t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5454}
5455
5456/**
5457 *      t4_write_rss_key - program one of the RSS keys
5458 *      @adap: the adapter
5459 *      @key: 10-entry array holding the 320-bit RSS key
5460 *      @idx: which RSS key to write
5461 *      @sleep_ok: if true we may sleep while awaiting command completion
5462 *
5463 *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5464 *      0..15 the corresponding entry in the RSS key table is written,
5465 *      otherwise the global RSS key is written.
5466 */
5467void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5468                      bool sleep_ok)
5469{
5470        u8 rss_key_addr_cnt = 16;
5471        u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5472
5473        /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5474         * allows access to key addresses 16-63 by using KeyWrAddrX
5475         * as index[5:4](upper 2) into key table
5476         */
5477        if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5478            (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5479                rss_key_addr_cnt = 32;
5480
5481        t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5482
5483        if (idx >= 0 && idx < rss_key_addr_cnt) {
5484                if (rss_key_addr_cnt > 16)
5485                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5486                                     KEYWRADDRX_V(idx >> 4) |
5487                                     T6_VFWRADDR_V(idx) | KEYWREN_F);
5488                else
5489                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5490                                     KEYWRADDR_V(idx) | KEYWREN_F);
5491        }
5492}
5493
5494/**
5495 *      t4_read_rss_pf_config - read PF RSS Configuration Table
5496 *      @adapter: the adapter
5497 *      @index: the entry in the PF RSS table to read
5498 *      @valp: where to store the returned value
5499 *      @sleep_ok: if true we may sleep while awaiting command completion
5500 *
5501 *      Reads the PF RSS Configuration Table at the specified index and returns
5502 *      the value found there.
5503 */
5504void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5505                           u32 *valp, bool sleep_ok)
5506{
5507        t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5508}
5509
5510/**
5511 *      t4_read_rss_vf_config - read VF RSS Configuration Table
5512 *      @adapter: the adapter
5513 *      @index: the entry in the VF RSS table to read
5514 *      @vfl: where to store the returned VFL
5515 *      @vfh: where to store the returned VFH
5516 *      @sleep_ok: if true we may sleep while awaiting command completion
5517 *
5518 *      Reads the VF RSS Configuration Table at the specified index and returns
5519 *      the (VFL, VFH) values found there.
5520 */
5521void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5522                           u32 *vfl, u32 *vfh, bool sleep_ok)
5523{
5524        u32 vrt, mask, data;
5525
5526        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5527                mask = VFWRADDR_V(VFWRADDR_M);
5528                data = VFWRADDR_V(index);
5529        } else {
5530                 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5531                 data = T6_VFWRADDR_V(index);
5532        }
5533
5534        /* Request that the index'th VF Table values be read into VFL/VFH.
5535         */
5536        vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5537        vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5538        vrt |= data | VFRDEN_F;
5539        t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5540
5541        /* Grab the VFL/VFH values ...
5542         */
5543        t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5544        t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5545}
5546
5547/**
5548 *      t4_read_rss_pf_map - read PF RSS Map
5549 *      @adapter: the adapter
5550 *      @sleep_ok: if true we may sleep while awaiting command completion
5551 *
5552 *      Reads the PF RSS Map register and returns its value.
5553 */
5554u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5555{
5556        u32 pfmap;
5557
5558        t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5559        return pfmap;
5560}
5561
5562/**
5563 *      t4_read_rss_pf_mask - read PF RSS Mask
5564 *      @adapter: the adapter
5565 *      @sleep_ok: if true we may sleep while awaiting command completion
5566 *
5567 *      Reads the PF RSS Mask register and returns its value.
5568 */
5569u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5570{
5571        u32 pfmask;
5572
5573        t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5574        return pfmask;
5575}
5576
5577/**
5578 *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5579 *      @adap: the adapter
5580 *      @v4: holds the TCP/IP counter values
5581 *      @v6: holds the TCP/IPv6 counter values
5582 *      @sleep_ok: if true we may sleep while awaiting command completion
5583 *
5584 *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5585 *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5586 */
5587void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5588                         struct tp_tcp_stats *v6, bool sleep_ok)
5589{
5590        u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5591
5592#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5593#define STAT(x)     val[STAT_IDX(x)]
5594#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5595
5596        if (v4) {
5597                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5598                               TP_MIB_TCP_OUT_RST_A, sleep_ok);
5599                v4->tcp_out_rsts = STAT(OUT_RST);
5600                v4->tcp_in_segs  = STAT64(IN_SEG);
5601                v4->tcp_out_segs = STAT64(OUT_SEG);
5602                v4->tcp_retrans_segs = STAT64(RXT_SEG);
5603        }
5604        if (v6) {
5605                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5606                               TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5607                v6->tcp_out_rsts = STAT(OUT_RST);
5608                v6->tcp_in_segs  = STAT64(IN_SEG);
5609                v6->tcp_out_segs = STAT64(OUT_SEG);
5610                v6->tcp_retrans_segs = STAT64(RXT_SEG);
5611        }
5612#undef STAT64
5613#undef STAT
5614#undef STAT_IDX
5615}
5616
5617/**
5618 *      t4_tp_get_err_stats - read TP's error MIB counters
5619 *      @adap: the adapter
5620 *      @st: holds the counter values
5621 *      @sleep_ok: if true we may sleep while awaiting command completion
5622 *
5623 *      Returns the values of TP's error counters.
5624 */
5625void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5626                         bool sleep_ok)
5627{
5628        int nchan = adap->params.arch.nchan;
5629
5630        t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5631                       sleep_ok);
5632        t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5633                       sleep_ok);
5634        t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5635                       sleep_ok);
5636        t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5637                       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5638        t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5639                       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5640        t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5641                       sleep_ok);
5642        t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5643                       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5644        t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5645                       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5646        t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5647                       sleep_ok);
5648}
5649
5650/**
5651 *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5652 *      @adap: the adapter
5653 *      @st: holds the counter values
5654 *      @sleep_ok: if true we may sleep while awaiting command completion
5655 *
5656 *      Returns the values of TP's CPL counters.
5657 */
5658void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5659                         bool sleep_ok)
5660{
5661        int nchan = adap->params.arch.nchan;
5662
5663        t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5664
5665        t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5666}
5667
5668/**
5669 *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5670 *      @adap: the adapter
5671 *      @st: holds the counter values
5672 *      @sleep_ok: if true we may sleep while awaiting command completion
5673 *
5674 *      Returns the values of TP's RDMA counters.
5675 */
5676void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5677                          bool sleep_ok)
5678{
5679        t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5680                       sleep_ok);
5681}
5682
5683/**
5684 *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5685 *      @adap: the adapter
5686 *      @idx: the port index
5687 *      @st: holds the counter values
5688 *      @sleep_ok: if true we may sleep while awaiting command completion
5689 *
5690 *      Returns the values of TP's FCoE counters for the selected port.
5691 */
5692void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5693                       struct tp_fcoe_stats *st, bool sleep_ok)
5694{
5695        u32 val[2];
5696
5697        t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5698                       sleep_ok);
5699
5700        t4_tp_mib_read(adap, &st->frames_drop, 1,
5701                       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5702
5703        t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5704                       sleep_ok);
5705
5706        st->octets_ddp = ((u64)val[0] << 32) | val[1];
5707}
5708
5709/**
5710 *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5711 *      @adap: the adapter
5712 *      @st: holds the counter values
5713 *      @sleep_ok: if true we may sleep while awaiting command completion
5714 *
5715 *      Returns the values of TP's counters for non-TCP directly-placed packets.
5716 */
5717void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5718                      bool sleep_ok)
5719{
5720        u32 val[4];
5721
5722        t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5723        st->frames = val[0];
5724        st->drops = val[1];
5725        st->octets = ((u64)val[2] << 32) | val[3];
5726}
5727
5728/**
5729 *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5730 *      @adap: the adapter
5731 *      @mtus: where to store the MTU values
5732 *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5733 *
5734 *      Reads the HW path MTU table.
5735 */
5736void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5737{
5738        u32 v;
5739        int i;
5740
5741        for (i = 0; i < NMTUS; ++i) {
5742                t4_write_reg(adap, TP_MTU_TABLE_A,
5743                             MTUINDEX_V(0xff) | MTUVALUE_V(i));
5744                v = t4_read_reg(adap, TP_MTU_TABLE_A);
5745                mtus[i] = MTUVALUE_G(v);
5746                if (mtu_log)
5747                        mtu_log[i] = MTUWIDTH_G(v);
5748        }
5749}
5750
5751/**
5752 *      t4_read_cong_tbl - reads the congestion control table
5753 *      @adap: the adapter
5754 *      @incr: where to store the alpha values
5755 *
5756 *      Reads the additive increments programmed into the HW congestion
5757 *      control table.
5758 */
5759void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5760{
5761        unsigned int mtu, w;
5762
5763        for (mtu = 0; mtu < NMTUS; ++mtu)
5764                for (w = 0; w < NCCTRL_WIN; ++w) {
5765                        t4_write_reg(adap, TP_CCTRL_TABLE_A,
5766                                     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5767                        incr[mtu][w] = (u16)t4_read_reg(adap,
5768                                                TP_CCTRL_TABLE_A) & 0x1fff;
5769                }
5770}
5771
5772/**
5773 *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5774 *      @adap: the adapter
5775 *      @addr: the indirect TP register address
5776 *      @mask: specifies the field within the register to modify
5777 *      @val: new value for the field
5778 *
5779 *      Sets a field of an indirect TP register to the given value.
5780 */
5781void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5782                            unsigned int mask, unsigned int val)
5783{
5784        t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5785        val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5786        t4_write_reg(adap, TP_PIO_DATA_A, val);
5787}
5788
5789/**
5790 *      init_cong_ctrl - initialize congestion control parameters
5791 *      @a: the alpha values for congestion control
5792 *      @b: the beta values for congestion control
5793 *
5794 *      Initialize the congestion control parameters.
5795 */
5796static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5797{
5798        a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5799        a[9] = 2;
5800        a[10] = 3;
5801        a[11] = 4;
5802        a[12] = 5;
5803        a[13] = 6;
5804        a[14] = 7;
5805        a[15] = 8;
5806        a[16] = 9;
5807        a[17] = 10;
5808        a[18] = 14;
5809        a[19] = 17;
5810        a[20] = 21;
5811        a[21] = 25;
5812        a[22] = 30;
5813        a[23] = 35;
5814        a[24] = 45;
5815        a[25] = 60;
5816        a[26] = 80;
5817        a[27] = 100;
5818        a[28] = 200;
5819        a[29] = 300;
5820        a[30] = 400;
5821        a[31] = 500;
5822
5823        b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5824        b[9] = b[10] = 1;
5825        b[11] = b[12] = 2;
5826        b[13] = b[14] = b[15] = b[16] = 3;
5827        b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5828        b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5829        b[28] = b[29] = 6;
5830        b[30] = b[31] = 7;
5831}
5832
5833/* The minimum additive increment value for the congestion control table */
5834#define CC_MIN_INCR 2U
5835
5836/**
5837 *      t4_load_mtus - write the MTU and congestion control HW tables
5838 *      @adap: the adapter
5839 *      @mtus: the values for the MTU table
5840 *      @alpha: the values for the congestion control alpha parameter
5841 *      @beta: the values for the congestion control beta parameter
5842 *
5843 *      Write the HW MTU table with the supplied MTUs and the high-speed
5844 *      congestion control table with the supplied alpha, beta, and MTUs.
5845 *      We write the two tables together because the additive increments
5846 *      depend on the MTUs.
5847 */
5848void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5849                  const unsigned short *alpha, const unsigned short *beta)
5850{
5851        static const unsigned int avg_pkts[NCCTRL_WIN] = {
5852                2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5853                896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5854                28672, 40960, 57344, 81920, 114688, 163840, 229376
5855        };
5856
5857        unsigned int i, w;
5858
5859        for (i = 0; i < NMTUS; ++i) {
5860                unsigned int mtu = mtus[i];
5861                unsigned int log2 = fls(mtu);
5862
5863                if (!(mtu & ((1 << log2) >> 2)))     /* round */
5864                        log2--;
5865                t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5866                             MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5867
5868                for (w = 0; w < NCCTRL_WIN; ++w) {
5869                        unsigned int inc;
5870
5871                        inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5872                                  CC_MIN_INCR);
5873
5874                        t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5875                                     (w << 16) | (beta[w] << 13) | inc);
5876                }
5877        }
5878}
5879
5880/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5881 * clocks.  The formula is
5882 *
5883 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5884 *
5885 * which is equivalent to
5886 *
5887 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5888 */
5889static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5890{
5891        u64 v = bytes256 * adap->params.vpd.cclk;
5892
5893        return v * 62 + v / 2;
5894}
5895
5896/**
5897 *      t4_get_chan_txrate - get the current per channel Tx rates
5898 *      @adap: the adapter
5899 *      @nic_rate: rates for NIC traffic
5900 *      @ofld_rate: rates for offloaded traffic
5901 *
5902 *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5903 *      for each channel.
5904 */
5905void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5906{
5907        u32 v;
5908
5909        v = t4_read_reg(adap, TP_TX_TRATE_A);
5910        nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5911        nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5912        if (adap->params.arch.nchan == NCHAN) {
5913                nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5914                nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5915        }
5916
5917        v = t4_read_reg(adap, TP_TX_ORATE_A);
5918        ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5919        ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5920        if (adap->params.arch.nchan == NCHAN) {
5921                ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5922                ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5923        }
5924}
5925
5926/**
5927 *      t4_set_trace_filter - configure one of the tracing filters
5928 *      @adap: the adapter
5929 *      @tp: the desired trace filter parameters
5930 *      @idx: which filter to configure
5931 *      @enable: whether to enable or disable the filter
5932 *
5933 *      Configures one of the tracing filters available in HW.  If @enable is
5934 *      %0 @tp is not examined and may be %NULL. The user is responsible to
5935 *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5936 */
5937int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5938                        int idx, int enable)
5939{
5940        int i, ofst = idx * 4;
5941        u32 data_reg, mask_reg, cfg;
5942
5943        if (!enable) {
5944                t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5945                return 0;
5946        }
5947
5948        cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5949        if (cfg & TRCMULTIFILTER_F) {
5950                /* If multiple tracers are enabled, then maximum
5951                 * capture size is 2.5KB (FIFO size of a single channel)
5952                 * minus 2 flits for CPL_TRACE_PKT header.
5953                 */
5954                if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5955                        return -EINVAL;
5956        } else {
5957                /* If multiple tracers are disabled, to avoid deadlocks
5958                 * maximum packet capture size of 9600 bytes is recommended.
5959                 * Also in this mode, only trace0 can be enabled and running.
5960                 */
5961                if (tp->snap_len > 9600 || idx)
5962                        return -EINVAL;
5963        }
5964
5965        if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5966            tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5967            tp->min_len > TFMINPKTSIZE_M)
5968                return -EINVAL;
5969
5970        /* stop the tracer we'll be changing */
5971        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5972
5973        idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5974        data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5975        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5976
5977        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5978                t4_write_reg(adap, data_reg, tp->data[i]);
5979                t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5980        }
5981        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5982                     TFCAPTUREMAX_V(tp->snap_len) |
5983                     TFMINPKTSIZE_V(tp->min_len));
5984        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5985                     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5986                     (is_t4(adap->params.chip) ?
5987                     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5988                     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5989                     T5_TFINVERTMATCH_V(tp->invert)));
5990
5991        return 0;
5992}
5993
5994/**
5995 *      t4_get_trace_filter - query one of the tracing filters
5996 *      @adap: the adapter
5997 *      @tp: the current trace filter parameters
5998 *      @idx: which trace filter to query
5999 *      @enabled: non-zero if the filter is enabled
6000 *
6001 *      Returns the current settings of one of the HW tracing filters.
6002 */
6003void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6004                         int *enabled)
6005{
6006        u32 ctla, ctlb;
6007        int i, ofst = idx * 4;
6008        u32 data_reg, mask_reg;
6009
6010        ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6011        ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6012
6013        if (is_t4(adap->params.chip)) {
6014                *enabled = !!(ctla & TFEN_F);
6015                tp->port =  TFPORT_G(ctla);
6016                tp->invert = !!(ctla & TFINVERTMATCH_F);
6017        } else {
6018                *enabled = !!(ctla & T5_TFEN_F);
6019                tp->port = T5_TFPORT_G(ctla);
6020                tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6021        }
6022        tp->snap_len = TFCAPTUREMAX_G(ctlb);
6023        tp->min_len = TFMINPKTSIZE_G(ctlb);
6024        tp->skip_ofst = TFOFFSET_G(ctla);
6025        tp->skip_len = TFLENGTH_G(ctla);
6026
6027        ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6028        data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6029        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6030
6031        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6032                tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6033                tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6034        }
6035}
6036
6037/**
6038 *      t4_pmtx_get_stats - returns the HW stats from PMTX
6039 *      @adap: the adapter
6040 *      @cnt: where to store the count statistics
6041 *      @cycles: where to store the cycle statistics
6042 *
6043 *      Returns performance statistics from PMTX.
6044 */
6045void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6046{
6047        int i;
6048        u32 data[2];
6049
6050        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6051                t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6052                cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6053                if (is_t4(adap->params.chip)) {
6054                        cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6055                } else {
6056                        t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6057                                         PM_TX_DBG_DATA_A, data, 2,
6058                                         PM_TX_DBG_STAT_MSB_A);
6059                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6060                }
6061        }
6062}
6063
6064/**
6065 *      t4_pmrx_get_stats - returns the HW stats from PMRX
6066 *      @adap: the adapter
6067 *      @cnt: where to store the count statistics
6068 *      @cycles: where to store the cycle statistics
6069 *
6070 *      Returns performance statistics from PMRX.
6071 */
6072void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6073{
6074        int i;
6075        u32 data[2];
6076
6077        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6078                t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6079                cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6080                if (is_t4(adap->params.chip)) {
6081                        cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6082                } else {
6083                        t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6084                                         PM_RX_DBG_DATA_A, data, 2,
6085                                         PM_RX_DBG_STAT_MSB_A);
6086                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6087                }
6088        }
6089}
6090
6091/**
6092 *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6093 *      @adapter: the adapter
6094 *      @pidx: the port index
6095 *
6096 *      Computes and returns a bitmap indicating which MPS buffer groups are
6097 *      associated with the given Port.  Bit i is set if buffer group i is
6098 *      used by the Port.
6099 */
6100static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6101                                              int pidx)
6102{
6103        unsigned int chip_version, nports;
6104
6105        chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6106        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107
6108        switch (chip_version) {
6109        case CHELSIO_T4:
6110        case CHELSIO_T5:
6111                switch (nports) {
6112                case 1: return 0xf;
6113                case 2: return 3 << (2 * pidx);
6114                case 4: return 1 << pidx;
6115                }
6116                break;
6117
6118        case CHELSIO_T6:
6119                switch (nports) {
6120                case 2: return 1 << (2 * pidx);
6121                }
6122                break;
6123        }
6124
6125        dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6126                chip_version, nports);
6127
6128        return 0;
6129}
6130
6131/**
6132 *      t4_get_mps_bg_map - return the buffer groups associated with a port
6133 *      @adapter: the adapter
6134 *      @pidx: the port index
6135 *
6136 *      Returns a bitmap indicating which MPS buffer groups are associated
6137 *      with the given Port.  Bit i is set if buffer group i is used by the
6138 *      Port.
6139 */
6140unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6141{
6142        u8 *mps_bg_map;
6143        unsigned int nports;
6144
6145        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6146        if (pidx >= nports) {
6147                CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6148                        pidx, nports);
6149                return 0;
6150        }
6151
6152        /* If we've already retrieved/computed this, just return the result.
6153         */
6154        mps_bg_map = adapter->params.mps_bg_map;
6155        if (mps_bg_map[pidx])
6156                return mps_bg_map[pidx];
6157
6158        /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6159         * If we're talking to such Firmware, let it tell us.  If the new
6160         * API isn't supported, revert back to old hardcoded way.  The value
6161         * obtained from Firmware is encoded in below format:
6162         *
6163         * val = (( MPSBGMAP[Port 3] << 24 ) |
6164         *        ( MPSBGMAP[Port 2] << 16 ) |
6165         *        ( MPSBGMAP[Port 1] <<  8 ) |
6166         *        ( MPSBGMAP[Port 0] <<  0 ))
6167         */
6168        if (adapter->flags & CXGB4_FW_OK) {
6169                u32 param, val;
6170                int ret;
6171
6172                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6173                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6174                ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6175                                         0, 1, &param, &val);
6176                if (!ret) {
6177                        int p;
6178
6179                        /* Store the BG Map for all of the Ports in order to
6180                         * avoid more calls to the Firmware in the future.
