linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/moduleparam.h>
  40#include <linux/init.h>
  41#include <linux/pci.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <linux/debugfs.h>
  46#include <linux/ethtool.h>
  47#include <linux/mdio.h>
  48
  49#include "t4vf_common.h"
  50#include "t4vf_defs.h"
  51
  52#include "../cxgb4/t4_regs.h"
  53#include "../cxgb4/t4_msg.h"
  54
  55/*
  56 * Generic information about the driver.
  57 */
  58#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
  59
  60/*
  61 * Module Parameters.
  62 * ==================
  63 */
  64
  65/*
  66 * Default ethtool "message level" for adapters.
  67 */
  68#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  69                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  70                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  71
  72/*
  73 * The driver uses the best interrupt scheme available on a platform in the
  74 * order MSI-X then MSI.  This parameter determines which of these schemes the
  75 * driver may consider as follows:
  76 *
  77 *     msi = 2: choose from among MSI-X and MSI
  78 *     msi = 1: only consider MSI interrupts
  79 *
  80 * Note that unlike the Physical Function driver, this Virtual Function driver
  81 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  82 * the PCI-E SR-IOV standard).
  83 */
  84#define MSI_MSIX        2
  85#define MSI_MSI         1
  86#define MSI_DEFAULT     MSI_MSIX
  87
  88static int msi = MSI_DEFAULT;
  89
  90module_param(msi, int, 0644);
  91MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  92
  93/*
  94 * Fundamental constants.
  95 * ======================
  96 */
  97
  98enum {
  99        MAX_TXQ_ENTRIES         = 16384,
 100        MAX_RSPQ_ENTRIES        = 16384,
 101        MAX_RX_BUFFERS          = 16384,
 102
 103        MIN_TXQ_ENTRIES         = 32,
 104        MIN_RSPQ_ENTRIES        = 128,
 105        MIN_FL_ENTRIES          = 16,
 106
 107        /*
 108         * For purposes of manipulating the Free List size we need to
 109         * recognize that Free Lists are actually Egress Queues (the host
 110         * produces free buffers which the hardware consumes), Egress Queues
 111         * indices are all in units of Egress Context Units bytes, and free
 112         * list entries are 64-bit PCI DMA addresses.  And since the state of
 113         * the Producer Index == the Consumer Index implies an EMPTY list, we
 114         * always have at least one Egress Unit's worth of Free List entries
 115         * unused.  See sge.c for more details ...
 116         */
 117        EQ_UNIT = SGE_EQ_IDXSIZE,
 118        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 119        MIN_FL_RESID = FL_PER_EQ_UNIT,
 120};
 121
 122/*
 123 * Global driver state.
 124 * ====================
 125 */
 126
 127static struct dentry *cxgb4vf_debugfs_root;
 128
 129/*
 130 * OS "Callback" functions.
 131 * ========================
 132 */
 133
 134/*
 135 * The link status has changed on the indicated "port" (Virtual Interface).
 136 */
 137void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 138{
 139        struct net_device *dev = adapter->port[pidx];
 140
 141        /*
 142         * If the port is disabled or the current recorded "link up"
 143         * status matches the new status, just return.
 144         */
 145        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 146                return;
 147
 148        /*
 149         * Tell the OS that the link status has changed and print a short
 150         * informative message on the console about the event.
 151         */
 152        if (link_ok) {
 153                const char *s;
 154                const char *fc;
 155                const struct port_info *pi = netdev_priv(dev);
 156
 157                netif_carrier_on(dev);
 158
 159                switch (pi->link_cfg.speed) {
 160                case 100:
 161                        s = "100Mbps";
 162                        break;
 163                case 1000:
 164                        s = "1Gbps";
 165                        break;
 166                case 10000:
 167                        s = "10Gbps";
 168                        break;
 169                case 25000:
 170                        s = "25Gbps";
 171                        break;
 172                case 40000:
 173                        s = "40Gbps";
 174                        break;
 175                case 100000:
 176                        s = "100Gbps";
 177                        break;
 178
 179                default:
 180                        s = "unknown";
 181                        break;
 182                }
 183
 184                switch ((int)pi->link_cfg.fc) {
 185                case PAUSE_RX:
 186                        fc = "RX";
 187                        break;
 188
 189                case PAUSE_TX:
 190                        fc = "TX";
 191                        break;
 192
 193                case PAUSE_RX | PAUSE_TX:
 194                        fc = "RX/TX";
 195                        break;
 196
 197                default:
 198                        fc = "no";
 199                        break;
 200                }
 201
 202                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
 203        } else {
 204                netif_carrier_off(dev);
 205                netdev_info(dev, "link down\n");
 206        }
 207}
 208
 209/*
 210 * THe port module type has changed on the indicated "port" (Virtual
 211 * Interface).
 212 */
 213void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
 214{
 215        static const char * const mod_str[] = {
 216                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 217        };
 218        const struct net_device *dev = adapter->port[pidx];
 219        const struct port_info *pi = netdev_priv(dev);
 220
 221        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 222                dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
 223                         dev->name);
 224        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 225                dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
 226                         dev->name, mod_str[pi->mod_type]);
 227        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 228                dev_info(adapter->pdev_dev, "%s: unsupported optical port "
 229                         "module inserted\n", dev->name);
 230        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 231                dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
 232                         "forcing TWINAX\n", dev->name);
 233        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 234                dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
 235                         dev->name);
 236        else
 237                dev_info(adapter->pdev_dev, "%s: unknown module type %d "
 238                         "inserted\n", dev->name, pi->mod_type);
 239}
 240
 241static int cxgb4vf_set_addr_hash(struct port_info *pi)
 242{
 243        struct adapter *adapter = pi->adapter;
 244        u64 vec = 0;
 245        bool ucast = false;
 246        struct hash_mac_addr *entry;
 247
 248        /* Calculate the hash vector for the updated list and program it */
 249        list_for_each_entry(entry, &adapter->mac_hlist, list) {
 250                ucast |= is_unicast_ether_addr(entry->addr);
 251                vec |= (1ULL << hash_mac_addr(entry->addr));
 252        }
 253        return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
 254}
 255
 256/**
 257 *      cxgb4vf_change_mac - Update match filter for a MAC address.
 258 *      @pi: the port_info
 259 *      @viid: the VI id
 260 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 261 *                 or -1
 262 *      @addr: the new MAC address value
 263 *      @persistent: whether a new MAC allocation should be persistent
 264 *
 265 *      Modifies an MPS filter and sets it to the new MAC address if
 266 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 267 *      @tcam_idx < 0. In the latter case the address is added persistently
 268 *      if @persist is %true.
 269 *      Addresses are programmed to hash region, if tcam runs out of entries.
 270 *
 271 */
 272static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
 273                              int *tcam_idx, const u8 *addr, bool persistent)
 274{
 275        struct hash_mac_addr *new_entry, *entry;
 276        struct adapter *adapter = pi->adapter;
 277        int ret;
 278
 279        ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
 280        /* We ran out of TCAM entries. try programming hash region. */
 281        if (ret == -ENOMEM) {
 282                /* If the MAC address to be updated is in the hash addr
 283                 * list, update it from the list
 284                 */
 285                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 286                        if (entry->iface_mac) {
 287                                ether_addr_copy(entry->addr, addr);
 288                                goto set_hash;
 289                        }
 290                }
 291                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 292                if (!new_entry)
 293                        return -ENOMEM;
 294                ether_addr_copy(new_entry->addr, addr);
 295                new_entry->iface_mac = true;
 296                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 297set_hash:
 298                ret = cxgb4vf_set_addr_hash(pi);
 299        } else if (ret >= 0) {
 300                *tcam_idx = ret;
 301                ret = 0;
 302        }
 303
 304        return ret;
 305}
 306
 307/*
 308 * Net device operations.
 309 * ======================
 310 */
 311
 312
 313
 314
 315/*
 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 317 * Interface).
 318 */
 319static int link_start(struct net_device *dev)
 320{
 321        int ret;
 322        struct port_info *pi = netdev_priv(dev);
 323
 324        /*
 325         * We do not set address filters and promiscuity here, the stack does
 326         * that step explicitly. Enable vlan accel.
 327         */
 328        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
 329                              true);
 330        if (ret == 0)
 331                ret = cxgb4vf_change_mac(pi, pi->viid,
 332                                         &pi->xact_addr_filt,
 333                                         dev->dev_addr, true);
 334
 335        /*
 336         * We don't need to actually "start the link" itself since the
 337         * firmware will do that for us when the first Virtual Interface
 338         * is enabled on a port.
 339         */
 340        if (ret == 0)
 341                ret = t4vf_enable_pi(pi->adapter, pi, true, true);
 342
 343        return ret;
 344}
 345
 346/*
 347 * Name the MSI-X interrupts.
 348 */
 349static void name_msix_vecs(struct adapter *adapter)
 350{
 351        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 352        int pidx;
 353
 354        /*
 355         * Firmware events.
 356         */
 357        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 358                 "%s-FWeventq", adapter->name);
 359        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 360
 361        /*
 362         * Ethernet queues.
 363         */
 364        for_each_port(adapter, pidx) {
 365                struct net_device *dev = adapter->port[pidx];
 366                const struct port_info *pi = netdev_priv(dev);
 367                int qs, msi;
 368
 369                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 370                        snprintf(adapter->msix_info[msi].desc, namelen,
 371                                 "%s-%d", dev->name, qs);
 372                        adapter->msix_info[msi].desc[namelen] = 0;
 373                }
 374        }
 375}
 376
 377/*
 378 * Request all of our MSI-X resources.
 379 */
 380static int request_msix_queue_irqs(struct adapter *adapter)
 381{
 382        struct sge *s = &adapter->sge;
 383        int rxq, msi, err;
 384
 385        /*
 386         * Firmware events.
 387         */
 388        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 389                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 390        if (err)
 391                return err;
 392
 393        /*
 394         * Ethernet queues.
 395         */
 396        msi = MSIX_IQFLINT;
 397        for_each_ethrxq(s, rxq) {
 398                err = request_irq(adapter->msix_info[msi].vec,
 399                                  t4vf_sge_intr_msix, 0,
 400                                  adapter->msix_info[msi].desc,
 401                                  &s->ethrxq[rxq].rspq);
 402                if (err)
 403                        goto err_free_irqs;
 404                msi++;
 405        }
 406        return 0;
 407
 408err_free_irqs:
 409        while (--rxq >= 0)
 410                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 411        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 412        return err;
 413}
 414
 415/*
 416 * Free our MSI-X resources.
 417 */
 418static void free_msix_queue_irqs(struct adapter *adapter)
 419{
 420        struct sge *s = &adapter->sge;
 421        int rxq, msi;
 422
 423        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 424        msi = MSIX_IQFLINT;
 425        for_each_ethrxq(s, rxq)
 426                free_irq(adapter->msix_info[msi++].vec,
 427                         &s->ethrxq[rxq].rspq);
 428}
 429
 430/*
 431 * Turn on NAPI and start up interrupts on a response queue.
 432 */
 433static void qenable(struct sge_rspq *rspq)
 434{
 435        napi_enable(&rspq->napi);
 436
 437        /*
 438         * 0-increment the Going To Sleep register to start the timer and
 439         * enable interrupts.
 440         */
 441        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 442                     CIDXINC_V(0) |
 443                     SEINTARM_V(rspq->intr_params) |
 444                     INGRESSQID_V(rspq->cntxt_id));
 445}
 446
 447/*
 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 449 */
 450static void enable_rx(struct adapter *adapter)
 451{
 452        int rxq;
 453        struct sge *s = &adapter->sge;
 454
 455        for_each_ethrxq(s, rxq)
 456                qenable(&s->ethrxq[rxq].rspq);
 457        qenable(&s->fw_evtq);
 458
 459        /*
 460         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 461         * its Going To Sleep register here to get it started.
 462         */
 463        if (adapter->flags & CXGB4VF_USING_MSI)
 464                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 465                             CIDXINC_V(0) |
 466                             SEINTARM_V(s->intrq.intr_params) |
 467                             INGRESSQID_V(s->intrq.cntxt_id));
 468
 469}
 470
 471/*
 472 * Wait until all NAPI handlers are descheduled.
 473 */
 474static void quiesce_rx(struct adapter *adapter)
 475{
 476        struct sge *s = &adapter->sge;
 477        int rxq;
 478
 479        for_each_ethrxq(s, rxq)
 480                napi_disable(&s->ethrxq[rxq].rspq.napi);
 481        napi_disable(&s->fw_evtq.napi);
 482}
 483
 484/*
 485 * Response queue handler for the firmware event queue.
 486 */
 487static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 488                          const struct pkt_gl *gl)
 489{
 490        /*
 491         * Extract response opcode and get pointer to CPL message body.
 492         */
 493        struct adapter *adapter = rspq->adapter;
 494        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 495        void *cpl = (void *)(rsp + 1);
 496
 497        switch (opcode) {
 498        case CPL_FW6_MSG: {
 499                /*
 500                 * We've received an asynchronous message from the firmware.
 501                 */
 502                const struct cpl_fw6_msg *fw_msg = cpl;
 503                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 504                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 505                break;
 506        }
 507
 508        case CPL_FW4_MSG: {
 509                /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 510                 */
 511                const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
 512                opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
 513                if (opcode != CPL_SGE_EGR_UPDATE) {
 514                        dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 515                                , opcode);
 516                        break;
 517                }
 518                cpl = (void *)p;
 519        }
 520                fallthrough;
 521
 522        case CPL_SGE_EGR_UPDATE: {
 523                /*
 524                 * We've received an Egress Queue Status Update message.  We
 525                 * get these, if the SGE is configured to send these when the
 526                 * firmware passes certain points in processing our TX
 527                 * Ethernet Queue or if we make an explicit request for one.
 528                 * We use these updates to determine when we may need to
 529                 * restart a TX Ethernet Queue which was stopped for lack of
 530                 * free TX Queue Descriptors ...
 531                 */
 532                const struct cpl_sge_egr_update *p = cpl;
 533                unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
 534                struct sge *s = &adapter->sge;
 535                struct sge_txq *tq;
 536                struct sge_eth_txq *txq;
 537                unsigned int eq_idx;
 538
 539                /*
 540                 * Perform sanity checking on the Queue ID to make sure it
 541                 * really refers to one of our TX Ethernet Egress Queues which
 542                 * is active and matches the queue's ID.  None of these error
 543                 * conditions should ever happen so we may want to either make
 544                 * them fatal and/or conditionalized under DEBUG.
 545                 */
 546                eq_idx = EQ_IDX(s, qid);
 547                if (unlikely(eq_idx >= MAX_EGRQ)) {
 548                        dev_err(adapter->pdev_dev,
 549                                "Egress Update QID %d out of range\n", qid);
 550                        break;
 551                }
 552                tq = s->egr_map[eq_idx];
 553                if (unlikely(tq == NULL)) {
 554                        dev_err(adapter->pdev_dev,
 555                                "Egress Update QID %d TXQ=NULL\n", qid);
 556                        break;
 557                }
 558                txq = container_of(tq, struct sge_eth_txq, q);
 559                if (unlikely(tq->abs_id != qid)) {
 560                        dev_err(adapter->pdev_dev,
 561                                "Egress Update QID %d refers to TXQ %d\n",
 562                                qid, tq->abs_id);
 563                        break;
 564                }
 565
 566                /*
 567                 * Restart a stopped TX Queue which has less than half of its
 568                 * TX ring in use ...
 569                 */
 570                txq->q.restarts++;
 571                netif_tx_wake_queue(txq->txq);
 572                break;
 573        }
 574
 575        default:
 576                dev_err(adapter->pdev_dev,
 577                        "unexpected CPL %#x on FW event queue\n", opcode);
 578        }
 579
 580        return 0;
 581}
 582
 583/*
 584 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 585 * to use and initializes them.  We support multiple "Queue Sets" per port if
 586 * we have MSI-X, otherwise just one queue set per port.
 587 */
 588static int setup_sge_queues(struct adapter *adapter)
 589{
 590        struct sge *s = &adapter->sge;
 591        int err, pidx, msix;
 592
 593        /*
 594         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 595         * state.
 596         */
 597        bitmap_zero(s->starving_fl, MAX_EGRQ);
 598
 599        /*
 600         * If we're using MSI interrupt mode we need to set up a "forwarded
 601         * interrupt" queue which we'll set up with our MSI vector.  The rest
 602         * of the ingress queues will be set up to forward their interrupts to
 603         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 604         * the intrq's queue ID as the interrupt forwarding queue for the
 605         * subsequent calls ...
 606         */
 607        if (adapter->flags & CXGB4VF_USING_MSI) {
 608                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 609                                         adapter->port[0], 0, NULL, NULL);
 610                if (err)
 611                        goto err_free_queues;
 612        }
 613
 614        /*
 615         * Allocate our ingress queue for asynchronous firmware messages.
 616         */
 617        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 618                                 MSIX_FW, NULL, fwevtq_handler);
 619        if (err)
 620                goto err_free_queues;
 621
 622        /*
 623         * Allocate each "port"'s initial Queue Sets.  These can be changed
 624         * later on ... up to the point where any interface on the adapter is
 625         * brought up at which point lots of things get nailed down
 626         * permanently ...
 627         */
 628        msix = MSIX_IQFLINT;
 629        for_each_port(adapter, pidx) {
 630                struct net_device *dev = adapter->port[pidx];
 631                struct port_info *pi = netdev_priv(dev);
 632                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 633                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 634                int qs;
 635
 636                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 637                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 638                                                 dev, msix++,
 639                                                 &rxq->fl, t4vf_ethrx_handler);
 640                        if (err)
 641                                goto err_free_queues;
 642
 643                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 644                                             netdev_get_tx_queue(dev, qs),
 645                                             s->fw_evtq.cntxt_id);
 646                        if (err)
 647                                goto err_free_queues;
 648
 649                        rxq->rspq.idx = qs;
 650                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 651                }
 652        }
 653
 654        /*
 655         * Create the reverse mappings for the queues.