6181                         */
6182                        for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6183                                mps_bg_map[p] = val & 0xff;
6184
6185                        return mps_bg_map[pidx];
6186                }
6187        }
6188
6189        /* Either we're not talking to the Firmware or we're dealing with
6190         * older Firmware which doesn't support the new API to get the MPS
6191         * Buffer Group Map.  Fall back to computing it ourselves.
6192         */
6193        mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6194        return mps_bg_map[pidx];
6195}
6196
6197/**
6198 *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6199 *      @adapter: the adapter
6200 *      @pidx: the port index
6201 */
6202static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6203{
6204        unsigned int nports;
6205        u32 param, val = 0;
6206        int ret;
6207
6208        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6209        if (pidx >= nports) {
6210                CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6211                        pidx, nports);
6212                return 0;
6213        }
6214
6215        /* FW version >= 1.16.44.0 can determine E2C channel map using
6216         * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6217         */
6218        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6219                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6220        ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6221                                 0, 1, &param, &val);
6222        if (!ret)
6223                return (val >> (8 * pidx)) & 0xff;
6224
6225        return 0;
6226}
6227
6228/**
6229 *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6230 *      @adap: the adapter
6231 *      @pidx: the port index
6232 *
6233 *      Returns a bitmap indicating which TP Ingress Channels are associated
6234 *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6235 *      the Port.
6236 */
6237unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6238{
6239        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6240        unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6241
6242        if (pidx >= nports) {
6243                dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6244                         pidx, nports);
6245                return 0;
6246        }
6247
6248        switch (chip_version) {
6249        case CHELSIO_T4:
6250        case CHELSIO_T5:
6251                /* Note that this happens to be the same values as the MPS
6252                 * Buffer Group Map for these Chips.  But we replicate the code
6253                 * here because they're really separate concepts.
6254                 */
6255                switch (nports) {
6256                case 1: return 0xf;
6257                case 2: return 3 << (2 * pidx);
6258                case 4: return 1 << pidx;
6259                }
6260                break;
6261
6262        case CHELSIO_T6:
6263                switch (nports) {
6264                case 1:
6265                case 2: return 1 << pidx;
6266                }
6267                break;
6268        }
6269
6270        dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6271                chip_version, nports);
6272        return 0;
6273}
6274
6275/**
6276 *      t4_get_port_type_description - return Port Type string description
6277 *      @port_type: firmware Port Type enumeration
6278 */
6279const char *t4_get_port_type_description(enum fw_port_type port_type)
6280{
6281        static const char *const port_type_description[] = {
6282                "Fiber_XFI",
6283                "Fiber_XAUI",
6284                "BT_SGMII",
6285                "BT_XFI",
6286                "BT_XAUI",
6287                "KX4",
6288                "CX4",
6289                "KX",
6290                "KR",
6291                "SFP",
6292                "BP_AP",
6293                "BP4_AP",
6294                "QSFP_10G",
6295                "QSA",
6296                "QSFP",
6297                "BP40_BA",
6298                "KR4_100G",
6299                "CR4_QSFP",
6300                "CR_QSFP",
6301                "CR2_QSFP",
6302                "SFP28",
6303                "KR_SFP28",
6304                "KR_XLAUI"
6305        };
6306
6307        if (port_type < ARRAY_SIZE(port_type_description))
6308                return port_type_description[port_type];
6309        return "UNKNOWN";
6310}
6311
6312/**
6313 *      t4_get_port_stats_offset - collect port stats relative to a previous
6314 *                                 snapshot
6315 *      @adap: The adapter
6316 *      @idx: The port
6317 *      @stats: Current stats to fill
6318 *      @offset: Previous stats snapshot
6319 */
6320void t4_get_port_stats_offset(struct adapter *adap, int idx,
6321                              struct port_stats *stats,
6322                              struct port_stats *offset)
6323{
6324        u64 *s, *o;
6325        int i;
6326
6327        t4_get_port_stats(adap, idx, stats);
6328        for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6329                        i < (sizeof(struct port_stats) / sizeof(u64));
6330                        i++, s++, o++)
6331                *s -= *o;
6332}
6333
6334/**
6335 *      t4_get_port_stats - collect port statistics
6336 *      @adap: the adapter
6337 *      @idx: the port index
6338 *      @p: the stats structure to fill
6339 *
6340 *      Collect statistics related to the given port from HW.
6341 */
6342void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6343{
6344        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6345        u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6346
6347#define GET_STAT(name) \
6348        t4_read_reg64(adap, \
6349        (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6350        T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6351#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6352
6353        p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6354        p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6355        p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6356        p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6357        p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6358        p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6359        p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6360        p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6361        p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6362        p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6363        p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6364        p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6365        p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6366        p->tx_drop             = GET_STAT(TX_PORT_DROP);
6367        p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6368        p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6369        p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6370        p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6371        p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6372        p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6373        p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6374        p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6375        p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6376
6377        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6378                if (stat_ctl & COUNTPAUSESTATTX_F)
6379                        p->tx_frames_64 -= p->tx_pause;
6380                if (stat_ctl & COUNTPAUSEMCTX_F)
6381                        p->tx_mcast_frames -= p->tx_pause;
6382        }
6383        p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6384        p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6385        p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6386        p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6387        p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6388        p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6389        p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6390        p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6391        p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6392        p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6393        p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6394        p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6395        p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6396        p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6397        p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6398        p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6399        p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6400        p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6401        p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6402        p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6403        p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6404        p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6405        p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6406        p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6407        p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6408        p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6409        p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6410
6411        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6412                if (stat_ctl & COUNTPAUSESTATRX_F)
6413                        p->rx_frames_64 -= p->rx_pause;
6414                if (stat_ctl & COUNTPAUSEMCRX_F)
6415                        p->rx_mcast_frames -= p->rx_pause;
6416        }
6417
6418        p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6419        p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6420        p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6421        p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6422        p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6423        p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6424        p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6425        p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6426
6427#undef GET_STAT
6428#undef GET_STAT_COM
6429}
6430
6431/**
6432 *      t4_get_lb_stats - collect loopback port statistics
6433 *      @adap: the adapter
6434 *      @idx: the loopback port index
6435 *      @p: the stats structure to fill
6436 *
6437 *      Return HW statistics for the given loopback port.
6438 */
6439void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6440{
6441        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6442
6443#define GET_STAT(name) \
6444        t4_read_reg64(adap, \
6445        (is_t4(adap->params.chip) ? \
6446        PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6447        T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6448#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6449
6450        p->octets           = GET_STAT(BYTES);
6451        p->frames           = GET_STAT(FRAMES);
6452        p->bcast_frames     = GET_STAT(BCAST);
6453        p->mcast_frames     = GET_STAT(MCAST);
6454        p->ucast_frames     = GET_STAT(UCAST);
6455        p->error_frames     = GET_STAT(ERROR);
6456
6457        p->frames_64        = GET_STAT(64B);
6458        p->frames_65_127    = GET_STAT(65B_127B);
6459        p->frames_128_255   = GET_STAT(128B_255B);
6460        p->frames_256_511   = GET_STAT(256B_511B);
6461        p->frames_512_1023  = GET_STAT(512B_1023B);
6462        p->frames_1024_1518 = GET_STAT(1024B_1518B);
6463        p->frames_1519_max  = GET_STAT(1519B_MAX);
6464        p->drop             = GET_STAT(DROP_FRAMES);
6465
6466        p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6467        p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6468        p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6469        p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6470        p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6471        p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6472        p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6473        p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6474
6475#undef GET_STAT
6476#undef GET_STAT_COM
6477}
6478
6479/*     t4_mk_filtdelwr - create a delete filter WR
6480 *     @ftid: the filter ID
6481 *     @wr: the filter work request to populate
6482 *     @qid: ingress queue to receive the delete notification
6483 *
6484 *     Creates a filter work request to delete the supplied filter.  If @qid is
6485 *     negative the delete notification is suppressed.
6486 */
6487void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6488{
6489        memset(wr, 0, sizeof(*wr));
6490        wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6491        wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6492        wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6493                                    FW_FILTER_WR_NOREPLY_V(qid < 0));
6494        wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6495        if (qid >= 0)
6496                wr->rx_chan_rx_rpl_iq =
6497                        cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6498}
6499
6500#define INIT_CMD(var, cmd, rd_wr) do { \
6501        (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6502                                        FW_CMD_REQUEST_F | \
6503                                        FW_CMD_##rd_wr##_F); \
6504        (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6505} while (0)
6506
6507int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6508                          u32 addr, u32 val)
6509{
6510        u32 ldst_addrspace;
6511        struct fw_ldst_cmd c;
6512
6513        memset(&c, 0, sizeof(c));
6514        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6515        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6516                                        FW_CMD_REQUEST_F |
6517                                        FW_CMD_WRITE_F |
6518                                        ldst_addrspace);
6519        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6520        c.u.addrval.addr = cpu_to_be32(addr);
6521        c.u.addrval.val = cpu_to_be32(val);
6522
6523        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524}
6525
6526/**
6527 *      t4_mdio_rd - read a PHY register through MDIO
6528 *      @adap: the adapter
6529 *      @mbox: mailbox to use for the FW command
6530 *      @phy_addr: the PHY address
6531 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6532 *      @reg: the register to read
6533 *      @valp: where to store the value
6534 *
6535 *      Issues a FW command through the given mailbox to read a PHY register.
6536 */
6537int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6538               unsigned int mmd, unsigned int reg, u16 *valp)
6539{
6540        int ret;
6541        u32 ldst_addrspace;
6542        struct fw_ldst_cmd c;
6543
6544        memset(&c, 0, sizeof(c));
6545        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6546        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6547                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6548                                        ldst_addrspace);
6549        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6551                                         FW_LDST_CMD_MMD_V(mmd));
6552        c.u.mdio.raddr = cpu_to_be16(reg);
6553
6554        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555        if (ret == 0)
6556                *valp = be16_to_cpu(c.u.mdio.rval);
6557        return ret;
6558}
6559
6560/**
6561 *      t4_mdio_wr - write a PHY register through MDIO
6562 *      @adap: the adapter
6563 *      @mbox: mailbox to use for the FW command
6564 *      @phy_addr: the PHY address
6565 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6566 *      @reg: the register to write
6567 *      @val: value to write
6568 *
6569 *      Issues a FW command through the given mailbox to write a PHY register.
6570 */
6571int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6572               unsigned int mmd, unsigned int reg, u16 val)
6573{
6574        u32 ldst_addrspace;
6575        struct fw_ldst_cmd c;
6576
6577        memset(&c, 0, sizeof(c));
6578        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6579        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6580                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6581                                        ldst_addrspace);
6582        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6583        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6584                                         FW_LDST_CMD_MMD_V(mmd));
6585        c.u.mdio.raddr = cpu_to_be16(reg);
6586        c.u.mdio.rval = cpu_to_be16(val);
6587
6588        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589}
6590
6591/**
6592 *      t4_sge_decode_idma_state - decode the idma state
6593 *      @adapter: the adapter
6594 *      @state: the state idma is stuck in
6595 */
6596void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6597{
6598        static const char * const t4_decode[] = {
6599                "IDMA_IDLE",
6600                "IDMA_PUSH_MORE_CPL_FIFO",
6601                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6602                "Not used",
6603                "IDMA_PHYSADDR_SEND_PCIEHDR",
6604                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6605                "IDMA_PHYSADDR_SEND_PAYLOAD",
6606                "IDMA_SEND_FIFO_TO_IMSG",
6607                "IDMA_FL_REQ_DATA_FL_PREP",
6608                "IDMA_FL_REQ_DATA_FL",
6609                "IDMA_FL_DROP",
6610                "IDMA_FL_H_REQ_HEADER_FL",
6611                "IDMA_FL_H_SEND_PCIEHDR",
6612                "IDMA_FL_H_PUSH_CPL_FIFO",
6613                "IDMA_FL_H_SEND_CPL",
6614                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6615                "IDMA_FL_H_SEND_IP_HDR",
6616                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6617                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6618                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6619                "IDMA_FL_D_SEND_PCIEHDR",
6620                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6621                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6622                "IDMA_FL_SEND_PCIEHDR",
6623                "IDMA_FL_PUSH_CPL_FIFO",
6624                "IDMA_FL_SEND_CPL",
6625                "IDMA_FL_SEND_PAYLOAD_FIRST",
6626                "IDMA_FL_SEND_PAYLOAD",
6627                "IDMA_FL_REQ_NEXT_DATA_FL",
6628                "IDMA_FL_SEND_NEXT_PCIEHDR",
6629                "IDMA_FL_SEND_PADDING",
6630                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6631                "IDMA_FL_SEND_FIFO_TO_IMSG",
6632                "IDMA_FL_REQ_DATAFL_DONE",
6633                "IDMA_FL_REQ_HEADERFL_DONE",
6634        };
6635        static const char * const t5_decode[] = {
6636                "IDMA_IDLE",
6637                "IDMA_ALMOST_IDLE",
6638                "IDMA_PUSH_MORE_CPL_FIFO",
6639                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6640                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6641                "IDMA_PHYSADDR_SEND_PCIEHDR",
6642                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6643                "IDMA_PHYSADDR_SEND_PAYLOAD",
6644                "IDMA_SEND_FIFO_TO_IMSG",
6645                "IDMA_FL_REQ_DATA_FL",
6646                "IDMA_FL_DROP",
6647                "IDMA_FL_DROP_SEND_INC",
6648                "IDMA_FL_H_REQ_HEADER_FL",
6649                "IDMA_FL_H_SEND_PCIEHDR",
6650                "IDMA_FL_H_PUSH_CPL_FIFO",
6651                "IDMA_FL_H_SEND_CPL",
6652                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6653                "IDMA_FL_H_SEND_IP_HDR",
6654                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6655                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6656                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6657                "IDMA_FL_D_SEND_PCIEHDR",
6658                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6659                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6660                "IDMA_FL_SEND_PCIEHDR",
6661                "IDMA_FL_PUSH_CPL_FIFO",
6662                "IDMA_FL_SEND_CPL",
6663                "IDMA_FL_SEND_PAYLOAD_FIRST",
6664                "IDMA_FL_SEND_PAYLOAD",
6665                "IDMA_FL_REQ_NEXT_DATA_FL",
6666                "IDMA_FL_SEND_NEXT_PCIEHDR",
6667                "IDMA_FL_SEND_PADDING",
6668                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6669        };
6670        static const char * const t6_decode[] = {
6671                "IDMA_IDLE",
6672                "IDMA_PUSH_MORE_CPL_FIFO",
6673                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6674                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6675                "IDMA_PHYSADDR_SEND_PCIEHDR",
6676                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6677                "IDMA_PHYSADDR_SEND_PAYLOAD",
6678                "IDMA_FL_REQ_DATA_FL",
6679                "IDMA_FL_DROP",
6680                "IDMA_FL_DROP_SEND_INC",
6681                "IDMA_FL_H_REQ_HEADER_FL",
6682                "IDMA_FL_H_SEND_PCIEHDR",
6683                "IDMA_FL_H_PUSH_CPL_FIFO",
6684                "IDMA_FL_H_SEND_CPL",
6685                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6686                "IDMA_FL_H_SEND_IP_HDR",
6687                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6688                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6689                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6690                "IDMA_FL_D_SEND_PCIEHDR",
6691                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6692                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6693                "IDMA_FL_SEND_PCIEHDR",
6694                "IDMA_FL_PUSH_CPL_FIFO",
6695                "IDMA_FL_SEND_CPL",
6696                "IDMA_FL_SEND_PAYLOAD_FIRST",
6697                "IDMA_FL_SEND_PAYLOAD",
6698                "IDMA_FL_REQ_NEXT_DATA_FL",
6699                "IDMA_FL_SEND_NEXT_PCIEHDR",
6700                "IDMA_FL_SEND_PADDING",
6701                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6702        };
6703        static const u32 sge_regs[] = {
6704                SGE_DEBUG_DATA_LOW_INDEX_2_A,
6705                SGE_DEBUG_DATA_LOW_INDEX_3_A,
6706                SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6707        };
6708        const char **sge_idma_decode;
6709        int sge_idma_decode_nstates;
6710        int i;
6711        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6712
6713        /* Select the right set of decode strings to dump depending on the
6714         * adapter chip type.
6715         */
6716        switch (chip_version) {
6717        case CHELSIO_T4:
6718                sge_idma_decode = (const char **)t4_decode;
6719                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6720                break;
6721
6722        case CHELSIO_T5:
6723                sge_idma_decode = (const char **)t5_decode;
6724                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6725                break;
6726
6727        case CHELSIO_T6:
6728                sge_idma_decode = (const char **)t6_decode;
6729                sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6730                break;
6731
6732        default:
6733                dev_err(adapter->pdev_dev,
6734                        "Unsupported chip version %d\n", chip_version);
6735                return;
6736        }
6737
6738        if (is_t4(adapter->params.chip)) {
6739                sge_idma_decode = (const char **)t4_decode;
6740                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6741        } else {
6742                sge_idma_decode = (const char **)t5_decode;
6743                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744        }
6745
6746        if (state < sge_idma_decode_nstates)
6747                CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6748        else
6749                CH_WARN(adapter, "idma state %d unknown\n", state);
6750
6751        for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6752                CH_WARN(adapter, "SGE register %#x value %#x\n",
6753                        sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6754}
6755
6756/**
6757 *      t4_sge_ctxt_flush - flush the SGE context cache
6758 *      @adap: the adapter
6759 *      @mbox: mailbox to use for the FW command
6760 *      @ctxt_type: Egress or Ingress
6761 *
6762 *      Issues a FW command through the given mailbox to flush the
6763 *      SGE context cache.
6764 */
6765int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6766{
6767        int ret;
6768        u32 ldst_addrspace;
6769        struct fw_ldst_cmd c;
6770
6771        memset(&c, 0, sizeof(c));
6772        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6773                                                 FW_LDST_ADDRSPC_SGE_EGRC :
6774                                                 FW_LDST_ADDRSPC_SGE_INGC);
6775        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6776                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6777                                        ldst_addrspace);
6778        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6779        c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6780
6781        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6782        return ret;
6783}
6784
6785/**
6786 *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6787 *      @adap: the adapter
6788 *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6789 *      @dbqtimers: SGE Doorbell Queue Timer table
6790 *
6791 *      Reads the SGE Doorbell Queue Timer values into the provided table.
6792 *      Returns 0 on success (Firmware and Hardware support this feature),
6793 *      an error on failure.
6794 */
6795int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6796                          u16 *dbqtimers)
6797{
6798        int ret, dbqtimerix;
6799
6800        ret = 0;
6801        dbqtimerix = 0;
6802        while (dbqtimerix < ndbqtimers) {
6803                int nparams, param;
6804                u32 params[7], vals[7];
6805
6806                nparams = ndbqtimers - dbqtimerix;
6807                if (nparams > ARRAY_SIZE(params))
6808                        nparams = ARRAY_SIZE(params);
6809
6810                for (param = 0; param < nparams; param++)
6811                        params[param] =
6812                          (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6813                           FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6814                           FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6815                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6816                                      nparams, params, vals);
6817                if (ret)
6818                        break;
6819
6820                for (param = 0; param < nparams; param++)
6821                        dbqtimers[dbqtimerix++] = vals[param];
6822        }
6823        return ret;
6824}
6825
6826/**
6827 *      t4_fw_hello - establish communication with FW
6828 *      @adap: the adapter
6829 *      @mbox: mailbox to use for the FW command
6830 *      @evt_mbox: mailbox to receive async FW events
6831 *      @master: specifies the caller's willingness to be the device master
6832 *      @state: returns the current device state (if non-NULL)
6833 *
6834 *      Issues a command to establish communication with FW.  Returns either
6835 *      an error (negative integer) or the mailbox of the Master PF.
6836 */
6837int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6838                enum dev_master master, enum dev_state *state)
6839{
6840        int ret;
6841        struct fw_hello_cmd c;
6842        u32 v;
6843        unsigned int master_mbox;
6844        int retries = FW_CMD_HELLO_RETRIES;
6845
6846retry:
6847        memset(&c, 0, sizeof(c));
6848        INIT_CMD(c, HELLO, WRITE);
6849        c.err_to_clearinit = cpu_to_be32(
6850                FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6851                FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6852                FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6853                                        mbox : FW_HELLO_CMD_MBMASTER_M) |
6854                FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6855                FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6856                FW_HELLO_CMD_CLEARINIT_F);
6857
6858        /*
6859         * Issue the HELLO command to the firmware.  If it's not successful
6860         * but indicates that we got a "busy" or "timeout" condition, retry
6861         * the HELLO until we exhaust our retry limit.  If we do exceed our
6862         * retry limit, check to see if the firmware left us any error
6863         * information and report that if so.