 656         */
 657        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 658        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 659        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 660        for_each_port(adapter, pidx) {
 661                struct net_device *dev = adapter->port[pidx];
 662                struct port_info *pi = netdev_priv(dev);
 663                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 664                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 665                int qs;
 666
 667                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 668                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 669                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 670
 671                        /*
 672                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 673                         * for Free Lists but since all of the Egress Queues
 674                         * (including Free Lists) have Relative Queue IDs
 675                         * which are computed as Absolute - Base Queue ID, we
 676                         * can synthesize the Absolute Queue IDs for the Free
 677                         * Lists.  This is useful for debugging purposes when
 678                         * we want to dump Queue Contexts via the PF Driver.
 679                         */
 680                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 681                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 682                }
 683        }
 684        return 0;
 685
 686err_free_queues:
 687        t4vf_free_sge_resources(adapter);
 688        return err;
 689}
 690
 691/*
 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 693 * queues.  We configure the RSS CPU lookup table to distribute to the number
 694 * of HW receive queues, and the response queue lookup table to narrow that
 695 * down to the response queues actually configured for each "port" (Virtual
 696 * Interface).  We always configure the RSS mapping for all ports since the
 697 * mapping table has plenty of entries.
 698 */
 699static int setup_rss(struct adapter *adapter)
 700{
 701        int pidx;
 702
 703        for_each_port(adapter, pidx) {
 704                struct port_info *pi = adap2pinfo(adapter, pidx);
 705                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 706                u16 rss[MAX_PORT_QSETS];
 707                int qs, err;
 708
 709                for (qs = 0; qs < pi->nqsets; qs++)
 710                        rss[qs] = rxq[qs].rspq.abs_id;
 711
 712                err = t4vf_config_rss_range(adapter, pi->viid,
 713                                            0, pi->rss_size, rss, pi->nqsets);
 714                if (err)
 715                        return err;
 716
 717                /*
 718                 * Perform Global RSS Mode-specific initialization.
 719                 */
 720                switch (adapter->params.rss.mode) {
 721                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 722                        /*
 723                         * If Tunnel All Lookup isn't specified in the global
 724                         * RSS Configuration, then we need to specify a
 725                         * default Ingress Queue for any ingress packets which
 726                         * aren't hashed.  We'll use our first ingress queue
 727                         * ...
 728                         */
 729                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 730                                union rss_vi_config config;
 731                                err = t4vf_read_rss_vi_config(adapter,
 732                                                              pi->viid,
 733                                                              &config);
 734                                if (err)
 735                                        return err;
 736                                config.basicvirtual.defaultq =
 737                                        rxq[0].rspq.abs_id;
 738                                err = t4vf_write_rss_vi_config(adapter,
 739                                                               pi->viid,
 740                                                               &config);
 741                                if (err)
 742                                        return err;
 743                        }
 744                        break;
 745                }
 746        }
 747
 748        return 0;
 749}
 750
 751/*
 752 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 753 * one open.  This function performs the actions necessary to make an adapter
 754 * operational, such as completing the initialization of HW modules, and
 755 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 756 * this is called "cxgb_up" in the PF Driver.)
 757 */
 758static int adapter_up(struct adapter *adapter)
 759{
 760        int err;
 761
 762        /*
 763         * If this is the first time we've been called, perform basic
 764         * adapter setup.  Once we've done this, many of our adapter
 765         * parameters can no longer be changed ...
 766         */
 767        if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
 768                err = setup_sge_queues(adapter);
 769                if (err)
 770                        return err;
 771                err = setup_rss(adapter);
 772                if (err) {
 773                        t4vf_free_sge_resources(adapter);
 774                        return err;
 775                }
 776
 777                if (adapter->flags & CXGB4VF_USING_MSIX)
 778                        name_msix_vecs(adapter);
 779
 780                adapter->flags |= CXGB4VF_FULL_INIT_DONE;
 781        }
 782
 783        /*
 784         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 785         */
 786        BUG_ON((adapter->flags &
 787               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
 788        if (adapter->flags & CXGB4VF_USING_MSIX)
 789                err = request_msix_queue_irqs(adapter);
 790        else
 791                err = request_irq(adapter->pdev->irq,
 792                                  t4vf_intr_handler(adapter), 0,
 793                                  adapter->name, adapter);
 794        if (err) {
 795                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 796                        err);
 797                return err;
 798        }
 799
 800        /*
 801         * Enable NAPI ingress processing and return success.
 802         */
 803        enable_rx(adapter);
 804        t4vf_sge_start(adapter);
 805
 806        return 0;
 807}
 808
 809/*
 810 * Bring the adapter down.  Called whenever the last "port" (Virtual
 811 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 812 * Driver.)
 813 */
 814static void adapter_down(struct adapter *adapter)
 815{
 816        /*
 817         * Free interrupt resources.
 818         */
 819        if (adapter->flags & CXGB4VF_USING_MSIX)
 820                free_msix_queue_irqs(adapter);
 821        else
 822                free_irq(adapter->pdev->irq, adapter);
 823
 824        /*
 825         * Wait for NAPI handlers to finish.
 826         */
 827        quiesce_rx(adapter);
 828}
 829
 830/*
 831 * Start up a net device.
 832 */
 833static int cxgb4vf_open(struct net_device *dev)
 834{
 835        int err;
 836        struct port_info *pi = netdev_priv(dev);
 837        struct adapter *adapter = pi->adapter;
 838
 839        /*
 840         * If we don't have a connection to the firmware there's nothing we
 841         * can do.
 842         */
 843        if (!(adapter->flags & CXGB4VF_FW_OK))
 844                return -ENXIO;
 845
 846        /*
 847         * If this is the first interface that we're opening on the "adapter",
 848         * bring the "adapter" up now.
 849         */
 850        if (adapter->open_device_map == 0) {
 851                err = adapter_up(adapter);
 852                if (err)
 853                        return err;
 854        }
 855
 856        /* It's possible that the basic port information could have
 857         * changed since we first read it.
 858         */
 859        err = t4vf_update_port_info(pi);
 860        if (err < 0)
 861                return err;
 862
 863        /*
 864         * Note that this interface is up and start everything up ...
 865         */
 866        err = link_start(dev);
 867        if (err)
 868                goto err_unwind;
 869
 870        pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
 871
 872        netif_tx_start_all_queues(dev);
 873        set_bit(pi->port_id, &adapter->open_device_map);
 874        return 0;
 875
 876err_unwind:
 877        if (adapter->open_device_map == 0)
 878                adapter_down(adapter);
 879        return err;
 880}
 881
 882/*
 883 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 884 * Driver ...
 885 */
 886static int cxgb4vf_stop(struct net_device *dev)
 887{
 888        struct port_info *pi = netdev_priv(dev);
 889        struct adapter *adapter = pi->adapter;
 890
 891        netif_tx_stop_all_queues(dev);
 892        netif_carrier_off(dev);
 893        t4vf_enable_pi(adapter, pi, false, false);
 894
 895        clear_bit(pi->port_id, &adapter->open_device_map);
 896        if (adapter->open_device_map == 0)
 897                adapter_down(adapter);
 898        return 0;
 899}
 900
 901/*
 902 * Translate our basic statistics into the standard "ifconfig" statistics.
 903 */
 904static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 905{
 906        struct t4vf_port_stats stats;
 907        struct port_info *pi = netdev2pinfo(dev);
 908        struct adapter *adapter = pi->adapter;
 909        struct net_device_stats *ns = &dev->stats;
 910        int err;
 911
 912        spin_lock(&adapter->stats_lock);
 913        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 914        spin_unlock(&adapter->stats_lock);
 915
 916        memset(ns, 0, sizeof(*ns));
 917        if (err)
 918                return ns;
 919
 920        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 921                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 922        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 923                          stats.tx_ucast_frames + stats.tx_offload_frames);
 924        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 925                        stats.rx_ucast_bytes);
 926        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 927                          stats.rx_ucast_frames);
 928        ns->multicast = stats.rx_mcast_frames;
 929        ns->tx_errors = stats.tx_drop_frames;
 930        ns->rx_errors = stats.rx_err_frames;
 931
 932        return ns;
 933}
 934
 935static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 936{
 937        struct port_info *pi = netdev_priv(netdev);
 938        struct adapter *adapter = pi->adapter;
 939        int ret;
 940        u64 mhash = 0;
 941        u64 uhash = 0;
 942        bool free = false;
 943        bool ucast = is_unicast_ether_addr(mac_addr);
 944        const u8 *maclist[1] = {mac_addr};
 945        struct hash_mac_addr *new_entry;
 946
 947        ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
 948                                  NULL, ucast ? &uhash : &mhash, false);
 949        if (ret < 0)
 950                goto out;
 951        /* if hash != 0, then add the addr to hash addr list
 952         * so on the end we will calculate the hash for the
 953         * list and program it
 954         */
 955        if (uhash || mhash) {
 956                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 957                if (!new_entry)
 958                        return -ENOMEM;
 959                ether_addr_copy(new_entry->addr, mac_addr);
 960                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 961                ret = cxgb4vf_set_addr_hash(pi);
 962        }
 963out:
 964        return ret < 0 ? ret : 0;
 965}
 966
 967static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 968{
 969        struct port_info *pi = netdev_priv(netdev);
 970        struct adapter *adapter = pi->adapter;
 971        int ret;
 972        const u8 *maclist[1] = {mac_addr};
 973        struct hash_mac_addr *entry, *tmp;
 974
 975        /* If the MAC address to be removed is in the hash addr
 976         * list, delete it from the list and update hash vector
 977         */
 978        list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
 979                if (ether_addr_equal(entry->addr, mac_addr)) {
 980                        list_del(&entry->list);
 981                        kfree(entry);
 982                        return cxgb4vf_set_addr_hash(pi);
 983                }
 984        }
 985
 986        ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
 987        return ret < 0 ? -EINVAL : 0;
 988}
 989
 990/*
 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 992 * If @mtu is -1 it is left unchanged.
 993 */
 994static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 995{
 996        struct port_info *pi = netdev_priv(dev);
 997
 998        __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 999        __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000        return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001                               (dev->flags & IFF_PROMISC) != 0,
1002                               (dev->flags & IFF_ALLMULTI) != 0,
1003                               1, -1, sleep_ok);
1004}
1005
1006/*
1007 * Set the current receive modes on the device.
1008 */
1009static void cxgb4vf_set_rxmode(struct net_device *dev)
1010{
1011        /* unfortunately we can't return errors to the stack */
1012        set_rxmode(dev, -1, false);
1013}
1014
1015/*
1016 * Find the entry in the interrupt holdoff timer value array which comes
1017 * closest to the specified interrupt holdoff value.
1018 */
1019static int closest_timer(const struct sge *s, int us)
1020{
1021        int i, timer_idx = 0, min_delta = INT_MAX;
1022
1023        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024                int delta = us - s->timer_val[i];
1025                if (delta < 0)
1026                        delta = -delta;
1027                if (delta < min_delta) {
1028                        min_delta = delta;
1029                        timer_idx = i;
1030                }
1031        }
1032        return timer_idx;
1033}
1034
1035static int closest_thres(const struct sge *s, int thres)
1036{
1037        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038
1039        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040                delta = thres - s->counter_val[i];
1041                if (delta < 0)
1042                        delta = -delta;
1043                if (delta < min_delta) {
1044                        min_delta = delta;
1045                        pktcnt_idx = i;
1046                }
1047        }
1048        return pktcnt_idx;
1049}
1050
1051/*
1052 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053 */
1054static unsigned int qtimer_val(const struct adapter *adapter,
1055                               const struct sge_rspq *rspq)
1056{
1057        unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058
1059        return timer_idx < SGE_NTIMERS
1060                ? adapter->sge.timer_val[timer_idx]
1061                : 0;
1062}
1063
1064/**
1065 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066 *      @adapter: the adapter
1067 *      @rspq: the RX response queue
1068 *      @us: the hold-off time in us, or 0 to disable timer
1069 *      @cnt: the hold-off packet count, or 0 to disable counter
1070 *
1071 *      Sets an RX response queue's interrupt hold-off time and packet count.
1072 *      At least one of the two needs to be enabled for the queue to generate
1073 *      interrupts.
1074 */
1075static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076                               unsigned int us, unsigned int cnt)
1077{
1078        unsigned int timer_idx;
1079
1080        /*
1081         * If both the interrupt holdoff timer and count are specified as
1082         * zero, default to a holdoff count of 1 ...
1083         */
1084        if ((us | cnt) == 0)
1085                cnt = 1;
1086
1087        /*
1088         * If an interrupt holdoff count has been specified, then find the
1089         * closest configured holdoff count and use that.  If the response
1090         * queue has already been created, then update its queue context
1091         * parameters ...
1092         */
1093        if (cnt) {
1094                int err;
1095                u32 v, pktcnt_idx;
1096
1097                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100                            FW_PARAMS_PARAM_X_V(
1101                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102                            FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104                        if (err)
1105                                return err;
1106                }
1107                rspq->pktcnt_idx = pktcnt_idx;
1108        }
1109
1110        /*
1111         * Compute the closest holdoff timer index from the supplied holdoff
1112         * timer value.
1113         */
1114        timer_idx = (us == 0
1115                     ? SGE_TIMER_RSTRT_CNTR
1116                     : closest_timer(&adapter->sge, us));
1117
1118        /*
1119         * Update the response queue's interrupt coalescing parameters and
1120         * return success.
1121         */
1122        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123                             QINTR_CNT_EN_V(cnt > 0));
1124        return 0;
1125}
1126
1127/*
1128 * Return a version number to identify the type of adapter.  The scheme is:
1129 * - bits 0..9: chip version
1130 * - bits 10..15: chip revision
1131 */
1132static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133{
1134        /*
1135         * Chip version 4, revision 0x3f (cxgb4vf).
1136         */
1137        return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138}
1139
1140/*
1141 * Execute the specified ioctl command.
1142 */
1143static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144{
1145        int ret = 0;
1146
1147        switch (cmd) {
1148            /*
1149             * The VF Driver doesn't have access to any of the other
1150             * common Ethernet device ioctl()'s (like reading/writing
1151             * PHY registers, etc.
1152             */
1153
1154        default:
1155                ret = -EOPNOTSUPP;
1156                break;
1157        }
1158        return ret;
1159}
1160
1161/*
1162 * Change the device's MTU.
1163 */
1164static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165{
1166        int ret;
1167        struct port_info *pi = netdev_priv(dev);
1168
1169        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170                              -1, -1, -1, -1, true);
1171        if (!ret)
1172                dev->mtu = new_mtu;
1173        return ret;
1174}
1175
1176static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177        netdev_features_t features)
1178{
1179        /*
1180         * Since there is no support for separate rx/tx vlan accel
1181         * enable/disable make sure tx flag is always in same state as rx.
1182         */
1183        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184                features |= NETIF_F_HW_VLAN_CTAG_TX;
1185        else
1186                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187
1188        return features;
1189}
1190
1191static int cxgb4vf_set_features(struct net_device *dev,
1192        netdev_features_t features)
1193{
1194        struct port_info *pi = netdev_priv(dev);
1195        netdev_features_t changed = dev->features ^ features;
1196
1197        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198                t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199                                features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200
1201        return 0;
1202}
1203
1204/*
1205 * Change the devices MAC address.
1206 */
1207static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208{
1209        int ret;
1210        struct sockaddr *addr = _addr;
1211        struct port_info *pi = netdev_priv(dev);
1212
1213        if (!is_valid_ether_addr(addr->sa_data))
1214                return -EADDRNOTAVAIL;
1215
1216        ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217                                 addr->sa_data, true);
1218        if (ret < 0)
1219                return ret;
1220
1221        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1222        return 0;
1223}
1224
1225#ifdef CONFIG_NET_POLL_CONTROLLER
1226/*
1227 * Poll all of our receive queues.  This is called outside of normal interrupt
1228 * context.
1229 */
1230static void cxgb4vf_poll_controller(struct net_device *dev)
1231{
1232        struct port_info *pi = netdev_priv(dev);
1233        struct adapter *adapter = pi->adapter;
1234
1235        if (adapter->flags & CXGB4VF_USING_MSIX) {
1236                struct sge_eth_rxq *rxq;
1237                int nqsets;
1238
1239                rxq = &adapter->sge.ethrxq[pi->first_qset];
1240                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241                        t4vf_sge_intr_msix(0, &rxq->rspq);
1242                        rxq++;
1243                }
1244        } else
1245                t4vf_intr_handler(adapter)(0, adapter);
1246}
1247#endif
1248
1249/*
1250 * Ethtool operations.
1251 * ===================
1252 *
1253 * Note that we don't support any ethtool operations which change the physical
1254 * state of the port to which we're linked.
1255 */
1256
1257/**
1258 *      from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259 *      @port_type: Firmware Port Type
1260 *      @mod_type: Firmware Module Type
1261 *
1262 *      Translate Firmware Port/Module type to Ethtool Port Type.
1263 */
1264static int from_fw_port_mod_type(enum fw_port_type port_type,
1265                                 enum fw_port_module_type mod_type)
1266{
1267        if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268            port_type == FW_PORT_TYPE_BT_XFI ||
1269            port_type == FW_PORT_TYPE_BT_XAUI) {
1270                return PORT_TP;
1271        } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272                   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273                return PORT_FIBRE;
1274        } else if (port_type == FW_PORT_TYPE_SFP ||
1275                   port_type == FW_PORT_TYPE_QSFP_10G ||
1276                   port_type == FW_PORT_TYPE_QSA ||
1277                   port_type == FW_PORT_TYPE_QSFP ||
1278                   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279                   port_type == FW_PORT_TYPE_CR_QSFP ||
1280                   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281                   port_type == FW_PORT_TYPE_SFP28) {
1282                if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283                    mod_type == FW_PORT_MOD_TYPE_SR ||
1284                    mod_type == FW_PORT_MOD_TYPE_ER ||
1285                    mod_type == FW_PORT_MOD_TYPE_LRM)
1286                        return PORT_FIBRE;
1287                else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288                         mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289                        return PORT_DA;
1290                else
1291                        return PORT_OTHER;
1292        } else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293                   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294                   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295                return PORT_NONE;
1296        }
1297
1298        return PORT_OTHER;
1299}
1300
1301/**
1302 *      fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303 *      @port_type: Firmware Port Type
1304 *      @fw_caps: Firmware Port Capabilities
1305 *      @link_mode_mask: ethtool Link Mode Mask
1306 *
1307 *      Translate a Firmware Port Capabilities specification to an ethtool
1308 *      Link Mode Mask.