6864         */
6865        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6866        if (ret < 0) {
6867                if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6868                        goto retry;
6869                if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6870                        t4_report_fw_error(adap);
6871                return ret;
6872        }
6873
6874        v = be32_to_cpu(c.err_to_clearinit);
6875        master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6876        if (state) {
6877                if (v & FW_HELLO_CMD_ERR_F)
6878                        *state = DEV_STATE_ERR;
6879                else if (v & FW_HELLO_CMD_INIT_F)
6880                        *state = DEV_STATE_INIT;
6881                else
6882                        *state = DEV_STATE_UNINIT;
6883        }
6884
6885        /*
6886         * If we're not the Master PF then we need to wait around for the
6887         * Master PF Driver to finish setting up the adapter.
6888         *
6889         * Note that we also do this wait if we're a non-Master-capable PF and
6890         * there is no current Master PF; a Master PF may show up momentarily
6891         * and we wouldn't want to fail pointlessly.  (This can happen when an
6892         * OS loads lots of different drivers rapidly at the same time).  In
6893         * this case, the Master PF returned by the firmware will be
6894         * PCIE_FW_MASTER_M so the test below will work ...
6895         */
6896        if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6897            master_mbox != mbox) {
6898                int waiting = FW_CMD_HELLO_TIMEOUT;
6899
6900                /*
6901                 * Wait for the firmware to either indicate an error or
6902                 * initialized state.  If we see either of these we bail out
6903                 * and report the issue to the caller.  If we exhaust the
6904                 * "hello timeout" and we haven't exhausted our retries, try
6905                 * again.  Otherwise bail with a timeout error.
6906                 */
6907                for (;;) {
6908                        u32 pcie_fw;
6909
6910                        msleep(50);
6911                        waiting -= 50;
6912
6913                        /*
6914                         * If neither Error nor Initialized are indicated
6915                         * by the firmware keep waiting till we exhaust our
6916                         * timeout ... and then retry if we haven't exhausted
6917                         * our retries ...
6918                         */
6919                        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6920                        if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6921                                if (waiting <= 0) {
6922                                        if (retries-- > 0)
6923                                                goto retry;
6924
6925                                        return -ETIMEDOUT;
6926                                }
6927                                continue;
6928                        }
6929
6930                        /*
6931                         * We either have an Error or Initialized condition
6932                         * report errors preferentially.
6933                         */
6934                        if (state) {
6935                                if (pcie_fw & PCIE_FW_ERR_F)
6936                                        *state = DEV_STATE_ERR;
6937                                else if (pcie_fw & PCIE_FW_INIT_F)
6938                                        *state = DEV_STATE_INIT;
6939                        }
6940
6941                        /*
6942                         * If we arrived before a Master PF was selected and
6943                         * there's not a valid Master PF, grab its identity
6944                         * for our caller.
6945                         */
6946                        if (master_mbox == PCIE_FW_MASTER_M &&
6947                            (pcie_fw & PCIE_FW_MASTER_VLD_F))
6948                                master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6949                        break;
6950                }
6951        }
6952
6953        return master_mbox;
6954}
6955
6956/**
6957 *      t4_fw_bye - end communication with FW
6958 *      @adap: the adapter
6959 *      @mbox: mailbox to use for the FW command
6960 *
6961 *      Issues a command to terminate communication with FW.
6962 */
6963int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6964{
6965        struct fw_bye_cmd c;
6966
6967        memset(&c, 0, sizeof(c));
6968        INIT_CMD(c, BYE, WRITE);
6969        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970}
6971
6972/**
6973 *      t4_early_init - ask FW to initialize the device
6974 *      @adap: the adapter
6975 *      @mbox: mailbox to use for the FW command
6976 *
6977 *      Issues a command to FW to partially initialize the device.  This
6978 *      performs initialization that generally doesn't depend on user input.
6979 */
6980int t4_early_init(struct adapter *adap, unsigned int mbox)
6981{
6982        struct fw_initialize_cmd c;
6983
6984        memset(&c, 0, sizeof(c));
6985        INIT_CMD(c, INITIALIZE, WRITE);
6986        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987}
6988
6989/**
6990 *      t4_fw_reset - issue a reset to FW
6991 *      @adap: the adapter
6992 *      @mbox: mailbox to use for the FW command
6993 *      @reset: specifies the type of reset to perform
6994 *
6995 *      Issues a reset command of the specified type to FW.
6996 */
6997int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6998{
6999        struct fw_reset_cmd c;
7000
7001        memset(&c, 0, sizeof(c));
7002        INIT_CMD(c, RESET, WRITE);
7003        c.val = cpu_to_be32(reset);
7004        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7005}
7006
7007/**
7008 *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7009 *      @adap: the adapter
7010 *      @mbox: mailbox to use for the FW RESET command (if desired)
7011 *      @force: force uP into RESET even if FW RESET command fails
7012 *
7013 *      Issues a RESET command to firmware (if desired) with a HALT indication
7014 *      and then puts the microprocessor into RESET state.  The RESET command
7015 *      will only be issued if a legitimate mailbox is provided (mbox <=
7016 *      PCIE_FW_MASTER_M).
7017 *
7018 *      This is generally used in order for the host to safely manipulate the
7019 *      adapter without fear of conflicting with whatever the firmware might
7020 *      be doing.  The only way out of this state is to RESTART the firmware
7021 *      ...
7022 */
7023static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7024{
7025        int ret = 0;
7026
7027        /*
7028         * If a legitimate mailbox is provided, issue a RESET command
7029         * with a HALT indication.
7030         */
7031        if (mbox <= PCIE_FW_MASTER_M) {
7032                struct fw_reset_cmd c;
7033
7034                memset(&c, 0, sizeof(c));
7035                INIT_CMD(c, RESET, WRITE);
7036                c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7037                c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7038                ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039        }
7040
7041        /*
7042         * Normally we won't complete the operation if the firmware RESET
7043         * command fails but if our caller insists we'll go ahead and put the
7044         * uP into RESET.  This can be useful if the firmware is hung or even
7045         * missing ...  We'll have to take the risk of putting the uP into
7046         * RESET without the cooperation of firmware in that case.
7047         *
7048         * We also force the firmware's HALT flag to be on in case we bypassed
7049         * the firmware RESET command above or we're dealing with old firmware
7050         * which doesn't have the HALT capability.  This will serve as a flag
7051         * for the incoming firmware to know that it's coming out of a HALT
7052         * rather than a RESET ... if it's new enough to understand that ...
7053         */
7054        if (ret == 0 || force) {
7055                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7056                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7057                                 PCIE_FW_HALT_F);
7058        }
7059
7060        /*
7061         * And we always return the result of the firmware RESET command
7062         * even when we force the uP into RESET ...
7063         */
7064        return ret;
7065}
7066
7067/**
7068 *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7069 *      @adap: the adapter
7070 *      @mbox: mailbox to use for the FW command
7071 *      @reset: if we want to do a RESET to restart things
7072 *
7073 *      Restart firmware previously halted by t4_fw_halt().  On successful
7074 *      return the previous PF Master remains as the new PF Master and there
7075 *      is no need to issue a new HELLO command, etc.
7076 *
7077 *      We do this in two ways:
7078 *
7079 *       1. If we're dealing with newer firmware we'll simply want to take
7080 *          the chip's microprocessor out of RESET.  This will cause the
7081 *          firmware to start up from its start vector.  And then we'll loop
7082 *          until the firmware indicates it's started again (PCIE_FW.HALT
7083 *          reset to 0) or we timeout.
7084 *
7085 *       2. If we're dealing with older firmware then we'll need to RESET
7086 *          the chip since older firmware won't recognize the PCIE_FW.HALT
7087 *          flag and automatically RESET itself on startup.
7088 */
7089static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7090{
7091        if (reset) {
7092                /*
7093                 * Since we're directing the RESET instead of the firmware
7094                 * doing it automatically, we need to clear the PCIE_FW.HALT
7095                 * bit.
7096                 */
7097                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7098
7099                /*
7100                 * If we've been given a valid mailbox, first try to get the
7101                 * firmware to do the RESET.  If that works, great and we can
7102                 * return success.  Otherwise, if we haven't been given a
7103                 * valid mailbox or the RESET command failed, fall back to
7104                 * hitting the chip with a hammer.
7105                 */
7106                if (mbox <= PCIE_FW_MASTER_M) {
7107                        t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7108                        msleep(100);
7109                        if (t4_fw_reset(adap, mbox,
7110                                        PIORST_F | PIORSTMODE_F) == 0)
7111                                return 0;
7112                }
7113
7114                t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7115                msleep(2000);
7116        } else {
7117                int ms;
7118
7119                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7121                        if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7122                                return 0;
7123                        msleep(100);
7124                        ms += 100;
7125                }
7126                return -ETIMEDOUT;
7127        }
7128        return 0;
7129}
7130
7131/**
7132 *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7133 *      @adap: the adapter
7134 *      @mbox: mailbox to use for the FW RESET command (if desired)
7135 *      @fw_data: the firmware image to write
7136 *      @size: image size
7137 *      @force: force upgrade even if firmware doesn't cooperate
7138 *
7139 *      Perform all of the steps necessary for upgrading an adapter's
7140 *      firmware image.  Normally this requires the cooperation of the
7141 *      existing firmware in order to halt all existing activities
7142 *      but if an invalid mailbox token is passed in we skip that step
7143 *      (though we'll still put the adapter microprocessor into RESET in
7144 *      that case).
7145 *
7146 *      On successful return the new firmware will have been loaded and
7147 *      the adapter will have been fully RESET losing all previous setup
7148 *      state.  On unsuccessful return the adapter may be completely hosed ...
7149 *      positive errno indicates that the adapter is ~probably~ intact, a
7150 *      negative errno indicates that things are looking bad ...
7151 */
7152int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7153                  const u8 *fw_data, unsigned int size, int force)
7154{
7155        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7156        int reset, ret;
7157
7158        if (!t4_fw_matches_chip(adap, fw_hdr))
7159                return -EINVAL;
7160
7161        /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7162         * set wont be sent when we are flashing FW.
7163         */
7164        adap->flags &= ~CXGB4_FW_OK;
7165
7166        ret = t4_fw_halt(adap, mbox, force);
7167        if (ret < 0 && !force)
7168                goto out;
7169
7170        ret = t4_load_fw(adap, fw_data, size);
7171        if (ret < 0)
7172                goto out;
7173
7174        /*
7175         * If there was a Firmware Configuration File stored in FLASH,
7176         * there's a good chance that it won't be compatible with the new
7177         * Firmware.  In order to prevent difficult to diagnose adapter
7178         * initialization issues, we clear out the Firmware Configuration File
7179         * portion of the FLASH .  The user will need to re-FLASH a new
7180         * Firmware Configuration File which is compatible with the new
7181         * Firmware if that's desired.
7182         */
7183        (void)t4_load_cfg(adap, NULL, 0);
7184
7185        /*
7186         * Older versions of the firmware don't understand the new
7187         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7188         * restart.  So for newly loaded older firmware we'll have to do the
7189         * RESET for it so it starts up on a clean slate.  We can tell if
7190         * the newly loaded firmware will handle this right by checking
7191         * its header flags to see if it advertises the capability.
7192         */
7193        reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7194        ret = t4_fw_restart(adap, mbox, reset);
7195
7196        /* Grab potentially new Firmware Device Log parameters so we can see
7197         * how healthy the new Firmware is.  It's okay to contact the new
7198         * Firmware for these parameters even though, as far as it's
7199         * concerned, we've never said "HELLO" to it ...
7200         */
7201        (void)t4_init_devlog_params(adap);
7202out:
7203        adap->flags |= CXGB4_FW_OK;
7204        return ret;
7205}
7206
7207/**
7208 *      t4_fl_pkt_align - return the fl packet alignment
7209 *      @adap: the adapter
7210 *
7211 *      T4 has a single field to specify the packing and padding boundary.
7212 *      T5 onwards has separate fields for this and hence the alignment for
7213 *      next packet offset is maximum of these two.
7214 *
7215 */
7216int t4_fl_pkt_align(struct adapter *adap)
7217{
7218        u32 sge_control, sge_control2;
7219        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7220
7221        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7222
7223        /* T4 uses a single control field to specify both the PCIe Padding and
7224         * Packing Boundary.  T5 introduced the ability to specify these
7225         * separately.  The actual Ingress Packet Data alignment boundary
7226         * within Packed Buffer Mode is the maximum of these two
7227         * specifications.  (Note that it makes no real practical sense to
7228         * have the Padding Boundary be larger than the Packing Boundary but you
7229         * could set the chip up that way and, in fact, legacy T4 code would
7230         * end doing this because it would initialize the Padding Boundary and
7231         * leave the Packing Boundary initialized to 0 (16 bytes).)
7232         * Padding Boundary values in T6 starts from 8B,
7233         * where as it is 32B for T4 and T5.
7234         */
7235        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7236                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7237        else
7238                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7239
7240        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7241
7242        fl_align = ingpadboundary;
7243        if (!is_t4(adap->params.chip)) {
7244                /* T5 has a weird interpretation of one of the PCIe Packing
7245                 * Boundary values.  No idea why ...
7246                 */
7247                sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7248                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7249                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7250                        ingpackboundary = 16;
7251                else
7252                        ingpackboundary = 1 << (ingpackboundary +
7253                                                INGPACKBOUNDARY_SHIFT_X);
7254
7255                fl_align = max(ingpadboundary, ingpackboundary);
7256        }
7257        return fl_align;
7258}
7259
7260/**
7261 *      t4_fixup_host_params - fix up host-dependent parameters
7262 *      @adap: the adapter
7263 *      @page_size: the host's Base Page Size
7264 *      @cache_line_size: the host's Cache Line Size
7265 *
7266 *      Various registers in T4 contain values which are dependent on the
7267 *      host's Base Page and Cache Line Sizes.  This function will fix all of
7268 *      those registers with the appropriate values as passed in ...
7269 */
7270int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7271                         unsigned int cache_line_size)
7272{
7273        unsigned int page_shift = fls(page_size) - 1;
7274        unsigned int sge_hps = page_shift - 10;
7275        unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7276        unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7277        unsigned int fl_align_log = fls(fl_align) - 1;
7278
7279        t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7280                     HOSTPAGESIZEPF0_V(sge_hps) |
7281                     HOSTPAGESIZEPF1_V(sge_hps) |
7282                     HOSTPAGESIZEPF2_V(sge_hps) |
7283                     HOSTPAGESIZEPF3_V(sge_hps) |
7284                     HOSTPAGESIZEPF4_V(sge_hps) |
7285                     HOSTPAGESIZEPF5_V(sge_hps) |
7286                     HOSTPAGESIZEPF6_V(sge_hps) |
7287                     HOSTPAGESIZEPF7_V(sge_hps));
7288
7289        if (is_t4(adap->params.chip)) {
7290                t4_set_reg_field(adap, SGE_CONTROL_A,
7291                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7292                                 EGRSTATUSPAGESIZE_F,
7293                                 INGPADBOUNDARY_V(fl_align_log -
7294                                                  INGPADBOUNDARY_SHIFT_X) |
7295                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7296        } else {
7297                unsigned int pack_align;
7298                unsigned int ingpad, ingpack;
7299
7300                /* T5 introduced the separation of the Free List Padding and
7301                 * Packing Boundaries.  Thus, we can select a smaller Padding
7302                 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7303                 * Bandwidth, and use a Packing Boundary which is large enough
7304                 * to avoid false sharing between CPUs, etc.
7305                 *
7306                 * For the PCI Link, the smaller the Padding Boundary the
7307                 * better.  For the Memory Controller, a smaller Padding
7308                 * Boundary is better until we cross under the Memory Line
7309                 * Size (the minimum unit of transfer to/from Memory).  If we
7310                 * have a Padding Boundary which is smaller than the Memory
7311                 * Line Size, that'll involve a Read-Modify-Write cycle on the
7312                 * Memory Controller which is never good.
7313                 */
7314
7315                /* We want the Packing Boundary to be based on the Cache Line
7316                 * Size in order to help avoid False Sharing performance
7317                 * issues between CPUs, etc.  We also want the Packing
7318                 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7319                 * get best performance when the Packing Boundary is a
7320                 * multiple of the Maximum Payload Size.
7321                 */
7322                pack_align = fl_align;
7323                if (pci_is_pcie(adap->pdev)) {
7324                        unsigned int mps, mps_log;
7325                        u16 devctl;
7326
7327                        /* The PCIe Device Control Maximum Payload Size field
7328                         * [bits 7:5] encodes sizes as powers of 2 starting at
7329                         * 128 bytes.
7330                         */
7331                        pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7332                                                  &devctl);
7333                        mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7334                        mps = 1 << mps_log;
7335                        if (mps > pack_align)
7336                                pack_align = mps;
7337                }
7338
7339                /* N.B. T5/T6 have a crazy special interpretation of the "0"
7340                 * value for the Packing Boundary.  This corresponds to 16
7341                 * bytes instead of the expected 32 bytes.  So if we want 32
7342                 * bytes, the best we can really do is 64 bytes ...
7343                 */
7344                if (pack_align <= 16) {
7345                        ingpack = INGPACKBOUNDARY_16B_X;
7346                        fl_align = 16;
7347                } else if (pack_align == 32) {
7348                        ingpack = INGPACKBOUNDARY_64B_X;
7349                        fl_align = 64;
7350                } else {
7351                        unsigned int pack_align_log = fls(pack_align) - 1;
7352
7353                        ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7354                        fl_align = pack_align;
7355                }
7356
7357                /* Use the smallest Ingress Padding which isn't smaller than
7358                 * the Memory Controller Read/Write Size.  We'll take that as
7359                 * being 8 bytes since we don't know of any system with a
7360                 * wider Memory Controller Bus Width.
7361                 */
7362                if (is_t5(adap->params.chip))
7363                        ingpad = INGPADBOUNDARY_32B_X;
7364                else
7365                        ingpad = T6_INGPADBOUNDARY_8B_X;
7366
7367                t4_set_reg_field(adap, SGE_CONTROL_A,
7368                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7369                                 EGRSTATUSPAGESIZE_F,
7370                                 INGPADBOUNDARY_V(ingpad) |
7371                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7372                t4_set_reg_field(adap, SGE_CONTROL2_A,
7373                                 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7374                                 INGPACKBOUNDARY_V(ingpack));
7375        }
7376        /*
7377         * Adjust various SGE Free List Host Buffer Sizes.
7378         *
7379         * This is something of a crock since we're using fixed indices into
7380         * the array which are also known by the sge.c code and the T4
7381         * Firmware Configuration File.  We need to come up with a much better
7382         * approach to managing this array.  For now, the first four entries
7383         * are:
7384         *
7385         *   0: Host Page Size
7386         *   1: 64KB
7387         *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7388         *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7389         *
7390         * For the single-MTU buffers in unpacked mode we need to include
7391         * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7392         * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7393         * Padding boundary.  All of these are accommodated in the Factory
7394         * Default Firmware Configuration File but we need to adjust it for
7395         * this host's cache line size.
7396         */
7397        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7398        t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7399                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7400                     & ~(fl_align-1));
7401        t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7402                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7403                     & ~(fl_align-1));
7404
7405        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7406
7407        return 0;
7408}
7409
7410/**
7411 *      t4_fw_initialize - ask FW to initialize the device
7412 *      @adap: the adapter
7413 *      @mbox: mailbox to use for the FW command
7414 *
7415 *      Issues a command to FW to partially initialize the device.  This
7416 *      performs initialization that generally doesn't depend on user input.
7417 */
7418int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7419{
7420        struct fw_initialize_cmd c;
7421
7422        memset(&c, 0, sizeof(c));
7423        INIT_CMD(c, INITIALIZE, WRITE);
7424        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425}
7426
7427/**
7428 *      t4_query_params_rw - query FW or device parameters
7429 *      @adap: the adapter
7430 *      @mbox: mailbox to use for the FW command
7431 *      @pf: the PF
7432 *      @vf: the VF
7433 *      @nparams: the number of parameters
7434 *      @params: the parameter names
7435 *      @val: the parameter values
7436 *      @rw: Write and read flag
7437 *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7438 *
7439 *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7440 *      queried at once.