1309 */
1310static void fw_caps_to_lmm(enum fw_port_type port_type,
1311                           unsigned int fw_caps,
1312                           unsigned long *link_mode_mask)
1313{
1314        #define SET_LMM(__lmm_name) \
1315                __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316                          link_mode_mask)
1317
1318        #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319                do { \
1320                        if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321                                SET_LMM(__lmm_name); \
1322                } while (0)
1323
1324        switch (port_type) {
1325        case FW_PORT_TYPE_BT_SGMII:
1326        case FW_PORT_TYPE_BT_XFI:
1327        case FW_PORT_TYPE_BT_XAUI:
1328                SET_LMM(TP);
1329                FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332                break;
1333
1334        case FW_PORT_TYPE_KX4:
1335        case FW_PORT_TYPE_KX:
1336                SET_LMM(Backplane);
1337                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339                break;
1340
1341        case FW_PORT_TYPE_KR:
1342                SET_LMM(Backplane);
1343                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344                break;
1345
1346        case FW_PORT_TYPE_BP_AP:
1347                SET_LMM(Backplane);
1348                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351                break;
1352
1353        case FW_PORT_TYPE_BP4_AP:
1354                SET_LMM(Backplane);
1355                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359                break;
1360
1361        case FW_PORT_TYPE_FIBER_XFI:
1362        case FW_PORT_TYPE_FIBER_XAUI:
1363        case FW_PORT_TYPE_SFP:
1364        case FW_PORT_TYPE_QSFP_10G:
1365        case FW_PORT_TYPE_QSA:
1366                SET_LMM(FIBRE);
1367                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369                break;
1370
1371        case FW_PORT_TYPE_BP40_BA:
1372        case FW_PORT_TYPE_QSFP:
1373                SET_LMM(FIBRE);
1374                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377                break;
1378
1379        case FW_PORT_TYPE_CR_QSFP:
1380        case FW_PORT_TYPE_SFP28:
1381                SET_LMM(FIBRE);
1382                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385                break;
1386
1387        case FW_PORT_TYPE_KR_SFP28:
1388                SET_LMM(Backplane);
1389                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391                FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392                break;
1393
1394        case FW_PORT_TYPE_KR_XLAUI:
1395                SET_LMM(Backplane);
1396                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398                FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399                break;
1400
1401        case FW_PORT_TYPE_CR2_QSFP:
1402                SET_LMM(FIBRE);
1403                FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404                break;
1405
1406        case FW_PORT_TYPE_KR4_100G:
1407        case FW_PORT_TYPE_CR4_QSFP:
1408                SET_LMM(FIBRE);
1409                FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413                FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414                FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415                break;
1416
1417        default:
1418                break;
1419        }
1420
1421        if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422                FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423                FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424        } else {
1425                SET_LMM(FEC_NONE);
1426        }
1427
1428        FW_CAPS_TO_LMM(ANEG, Autoneg);
1429        FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430        FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431
1432        #undef FW_CAPS_TO_LMM
1433        #undef SET_LMM
1434}
1435
1436static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437                                  struct ethtool_link_ksettings *link_ksettings)
1438{
1439        struct port_info *pi = netdev_priv(dev);
1440        struct ethtool_link_settings *base = &link_ksettings->base;
1441
1442        /* For the nonce, the Firmware doesn't send up Port State changes
1443         * when the Virtual Interface attached to the Port is down.  So
1444         * if it's down, let's grab any changes.
1445         */
1446        if (!netif_running(dev))
1447                (void)t4vf_update_port_info(pi);
1448
1449        ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450        ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451        ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452
1453        base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454
1455        if (pi->mdio_addr >= 0) {
1456                base->phy_address = pi->mdio_addr;
1457                base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458                                      ? ETH_MDIO_SUPPORTS_C22
1459                                      : ETH_MDIO_SUPPORTS_C45);
1460        } else {
1461                base->phy_address = 255;
1462                base->mdio_support = 0;
1463        }
1464
1465        fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466                       link_ksettings->link_modes.supported);
1467        fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468                       link_ksettings->link_modes.advertising);
1469        fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470                       link_ksettings->link_modes.lp_advertising);
1471
1472        if (netif_carrier_ok(dev)) {
1473                base->speed = pi->link_cfg.speed;
1474                base->duplex = DUPLEX_FULL;
1475        } else {
1476                base->speed = SPEED_UNKNOWN;
1477                base->duplex = DUPLEX_UNKNOWN;
1478        }
1479
1480        base->autoneg = pi->link_cfg.autoneg;
1481        if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482                ethtool_link_ksettings_add_link_mode(link_ksettings,
1483                                                     supported, Autoneg);
1484        if (pi->link_cfg.autoneg)
1485                ethtool_link_ksettings_add_link_mode(link_ksettings,
1486                                                     advertising, Autoneg);
1487
1488        return 0;
1489}
1490
1491/* Translate the Firmware FEC value into the ethtool value. */
1492static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493{
1494        unsigned int eth_fec = 0;
1495
1496        if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497                eth_fec |= ETHTOOL_FEC_RS;
1498        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499                eth_fec |= ETHTOOL_FEC_BASER;
1500
1501        /* if nothing is set, then FEC is off */
1502        if (!eth_fec)
1503                eth_fec = ETHTOOL_FEC_OFF;
1504
1505        return eth_fec;
1506}
1507
1508/* Translate Common Code FEC value into ethtool value. */
1509static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510{
1511        unsigned int eth_fec = 0;
1512
1513        if (cc_fec & FEC_AUTO)
1514                eth_fec |= ETHTOOL_FEC_AUTO;
1515        if (cc_fec & FEC_RS)
1516                eth_fec |= ETHTOOL_FEC_RS;
1517        if (cc_fec & FEC_BASER_RS)
1518                eth_fec |= ETHTOOL_FEC_BASER;
1519
1520        /* if nothing is set, then FEC is off */
1521        if (!eth_fec)
1522                eth_fec = ETHTOOL_FEC_OFF;
1523
1524        return eth_fec;
1525}
1526
1527static int cxgb4vf_get_fecparam(struct net_device *dev,
1528                                struct ethtool_fecparam *fec)
1529{
1530        const struct port_info *pi = netdev_priv(dev);
1531        const struct link_config *lc = &pi->link_cfg;
1532
1533        /* Translate the Firmware FEC Support into the ethtool value.  We
1534         * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535         * any FEC is supported.
1536         */
1537        fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538        if (fec->fec != ETHTOOL_FEC_OFF)
1539                fec->fec |= ETHTOOL_FEC_AUTO;
1540
1541        /* Translate the current internal FEC parameters into the
1542         * ethtool values.
1543         */
1544        fec->active_fec = cc_to_eth_fec(lc->fec);
1545        return 0;
1546}
1547
1548/*
1549 * Return our driver information.
1550 */
1551static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552                                struct ethtool_drvinfo *drvinfo)
1553{
1554        struct adapter *adapter = netdev2adap(dev);
1555
1556        strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557        strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558                sizeof(drvinfo->bus_info));
1559        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569}
1570
1571/*
1572 * Return current adapter message level.
1573 */
1574static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575{
1576        return netdev2adap(dev)->msg_enable;
1577}
1578
1579/*
1580 * Set current adapter message level.
1581 */
1582static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583{
1584        netdev2adap(dev)->msg_enable = msglevel;
1585}
1586
1587/*
1588 * Return the device's current Queue Set ring size parameters along with the
1589 * allowed maximum values.  Since ethtool doesn't understand the concept of
1590 * multi-queue devices, we just return the current values associated with the
1591 * first Queue Set.
1592 */
1593static void cxgb4vf_get_ringparam(struct net_device *dev,
1594                                  struct ethtool_ringparam *rp)
1595{
1596        const struct port_info *pi = netdev_priv(dev);
1597        const struct sge *s = &pi->adapter->sge;
1598
1599        rp->rx_max_pending = MAX_RX_BUFFERS;
1600        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1601        rp->rx_jumbo_max_pending = 0;
1602        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1603
1604        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1605        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1606        rp->rx_jumbo_pending = 0;
1607        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1608}
1609
1610/*
1611 * Set the Queue Set ring size parameters for the device.  Again, since
1612 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1613 * apply these new values across all of the Queue Sets associated with the
1614 * device -- after vetting them of course!