7441 */
7442int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7443                       unsigned int vf, unsigned int nparams, const u32 *params,
7444                       u32 *val, int rw, bool sleep_ok)
7445{
7446        int i, ret;
7447        struct fw_params_cmd c;
7448        __be32 *p = &c.param[0].mnem;
7449
7450        if (nparams > 7)
7451                return -EINVAL;
7452
7453        memset(&c, 0, sizeof(c));
7454        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7455                                  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7456                                  FW_PARAMS_CMD_PFN_V(pf) |
7457                                  FW_PARAMS_CMD_VFN_V(vf));
7458        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7459
7460        for (i = 0; i < nparams; i++) {
7461                *p++ = cpu_to_be32(*params++);
7462                if (rw)
7463                        *p = cpu_to_be32(*(val + i));
7464                p++;
7465        }
7466
7467        ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7468        if (ret == 0)
7469                for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7470                        *val++ = be32_to_cpu(*p);
7471        return ret;
7472}
7473
7474int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475                    unsigned int vf, unsigned int nparams, const u32 *params,
7476                    u32 *val)
7477{
7478        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7479                                  true);
7480}
7481
7482int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483                       unsigned int vf, unsigned int nparams, const u32 *params,
7484                       u32 *val)
7485{
7486        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487                                  false);
7488}
7489
7490/**
7491 *      t4_set_params_timeout - sets FW or device parameters
7492 *      @adap: the adapter
7493 *      @mbox: mailbox to use for the FW command
7494 *      @pf: the PF
7495 *      @vf: the VF
7496 *      @nparams: the number of parameters
7497 *      @params: the parameter names
7498 *      @val: the parameter values
7499 *      @timeout: the timeout time
7500 *
7501 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7502 *      specified at once.
7503 */
7504int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7505                          unsigned int pf, unsigned int vf,
7506                          unsigned int nparams, const u32 *params,
7507                          const u32 *val, int timeout)
7508{
7509        struct fw_params_cmd c;
7510        __be32 *p = &c.param[0].mnem;
7511
7512        if (nparams > 7)
7513                return -EINVAL;
7514
7515        memset(&c, 0, sizeof(c));
7516        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7517                                  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7518                                  FW_PARAMS_CMD_PFN_V(pf) |
7519                                  FW_PARAMS_CMD_VFN_V(vf));
7520        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7521
7522        while (nparams--) {
7523                *p++ = cpu_to_be32(*params++);
7524                *p++ = cpu_to_be32(*val++);
7525        }
7526
7527        return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7528}
7529
7530/**
7531 *      t4_set_params - sets FW or device parameters
7532 *      @adap: the adapter
7533 *      @mbox: mailbox to use for the FW command
7534 *      @pf: the PF
7535 *      @vf: the VF
7536 *      @nparams: the number of parameters
7537 *      @params: the parameter names
7538 *      @val: the parameter values
7539 *
7540 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7541 *      specified at once.
7542 */
7543int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7544                  unsigned int vf, unsigned int nparams, const u32 *params,
7545                  const u32 *val)
7546{
7547        return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7548                                     FW_CMD_MAX_TIMEOUT);
7549}
7550
7551/**
7552 *      t4_cfg_pfvf - configure PF/VF resource limits
7553 *      @adap: the adapter
7554 *      @mbox: mailbox to use for the FW command
7555 *      @pf: the PF being configured
7556 *      @vf: the VF being configured
7557 *      @txq: the max number of egress queues
7558 *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7559 *      @rxqi: the max number of interrupt-capable ingress queues
7560 *      @rxq: the max number of interruptless ingress queues
7561 *      @tc: the PCI traffic class
7562 *      @vi: the max number of virtual interfaces
7563 *      @cmask: the channel access rights mask for the PF/VF
7564 *      @pmask: the port access rights mask for the PF/VF
7565 *      @nexact: the maximum number of exact MPS filters
7566 *      @rcaps: read capabilities
7567 *      @wxcaps: write/execute capabilities
7568 *
7569 *      Configures resource limits and capabilities for a physical or virtual
7570 *      function.
7571 */
7572int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7573                unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7574                unsigned int rxqi, unsigned int rxq, unsigned int tc,
7575                unsigned int vi, unsigned int cmask, unsigned int pmask,
7576                unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7577{
7578        struct fw_pfvf_cmd c;
7579
7580        memset(&c, 0, sizeof(c));
7581        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7582                                  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7583                                  FW_PFVF_CMD_VFN_V(vf));
7584        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7585        c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7586                                     FW_PFVF_CMD_NIQ_V(rxq));
7587        c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7588                                    FW_PFVF_CMD_PMASK_V(pmask) |
7589                                    FW_PFVF_CMD_NEQ_V(txq));
7590        c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7591                                      FW_PFVF_CMD_NVI_V(vi) |
7592                                      FW_PFVF_CMD_NEXACTF_V(nexact));
7593        c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7594                                        FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7595                                        FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7596        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597}
7598
7599/**
7600 *      t4_alloc_vi - allocate a virtual interface
7601 *      @adap: the adapter
7602 *      @mbox: mailbox to use for the FW command
7603 *      @port: physical port associated with the VI
7604 *      @pf: the PF owning the VI
7605 *      @vf: the VF owning the VI
7606 *      @nmac: number of MAC addresses needed (1 to 5)
7607 *      @mac: the MAC addresses of the VI
7608 *      @rss_size: size of RSS table slice associated with this VI
7609 *      @vivld: the destination to store the VI Valid value.
7610 *      @vin: the destination to store the VIN value.
7611 *
7612 *      Allocates a virtual interface for the given physical port.  If @mac is
7613 *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7614 *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7615 *      stored consecutively so the space needed is @nmac * 6 bytes.
7616 *      Returns a negative error number or the non-negative VI id.
7617 */
7618int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7619                unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7620                unsigned int *rss_size, u8 *vivld, u8 *vin)
7621{
7622        int ret;
7623        struct fw_vi_cmd c;
7624
7625        memset(&c, 0, sizeof(c));
7626        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7627                                  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7628                                  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7629        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7630        c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7631        c.nmac = nmac - 1;
7632
7633        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7634        if (ret)
7635                return ret;
7636
7637        if (mac) {
7638                memcpy(mac, c.mac, sizeof(c.mac));
7639                switch (nmac) {
7640                case 5:
7641                        memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7642                        fallthrough;
7643                case 4:
7644                        memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7645                        fallthrough;
7646                case 3:
7647                        memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7648                        fallthrough;
7649                case 2:
7650                        memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7651                }
7652        }
7653        if (rss_size)
7654                *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7655
7656        if (vivld)
7657                *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7658
7659        if (vin)
7660                *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7661
7662        return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7663}
7664
7665/**
7666 *      t4_free_vi - free a virtual interface
7667 *      @adap: the adapter
7668 *      @mbox: mailbox to use for the FW command
7669 *      @pf: the PF owning the VI
7670 *      @vf: the VF owning the VI
7671 *      @viid: virtual interface identifiler
7672 *
7673 *      Free a previously allocated virtual interface.
7674 */
7675int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676               unsigned int vf, unsigned int viid)
7677{
7678        struct fw_vi_cmd c;
7679
7680        memset(&c, 0, sizeof(c));
7681        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7682                                  FW_CMD_REQUEST_F |
7683                                  FW_CMD_EXEC_F |
7684                                  FW_VI_CMD_PFN_V(pf) |
7685                                  FW_VI_CMD_VFN_V(vf));
7686        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7687        c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7688
7689        return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7690}
7691
7692/**
7693 *      t4_set_rxmode - set Rx properties of a virtual interface
7694 *      @adap: the adapter
7695 *      @mbox: mailbox to use for the FW command
7696 *      @viid: the VI id
7697 *      @viid_mirror: the mirror VI id
7698 *      @mtu: the new MTU or -1
7699 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7700 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7701 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7702 *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7703 *      @sleep_ok: if true we may sleep while awaiting command completion
7704 *
7705 *      Sets Rx properties of a virtual interface.
7706 */
7707int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7708                  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7709                  int bcast, int vlanex, bool sleep_ok)
7710{
7711        struct fw_vi_rxmode_cmd c, c_mirror;
7712        int ret;
7713
7714        /* convert to FW values */
7715        if (mtu < 0)
7716                mtu = FW_RXMODE_MTU_NO_CHG;
7717        if (promisc < 0)
7718                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7719        if (all_multi < 0)
7720                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7721        if (bcast < 0)
7722                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7723        if (vlanex < 0)
7724                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7725
7726        memset(&c, 0, sizeof(c));
7727        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7728                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7729                                   FW_VI_RXMODE_CMD_VIID_V(viid));
7730        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731        c.mtu_to_vlanexen =
7732                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7733                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7734                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7735                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7736                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7737
7738        if (viid_mirror) {
7739                memcpy(&c_mirror, &c, sizeof(c_mirror));
7740                c_mirror.op_to_viid =
7741                        cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7742                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7743                                    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7744        }
7745
7746        ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7747        if (ret)
7748                return ret;
7749
7750        if (viid_mirror)
7751                ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7752                                      NULL, sleep_ok);
7753
7754        return ret;
7755}
7756
7757/**
7758 *      t4_free_encap_mac_filt - frees MPS entry at given index
7759 *      @adap: the adapter
7760 *      @viid: the VI id
7761 *      @idx: index of MPS entry to be freed
7762 *      @sleep_ok: call is allowed to sleep
7763 *
7764 *      Frees the MPS entry at supplied index
7765 *
7766 *      Returns a negative error number or zero on success
7767 */
7768int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7769                           int idx, bool sleep_ok)
7770{
7771        struct fw_vi_mac_exact *p;
7772        struct fw_vi_mac_cmd c;
7773        int ret = 0;
7774        u32 exact;
7775
7776        memset(&c, 0, sizeof(c));
7777        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779                                   FW_CMD_EXEC_V(0) |
7780                                   FW_VI_MAC_CMD_VIID_V(viid));
7781        exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7782        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7783                                          exact |
7784                                          FW_CMD_LEN16_V(1));
7785        p = c.u.exact;
7786        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7787                                      FW_VI_MAC_CMD_IDX_V(idx));
7788        eth_zero_addr(p->macaddr);
7789        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7790        return ret;
7791}
7792
7793/**
7794 *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7795 *      @adap: the adapter
7796 *      @viid: the VI id
7797 *      @addr: the MAC address
7798 *      @mask: the mask
7799 *      @idx: index of the entry in mps tcam
7800 *      @lookup_type: MAC address for inner (1) or outer (0) header
7801 *      @port_id: the port index
7802 *      @sleep_ok: call is allowed to sleep
7803 *
7804 *      Removes the mac entry at the specified index using raw mac interface.
7805 *
7806 *      Returns a negative error number on failure.
7807 */
7808int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7809                         const u8 *addr, const u8 *mask, unsigned int idx,
7810                         u8 lookup_type, u8 port_id, bool sleep_ok)
7811{
7812        struct fw_vi_mac_cmd c;
7813        struct fw_vi_mac_raw *p = &c.u.raw;
7814        u32 val;
7815
7816        memset(&c, 0, sizeof(c));
7817        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7818                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7819                                   FW_CMD_EXEC_V(0) |
7820                                   FW_VI_MAC_CMD_VIID_V(viid));
7821        val = FW_CMD_LEN16_V(1) |
7822              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7823        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7824                                          FW_CMD_LEN16_V(val));
7825
7826        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7827                                     FW_VI_MAC_ID_BASED_FREE);
7828
7829        /* Lookup Type. Outer header: 0, Inner header: 1 */
7830        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7831                                   DATAPORTNUM_V(port_id));
7832        /* Lookup mask and port mask */
7833        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7834                                    DATAPORTNUM_V(DATAPORTNUM_M));
7835
7836        /* Copy the address and the mask */
7837        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7838        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7839
7840        return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841}
7842
7843/**
7844 *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7845 *      @adap: the adapter
7846 *      @viid: the VI id
7847 *      @addr: the MAC address
7848 *      @mask: the mask
7849 *      @vni: the VNI id for the tunnel protocol
7850 *      @vni_mask: mask for the VNI id
7851 *      @dip_hit: to enable DIP match for the MPS entry
7852 *      @lookup_type: MAC address for inner (1) or outer (0) header
7853 *      @sleep_ok: call is allowed to sleep
7854 *
7855 *      Allocates an MPS entry with specified MAC address and VNI value.
7856 *
7857 *      Returns a negative error number or the allocated index for this mac.
7858 */
7859int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7860                            const u8 *addr, const u8 *mask, unsigned int vni,
7861                            unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7862                            bool sleep_ok)
7863{
7864        struct fw_vi_mac_cmd c;
7865        struct fw_vi_mac_vni *p = c.u.exact_vni;
7866        int ret = 0;
7867        u32 val;
7868
7869        memset(&c, 0, sizeof(c));
7870        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7871                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7872                                   FW_VI_MAC_CMD_VIID_V(viid));
7873        val = FW_CMD_LEN16_V(1) |
7874              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7875        c.freemacs_to_len16 = cpu_to_be32(val);
7876        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7877                                      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7878        memcpy(p->macaddr, addr, sizeof(p->macaddr));
7879        memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7880
7881        p->lookup_type_to_vni =
7882                cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7883                            FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7884                            FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7885        p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7886        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7887        if (ret == 0)
7888                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7889        return ret;
7890}
7891
7892/**
7893 *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7894 *      @adap: the adapter
7895 *      @viid: the VI id
7896 *      @addr: the MAC address
7897 *      @mask: the mask
7898 *      @idx: index at which to add this entry
7899 *      @lookup_type: MAC address for inner (1) or outer (0) header
7900 *      @port_id: the port index
7901 *      @sleep_ok: call is allowed to sleep
7902 *
7903 *      Adds the mac entry at the specified index using raw mac interface.
7904 *
7905 *      Returns a negative error number or the allocated index for this mac.
7906 */
7907int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7908                          const u8 *addr, const u8 *mask, unsigned int idx,
7909                          u8 lookup_type, u8 port_id, bool sleep_ok)
7910{
7911        int ret = 0;
7912        struct fw_vi_mac_cmd c;
7913        struct fw_vi_mac_raw *p = &c.u.raw;
7914        u32 val;
7915
7916        memset(&c, 0, sizeof(c));
7917        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7919                                   FW_VI_MAC_CMD_VIID_V(viid));
7920        val = FW_CMD_LEN16_V(1) |
7921              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7922        c.freemacs_to_len16 = cpu_to_be32(val);
7923
7924        /* Specify that this is an inner mac address */
7925        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7926
7927        /* Lookup Type. Outer header: 0, Inner header: 1 */
7928        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7929                                   DATAPORTNUM_V(port_id));
7930        /* Lookup mask and port mask */
7931        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7932                                    DATAPORTNUM_V(DATAPORTNUM_M));
7933
7934        /* Copy the address and the mask */
7935        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7936        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7937
7938        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7939        if (ret == 0) {
7940                ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7941                if (ret != idx)
7942                        ret = -ENOMEM;
7943        }
7944
7945        return ret;
7946}
7947
7948/**
7949 *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7950 *      @adap: the adapter
7951 *      @mbox: mailbox to use for the FW command
7952 *      @viid: the VI id
7953 *      @free: if true any existing filters for this VI id are first removed
7954 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7955 *      @addr: the MAC address(es)
7956 *      @idx: where to store the index of each allocated filter
7957 *      @hash: pointer to hash address filter bitmap
7958 *      @sleep_ok: call is allowed to sleep
7959 *
7960 *      Allocates an exact-match filter for each of the supplied addresses and
7961 *      sets it to the corresponding address.  If @idx is not %NULL it should
7962 *      have at least @naddr entries, each of which will be set to the index of
7963 *      the filter allocated for the corresponding MAC address.  If a filter
7964 *      could not be allocated for an address its index is set to 0xffff.
7965 *      If @hash is not %NULL addresses that fail to allocate an exact filter
7966 *      are hashed and update the hash filter bitmap pointed at by @hash.
7967 *
7968 *      Returns a negative error number or the number of filters allocated.
7969 */
7970int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7971                      unsigned int viid, bool free, unsigned int naddr,
7972                      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7973{
7974        int offset, ret = 0;
7975        struct fw_vi_mac_cmd c;
7976        unsigned int nfilters = 0;
7977        unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7978        unsigned int rem = naddr;
7979
7980        if (naddr > max_naddr)
7981                return -EINVAL;
7982
7983        for (offset = 0; offset < naddr ; /**/) {
7984                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7985                                         rem : ARRAY_SIZE(c.u.exact));
7986                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7987                                                     u.exact[fw_naddr]), 16);
7988                struct fw_vi_mac_exact *p;
7989                int i;
7990
7991                memset(&c, 0, sizeof(c));
7992                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7993                                           FW_CMD_REQUEST_F |
7994                                           FW_CMD_WRITE_F |
7995                                           FW_CMD_EXEC_V(free) |
7996                                           FW_VI_MAC_CMD_VIID_V(viid));
7997                c.freemacs_to_len16 =
7998                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7999                                    FW_CMD_LEN16_V(len16));
8000
8001                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002                        p->valid_to_idx =
8003                                cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8004                                            FW_VI_MAC_CMD_IDX_V(
8005                                                    FW_VI_MAC_ADD_MAC));
8006                        memcpy(p->macaddr, addr[offset + i],
8007                               sizeof(p->macaddr));
8008                }
8009
8010                /* It's okay if we run out of space in our MAC address arena.
8011                 * Some of the addresses we submit may get stored so we need
8012                 * to run through the reply to see what the results were ...
8013                 */
8014                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8015                if (ret && ret != -FW_ENOMEM)
8016                        break;
8017
8018                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8019                        u16 index = FW_VI_MAC_CMD_IDX_G(
8020                                        be16_to_cpu(p->valid_to_idx));
8021
8022                        if (idx)
8023                                idx[offset + i] = (index >= max_naddr ?
8024                                                   0xffff : index);
8025                        if (index < max_naddr)
8026                                nfilters++;
8027                        else if (hash)
8028                                *hash |= (1ULL <<
8029                                          hash_mac_addr(addr[offset + i]));
8030                }
8031
8032                free = false;
8033                offset += fw_naddr;
8034                rem -= fw_naddr;
8035        }
8036
8037        if (ret == 0 || ret == -FW_ENOMEM)
8038                ret = nfilters;
8039        return ret;
8040}
8041
8042/**
8043 *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8044 *      @adap: the adapter
8045 *      @mbox: mailbox to use for the FW command
8046 *      @viid: the VI id
8047 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8048 *      @addr: the MAC address(es)
8049 *      @sleep_ok: call is allowed to sleep
8050 *
8051 *      Frees the exact-match filter for each of the supplied addresses
8052 *
8053 *      Returns a negative error number or the number of filters freed.
8054 */
8055int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8056                     unsigned int viid, unsigned int naddr,
8057                     const u8 **addr, bool sleep_ok)
8058{
8059        int offset, ret = 0;
8060        struct fw_vi_mac_cmd c;
8061        unsigned int nfilters = 0;
8062        unsigned int max_naddr = is_t4(adap->params.chip) ?
8063                                       NUM_MPS_CLS_SRAM_L_INSTANCES :
8064                                       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8065        unsigned int rem = naddr;
8066
8067        if (naddr > max_naddr)
8068                return -EINVAL;
8069
8070        for (offset = 0; offset < (int)naddr ; /**/) {
8071                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8072                                         ? rem
8073                                         : ARRAY_SIZE(c.u.exact));
8074                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8075                                                     u.exact[fw_naddr]), 16);
8076                struct fw_vi_mac_exact *p;
8077                int i;
8078
8079                memset(&c, 0, sizeof(c));
8080                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8081                                     FW_CMD_REQUEST_F |
8082                                     FW_CMD_WRITE_F |
8083                                     FW_CMD_EXEC_V(0) |
8084                                     FW_VI_MAC_CMD_VIID_V(viid));
8085                c.freemacs_to_len16 =
8086                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8087                                            FW_CMD_LEN16_V(len16));
8088
8089                for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8090                        p->valid_to_idx = cpu_to_be16(
8091                                FW_VI_MAC_CMD_VALID_F |
8092                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8093                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8094                }
8095
8096                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8097                if (ret)
8098                        break;
8099
8100                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8101                        u16 index = FW_VI_MAC_CMD_IDX_G(
8102                                                be16_to_cpu(p->valid_to_idx));
8103
8104                        if (index < max_naddr)
8105                                nfilters++;
8106                }
8107
8108                offset += fw_naddr;
8109                rem -= fw_naddr;
8110        }
8111
8112        if (ret == 0)
8113                ret = nfilters;
8114        return ret;
8115}
8116
8117/**
8118 *      t4_change_mac - modifies the exact-match filter for a MAC address
8119 *      @adap: the adapter
8120 *      @mbox: mailbox to use for the FW command
8121 *      @viid: the VI id
8122 *      @idx: index of existing filter for old value of MAC address, or -1
8123 *      @addr: the new MAC address value
8124 *      @persist: whether a new MAC allocation should be persistent
8125 *      @smt_idx: the destination to store the new SMT index.