1615 */
1616static int cxgb4vf_set_ringparam(struct net_device *dev,
1617                                 struct ethtool_ringparam *rp)
1618{
1619        const struct port_info *pi = netdev_priv(dev);
1620        struct adapter *adapter = pi->adapter;
1621        struct sge *s = &adapter->sge;
1622        int qs;
1623
1624        if (rp->rx_pending > MAX_RX_BUFFERS ||
1625            rp->rx_jumbo_pending ||
1626            rp->tx_pending > MAX_TXQ_ENTRIES ||
1627            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1628            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1629            rp->rx_pending < MIN_FL_ENTRIES ||
1630            rp->tx_pending < MIN_TXQ_ENTRIES)
1631                return -EINVAL;
1632
1633        if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1634                return -EBUSY;
1635
1636        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1637                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1638                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1639                s->ethtxq[qs].q.size = rp->tx_pending;
1640        }
1641        return 0;
1642}
1643
1644/*
1645 * Return the interrupt holdoff timer and count for the first Queue Set on the
1646 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1647 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1648 */
1649static int cxgb4vf_get_coalesce(struct net_device *dev,
1650                                struct ethtool_coalesce *coalesce,
1651                                struct kernel_ethtool_coalesce *kernel_coal,
1652                                struct netlink_ext_ack *extack)
1653{
1654        const struct port_info *pi = netdev_priv(dev);
1655        const struct adapter *adapter = pi->adapter;
1656        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1657
1658        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1659        coalesce->rx_max_coalesced_frames =
1660                ((rspq->intr_params & QINTR_CNT_EN_F)
1661                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1662                 : 0);
1663        return 0;
1664}
1665
1666/*
1667 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1668 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1669 * the interrupt holdoff timer on any of the device's Queue Sets.
1670 */
1671static int cxgb4vf_set_coalesce(struct net_device *dev,
1672                                struct ethtool_coalesce *coalesce,
1673                                struct kernel_ethtool_coalesce *kernel_coal,
1674                                struct netlink_ext_ack *extack)
1675{
1676        const struct port_info *pi = netdev_priv(dev);
1677        struct adapter *adapter = pi->adapter;
1678
1679        return set_rxq_intr_params(adapter,
1680                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1681                                   coalesce->rx_coalesce_usecs,
1682                                   coalesce->rx_max_coalesced_frames);
1683}
1684
1685/*
1686 * Report current port link pause parameter settings.
1687 */
1688static void cxgb4vf_get_pauseparam(struct net_device *dev,
1689                                   struct ethtool_pauseparam *pauseparam)
1690{
1691        struct port_info *pi = netdev_priv(dev);
1692
1693        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1694        pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1695        pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1696}
1697
1698/*
1699 * Identify the port by blinking the port's LED.
1700 */
1701static int cxgb4vf_phys_id(struct net_device *dev,
1702                           enum ethtool_phys_id_state state)
1703{
1704        unsigned int val;
1705        struct port_info *pi = netdev_priv(dev);
1706
1707        if (state == ETHTOOL_ID_ACTIVE)
1708                val = 0xffff;
1709        else if (state == ETHTOOL_ID_INACTIVE)
1710                val = 0;
1711        else
1712                return -EINVAL;
1713
1714        return t4vf_identify_port(pi->adapter, pi->viid, val);
1715}
1716
1717/*
1718 * Port stats maintained per queue of the port.
1719 */
1720struct queue_port_stats {
1721        u64 tso;
1722        u64 tx_csum;
1723        u64 rx_csum;
1724        u64 vlan_ex;
1725        u64 vlan_ins;
1726        u64 lro_pkts;
1727        u64 lro_merged;
1728};
1729
1730/*
1731 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1732 * these need to match the order of statistics returned by
1733 * t4vf_get_port_stats().
1734 */
1735static const char stats_strings[][ETH_GSTRING_LEN] = {
1736        /*
1737         * These must match the layout of the t4vf_port_stats structure.
1738         */
1739        "TxBroadcastBytes  ",
1740        "TxBroadcastFrames ",
1741        "TxMulticastBytes  ",
1742        "TxMulticastFrames ",
1743        "TxUnicastBytes    ",
1744        "TxUnicastFrames   ",
1745        "TxDroppedFrames   ",
1746        "TxOffloadBytes    ",
1747        "TxOffloadFrames   ",
1748        "RxBroadcastBytes  ",
1749        "RxBroadcastFrames ",
1750        "RxMulticastBytes  ",
1751        "RxMulticastFrames ",
1752        "RxUnicastBytes    ",
1753        "RxUnicastFrames   ",
1754        "RxErrorFrames     ",
1755
1756        /*
1757         * These are accumulated per-queue statistics and must match the
1758         * order of the fields in the queue_port_stats structure.
1759         */
1760        "TSO               ",
1761        "TxCsumOffload     ",
1762        "RxCsumGood        ",
1763        "VLANextractions   ",
1764        "VLANinsertions    ",
1765        "GROPackets        ",
1766        "GROMerged         ",
1767};
1768
1769/*
1770 * Return the number of statistics in the specified statistics set.
1771 */
1772static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1773{
1774        switch (sset) {
1775        case ETH_SS_STATS:
1776                return ARRAY_SIZE(stats_strings);
1777        default:
1778                return -EOPNOTSUPP;
1779        }
1780        /*NOTREACHED*/
1781}
1782
1783/*
1784 * Return the strings for the specified statistics set.
1785 */
1786static void cxgb4vf_get_strings(struct net_device *dev,
1787                                u32 sset,
1788                                u8 *data)
1789{
1790        switch (sset) {
1791        case ETH_SS_STATS:
1792                memcpy(data, stats_strings, sizeof(stats_strings));
1793                break;
1794        }
1795}
1796
1797/*
1798 * Small utility routine to accumulate queue statistics across the queues of
1799 * a "port".
1800 */
1801static void collect_sge_port_stats(const struct adapter *adapter,
1802                                   const struct port_info *pi,
1803                                   struct queue_port_stats *stats)
1804{
1805        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1806        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1807        int qs;
1808
1809        memset(stats, 0, sizeof(*stats));
1810        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1811                stats->tso += txq->tso;
1812                stats->tx_csum += txq->tx_cso;
1813                stats->rx_csum += rxq->stats.rx_cso;
1814                stats->vlan_ex += rxq->stats.vlan_ex;
1815                stats->vlan_ins += txq->vlan_ins;
1816                stats->lro_pkts += rxq->stats.lro_pkts;
1817                stats->lro_merged += rxq->stats.lro_merged;
1818        }
1819}
1820
1821/*
1822 * Return the ETH_SS_STATS statistics set.
1823 */
1824static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1825                                      struct ethtool_stats *stats,
1826                                      u64 *data)
1827{
1828        struct port_info *pi = netdev2pinfo(dev);
1829        struct adapter *adapter = pi->adapter;
1830        int err = t4vf_get_port_stats(adapter, pi->pidx,
1831                                      (struct t4vf_port_stats *)data);
1832        if (err)
1833                memset(data, 0, sizeof(struct t4vf_port_stats));
1834
1835        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1836        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1837}
1838
1839/*
1840 * Return the size of our register map.
1841 */
1842static int cxgb4vf_get_regs_len(struct net_device *dev)
1843{
1844        return T4VF_REGMAP_SIZE;
1845}
1846
1847/*
1848 * Dump a block of registers, start to end inclusive, into a buffer.
1849 */
1850static void reg_block_dump(struct adapter *adapter, void *regbuf,
1851                           unsigned int start, unsigned int end)
1852{
1853        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1854
1855        for ( ; start <= end; start += sizeof(u32)) {
1856                /*
1857                 * Avoid reading the Mailbox Control register since that
1858                 * can trigger a Mailbox Ownership Arbitration cycle and
1859                 * interfere with communication with the firmware.
1860                 */
1861                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1862                        *bp++ = 0xffff;
1863                else
1864                        *bp++ = t4_read_reg(adapter, start);
1865        }
1866}
1867
1868/*
1869 * Copy our entire register map into the provided buffer.
1870 */
1871static void cxgb4vf_get_regs(struct net_device *dev,
1872                             struct ethtool_regs *regs,
1873                             void *regbuf)
1874{
1875        struct adapter *adapter = netdev2adap(dev);
1876
1877        regs->version = mk_adap_vers(adapter);
1878
1879        /*
1880         * Fill in register buffer with our register map.
1881         */
1882        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1883
1884        reg_block_dump(adapter, regbuf,
1885                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1886                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1887        reg_block_dump(adapter, regbuf,
1888                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1889                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1890
1891        /* T5 adds new registers in the PL Register map.
1892         */
1893        reg_block_dump(adapter, regbuf,
1894                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1895                       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1896                       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1897        reg_block_dump(adapter, regbuf,
1898                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1899                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1900
1901        reg_block_dump(adapter, regbuf,
1902                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1903                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1904}
1905
1906/*
1907 * Report current Wake On LAN settings.
1908 */
1909static void cxgb4vf_get_wol(struct net_device *dev,
1910                            struct ethtool_wolinfo *wol)
1911{
1912        wol->supported = 0;
1913        wol->wolopts = 0;
1914        memset(&wol->sopass, 0, sizeof(wol->sopass));
1915}
1916
1917/*
1918 * TCP Segmentation Offload flags which we support.