8126 *
8127 *      Modifies an exact-match filter and sets it to the new MAC address.
8128 *      Note that in general it is not possible to modify the value of a given
8129 *      filter so the generic way to modify an address filter is to free the one
8130 *      being used by the old address value and allocate a new filter for the
8131 *      new address value.  @idx can be -1 if the address is a new addition.
8132 *
8133 *      Returns a negative error number or the index of the filter with the new
8134 *      MAC value.
8135 */
8136int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8137                  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8138{
8139        int ret, mode;
8140        struct fw_vi_mac_cmd c;
8141        struct fw_vi_mac_exact *p = c.u.exact;
8142        unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8143
8144        if (idx < 0)                             /* new allocation */
8145                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8146        mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8147
8148        memset(&c, 0, sizeof(c));
8149        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8150                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8151                                   FW_VI_MAC_CMD_VIID_V(viid));
8152        c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8153        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8154                                      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8155                                      FW_VI_MAC_CMD_IDX_V(idx));
8156        memcpy(p->macaddr, addr, sizeof(p->macaddr));
8157
8158        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8159        if (ret == 0) {
8160                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8161                if (ret >= max_mac_addr)
8162                        ret = -ENOMEM;
8163                if (smt_idx) {
8164                        if (adap->params.viid_smt_extn_support) {
8165                                *smt_idx = FW_VI_MAC_CMD_SMTID_G
8166                                                    (be32_to_cpu(c.op_to_viid));
8167                        } else {
8168                                /* In T4/T5, SMT contains 256 SMAC entries
8169                                 * organized in 128 rows of 2 entries each.
8170                                 * In T6, SMT contains 256 SMAC entries in
8171                                 * 256 rows.
8172                                 */
8173                                if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8174                                                                     CHELSIO_T5)
8175                                        *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8176                                else
8177                                        *smt_idx = (viid & FW_VIID_VIN_M);
8178                        }
8179                }
8180        }
8181        return ret;
8182}
8183
8184/**
8185 *      t4_set_addr_hash - program the MAC inexact-match hash filter
8186 *      @adap: the adapter
8187 *      @mbox: mailbox to use for the FW command
8188 *      @viid: the VI id
8189 *      @ucast: whether the hash filter should also match unicast addresses
8190 *      @vec: the value to be written to the hash filter
8191 *      @sleep_ok: call is allowed to sleep
8192 *
8193 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8194 */
8195int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8196                     bool ucast, u64 vec, bool sleep_ok)
8197{
8198        struct fw_vi_mac_cmd c;
8199
8200        memset(&c, 0, sizeof(c));
8201        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8202                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8203                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8204        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8205                                          FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8206                                          FW_CMD_LEN16_V(1));
8207        c.u.hash.hashvec = cpu_to_be64(vec);
8208        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8209}
8210
8211/**
8212 *      t4_enable_vi_params - enable/disable a virtual interface
8213 *      @adap: the adapter
8214 *      @mbox: mailbox to use for the FW command
8215 *      @viid: the VI id
8216 *      @rx_en: 1=enable Rx, 0=disable Rx
8217 *      @tx_en: 1=enable Tx, 0=disable Tx
8218 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8219 *
8220 *      Enables/disables a virtual interface.  Note that setting DCB Enable
8221 *      only makes sense when enabling a Virtual Interface ...
8222 */
8223int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8224                        unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8225{
8226        struct fw_vi_enable_cmd c;
8227
8228        memset(&c, 0, sizeof(c));
8229        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8230                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8231                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8232        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8233                                     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8234                                     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8235                                     FW_LEN16(c));
8236        return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8237}
8238
8239/**
8240 *      t4_enable_vi - enable/disable a virtual interface
8241 *      @adap: the adapter
8242 *      @mbox: mailbox to use for the FW command
8243 *      @viid: the VI id
8244 *      @rx_en: 1=enable Rx, 0=disable Rx
8245 *      @tx_en: 1=enable Tx, 0=disable Tx
8246 *
8247 *      Enables/disables a virtual interface.
8248 */
8249int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8250                 bool rx_en, bool tx_en)
8251{
8252        return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8253}
8254
8255/**
8256 *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8257 *      @adap: the adapter
8258 *      @mbox: mailbox to use for the FW command
8259 *      @pi: the Port Information structure
8260 *      @rx_en: 1=enable Rx, 0=disable Rx
8261 *      @tx_en: 1=enable Tx, 0=disable Tx
8262 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8263 *
8264 *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8265 *      Enable only makes sense when enabling a Virtual Interface ...
8266 *      If the Virtual Interface enable/disable operation is successful,
8267 *      we notify the OS-specific code of a potential Link Status change
8268 *      via the OS Contract API t4_os_link_changed().
8269 */
8270int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8271                        struct port_info *pi,
8272                        bool rx_en, bool tx_en, bool dcb_en)
8273{
8274        int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8275                                      rx_en, tx_en, dcb_en);
8276        if (ret)
8277                return ret;
8278        t4_os_link_changed(adap, pi->port_id,
8279                           rx_en && tx_en && pi->link_cfg.link_ok);
8280        return 0;
8281}
8282
8283/**
8284 *      t4_identify_port - identify a VI's port by blinking its LED
8285 *      @adap: the adapter
8286 *      @mbox: mailbox to use for the FW command
8287 *      @viid: the VI id
8288 *      @nblinks: how many times to blink LED at 2.5 Hz
8289 *
8290 *      Identifies a VI's port by blinking its LED.
8291 */
8292int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8293                     unsigned int nblinks)
8294{
8295        struct fw_vi_enable_cmd c;
8296
8297        memset(&c, 0, sizeof(c));
8298        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8299                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8300                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8301        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8302        c.blinkdur = cpu_to_be16(nblinks);
8303        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8304}
8305
8306/**
8307 *      t4_iq_stop - stop an ingress queue and its FLs
8308 *      @adap: the adapter
8309 *      @mbox: mailbox to use for the FW command
8310 *      @pf: the PF owning the queues
8311 *      @vf: the VF owning the queues
8312 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8313 *      @iqid: ingress queue id
8314 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8315 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8316 *
8317 *      Stops an ingress queue and its associated FLs, if any.  This causes
8318 *      any current or future data/messages destined for these queues to be
8319 *      tossed.
8320 */
8321int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8322               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8323               unsigned int fl0id, unsigned int fl1id)
8324{
8325        struct fw_iq_cmd c;
8326
8327        memset(&c, 0, sizeof(c));
8328        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8329                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8330                                  FW_IQ_CMD_VFN_V(vf));
8331        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8332        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8333        c.iqid = cpu_to_be16(iqid);
8334        c.fl0id = cpu_to_be16(fl0id);
8335        c.fl1id = cpu_to_be16(fl1id);
8336        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337}
8338
8339/**
8340 *      t4_iq_free - free an ingress queue and its FLs
8341 *      @adap: the adapter
8342 *      @mbox: mailbox to use for the FW command
8343 *      @pf: the PF owning the queues
8344 *      @vf: the VF owning the queues
8345 *      @iqtype: the ingress queue type
8346 *      @iqid: ingress queue id
8347 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8348 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8349 *
8350 *      Frees an ingress queue and its associated FLs, if any.
8351 */
8352int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354               unsigned int fl0id, unsigned int fl1id)
8355{
8356        struct fw_iq_cmd c;
8357
8358        memset(&c, 0, sizeof(c));
8359        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361                                  FW_IQ_CMD_VFN_V(vf));
8362        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8363        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364        c.iqid = cpu_to_be16(iqid);
8365        c.fl0id = cpu_to_be16(fl0id);
8366        c.fl1id = cpu_to_be16(fl1id);
8367        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368}
8369
8370/**
8371 *      t4_eth_eq_free - free an Ethernet egress queue
8372 *      @adap: the adapter
8373 *      @mbox: mailbox to use for the FW command
8374 *      @pf: the PF owning the queue
8375 *      @vf: the VF owning the queue
8376 *      @eqid: egress queue id
8377 *
8378 *      Frees an Ethernet egress queue.
8379 */
8380int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8381                   unsigned int vf, unsigned int eqid)
8382{
8383        struct fw_eq_eth_cmd c;
8384
8385        memset(&c, 0, sizeof(c));
8386        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8387                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8388                                  FW_EQ_ETH_CMD_PFN_V(pf) |
8389                                  FW_EQ_ETH_CMD_VFN_V(vf));
8390        c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8391        c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8392        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8393}
8394
8395/**
8396 *      t4_ctrl_eq_free - free a control egress queue
8397 *      @adap: the adapter
8398 *      @mbox: mailbox to use for the FW command
8399 *      @pf: the PF owning the queue
8400 *      @vf: the VF owning the queue
8401 *      @eqid: egress queue id
8402 *
8403 *      Frees a control egress queue.
8404 */
8405int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8406                    unsigned int vf, unsigned int eqid)
8407{
8408        struct fw_eq_ctrl_cmd c;
8409
8410        memset(&c, 0, sizeof(c));
8411        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8412                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8413                                  FW_EQ_CTRL_CMD_PFN_V(pf) |
8414                                  FW_EQ_CTRL_CMD_VFN_V(vf));
8415        c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8416        c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8417        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8418}
8419
8420/**
8421 *      t4_ofld_eq_free - free an offload egress queue
8422 *      @adap: the adapter
8423 *      @mbox: mailbox to use for the FW command
8424 *      @pf: the PF owning the queue
8425 *      @vf: the VF owning the queue
8426 *      @eqid: egress queue id
8427 *
8428 *      Frees a control egress queue.
8429 */
8430int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8431                    unsigned int vf, unsigned int eqid)
8432{
8433        struct fw_eq_ofld_cmd c;
8434
8435        memset(&c, 0, sizeof(c));
8436        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8437                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8438                                  FW_EQ_OFLD_CMD_PFN_V(pf) |
8439                                  FW_EQ_OFLD_CMD_VFN_V(vf));
8440        c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8441        c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8442        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8443}
8444
8445/**
8446 *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8447 *      @link_down_rc: Link Down Reason Code
8448 *
8449 *      Returns a string representation of the Link Down Reason Code.
8450 */
8451static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8452{
8453        static const char * const reason[] = {
8454                "Link Down",
8455                "Remote Fault",
8456                "Auto-negotiation Failure",
8457                "Reserved",
8458                "Insufficient Airflow",
8459                "Unable To Determine Reason",
8460                "No RX Signal Detected",
8461                "Reserved",
8462        };
8463
8464        if (link_down_rc >= ARRAY_SIZE(reason))
8465                return "Bad Reason Code";
8466
8467        return reason[link_down_rc];
8468}
8469
8470/* Return the highest speed set in the port capabilities, in Mb/s. */
8471static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8472{
8473        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8474                do { \
8475                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476                                return __speed; \
8477                } while (0)
8478
8479        TEST_SPEED_RETURN(400G, 400000);
8480        TEST_SPEED_RETURN(200G, 200000);
8481        TEST_SPEED_RETURN(100G, 100000);
8482        TEST_SPEED_RETURN(50G,   50000);
8483        TEST_SPEED_RETURN(40G,   40000);
8484        TEST_SPEED_RETURN(25G,   25000);
8485        TEST_SPEED_RETURN(10G,   10000);
8486        TEST_SPEED_RETURN(1G,     1000);
8487        TEST_SPEED_RETURN(100M,    100);
8488
8489        #undef TEST_SPEED_RETURN
8490
8491        return 0;
8492}
8493
8494/**
8495 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8496 *      @acaps: advertised Port Capabilities
8497 *
8498 *      Get the highest speed for the port from the advertised Port
8499 *      Capabilities.  It will be either the highest speed from the list of
8500 *      speeds or whatever user has set using ethtool.
8501 */
8502static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8503{
8504        #define TEST_SPEED_RETURN(__caps_speed) \
8505                do { \
8506                        if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507                                return FW_PORT_CAP32_SPEED_##__caps_speed; \
8508                } while (0)
8509
8510        TEST_SPEED_RETURN(400G);
8511        TEST_SPEED_RETURN(200G);
8512        TEST_SPEED_RETURN(100G);
8513        TEST_SPEED_RETURN(50G);
8514        TEST_SPEED_RETURN(40G);
8515        TEST_SPEED_RETURN(25G);
8516        TEST_SPEED_RETURN(10G);
8517        TEST_SPEED_RETURN(1G);
8518        TEST_SPEED_RETURN(100M);
8519
8520        #undef TEST_SPEED_RETURN
8521
8522        return 0;
8523}
8524
8525/**
8526 *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8527 *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8528 *
8529 *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8530 *      32-bit Port Capabilities value.
8531 */
8532static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8533{
8534        fw_port_cap32_t linkattr = 0;
8535
8536        /* Unfortunately the format of the Link Status in the old
8537         * 16-bit Port Information message isn't the same as the
8538         * 16-bit Port Capabilities bitfield used everywhere else ...
8539         */
8540        if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8541                linkattr |= FW_PORT_CAP32_FC_RX;
8542        if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8543                linkattr |= FW_PORT_CAP32_FC_TX;
8544        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8545                linkattr |= FW_PORT_CAP32_SPEED_100M;
8546        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8547                linkattr |= FW_PORT_CAP32_SPEED_1G;
8548        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8549                linkattr |= FW_PORT_CAP32_SPEED_10G;
8550        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8551                linkattr |= FW_PORT_CAP32_SPEED_25G;
8552        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8553                linkattr |= FW_PORT_CAP32_SPEED_40G;
8554        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8555                linkattr |= FW_PORT_CAP32_SPEED_100G;
8556
8557        return linkattr;
8558}
8559
8560/**
8561 *      t4_handle_get_port_info - process a FW reply message
8562 *      @pi: the port info
8563 *      @rpl: start of the FW message
8564 *
8565 *      Processes a GET_PORT_INFO FW reply message.
8566 */
8567void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8568{
8569        const struct fw_port_cmd *cmd = (const void *)rpl;
8570        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8571        struct link_config *lc = &pi->link_cfg;
8572        struct adapter *adapter = pi->adapter;
8573        unsigned int speed, fc, fec, adv_fc;
8574        enum fw_port_module_type mod_type;
8575        int action, link_ok, linkdnrc;
8576        enum fw_port_type port_type;
8577
8578        /* Extract the various fields from the Port Information message.
8579         */
8580        action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8581        switch (action) {
8582        case FW_PORT_ACTION_GET_PORT_INFO: {
8583                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8584
8585                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8586                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8587                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8588                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8589                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8590                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8591                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8592                linkattr = lstatus_to_fwcap(lstatus);
8593                break;
8594        }
8595
8596        case FW_PORT_ACTION_GET_PORT_INFO32: {
8597                u32 lstatus32;
8598
8599                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8600                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8601                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8602                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8603                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8604                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8605                acaps = be32_to_cpu(cmd->u.info32.acaps32);
8606                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8607                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8608                break;
8609        }
8610
8611        default:
8612                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8613                        be32_to_cpu(cmd->action_to_len16));
8614                return;
8615        }
8616
8617        fec = fwcap_to_cc_fec(acaps);
8618        adv_fc = fwcap_to_cc_pause(acaps);
8619        fc = fwcap_to_cc_pause(linkattr);
8620        speed = fwcap_to_speed(linkattr);
8621
8622        /* Reset state for communicating new Transceiver Module status and
8623         * whether the OS-dependent layer wants us to redo the current
8624         * "sticky" L1 Configure Link Parameters.
8625         */
8626        lc->new_module = false;
8627        lc->redo_l1cfg = false;
8628
8629        if (mod_type != pi->mod_type) {
8630                /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8631                 * various fundamental Port Capabilities which used to be
8632                 * immutable can now change radically.  We can now have
8633                 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8634                 * all change based on what Transceiver Module is inserted.
8635                 * So we need to record the Physical "Port" Capabilities on
8636                 * every Transceiver Module change.
8637                 */
8638                lc->pcaps = pcaps;
8639
8640                /* When a new Transceiver Module is inserted, the Firmware
8641                 * will examine its i2c EPROM to determine its type and
8642                 * general operating parameters including things like Forward
8643                 * Error Control, etc.  Various IEEE 802.3 standards dictate
8644                 * how to interpret these i2c values to determine default
8645                 * "sutomatic" settings.  We record these for future use when
8646                 * the user explicitly requests these standards-based values.
8647                 */
8648                lc->def_acaps = acaps;
8649
8650                /* Some versions of the early T6 Firmware "cheated" when
8651                 * handling different Transceiver Modules by changing the
8652                 * underlaying Port Type reported to the Host Drivers.  As
8653                 * such we need to capture whatever Port Type the Firmware
8654                 * sends us and record it in case it's different from what we
8655                 * were told earlier.  Unfortunately, since Firmware is
8656                 * forever, we'll need to keep this code here forever, but in
8657                 * later T6 Firmware it should just be an assignment of the
8658                 * same value already recorded.
8659                 */
8660                pi->port_type = port_type;
8661
8662                /* Record new Module Type information.
8663                 */
8664                pi->mod_type = mod_type;
8665
8666                /* Let the OS-dependent layer know if we have a new
8667                 * Transceiver Module inserted.
8668                 */
8669                lc->new_module = t4_is_inserted_mod_type(mod_type);
8670
8671                t4_os_portmod_changed(adapter, pi->port_id);
8672        }
8673
8674        if (link_ok != lc->link_ok || speed != lc->speed ||
8675            fc != lc->fc || adv_fc != lc->advertised_fc ||
8676            fec != lc->fec) {
8677                /* something changed */
8678                if (!link_ok && lc->link_ok) {
8679                        lc->link_down_rc = linkdnrc;
8680                        dev_warn_ratelimited(adapter->pdev_dev,
8681                                             "Port %d link down, reason: %s\n",
8682                                             pi->tx_chan,
8683                                             t4_link_down_rc_str(linkdnrc));
8684                }
8685                lc->link_ok = link_ok;
8686                lc->speed = speed;
8687                lc->advertised_fc = adv_fc;
8688                lc->fc = fc;
8689                lc->fec = fec;
8690
8691                lc->lpacaps = lpacaps;
8692                lc->acaps = acaps & ADVERT_MASK;
8693
8694                /* If we're not physically capable of Auto-Negotiation, note
8695                 * this as Auto-Negotiation disabled.  Otherwise, we track
8696                 * what Auto-Negotiation settings we have.  Note parallel
8697                 * structure in t4_link_l1cfg_core() and init_link_config().
8698                 */
8699                if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8700                        lc->autoneg = AUTONEG_DISABLE;
8701                } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8702                        lc->autoneg = AUTONEG_ENABLE;
8703                } else {
8704                        /* When Autoneg is disabled, user needs to set
8705                         * single speed.
8706                         * Similar to cxgb4_ethtool.c: set_link_ksettings
8707                         */
8708                        lc->acaps = 0;
8709                        lc->speed_caps = fwcap_to_fwspeed(acaps);
8710                        lc->autoneg = AUTONEG_DISABLE;
8711                }
8712
8713                t4_os_link_changed(adapter, pi->port_id, link_ok);
8714        }
8715
8716        /* If we have a new Transceiver Module and the OS-dependent code has
8717         * told us that it wants us to redo whatever "sticky" L1 Configuration
8718         * Link Parameters are set, do that now.
8719         */
8720        if (lc->new_module && lc->redo_l1cfg) {
8721                struct link_config old_lc;
8722                int ret;
8723
8724                /* Save the current L1 Configuration and restore it if an
8725                 * error occurs.  We probably should fix the l1_cfg*()
8726                 * routines not to change the link_config when an error
8727                 * occurs ...