1919 */
1920#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1921#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1922                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1923
1924static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1925        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1926                                     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1927        .get_link_ksettings     = cxgb4vf_get_link_ksettings,
1928        .get_fecparam           = cxgb4vf_get_fecparam,
1929        .get_drvinfo            = cxgb4vf_get_drvinfo,
1930        .get_msglevel           = cxgb4vf_get_msglevel,
1931        .set_msglevel           = cxgb4vf_set_msglevel,
1932        .get_ringparam          = cxgb4vf_get_ringparam,
1933        .set_ringparam          = cxgb4vf_set_ringparam,
1934        .get_coalesce           = cxgb4vf_get_coalesce,
1935        .set_coalesce           = cxgb4vf_set_coalesce,
1936        .get_pauseparam         = cxgb4vf_get_pauseparam,
1937        .get_link               = ethtool_op_get_link,
1938        .get_strings            = cxgb4vf_get_strings,
1939        .set_phys_id            = cxgb4vf_phys_id,
1940        .get_sset_count         = cxgb4vf_get_sset_count,
1941        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1942        .get_regs_len           = cxgb4vf_get_regs_len,
1943        .get_regs               = cxgb4vf_get_regs,
1944        .get_wol                = cxgb4vf_get_wol,
1945};
1946
1947/*
1948 * /sys/kernel/debug/cxgb4vf support code and data.
1949 * ================================================
1950 */
1951
1952/*
1953 * Show Firmware Mailbox Command/Reply Log
1954 *
1955 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1956 * it's possible that we can catch things during a log update and therefore
1957 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1958 * If we ever decide that we want to make sure that we're dumping a coherent
1959 * log, we'd need to perform locking in the mailbox logging and in
1960 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1961 * like we do for the Firmware Device Log.  But as stated above, meh ...
1962 */
1963static int mboxlog_show(struct seq_file *seq, void *v)
1964{
1965        struct adapter *adapter = seq->private;
1966        struct mbox_cmd_log *log = adapter->mbox_log;
1967        struct mbox_cmd *entry;
1968        int entry_idx, i;
1969
1970        if (v == SEQ_START_TOKEN) {
1971                seq_printf(seq,
1972                           "%10s  %15s  %5s  %5s  %s\n",
1973                           "Seq#", "Tstamp", "Atime", "Etime",
1974                           "Command/Reply");
1975                return 0;
1976        }
1977
1978        entry_idx = log->cursor + ((uintptr_t)v - 2);
1979        if (entry_idx >= log->size)
1980                entry_idx -= log->size;
1981        entry = mbox_cmd_log_entry(log, entry_idx);
1982
1983        /* skip over unused entries */
1984        if (entry->timestamp == 0)
1985                return 0;
1986
1987        seq_printf(seq, "%10u  %15llu  %5d  %5d",
1988                   entry->seqno, entry->timestamp,
1989                   entry->access, entry->execute);
1990        for (i = 0; i < MBOX_LEN / 8; i++) {
1991                u64 flit = entry->cmd[i];
1992                u32 hi = (u32)(flit >> 32);
1993                u32 lo = (u32)flit;
1994
1995                seq_printf(seq, "  %08x %08x", hi, lo);
1996        }
1997        seq_puts(seq, "\n");
1998        return 0;
1999}
2000
2001static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
2002{
2003        struct adapter *adapter = seq->private;
2004        struct mbox_cmd_log *log = adapter->mbox_log;
2005
2006        return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2007}
2008
2009static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2010{
2011        return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2012}
2013
2014static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2015{
2016        ++*pos;
2017        return mboxlog_get_idx(seq, *pos);
2018}
2019
2020static void mboxlog_stop(struct seq_file *seq, void *v)
2021{
2022}
2023
2024static const struct seq_operations mboxlog_sops = {
2025        .start = mboxlog_start,
2026        .next  = mboxlog_next,
2027        .stop  = mboxlog_stop,
2028        .show  = mboxlog_show
2029};
2030
2031DEFINE_SEQ_ATTRIBUTE(mboxlog);
2032/*
2033 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2034 */
2035#define QPL     4
2036
2037static int sge_qinfo_show(struct seq_file *seq, void *v)
2038{
2039        struct adapter *adapter = seq->private;
2040        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2041        int qs, r = (uintptr_t)v - 1;
2042
2043        if (r)
2044                seq_putc(seq, '\n');
2045
2046        #define S3(fmt_spec, s, v) \
2047                do {\
2048                        seq_printf(seq, "%-12s", s); \
2049                        for (qs = 0; qs < n; ++qs) \
2050                                seq_printf(seq, " %16" fmt_spec, v); \
2051                        seq_putc(seq, '\n'); \
2052                } while (0)
2053        #define S(s, v)         S3("s", s, v)
2054        #define T(s, v)         S3("u", s, txq[qs].v)
2055        #define R(s, v)         S3("u", s, rxq[qs].v)
2056
2057        if (r < eth_entries) {
2058                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2059                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2060                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2061
2062                S("QType:", "Ethernet");
2063                S("Interface:",
2064                  (rxq[qs].rspq.netdev
2065                   ? rxq[qs].rspq.netdev->name
2066                   : "N/A"));
2067                S3("d", "Port:",
2068                   (rxq[qs].rspq.netdev
2069                    ? ((struct port_info *)
2070                       netdev_priv(rxq[qs].rspq.netdev))->port_id
2071                    : -1));
2072                T("TxQ ID:", q.abs_id);
2073                T("TxQ size:", q.size);
2074                T("TxQ inuse:", q.in_use);
2075                T("TxQ PIdx:", q.pidx);
2076                T("TxQ CIdx:", q.cidx);
2077                R("RspQ ID:", rspq.abs_id);
2078                R("RspQ size:", rspq.size);
2079                R("RspQE size:", rspq.iqe_len);
2080                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2081                S3("u", "Intr pktcnt:",
2082                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2083                R("RspQ CIdx:", rspq.cidx);
2084                R("RspQ Gen:", rspq.gen);
2085                R("FL ID:", fl.abs_id);
2086                R("FL size:", fl.size - MIN_FL_RESID);
2087                R("FL avail:", fl.avail);
2088                R("FL PIdx:", fl.pidx);
2089                R("FL CIdx:", fl.cidx);
2090                return 0;
2091        }
2092
2093        r -= eth_entries;
2094        if (r == 0) {
2095                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2096
2097                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2098                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2099                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2100                           qtimer_val(adapter, evtq));
2101                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2102                           adapter->sge.counter_val[evtq->pktcnt_idx]);
2103                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2104                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2105        } else if (r == 1) {
2106                const struct sge_rspq *intrq = &adapter->sge.intrq;
2107
2108                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2109                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2110                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2111                           qtimer_val(adapter, intrq));
2112                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2113                           adapter->sge.counter_val[intrq->pktcnt_idx]);
2114                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2115                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2116        }
2117
2118        #undef R
2119        #undef T
2120        #undef S
2121        #undef S3
2122
2123        return 0;
2124}
2125
2126/*
2127 * Return the number of "entries" in our "file".  We group the multi-Queue
2128 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2129 *
2130 *     Ethernet RX/TX Queue Sets
2131 *     Firmware Event Queue
2132 *     Forwarded Interrupt Queue (if in MSI mode)
2133 */
2134static int sge_queue_entries(const struct adapter *adapter)
2135{
2136        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2137                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2138}
2139
2140static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2141{
2142        int entries = sge_queue_entries(seq->private);
2143
2144        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2145}
2146
2147static void sge_queue_stop(struct seq_file *seq, void *v)
2148{
2149}
2150
2151static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2152{
2153        int entries = sge_queue_entries(seq->private);
2154
2155        ++*pos;
2156        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2157}
2158
2159static const struct seq_operations sge_qinfo_sops = {
2160        .start = sge_queue_start,
2161        .next  = sge_queue_next,
2162        .stop  = sge_queue_stop,
2163        .show  = sge_qinfo_show
2164};
2165
2166DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2167
2168/*
2169 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2170 */
2171#define QPL     4
2172
2173static int sge_qstats_show(struct seq_file *seq, void *v)
2174{
2175        struct adapter *adapter = seq->private;
2176        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2177        int qs, r = (uintptr_t)v - 1;
2178
2179        if (r)
2180                seq_putc(seq, '\n');
2181
2182        #define S3(fmt, s, v) \
2183                do { \
2184                        seq_printf(seq, "%-16s", s); \
2185                        for (qs = 0; qs < n; ++qs) \
2186                                seq_printf(seq, " %8" fmt, v); \
2187                        seq_putc(seq, '\n'); \
2188                } while (0)
2189        #define S(s, v)         S3("s", s, v)
2190
2191        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
2192        #define T(s, v)         T3("lu", s, v)
2193
2194        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
2195        #define R(s, v)         R3("lu", s, v)
2196
2197        if (r < eth_entries) {
2198                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2199                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2200                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2201
2202                S("QType:", "Ethernet");
2203                S("Interface:",
2204                  (rxq[qs].rspq.netdev
2205                   ? rxq[qs].rspq.netdev->name
2206                   : "N/A"));