8728                 */
8729                old_lc = *lc;
8730                ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8731                if (ret) {
8732                        *lc = old_lc;
8733                        dev_warn(adapter->pdev_dev,
8734                                 "Attempt to update new Transceiver Module settings failed\n");
8735                }
8736        }
8737        lc->new_module = false;
8738        lc->redo_l1cfg = false;
8739}
8740
8741/**
8742 *      t4_update_port_info - retrieve and update port information if changed
8743 *      @pi: the port_info
8744 *
8745 *      We issue a Get Port Information Command to the Firmware and, if
8746 *      successful, we check to see if anything is different from what we
8747 *      last recorded and update things accordingly.
8748 */
8749int t4_update_port_info(struct port_info *pi)
8750{
8751        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8752        struct fw_port_cmd port_cmd;
8753        int ret;
8754
8755        memset(&port_cmd, 0, sizeof(port_cmd));
8756        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8757                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8758                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8759        port_cmd.action_to_len16 = cpu_to_be32(
8760                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8761                                     ? FW_PORT_ACTION_GET_PORT_INFO
8762                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
8763                FW_LEN16(port_cmd));
8764        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8765                         &port_cmd, sizeof(port_cmd), &port_cmd);
8766        if (ret)
8767                return ret;
8768
8769        t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8770        return 0;
8771}
8772
8773/**
8774 *      t4_get_link_params - retrieve basic link parameters for given port
8775 *      @pi: the port
8776 *      @link_okp: value return pointer for link up/down
8777 *      @speedp: value return pointer for speed (Mb/s)
8778 *      @mtup: value return pointer for mtu
8779 *
8780 *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8781 *      and MTU for a specified port.  A negative error is returned on
8782 *      failure; 0 on success.
8783 */
8784int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8785                       unsigned int *speedp, unsigned int *mtup)
8786{
8787        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8788        unsigned int action, link_ok, mtu;
8789        struct fw_port_cmd port_cmd;
8790        fw_port_cap32_t linkattr;
8791        int ret;
8792
8793        memset(&port_cmd, 0, sizeof(port_cmd));
8794        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8795                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8796                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8797        action = (fw_caps == FW_CAPS16
8798                  ? FW_PORT_ACTION_GET_PORT_INFO
8799                  : FW_PORT_ACTION_GET_PORT_INFO32);
8800        port_cmd.action_to_len16 = cpu_to_be32(
8801                FW_PORT_CMD_ACTION_V(action) |
8802                FW_LEN16(port_cmd));
8803        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8804                         &port_cmd, sizeof(port_cmd), &port_cmd);
8805        if (ret)
8806                return ret;
8807
8808        if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8809                u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8810
8811                link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8812                linkattr = lstatus_to_fwcap(lstatus);
8813                mtu = be16_to_cpu(port_cmd.u.info.mtu);
8814        } else {
8815                u32 lstatus32 =
8816                           be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8817
8818                link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8819                linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8820                mtu = FW_PORT_CMD_MTU32_G(
8821                        be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8822        }
8823
8824        if (link_okp)
8825                *link_okp = link_ok;
8826        if (speedp)
8827                *speedp = fwcap_to_speed(linkattr);
8828        if (mtup)
8829                *mtup = mtu;
8830
8831        return 0;
8832}
8833
8834/**
8835 *      t4_handle_fw_rpl - process a FW reply message
8836 *      @adap: the adapter
8837 *      @rpl: start of the FW message
8838 *
8839 *      Processes a FW message, such as link state change messages.
8840 */
8841int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8842{
8843        u8 opcode = *(const u8 *)rpl;
8844
8845        /* This might be a port command ... this simplifies the following
8846         * conditionals ...  We can get away with pre-dereferencing
8847         * action_to_len16 because it's in the first 16 bytes and all messages
8848         * will be at least that long.
8849         */
8850        const struct fw_port_cmd *p = (const void *)rpl;
8851        unsigned int action =
8852                FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8853
8854        if (opcode == FW_PORT_CMD &&
8855            (action == FW_PORT_ACTION_GET_PORT_INFO ||
8856             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8857                int i;
8858                int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8859                struct port_info *pi = NULL;
8860
8861                for_each_port(adap, i) {
8862                        pi = adap2pinfo(adap, i);
8863                        if (pi->tx_chan == chan)
8864                                break;
8865                }
8866
8867                t4_handle_get_port_info(pi, rpl);
8868        } else {
8869                dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8870                         opcode);
8871                return -EINVAL;
8872        }
8873        return 0;
8874}
8875
8876static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8877{
8878        u16 val;
8879
8880        if (pci_is_pcie(adapter->pdev)) {
8881                pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8882                p->speed = val & PCI_EXP_LNKSTA_CLS;
8883                p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8884        }
8885}
8886
8887/**
8888 *      init_link_config - initialize a link's SW state
8889 *      @lc: pointer to structure holding the link state
8890 *      @pcaps: link Port Capabilities
8891 *      @acaps: link current Advertised Port Capabilities
8892 *
8893 *      Initializes the SW state maintained for each link, including the link's
8894 *      capabilities and default speed/flow-control/autonegotiation settings.
8895 */
8896static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8897                             fw_port_cap32_t acaps)
8898{
8899        lc->pcaps = pcaps;
8900        lc->def_acaps = acaps;
8901        lc->lpacaps = 0;
8902        lc->speed_caps = 0;
8903        lc->speed = 0;
8904        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8905
8906        /* For Forward Error Control, we default to whatever the Firmware
8907         * tells us the Link is currently advertising.
8908         */
8909        lc->requested_fec = FEC_AUTO;
8910        lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8911
8912        /* If the Port is capable of Auto-Negtotiation, initialize it as
8913         * "enabled" and copy over all of the Physical Port Capabilities
8914         * to the Advertised Port Capabilities.  Otherwise mark it as
8915         * Auto-Negotiate disabled and select the highest supported speed
8916         * for the link.  Note parallel structure in t4_link_l1cfg_core()
8917         * and t4_handle_get_port_info().
8918         */
8919        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8920                lc->acaps = lc->pcaps & ADVERT_MASK;
8921                lc->autoneg = AUTONEG_ENABLE;
8922                lc->requested_fc |= PAUSE_AUTONEG;
8923        } else {
8924                lc->acaps = 0;
8925                lc->autoneg = AUTONEG_DISABLE;
8926                lc->speed_caps = fwcap_to_fwspeed(acaps);
8927        }
8928}
8929
8930#define CIM_PF_NOACCESS 0xeeeeeeee
8931
8932int t4_wait_dev_ready(void __iomem *regs)
8933{
8934        u32 whoami;
8935
8936        whoami = readl(regs + PL_WHOAMI_A);
8937        if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8938                return 0;
8939
8940        msleep(500);
8941        whoami = readl(regs + PL_WHOAMI_A);
8942        return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8943}
8944
8945struct flash_desc {
8946        u32 vendor_and_model_id;
8947        u32 size_mb;
8948};
8949
8950static int t4_get_flash_params(struct adapter *adap)
8951{
8952        /* Table for non-Numonix supported flash parts.  Numonix parts are left
8953         * to the preexisting code.  All flash parts have 64KB sectors.
8954         */
8955        static struct flash_desc supported_flash[] = {
8956                { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8957        };
8958
8959        unsigned int part, manufacturer;
8960        unsigned int density, size = 0;
8961        u32 flashid = 0;
8962        int ret;
8963
8964        /* Issue a Read ID Command to the Flash part.  We decode supported
8965         * Flash parts and their sizes from this.  There's a newer Query
8966         * Command which can retrieve detailed geometry information but many
8967         * Flash parts don't support it.
8968         */
8969
8970        ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8971        if (!ret)
8972                ret = sf1_read(adap, 3, 0, 1, &flashid);
8973        t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8974        if (ret)
8975                return ret;
8976
8977        /* Check to see if it's one of our non-standard supported Flash parts.
8978         */
8979        for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8980                if (supported_flash[part].vendor_and_model_id == flashid) {
8981                        adap->params.sf_size = supported_flash[part].size_mb;
8982                        adap->params.sf_nsec =
8983                                adap->params.sf_size / SF_SEC_SIZE;
8984                        goto found;
8985                }
8986
8987        /* Decode Flash part size.  The code below looks repetitive with
8988         * common encodings, but that's not guaranteed in the JEDEC
8989         * specification for the Read JEDEC ID command.  The only thing that
8990         * we're guaranteed by the JEDEC specification is where the
8991         * Manufacturer ID is in the returned result.  After that each
8992         * Manufacturer ~could~ encode things completely differently.
8993         * Note, all Flash parts must have 64KB sectors.
8994         */
8995        manufacturer = flashid & 0xff;
8996        switch (manufacturer) {
8997        case 0x20: { /* Micron/Numonix */
8998                /* This Density -> Size decoding table is taken from Micron
8999                 * Data Sheets.
9000                 */
9001                density = (flashid >> 16) & 0xff;
9002                switch (density) {
9003                case 0x14: /* 1MB */
9004                        size = 1 << 20;
9005                        break;
9006                case 0x15: /* 2MB */
9007                        size = 1 << 21;
9008                        break;
9009                case 0x16: /* 4MB */
9010                        size = 1 << 22;
9011                        break;
9012                case 0x17: /* 8MB */
9013                        size = 1 << 23;
9014                        break;
9015                case 0x18: /* 16MB */
9016                        size = 1 << 24;
9017                        break;
9018                case 0x19: /* 32MB */
9019                        size = 1 << 25;
9020                        break;
9021                case 0x20: /* 64MB */
9022                        size = 1 << 26;
9023                        break;
9024                case 0x21: /* 128MB */
9025                        size = 1 << 27;
9026                        break;
9027                case 0x22: /* 256MB */
9028                        size = 1 << 28;
9029                        break;
9030                }
9031                break;
9032        }
9033        case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9034                /* This Density -> Size decoding table is taken from ISSI
9035                 * Data Sheets.
9036                 */
9037                density = (flashid >> 16) & 0xff;
9038                switch (density) {
9039                case 0x16: /* 32 MB */
9040                        size = 1 << 25;
9041                        break;
9042                case 0x17: /* 64MB */
9043                        size = 1 << 26;
9044                        break;
9045                }
9046                break;
9047        }
9048        case 0xc2: { /* Macronix */
9049                /* This Density -> Size decoding table is taken from Macronix
9050                 * Data Sheets.
9051                 */
9052                density = (flashid >> 16) & 0xff;
9053                switch (density) {
9054                case 0x17: /* 8MB */
9055                        size = 1 << 23;
9056                        break;
9057                case 0x18: /* 16MB */
9058                        size = 1 << 24;
9059                        break;
9060                }
9061                break;
9062        }
9063        case 0xef: { /* Winbond */
9064                /* This Density -> Size decoding table is taken from Winbond
9065                 * Data Sheets.
9066                 */
9067                density = (flashid >> 16) & 0xff;
9068                switch (density) {
9069                case 0x17: /* 8MB */
9070                        size = 1 << 23;
9071                        break;
9072                case 0x18: /* 16MB */
9073                        size = 1 << 24;
9074                        break;
9075                }
9076                break;
9077        }
9078        }
9079
9080        /* If we didn't recognize the FLASH part, that's no real issue: the
9081         * Hardware/Software contract says that Hardware will _*ALWAYS*_
9082         * use a FLASH part which is at least 4MB in size and has 64KB
9083         * sectors.  The unrecognized FLASH part is likely to be much larger
9084         * than 4MB, but that's all we really need.
9085         */
9086        if (size == 0) {
9087                dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9088                         flashid);
9089                size = 1 << 22;
9090        }
9091
9092        /* Store decoded Flash size and fall through into vetting code. */
9093        adap->params.sf_size = size;
9094        adap->params.sf_nsec = size / SF_SEC_SIZE;
9095
9096found:
9097        if (adap->params.sf_size < FLASH_MIN_SIZE)
9098                dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9099                         flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9100        return 0;
9101}
9102
9103/**
9104 *      t4_prep_adapter - prepare SW and HW for operation
9105 *      @adapter: the adapter
9106 *
9107 *      Initialize adapter SW state for the various HW modules, set initial
9108 *      values for some adapter tunables, take PHYs out of reset, and
9109 *      initialize the MDIO interface.
9110 */
9111int t4_prep_adapter(struct adapter *adapter)
9112{
9113        int ret, ver;
9114        uint16_t device_id;
9115        u32 pl_rev;
9116
9117        get_pci_mode(adapter, &adapter->params.pci);
9118        pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9119
9120        ret = t4_get_flash_params(adapter);
9121        if (ret < 0) {
9122                dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9123                return ret;
9124        }
9125
9126        /* Retrieve adapter's device ID
9127         */
9128        pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9129        ver = device_id >> 12;
9130        adapter->params.chip = 0;
9131        switch (ver) {
9132        case CHELSIO_T4:
9133                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9134                adapter->params.arch.sge_fl_db = DBPRIO_F;
9135                adapter->params.arch.mps_tcam_size =
9136                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
9137                adapter->params.arch.mps_rplc_size = 128;
9138                adapter->params.arch.nchan = NCHAN;
9139                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9140                adapter->params.arch.vfcount = 128;
9141                /* Congestion map is for 4 channels so that
9142                 * MPS can have 4 priority per port.
9143                 */
9144                adapter->params.arch.cng_ch_bits_log = 2;
9145                break;
9146        case CHELSIO_T5:
9147                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9148                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9149                adapter->params.arch.mps_tcam_size =
9150                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9151                adapter->params.arch.mps_rplc_size = 128;
9152                adapter->params.arch.nchan = NCHAN;
9153                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154                adapter->params.arch.vfcount = 128;
9155                adapter->params.arch.cng_ch_bits_log = 2;
9156                break;
9157        case CHELSIO_T6:
9158                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9159                adapter->params.arch.sge_fl_db = 0;
9160                adapter->params.arch.mps_tcam_size =
9161                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9162                adapter->params.arch.mps_rplc_size = 256;
9163                adapter->params.arch.nchan = 2;
9164                adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9165                adapter->params.arch.vfcount = 256;
9166                /* Congestion map will be for 2 channels so that
9167                 * MPS can have 8 priority per port.
9168                 */
9169                adapter->params.arch.cng_ch_bits_log = 3;
9170                break;
9171        default:
9172                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9173                        device_id);
9174                return -EINVAL;
9175        }
9176
9177        adapter->params.cim_la_size = CIMLA_SIZE;
9178        init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9179
9180        /*
9181         * Default port for debugging in case we can't reach FW.
9182         */
9183        adapter->params.nports = 1;
9184        adapter->params.portvec = 1;
9185        adapter->params.vpd.cclk = 50000;
9186
9187        /* Set PCIe completion timeout to 4 seconds. */
9188        pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9189                                           PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9190        return 0;
9191}
9192
9193/**
9194 *      t4_shutdown_adapter - shut down adapter, host & wire
9195 *      @adapter: the adapter
9196 *
9197 *      Perform an emergency shutdown of the adapter and stop it from
9198 *      continuing any further communication on the ports or DMA to the
9199 *      host.  This is typically used when the adapter and/or firmware
9200 *      have crashed and we want to prevent any further accidental
9201 *      communication with the rest of the world.  This will also force
9202 *      the port Link Status to go down -- if register writes work --
9203 *      which should help our peers figure out that we're down.
9204 */
9205int t4_shutdown_adapter(struct adapter *adapter)
9206{
9207        int port;
9208
9209        t4_intr_disable(adapter);
9210        t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9211        for_each_port(adapter, port) {
9212                u32 a_port_cfg = is_t4(adapter->params.chip) ?
9213                                       PORT_REG(port, XGMAC_PORT_CFG_A) :
9214                                       T5_PORT_REG(port, MAC_PORT_CFG_A);
9215
9216                t4_write_reg(adapter, a_port_cfg,
9217                             t4_read_reg(adapter, a_port_cfg)
9218                             & ~SIGNAL_DET_V(1));
9219        }
9220        t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9221
9222        return 0;
9223}
9224
9225/**
9226 *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9227 *      @adapter: the adapter
9228 *      @qid: the Queue ID
9229 *      @qtype: the Ingress or Egress type for @qid
9230 *      @user: true if this request is for a user mode queue
9231 *      @pbar2_qoffset: BAR2 Queue Offset
9232 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9233 *
9234 *      Returns the BAR2 SGE Queue Registers information associated with the
9235 *      indicated Absolute Queue ID.  These are passed back in return value
9236 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9237 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9238 *
9239 *      This may return an error which indicates that BAR2 SGE Queue
9240 *      registers aren't available.  If an error is not returned, then the
9241 *      following values are returned:
9242 *
9243 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9244 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9245 *
9246 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9247 *      require the "Inferred Queue ID" ability may be used.  E.g. the
9248 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9249 *      then these "Inferred Queue ID" register may not be used.
9250 */
9251int t4_bar2_sge_qregs(struct adapter *adapter,
9252                      unsigned int qid,
9253                      enum t4_bar2_qtype qtype,
9254                      int user,
9255                      u64 *pbar2_qoffset,
9256                      unsigned int *pbar2_qid)
9257{
9258        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9259        u64 bar2_page_offset, bar2_qoffset;
9260        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9261
9262        /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9263        if (!user && is_t4(adapter->params.chip))
9264                return -EINVAL;
9265
9266        /* Get our SGE Page Size parameters.
9267         */
9268        page_shift = adapter->params.sge.hps + 10;
9269        page_size = 1 << page_shift;
9270
9271        /* Get the right Queues per Page parameters for our Queue.
9272         */
9273        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9274                     ? adapter->params.sge.eq_qpp
9275                     : adapter->params.sge.iq_qpp);
9276        qpp_mask = (1 << qpp_shift) - 1;
9277
9278        /*  Calculate the basics of the BAR2 SGE Queue register area:
9279         *  o The BAR2 page the Queue registers will be in.
9280         *  o The BAR2 Queue ID.
9281         *  o The BAR2 Queue ID Offset into the BAR2 page.
9282         */
9283        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9284        bar2_qid = qid & qpp_mask;
9285        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9286
9287        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9288         * hardware will infer the Absolute Queue ID simply from the writes to
9289         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9290         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9291         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9292         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9293         * from the BAR2 Page and BAR2 Queue ID.
9294         *
9295         * One important censequence of this is that some BAR2 SGE registers
9296         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9297         * there.  But other registers synthesize the SGE Queue ID purely
9298         * from the writes to the registers -- the Write Combined Doorbell
9299         * Buffer is a good example.  These BAR2 SGE Registers are only
9300         * available for those BAR2 SGE Register areas where the SGE Absolute
9301         * Queue ID can be inferred from simple writes.
9302         */
9303        bar2_qoffset = bar2_page_offset;
9304        bar2_qinferred = (bar2_qid_offset < page_size);
9305        if (bar2_qinferred) {
9306                bar2_qoffset += bar2_qid_offset;
9307                bar2_qid = 0;
9308        }
9309
9310        *pbar2_qoffset = bar2_qoffset;
9311        *pbar2_qid = bar2_qid;
9312        return 0;
9313}
9314
9315/**
9316 *      t4_init_devlog_params - initialize adapter->params.devlog
9317 *      @adap: the adapter
9318 *
9319 *      Initialize various fields of the adapter's Firmware Device Log
9320 *      Parameters structure.
9321 */
9322int t4_init_devlog_params(struct adapter *adap)
9323{
9324        struct devlog_params *dparams = &adap->params.devlog;
9325        u32 pf_dparams;
9326        unsigned int devlog_meminfo;
9327        struct fw_devlog_cmd devlog_cmd;
9328        int ret;
9329
9330        /* If we're dealing with newer firmware, the Device Log Parameters
9331         * are stored in a designated register which allows us to access the
9332         * Device Log even if we can't talk to the firmware.
9333         */
9334        pf_dparams =
9335                t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9336        if (pf_dparams) {
9337                unsigned int nentries, nentries128;
9338
9339                dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9340                dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9341
9342                nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9343                nentries = (nentries128 + 1) * 128;
9344                dparams->size = nentries * sizeof(struct fw_devlog_e);
9345
9346                return 0;
9347        }
9348
9349        /* Otherwise, ask the firmware for it's Device Log Parameters.
9350         */
9351        memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9352        devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9353                                             FW_CMD_REQUEST_F | FW_CMD_READ_F);
9354        devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9355        ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9356                         &devlog_cmd);
9357        if (ret)
9358                return ret;
9359
9360        devlog_meminfo =
9361                be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9362        dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9363        dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9364        dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9365
9366        return 0;
9367}
9368
9369/**
9370 *      t4_init_sge_params - initialize adap->params.sge
9371 *      @adapter: the adapter
9372 *
9373 *      Initialize various fields of the adapter's SGE Parameters structure.
9374 */
9375int t4_init_sge_params(struct adapter *adapter)
9376{
9377        struct sge_params *sge_params = &adapter->params.sge;
9378        u32 hps, qpp;
9379        unsigned int s_hps, s_qpp;
9380
9381        /* Extract the SGE Page Size for our PF.
9382         */
9383        hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9384        s_hps = (HOSTPAGESIZEPF0_S +
9385                 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9386        sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9387
9388        /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9389         */
9390        s_qpp = (QUEUESPERPAGEPF0_S +
9391                (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9392        qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9393        sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394        qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9395        sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396
9397        return 0;
9398}
9399
9400/**
9401 *      t4_init_tp_params - initialize adap->params.tp
9402 *      @adap: the adapter
9403 *      @sleep_ok: if true we may sleep while awaiting command completion
9404 *
9405 *      Initialize various fields of the adapter's TP Parameters structure.
9406 */
9407int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9408{
9409        u32 param, val, v;
9410        int chan, ret;
9411
9412
9413        v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9414        adap->params.tp.tre = TIMERRESOLUTION_G(v);
9415        adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9416
9417        /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9418        for (chan = 0; chan < NCHAN; chan++)
9419                adap->params.tp.tx_modq[chan] = chan;
9420
9421        /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422         * Configuration.
9423         */
9424        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9425                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9426                 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9427
9428        /* Read current value */
9429        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9430                              &param, &val);
9431        if (ret == 0) {
9432                dev_info(adap->pdev_dev,
9433                         "Current filter mode/mask 0x%x:0x%x\n",
9434                         FW_PARAMS_PARAM_FILTER_MODE_G(val),
9435                         FW_PARAMS_PARAM_FILTER_MASK_G(val));
9436                adap->params.tp.vlan_pri_map =
9437                        FW_PARAMS_PARAM_FILTER_MODE_G(val);
9438                adap->params.tp.filter_mask =
9439                        FW_PARAMS_PARAM_FILTER_MASK_G(val);
9440        } else {
9441                dev_info(adap->pdev_dev,
9442                         "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9443
9444                /* Incase of older-fw (which doesn't expose the api
9445                 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9446                 * the fw api) combination, fall-back to older method of reading
9447                 * the filter mode from indirect-register
9448                 */
9449                t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9450                               TP_VLAN_PRI_MAP_A, sleep_ok);
9451
9452                /* With the older-fw and newer-driver combination we might run
9453                 * into an issue when user wants to use hash filter region but
9454                 * the filter_mask is zero, in this case filter_mask validation
9455                 * is tough. To avoid that we set the filter_mask same as filter
9456                 * mode, which will behave exactly as the older way of ignoring
9457                 * the filter mask validation.
9458                 */
9459                adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9460        }
9461
9462        t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9463                       TP_INGRESS_CONFIG_A, sleep_ok);
9464
9465        /* For T6, cache the adapter's compressed error vector
9466         * and passing outer header info for encapsulated packets.
9467         */
9468        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9469                v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9470                adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9471        }
9472
9473        /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9474         * shift positions of several elements of the Compressed Filter Tuple
9475         * for this adapter which we need frequently ...
9476         */
9477        adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9478        adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9479        adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9480        adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9481        adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9482        adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9483                                                               PROTOCOL_F);
9484        adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9485                                                                ETHERTYPE_F);
9486        adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9487                                                               MACMATCH_F);
9488        adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9489                                                                MPSHITTYPE_F);
9490        adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9491                                                           FRAGMENTATION_F);
9492
9493        /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9494         * represents the presence of an Outer VLAN instead of a VNIC ID.
9495         */
9496        if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9497                adap->params.tp.vnic_shift = -1;
9498
9499        v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9500        adap->params.tp.hash_filter_mask = v;
9501        v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9502        adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9503        return 0;
9504}
9505
9506/**
9507 *      t4_filter_field_shift - calculate filter field shift
9508 *      @adap: the adapter
9509 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9510 *
9511 *      Return the shift position of a filter field within the Compressed
9512 *      Filter Tuple.  The filter field is specified via its selection bit
9513 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9514 */
9515int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9516{
9517        unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9518        unsigned int sel;
9519        int field_shift;
9520
9521        if ((filter_mode & filter_sel) == 0)
9522                return -1;
9523
9524        for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9525                switch (filter_mode & sel) {
9526                case FCOE_F:
9527                        field_shift += FT_FCOE_W;
9528                        break;
9529                case PORT_F:
9530                        field_shift += FT_PORT_W;
9531                        break;
9532                case VNIC_ID_F:
9533                        field_shift += FT_VNIC_ID_W;
9534                        break;
9535                case VLAN_F:
9536                        field_shift += FT_VLAN_W;
9537                        break;
9538                case TOS_F:
9539                        field_shift += FT_TOS_W;
9540                        break;
9541                case PROTOCOL_F:
9542                        field_shift += FT_PROTOCOL_W;
9543                        break;
9544                case ETHERTYPE_F:
9545                        field_shift += FT_ETHERTYPE_W;
9546                        break;
9547                case MACMATCH_F:
9548                        field_shift += FT_MACMATCH_W;
9549                        break;
9550                case MPSHITTYPE_F:
9551                        field_shift += FT_MPSHITTYPE_W;
9552                        break;
9553                case FRAGMENTATION_F:
9554                        field_shift += FT_FRAGMENTATION_W;
9555                        break;
9556                }
9557        }
9558        return field_shift;
9559}
9560
9561int t4_init_rss_mode(struct adapter *adap, int mbox)
9562{
9563        int i, ret;
9564        struct fw_rss_vi_config_cmd rvc;
9565
9566        memset(&rvc, 0, sizeof(rvc));
9567
9568        for_each_port(adap, i) {
9569                struct port_info *p = adap2pinfo(adap, i);
9570
9571                rvc.op_to_viid =
9572                        cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9573                                    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9574                                    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9575                rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9576                ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9577                if (ret)
9578                        return ret;
9579                p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9580        }
9581        return 0;
9582}
9583
9584/**
9585 *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9586 *      @pi: the port_info
9587 *      @mbox: mailbox to use for the FW command
9588 *      @port: physical port associated with the VI
9589 *      @pf: the PF owning the VI
9590 *      @vf: the VF owning the VI
9591 *      @mac: the MAC address of the VI
9592 *
9593 *      Allocates a virtual interface for the given physical port.  If @mac is
9594 *      not %NULL it contains the MAC address of the VI as assigned by FW.
9595 *      @mac should be large enough to hold an Ethernet address.
9596 *      Returns < 0 on error.
9597 */
9598int t4_init_portinfo(struct port_info *pi, int mbox,
9599                     int port, int pf, int vf, u8 mac[])
9600{
9601        struct adapter *adapter = pi->adapter;
9602        unsigned int fw_caps = adapter->params.fw_caps_support;
9603        struct fw_port_cmd cmd;
9604        unsigned int rss_size;
9605        enum fw_port_type port_type;
9606        int mdio_addr;
9607        fw_port_cap32_t pcaps, acaps;
9608        u8 vivld = 0, vin = 0;
9609        int ret;
9610
9611        /* If we haven't yet determined whether we're talking to Firmware
9612         * which knows the new 32-bit Port Capabilities, it's time to find
9613         * out now.  This will also tell new Firmware to send us Port Status
9614         * Updates using the new 32-bit Port Capabilities version of the
9615         * Port Information message.
9616         */
9617        if (fw_caps == FW_CAPS_UNKNOWN) {
9618                u32 param, val;
9619
9620                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9621                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9622                val = 1;
9623                ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9624                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9625                adapter->params.fw_caps_support = fw_caps;
9626        }
9627
9628        memset(&cmd, 0, sizeof(cmd));
9629        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9630                                       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9631                                       FW_PORT_CMD_PORTID_V(port));
9632        cmd.action_to_len16 = cpu_to_be32(
9633                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9634                                     ? FW_PORT_ACTION_GET_PORT_INFO
9635                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
9636                FW_LEN16(cmd));
9637        ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9638        if (ret)
9639                return ret;
9640
9641        /* Extract the various fields from the Port Information message.
9642         */
9643        if (fw_caps == FW_CAPS16) {
9644                u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9645
9646                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9647                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9648                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9649                             : -1);
9650                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9651                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9652        } else {
9653                u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9654
9655                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9656                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9657                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9658                             : -1);
9659                pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9660                acaps = be32_to_cpu(cmd.u.info32.acaps32);
9661        }
9662
9663        ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9664                          &vivld, &vin);
9665        if (ret < 0)
9666                return ret;
9667
9668        pi->viid = ret;
9669        pi->tx_chan = port;
9670        pi->lport = port;
9671        pi->rss_size = rss_size;
9672        pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9673
9674        /* If fw supports returning the VIN as part of FW_VI_CMD,
9675         * save the returned values.
9676         */
9677        if (adapter->params.viid_smt_extn_support) {
9678                pi->vivld = vivld;
9679                pi->vin = vin;
9680        } else {
9681                /* Retrieve the values from VIID */
9682                pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9683                pi->vin =  FW_VIID_VIN_G(pi->viid);
9684        }
9685
9686        pi->port_type = port_type;
9687        pi->mdio_addr = mdio_addr;
9688        pi->mod_type = FW_PORT_MOD_TYPE_NA;
9689
9690        init_link_config(&pi->link_cfg, pcaps, acaps);
9691        return 0;
9692}
9693
9694int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9695{
9696        u8 addr[6];
9697        int ret, i, j = 0;
9698
9699        for_each_port(adap, i) {
9700                struct port_info *pi = adap2pinfo(adap, i);
9701
9702                while ((adap->params.portvec & (1 << j)) == 0)
9703                        j++;
9704
9705                ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9706                if (ret)
9707                        return ret;
9708
9709                memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9710                j++;
9711        }
9712        return 0;
9713}
9714
9715int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9716                        u16 *mirror_viid)
9717{
9718        int ret;
9719
9720        ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9721                          NULL, NULL);
9722        if (ret < 0)
9723                return ret;
9724
9725        if (mirror_viid)
9726                *mirror_viid = ret;
9727
9728        return 0;
9729}
9730
9731/**
9732 *      t4_read_cimq_cfg - read CIM queue configuration
9733 *      @adap: the adapter
9734 *      @base: holds the queue base addresses in bytes
9735 *      @size: holds the queue sizes in bytes
9736 *      @thres: holds the queue full thresholds in bytes
9737 *
9738 *      Returns the current configuration of the CIM queues, starting with
9739 *      the IBQs, then the OBQs.
9740 */
9741void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9742{
9743        unsigned int i, v;
9744        int cim_num_obq = is_t4(adap->params.chip) ?
9745                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9746
9747        for (i = 0; i < CIM_NUM_IBQ; i++) {
9748                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9749                             QUENUMSELECT_V(i));
9750                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9751                /* value is in 256-byte units */
9752                *base++ = CIMQBASE_G(v) * 256;
9753                *size++ = CIMQSIZE_G(v) * 256;
9754                *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9755        }
9756        for (i = 0; i < cim_num_obq; i++) {
9757                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9758                             QUENUMSELECT_V(i));
9759                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9760                /* value is in 256-byte units */
9761                *base++ = CIMQBASE_G(v) * 256;
9762                *size++ = CIMQSIZE_G(v) * 256;
9763        }
9764}
9765
9766/**
9767 *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9768 *      @adap: the adapter
9769 *      @qid: the queue index
9770 *      @data: where to store the queue contents
9771 *      @n: capacity of @data in 32-bit words
9772 *
9773 *      Reads the contents of the selected CIM queue starting at address 0 up
9774 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9775 *      error and the number of 32-bit words actually read on success.
9776 */
9777int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9778{
9779        int i, err, attempts;
9780        unsigned int addr;
9781        const unsigned int nwords = CIM_IBQ_SIZE * 4;
9782
9783        if (qid > 5 || (n & 3))
9784                return -EINVAL;
9785
9786        addr = qid * nwords;
9787        if (n > nwords)
9788                n = nwords;
9789
9790        /* It might take 3-10ms before the IBQ debug read access is allowed.
9791         * Wait for 1 Sec with a delay of 1 usec.
9792         */
9793        attempts = 1000000;
9794
9795        for (i = 0; i < n; i++, addr++) {
9796                t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9797                             IBQDBGEN_F);
9798                err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9799                                      attempts, 1);
9800                if (err)
9801                        return err;
9802                *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9803        }
9804        t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9805        return i;
9806}
9807
9808/**
9809 *      t4_read_cim_obq - read the contents of a CIM outbound queue
9810 *      @adap: the adapter
9811 *      @qid: the queue index
9812 *      @data: where to store the queue contents
9813 *      @n: capacity of @data in 32-bit words
9814 *
9815 *      Reads the contents of the selected CIM queue starting at address 0 up
9816 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9817 *      error and the number of 32-bit words actually read on success.
9818 */
9819int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9820{
9821        int i, err;
9822        unsigned int addr, v, nwords;
9823        int cim_num_obq = is_t4(adap->params.chip) ?
9824                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9825
9826        if ((qid > (cim_num_obq - 1)) || (n & 3))
9827                return -EINVAL;
9828
9829        t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9830                     QUENUMSELECT_V(qid));
9831        v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9832
9833        addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9834        nwords = CIMQSIZE_G(v) * 64;  /* same */
9835        if (n > nwords)
9836                n = nwords;
9837
9838        for (i = 0; i < n; i++, addr++) {
9839                t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9840                             OBQDBGEN_F);
9841                err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9842                                      2, 1);
9843                if (err)
9844                        return err;
9845                *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9846        }
9847        t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9848        return i;
9849}
9850
9851/**
9852 *      t4_cim_read - read a block from CIM internal address space
9853 *      @adap: the adapter
9854 *      @addr: the start address within the CIM address space
9855 *      @n: number of words to read
9856 *      @valp: where to store the result
9857 *
9858 *      Reads a block of 4-byte words from the CIM intenal address space.
9859 */
9860int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9861                unsigned int *valp)
9862{
9863        int ret = 0;
9864
9865        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9866                return -EBUSY;
9867
9868        for ( ; !ret && n--; addr += 4) {
9869                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9870                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9871                                      0, 5, 2);
9872                if (!ret)
9873                        *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9874        }
9875        return ret;
9876}
9877
9878/**
9879 *      t4_cim_write - write a block into CIM internal address space
9880 *      @adap: the adapter
9881 *      @addr: the start address within the CIM address space
9882 *      @n: number of words to write
9883 *      @valp: set of values to write
9884 *
9885 *      Writes a block of 4-byte words into the CIM intenal address space.
9886 */
9887int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9888                 const unsigned int *valp)
9889{
9890        int ret = 0;
9891
9892        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9893                return -EBUSY;
9894
9895        for ( ; !ret && n--; addr += 4) {
9896                t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9897                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9898                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9899                                      0, 5, 2);
9900        }
9901        return ret;
9902}
9903
9904static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9905                         unsigned int val)
9906{
9907        return t4_cim_write(adap, addr, 1, &val);
9908}
9909
9910/**
9911 *      t4_cim_read_la - read CIM LA capture buffer
9912 *      @adap: the adapter
9913 *      @la_buf: where to store the LA data
9914 *      @wrptr: the HW write pointer within the capture buffer
9915 *
9916 *      Reads the contents of the CIM LA buffer with the most recent entry at
9917 *      the end of the returned data and with the entry at @wrptr first.
9918 *      We try to leave the LA in the running state we find it in.
9919 */
9920int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9921{
9922        int i, ret;
9923        unsigned int cfg, val, idx;
9924
9925        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9926        if (ret)
9927                return ret;
9928
9929        if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9930                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9931                if (ret)
9932                        return ret;
9933        }
9934
9935        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9936        if (ret)
9937                goto restart;
9938
9939        idx = UPDBGLAWRPTR_G(val);
9940        if (wrptr)
9941                *wrptr = idx;
9942
9943        for (i = 0; i < adap->params.cim_la_size; i++) {
9944                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9945                                    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9946                if (ret)
9947                        break;
9948                ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949                if (ret)
9950                        break;
9951                if (val & UPDBGLARDEN_F) {
9952                        ret = -ETIMEDOUT;
9953                        break;
9954                }
9955                ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9956                if (ret)
9957                        break;
9958
9959                /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9960                 * identify the 32-bit portion of the full 312-bit data
9961                 */
9962                if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9963                        idx = (idx & 0xff0) + 0x10;
9964                else
9965                        idx++;
9966                /* address can't exceed 0xfff */
9967                idx &= UPDBGLARDPTR_M;
9968        }
9969restart:
9970        if (cfg & UPDBGLAEN_F) {
9971                int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9972                                      cfg & ~UPDBGLARDEN_F);
9973                if (!ret)
9974                        ret = r;
9975        }
9976        return ret;
9977}
9978
9979/**
9980 *      t4_tp_read_la - read TP LA capture buffer
9981 *      @adap: the adapter
9982 *      @la_buf: where to store the LA data
9983 *      @wrptr: the HW write pointer within the capture buffer
9984 *
9985 *      Reads the contents of the TP LA buffer with the most recent entry at
9986 *      the end of the returned data and with the entry at @wrptr first.
9987 *      We leave the LA in the running state we find it in.
9988 */
9989void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9990{
9991        bool last_incomplete;
9992        unsigned int i, cfg, val, idx;
9993
9994        cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9995        if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9996                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9997                             adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9998
9999        val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10000        idx = DBGLAWPTR_G(val);
10001        last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10002        if (last_incomplete)
10003                idx = (idx + 1) & DBGLARPTR_M;
10004        if (wrptr)
10005                *wrptr = idx;
10006
10007        val &= 0xffff;
10008        val &= ~DBGLARPTR_V(DBGLARPTR_M);
10009        val |= adap->params.tp.la_mask;
10010
10011        for (i = 0; i < TPLA_SIZE; i++) {
10012                t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10013                la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10014                idx = (idx + 1) & DBGLARPTR_M;
10015        }
10016
10017        /* Wipe out last entry if it isn't valid */
10018        if (last_incomplete)
10019                la_buf[TPLA_SIZE - 1] = ~0ULL;
10020
10021        if (cfg & DBGLAENABLE_F)                    /* restore running state */
10022                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10023                             cfg | adap->params.tp.la_mask);
10024}
10025
10026/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10027 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10028 * state for more than the Warning Threshold then we'll issue a warning about
10029 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10030 * appears to be hung every Warning Repeat second till the situation clears.
10031 * If the situation clears, we'll note that as well.
10032 */
10033#define SGE_IDMA_WARN_THRESH 1
10034#define SGE_IDMA_WARN_REPEAT 300
10035
10036/**
10037 *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10038 *      @adapter: the adapter
10039 *      @idma: the adapter IDMA Monitor state
10040 *
10041 *      Initialize the state of an SGE Ingress DMA Monitor.
10042 */
10043void t4_idma_monitor_init(struct adapter *adapter,
10044                          struct sge_idma_monitor_state *idma)
10045{
10046        /* Initialize the state variables for detecting an SGE Ingress DMA
10047         * hang.  The SGE has internal counters which count up on each clock
10048         * tick whenever the SGE finds its Ingress DMA State Engines in the
10049         * same state they were on the previous clock tick.  The clock used is
10050         * the Core Clock so we have a limit on the maximum "time" they can
10051         * record; typically a very small number of seconds.  For instance,
10052         * with a 600MHz Core Clock, we can only count up to a bit more than
10053         * 7s.  So we'll synthesize a larger counter in order to not run the
10054         * risk of having the "timers" overflow and give us the flexibility to
10055         * maintain a Hung SGE State Machine of our own which operates across
10056         * a longer time frame.
10057         */
10058        idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10059        idma->idma_stalled[0] = 0;
10060        idma->idma_stalled[1] = 0;
10061}
10062
10063/**
10064 *      t4_idma_monitor - monitor SGE Ingress DMA state
10065 *      @adapter: the adapter
10066 *      @idma: the adapter IDMA Monitor state
10067 *      @hz: number of ticks/second
10068 *      @ticks: number of ticks since the last IDMA Monitor call
10069 */
10070void t4_idma_monitor(struct adapter *adapter,
10071                     struct sge_idma_monitor_state *idma,
10072                     int hz, int ticks)
10073{
10074        int i, idma_same_state_cnt[2];
10075
10076         /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10077          * are counters inside the SGE which count up on each clock when the
10078          * SGE finds its Ingress DMA State Engines in the same states they
10079          * were in the previous clock.  The counters will peg out at
10080          * 0xffffffff without wrapping around so once they pass the 1s
10081          * threshold they'll stay above that till the IDMA state changes.
10082          */
10083        t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10084        idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10085        idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10086
10087        for (i = 0; i < 2; i++) {
10088                u32 debug0, debug11;
10089
10090                /* If the Ingress DMA Same State Counter ("timer") is less
10091                 * than 1s, then we can reset our synthesized Stall Timer and
10092                 * continue.  If we have previously emitted warnings about a
10093                 * potential stalled Ingress Queue, issue a note indicating
10094                 * that the Ingress Queue has resumed forward progress.
10095                 */
10096                if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10097                        if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10098                                dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10099                                         "resumed after %d seconds\n",
10100                                         i, idma->idma_qid[i],
10101                                         idma->idma_stalled[i] / hz);
10102                        idma->idma_stalled[i] = 0;
10103                        continue;
10104                }
10105
10106                /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10107                 * domain.  The first time we get here it'll be because we
10108                 * passed the 1s Threshold; each additional time it'll be
10109                 * because the RX Timer Callback is being fired on its regular
10110                 * schedule.
10111                 *
10112                 * If the stall is below our Potential Hung Ingress Queue
10113                 * Warning Threshold, continue.
10114                 */
10115                if (idma->idma_stalled[i] == 0) {
10116                        idma->idma_stalled[i] = hz;
10117                        idma->idma_warn[i] = 0;
10118                } else {
10119                        idma->idma_stalled[i] += ticks;
10120                        idma->idma_warn[i] -= ticks;
10121                }
10122
10123                if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10124                        continue;
10125
10126                /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10127                 */
10128                if (idma->idma_warn[i] > 0)
10129                        continue;
10130                idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10131
10132                /* Read and save the SGE IDMA State and Queue ID information.
10133                 * We do this every time in case it changes across time ...
10134                 * can't be too careful ...
10135                 */
10136                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10137                debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10138                idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10139
10140                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10141                debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10142                idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10143
10144                dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10145                         "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10146                         i, idma->idma_qid[i], idma->idma_state[i],
10147                         idma->idma_stalled[i] / hz,
10148                         debug0, debug11);
10149                t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10150        }
10151}
10152
10153/**
10154 *      t4_load_cfg - download config file
10155 *      @adap: the adapter
10156 *      @cfg_data: the cfg text file to write
10157 *      @size: text file size
10158 *
10159 *      Write the supplied config text file to the card's serial flash.
10160 */
10161int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10162{
10163        int ret, i, n, cfg_addr;
10164        unsigned int addr;
10165        unsigned int flash_cfg_start_sec;
10166        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10167
10168        cfg_addr = t4_flash_cfg_addr(adap);
10169        if (cfg_addr < 0)
10170                return cfg_addr;
10171
10172        addr = cfg_addr;
10173        flash_cfg_start_sec = addr / SF_SEC_SIZE;
10174
10175        if (size > FLASH_CFG_MAX_SIZE) {
10176                dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10177                        FLASH_CFG_MAX_SIZE);
10178                return -EFBIG;
10179        }
10180
10181        i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10182                         sf_sec_size);
10183        ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10184                                     flash_cfg_start_sec + i - 1);
10185        /* If size == 0 then we're simply erasing the FLASH sectors associated
10186         * with the on-adapter Firmware Configuration File.
10187         */
10188        if (ret || size == 0)
10189                goto out;
10190
10191        /* this will write to the flash up to SF_PAGE_SIZE at a time */
10192        for (i = 0; i < size; i += SF_PAGE_SIZE) {
10193                if ((size - i) <  SF_PAGE_SIZE)
10194                        n = size - i;
10195                else
10196                        n = SF_PAGE_SIZE;
10197                ret = t4_write_flash(adap, addr, n, cfg_data, true);
10198                if (ret)
10199                        goto out;
10200
10201                addr += SF_PAGE_SIZE;
10202                cfg_data += SF_PAGE_SIZE;
10203        }
10204
10205out:
10206        if (ret)
10207                dev_err(adap->pdev_dev, "config file %s failed %d\n",
10208                        (size == 0 ? "clear" : "download"), ret);
10209        return ret;
10210}
10211
10212/**
10213 *      t4_set_vf_mac_acl - Set MAC address for the specified VF
10214 *      @adapter: The adapter
10215 *      @vf: one of the VFs instantiated by the specified PF
10216 *      @naddr: the number of MAC addresses
10217 *      @addr: the MAC address(es) to be set to the specified VF
10218 */
10219int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10220                      unsigned int naddr, u8 *addr)
10221{
10222        struct fw_acl_mac_cmd cmd;
10223
10224        memset(&cmd, 0, sizeof(cmd));
10225        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10226                                    FW_CMD_REQUEST_F |
10227                                    FW_CMD_WRITE_F |
10228                                    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10229                                    FW_ACL_MAC_CMD_VFN_V(vf));
10230
10231        /* Note: Do not enable the ACL */
10232        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10233        cmd.nmac = naddr;
10234
10235        switch (adapter->pf) {
10236        case 3:
10237                memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10238                break;
10239        case 2:
10240                memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10241                break;
10242        case 1:
10243                memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10244                break;
10245        case 0:
10246                memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10247                break;
10248        }
10249
10250        return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10251}
10252
10253/**
10254 * t4_read_pace_tbl - read the pace table
10255 * @adap: the adapter
10256 * @pace_vals: holds the returned values
10257 *
10258 * Returns the values of TP's pace table in microseconds.
10259 */
10260void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10261{
10262        unsigned int i, v;
10263
10264        for (i = 0; i < NTX_SCHED; i++) {
10265                t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10266                v = t4_read_reg(adap, TP_PACE_TABLE_A);
10267                pace_vals[i] = dack_ticks_to_usec(adap, v);
10268        }
10269}
10270
10271/**
10272 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10273 * @adap: the adapter
10274 * @sched: the scheduler index
10275 * @kbps: the byte rate in Kbps
10276 * @ipg: the interpacket delay in tenths of nanoseconds
10277 * @sleep_ok: if true we may sleep while awaiting command completion
10278 *
10279 * Return the current configuration of a HW Tx scheduler.
10280 */
10281void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10282                     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10283{
10284        unsigned int v, addr, bpt, cpt;
10285
10286        if (kbps) {
10287                addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10288                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10289                if (sched & 1)
10290                        v >>= 16;
10291                bpt = (v >> 8) & 0xff;
10292                cpt = v & 0xff;
10293                if (!cpt) {
10294                        *kbps = 0;      /* scheduler disabled */
10295                } else {
10296                        v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10297                        *kbps = (v * bpt) / 125;
10298                }
10299        }
10300        if (ipg) {
10301                addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10302                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303                if (sched & 1)
10304                        v >>= 16;
10305                v &= 0xffff;
10306                *ipg = (10000 * v) / core_ticks_per_usec(adap);
10307        }
10308}
10309
10310/* t4_sge_ctxt_rd - read an SGE context through FW
10311 * @adap: the adapter
10312 * @mbox: mailbox to use for the FW command
10313 * @cid: the context id
10314 * @ctype: the context type
10315 * @data: where to store the context data
10316 *
10317 * Issues a FW command through the given mailbox to read an SGE context.
10318 */
10319int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10320                   enum ctxt_type ctype, u32 *data)
10321{
10322        struct fw_ldst_cmd c;
10323        int ret;
10324
10325        if (ctype == CTXT_FLM)
10326                ret = FW_LDST_ADDRSPC_SGE_FLMC;
10327        else
10328                ret = FW_LDST_ADDRSPC_SGE_CONMC;
10329
10330        memset(&c, 0, sizeof(c));
10331        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10332                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
10333                                        FW_LDST_CMD_ADDRSPACE_V(ret));
10334        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10335        c.u.idctxt.physid = cpu_to_be32(cid);
10336
10337        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10338        if (ret == 0) {
10339                data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10340                data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10341                data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10342                data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10343                data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10344                data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10345        }
10346        return ret;
10347}
10348
10349/**
10350 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10351 * @adap: the adapter
10352 * @cid: the context id
10353 * @ctype: the context type
10354 * @data: where to store the context data
10355 *
10356 * Reads an SGE context directly, bypassing FW.  This is only for
10357 * debugging when FW is unavailable.
10358 */
10359int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10360                      enum ctxt_type ctype, u32 *data)
10361{
10362        int i, ret;
10363
10364        t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10365        ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10366        if (!ret)
10367                for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10368                        *data++ = t4_read_reg(adap, i);
10369        return ret;
10370}
10371
10372int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10373                    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10374                    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10375                    u16 burstsize)
10376{
10377        struct fw_sched_cmd cmd;
10378
10379        memset(&cmd, 0, sizeof(cmd));
10380        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10381                                      FW_CMD_REQUEST_F |
10382                                      FW_CMD_WRITE_F);
10383        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10384
10385        cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10386        cmd.u.params.type = type;
10387        cmd.u.params.level = level;
10388        cmd.u.params.mode = mode;
10389        cmd.u.params.ch = channel;
10390        cmd.u.params.cl = class;
10391        cmd.u.params.unit = rateunit;
10392        cmd.u.params.rate = ratemode;
10393        cmd.u.params.min = cpu_to_be32(minrate);
10394        cmd.u.params.max = cpu_to_be32(maxrate);
10395        cmd.u.params.weight = cpu_to_be16(weight);
10396        cmd.u.params.pktsize = cpu_to_be16(pktsize);
10397        cmd.u.params.burstsize = cpu_to_be16(burstsize);
10398
10399        return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10400                               NULL, 1);
10401}
10402
10403/**
10404 *      t4_i2c_rd - read I2C data from adapter
10405 *      @adap: the adapter
10406 *      @mbox: mailbox to use for the FW command
10407 *      @port: Port number if per-port device; <0 if not
10408 *      @devid: per-port device ID or absolute device ID
10409 *      @offset: byte offset into device I2C space
10410 *      @len: byte length of I2C space data
10411 *      @buf: buffer in which to return I2C data
10412 *
10413 *      Reads the I2C data from the indicated device and location.
10414 */
10415int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10416              unsigned int devid, unsigned int offset,
10417              unsigned int len, u8 *buf)
10418{
10419        struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10420        unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10421        int ret = 0;
10422
10423        if (len > I2C_PAGE_SIZE)
10424                return -EINVAL;
10425
10426        /* Dont allow reads that spans multiple pages */
10427        if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10428                return -EINVAL;
10429
10430        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10431        ldst_cmd.op_to_addrspace =
10432                cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10433                            FW_CMD_REQUEST_F |
10434                            FW_CMD_READ_F |
10435                            FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10436        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10437        ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10438        ldst_cmd.u.i2c.did = devid;
10439
10440        while (len > 0) {
10441                unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10442
10443                ldst_cmd.u.i2c.boffset = offset;
10444                ldst_cmd.u.i2c.blen = i2c_len;
10445
10446                ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10447                                 &ldst_rpl);
10448                if (ret)
10449                        break;
10450
10451                memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10452                offset += i2c_len;
10453                buf += i2c_len;
10454                len -= i2c_len;
10455        }
10456
10457        return ret;
10458}
10459
10460/**
10461 *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10462 *      @adap: the adapter
10463 *      @mbox: mailbox to use for the FW command
10464 *      @vf: one of the VFs instantiated by the specified PF
10465 *      @vlan: The vlanid to be set
10466 */
10467int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10468                    u16 vlan)
10469{
10470        struct fw_acl_vlan_cmd vlan_cmd;
10471        unsigned int enable;
10472
10473        enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10474        memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10475        vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10476                                         FW_CMD_REQUEST_F |
10477                                         FW_CMD_WRITE_F |
10478                                         FW_CMD_EXEC_F |
10479                                         FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10480                                         FW_ACL_VLAN_CMD_VFN_V(vf));
10481        vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10482        /* Drop all packets that donot match vlan id */
10483        vlan_cmd.dropnovlan_fm = (enable
10484                                  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10485                                     FW_ACL_VLAN_CMD_FM_F) : 0);
10486        if (enable != 0) {
10487                vlan_cmd.nvlan = 1;
10488                vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10489        }
10490
10491        return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10492}
10493
10494/**
10495 *      modify_device_id - Modifies the device ID of the Boot BIOS image
10496 *      @device_id: the device ID to write.
10497 *      @boot_data: the boot image to modify.
10498 *
10499 *      Write the supplied device ID to the boot BIOS image.
10500 */
10501static void modify_device_id(int device_id, u8 *boot_data)
10502{
10503        struct cxgb4_pcir_data *pcir_header;
10504        struct legacy_pci_rom_hdr *header;
10505        u8 *cur_header = boot_data;
10506        u16 pcir_offset;
10507
10508         /* Loop through all chained images and change the device ID's */
10509        do {
10510                header = (struct legacy_pci_rom_hdr *)cur_header;
10511                pcir_offset = le16_to_cpu(header->pcir_offset);
10512                pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10513                              pcir_offset);
10514
10515                /**
10516                 * Only modify the Device ID if code type is Legacy or HP.
10517                 * 0x00: Okay to modify
10518                 * 0x01: FCODE. Do not modify
10519                 * 0x03: Okay to modify
10520                 * 0x04-0xFF: Do not modify
10521                 */
10522                if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10523                        u8 csum = 0;
10524                        int i;
10525
10526                        /**
10527                         * Modify Device ID to match current adatper
10528                         */
10529                        pcir_header->device_id = cpu_to_le16(device_id);
10530
10531                        /**
10532                         * Set checksum temporarily to 0.
10533                         * We will recalculate it later.
10534                         */
10535                        header->cksum = 0x0;
10536
10537                        /**
10538                         * Calculate and update checksum
10539                         */
10540                        for (i = 0; i < (header->size512 * 512); i++)
10541                                csum += cur_header[i];
10542
10543                        /**
10544                         * Invert summed value to create the checksum
10545                         * Writing new checksum value directly to the boot data
10546                         */
10547                        cur_header[7] = -csum;
10548
10549                } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10550                        /**
10551                         * Modify Device ID to match current adatper
10552                         */
10553                        pcir_header->device_id = cpu_to_le16(device_id);
10554                }
10555
10556                /**
10557                 * Move header pointer up to the next image in the ROM.
10558                 */
10559                cur_header += header->size512 * 512;
10560        } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10561}
10562
10563/**
10564 *      t4_load_boot - download boot flash
10565 *      @adap: the adapter
10566 *      @boot_data: the boot image to write
10567 *      @boot_addr: offset in flash to write boot_data
10568 *      @size: image size
10569 *
10570 *      Write the supplied boot image to the card's serial flash.
10571 *      The boot image has the following sections: a 28-byte header and the
10572 *      boot image.
10573 */
10574int t4_load_boot(struct adapter *adap, u8 *boot_data,
10575                 unsigned int boot_addr, unsigned int size)
10576{
10577        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10578        unsigned int boot_sector = (boot_addr * 1024);
10579        struct cxgb4_pci_exp_rom_header *header;
10580        struct cxgb4_pcir_data *pcir_header;
10581        int pcir_offset;
10582        unsigned int i;
10583        u16 device_id;
10584        int ret, addr;
10585
10586        /**
10587         * Make sure the boot image does not encroach on the firmware region
10588         */
10589        if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10590                dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10591                return -EFBIG;
10592        }
10593
10594        /* Get boot header */
10595        header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10596        pcir_offset = le16_to_cpu(header->pcir_offset);
10597        /* PCIR Data Structure */
10598        pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10599
10600        /**
10601         * Perform some primitive sanity testing to avoid accidentally
10602         * writing garbage over the boot sectors.  We ought to check for
10603         * more but it's not worth it for now ...
10604         */
10605        if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10606                dev_err(adap->pdev_dev, "boot image too small/large\n");
10607                return -EFBIG;
10608        }
10609
10610        if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10611                dev_err(adap->pdev_dev, "Boot image missing signature\n");
10612                return -EINVAL;
10613        }
10614
10615        /* Check PCI header signature */
10616        if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10617                dev_err(adap->pdev_dev, "PCI header missing signature\n");
10618                return -EINVAL;
10619        }
10620
10621        /* Check Vendor ID matches Chelsio ID*/
10622        if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10623                dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10624                return -EINVAL;
10625        }
10626
10627        /**
10628         * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10629         * and Boot configuration data sections. These 3 boot sections span
10630         * sectors 0 to 7 in flash and live right before the FW image location.
10631         */
10632        i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10633        ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634                                     (boot_sector >> 16) + i - 1);
10635
10636        /**
10637         * If size == 0 then we're simply erasing the FLASH sectors associated
10638         * with the on-adapter option ROM file
10639         */
10640        if (ret || size == 0)
10641                goto out;
10642        /* Retrieve adapter's device ID */
10643        pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10644       /* Want to deal with PF 0 so I strip off PF 4 indicator */
10645        device_id = device_id & 0xf0ff;
10646
10647         /* Check PCIE Device ID */
10648        if (le16_to_cpu(pcir_header->device_id) != device_id) {
10649                /**
10650                 * Change the device ID in the Boot BIOS image to match
10651                 * the Device ID of the current adapter.
10652                 */
10653                modify_device_id(device_id, boot_data);
10654        }
10655
10656        /**
10657         * Skip over the first SF_PAGE_SIZE worth of data and write it after
10658         * we finish copying the rest of the boot image. This will ensure
10659         * that the BIOS boot header will only be written if the boot image
10660         * was written in full.
10661         */
10662        addr = boot_sector;
10663        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10664                addr += SF_PAGE_SIZE;
10665                boot_data += SF_PAGE_SIZE;
10666                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10667                                     false);
10668                if (ret)
10669                        goto out;
10670        }
10671
10672        ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10673                             (const u8 *)header, false);
10674
10675out:
10676        if (ret)
10677                dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10678                        ret);
10679        return ret;
10680}
10681
10682/**
10683 *      t4_flash_bootcfg_addr - return the address of the flash
10684 *      optionrom configuration
10685 *      @adapter: the adapter
10686 *
10687 *      Return the address within the flash where the OptionROM Configuration
10688 *      is stored, or an error if the device FLASH is too small to contain
10689 *      a OptionROM Configuration.
10690 */
10691static int t4_flash_bootcfg_addr(struct adapter *adapter)
10692{
10693        /**
10694         * If the device FLASH isn't large enough to hold a Firmware
10695         * Configuration File, return an error.
10696         */
10697        if (adapter->params.sf_size <
10698            FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10699                return -ENOSPC;
10700
10701        return FLASH_BOOTCFG_START;
10702}
10703
10704int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10705{
10706        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10707        struct cxgb4_bootcfg_data *header;
10708        unsigned int flash_cfg_start_sec;
10709        unsigned int addr, npad;
10710        int ret, i, n, cfg_addr;
10711
10712        cfg_addr = t4_flash_bootcfg_addr(adap);
10713        if (cfg_addr < 0)
10714                return cfg_addr;
10715
10716        addr = cfg_addr;
10717        flash_cfg_start_sec = addr / SF_SEC_SIZE;
10718
10719        if (size > FLASH_BOOTCFG_MAX_SIZE) {
10720                dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10721                        FLASH_BOOTCFG_MAX_SIZE);
10722                return -EFBIG;
10723        }
10724
10725        header = (struct cxgb4_bootcfg_data *)cfg_data;
10726        if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10727                dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10728                ret = -EINVAL;
10729                goto out;
10730        }
10731
10732        i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10733                         sf_sec_size);
10734        ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10735                                     flash_cfg_start_sec + i - 1);
10736
10737        /**
10738         * If size == 0 then we're simply erasing the FLASH sectors associated
10739         * with the on-adapter OptionROM Configuration File.
10740         */
10741        if (ret || size == 0)
10742                goto out;
10743
10744        /* this will write to the flash up to SF_PAGE_SIZE at a time */
10745        for (i = 0; i < size; i += SF_PAGE_SIZE) {
10746                n = min_t(u32, size - i, SF_PAGE_SIZE);
10747
10748                ret = t4_write_flash(adap, addr, n, cfg_data, false);
10749                if (ret)
10750                        goto out;
10751
10752                addr += SF_PAGE_SIZE;
10753                cfg_data += SF_PAGE_SIZE;
10754        }
10755
10756        npad = ((size + 4 - 1) & ~3) - size;
10757        for (i = 0; i < npad; i++) {
10758                u8 data = 0;
10759
10760                ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10761                                     false);
10762                if (ret)
10763                        goto out;
10764        }
10765
10766out:
10767        if (ret)
10768                dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10769                        (size == 0 ? "clear" : "download"), ret);
10770        return ret;
10771}
10772