2207                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2208                R("RxPackets:", stats.pkts);
2209                R("RxCSO:", stats.rx_cso);
2210                R("VLANxtract:", stats.vlan_ex);
2211                R("LROmerged:", stats.lro_merged);
2212                R("LROpackets:", stats.lro_pkts);
2213                R("RxDrops:", stats.rx_drops);
2214                T("TSO:", tso);
2215                T("TxCSO:", tx_cso);
2216                T("VLANins:", vlan_ins);
2217                T("TxQFull:", q.stops);
2218                T("TxQRestarts:", q.restarts);
2219                T("TxMapErr:", mapping_err);
2220                R("FLAllocErr:", fl.alloc_failed);
2221                R("FLLrgAlcErr:", fl.large_alloc_failed);
2222                R("FLStarving:", fl.starving);
2223                return 0;
2224        }
2225
2226        r -= eth_entries;
2227        if (r == 0) {
2228                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2229
2230                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2231                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2232                           evtq->unhandled_irqs);
2233                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2234                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2235        } else if (r == 1) {
2236                const struct sge_rspq *intrq = &adapter->sge.intrq;
2237
2238                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2239                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2240                           intrq->unhandled_irqs);
2241                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2242                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2243        }
2244
2245        #undef R
2246        #undef T
2247        #undef S
2248        #undef R3
2249        #undef T3
2250        #undef S3
2251
2252        return 0;
2253}
2254
2255/*
2256 * Return the number of "entries" in our "file".  We group the multi-Queue
2257 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2258 *
2259 *     Ethernet RX/TX Queue Sets
2260 *     Firmware Event Queue
2261 *     Forwarded Interrupt Queue (if in MSI mode)
2262 */
2263static int sge_qstats_entries(const struct adapter *adapter)
2264{
2265        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2266                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2267}
2268
2269static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2270{
2271        int entries = sge_qstats_entries(seq->private);
2272
2273        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2274}
2275
2276static void sge_qstats_stop(struct seq_file *seq, void *v)
2277{
2278}
2279
2280static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2281{
2282        int entries = sge_qstats_entries(seq->private);
2283
2284        (*pos)++;
2285        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2286}
2287
2288static const struct seq_operations sge_qstats_sops = {
2289        .start = sge_qstats_start,
2290        .next  = sge_qstats_next,
2291        .stop  = sge_qstats_stop,
2292        .show  = sge_qstats_show
2293};
2294
2295DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2296
2297/*
2298 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2299 */
2300static int resources_show(struct seq_file *seq, void *v)
2301{
2302        struct adapter *adapter = seq->private;
2303        struct vf_resources *vfres = &adapter->params.vfres;
2304
2305        #define S(desc, fmt, var) \
2306                seq_printf(seq, "%-60s " fmt "\n", \
2307                           desc " (" #var "):", vfres->var)
2308
2309        S("Virtual Interfaces", "%d", nvi);
2310        S("Egress Queues", "%d", neq);
2311        S("Ethernet Control", "%d", nethctrl);
2312        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2313        S("Ingress Queues", "%d", niq);
2314        S("Traffic Class", "%d", tc);
2315        S("Port Access Rights Mask", "%#x", pmask);
2316        S("MAC Address Filters", "%d", nexactf);
2317        S("Firmware Command Read Capabilities", "%#x", r_caps);
2318        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2319
2320        #undef S
2321
2322        return 0;
2323}
2324DEFINE_SHOW_ATTRIBUTE(resources);
2325
2326/*
2327 * Show Virtual Interfaces.
2328 */
2329static int interfaces_show(struct seq_file *seq, void *v)
2330{
2331        if (v == SEQ_START_TOKEN) {
2332                seq_puts(seq, "Interface  Port   VIID\n");
2333        } else {
2334                struct adapter *adapter = seq->private;
2335                int pidx = (uintptr_t)v - 2;
2336                struct net_device *dev = adapter->port[pidx];
2337                struct port_info *pi = netdev_priv(dev);
2338
2339                seq_printf(seq, "%9s  %4d  %#5x\n",
2340                           dev->name, pi->port_id, pi->viid);
2341        }
2342        return 0;
2343}
2344
2345static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2346{
2347        return pos <= adapter->params.nports
2348                ? (void *)(uintptr_t)(pos + 1)
2349                : NULL;
2350}
2351
2352static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2353{
2354        return *pos
2355                ? interfaces_get_idx(seq->private, *pos)
2356                : SEQ_START_TOKEN;
2357}
2358
2359static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2360{
2361        (*pos)++;
2362        return interfaces_get_idx(seq->private, *pos);
2363}
2364
2365static void interfaces_stop(struct seq_file *seq, void *v)
2366{
2367}
2368
2369static const struct seq_operations interfaces_sops = {
2370        .start = interfaces_start,
2371        .next  = interfaces_next,
2372        .stop  = interfaces_stop,
2373        .show  = interfaces_show
2374};
2375
2376DEFINE_SEQ_ATTRIBUTE(interfaces);
2377
2378/*
2379 * /sys/kernel/debugfs/cxgb4vf/ files list.
2380 */
2381struct cxgb4vf_debugfs_entry {
2382        const char *name;               /* name of debugfs node */
2383        umode_t mode;                   /* file system mode */
2384        const struct file_operations *fops;
2385};
2386
2387static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2388        { "mboxlog",    0444, &mboxlog_fops },
2389        { "sge_qinfo",  0444, &sge_qinfo_fops },
2390        { "sge_qstats", 0444, &sge_qstats_fops },
2391        { "resources",  0444, &resources_fops },
2392        { "interfaces", 0444, &interfaces_fops },
2393};
2394
2395/*
2396 * Module and device initialization and cleanup code.
2397 * ==================================================
2398 */
2399
2400/*
2401 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2402 * directory (debugfs_root) has already been set up.
2403 */
2404static int setup_debugfs(struct adapter *adapter)
2405{
2406        int i;
2407
2408        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2409
2410        /*
2411         * Debugfs support is best effort.
2412         */
2413        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2414                debugfs_create_file(debugfs_files[i].name,
2415                                    debugfs_files[i].mode,
2416                                    adapter->debugfs_root, adapter,
2417                                    debugfs_files[i].fops);
2418
2419        return 0;
2420}
2421
2422/*
2423 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2424 * it to our caller to tear down the directory (debugfs_root).
2425 */
2426static void cleanup_debugfs(struct adapter *adapter)
2427{
2428        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2429
2430        /*
2431         * Unlike our sister routine cleanup_proc(), we don't need to remove
2432         * individual entries because a call will be made to
2433         * debugfs_remove_recursive().  We just need to clean up any ancillary
2434         * persistent state.
2435         */
2436        /* nothing to do */
2437}
2438
2439/* Figure out how many Ports and Queue Sets we can support.  This depends on
2440 * knowing our Virtual Function Resources and may be called a second time if
2441 * we fall back from MSI-X to MSI Interrupt Mode.
2442 */
2443static void size_nports_qsets(struct adapter *adapter)
2444{
2445        struct vf_resources *vfres = &adapter->params.vfres;
2446        unsigned int ethqsets, pmask_nports;
2447
2448        /* The number of "ports" which we support is equal to the number of
2449         * Virtual Interfaces with which we've been provisioned.
2450         */
2451        adapter->params.nports = vfres->nvi;
2452        if (adapter->params.nports > MAX_NPORTS) {
2453                dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2454                         " allowed virtual interfaces\n", MAX_NPORTS,
2455                         adapter->params.nports);
2456                adapter->params.nports = MAX_NPORTS;
2457        }
2458
2459        /* We may have been provisioned with more VIs than the number of
2460         * ports we're allowed to access (our Port Access Rights Mask).
2461         * This is obviously a configuration conflict but we don't want to
2462         * crash the kernel or anything silly just because of that.
2463         */
2464        pmask_nports = hweight32(adapter->params.vfres.pmask);
2465        if (pmask_nports < adapter->params.nports) {
2466                dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2467                         " virtual interfaces; limited by Port Access Rights"
2468                         " mask %#x\n", pmask_nports, adapter->params.nports,
2469                         adapter->params.vfres.pmask);
2470                adapter->params.nports = pmask_nports;
2471        }
2472
2473        /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2474         * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2475         * reserve an Ingress Queue for a Forwarded Interrupts.
2476         *
2477         * The rest of the FL/Intr-capable ingress queues will be matched up
2478         * one-for-one with Ethernet/Control egress queues in order to form
2479         * "Queue Sets" which will be aportioned between the "ports".  For
2480         * each Queue Set, we'll need the ability to allocate two Egress
2481         * Contexts -- one for the Ingress Queue Free List and one for the TX
2482         * Ethernet Queue.
2483         *
2484         * Note that even if we're currently configured to use MSI-X
2485         * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2486         * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2487         * happens we'll need to adjust things later.
2488         */
2489        ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2490        if (vfres->nethctrl != ethqsets)
2491                ethqsets = min(vfres->nethctrl, ethqsets);
2492        if (vfres->neq < ethqsets*2)
2493                ethqsets = vfres->neq/2;
2494        if (ethqsets > MAX_ETH_QSETS)
2495                ethqsets = MAX_ETH_QSETS;
2496        adapter->sge.max_ethqsets = ethqsets;
2497
2498        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2499                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2500                         " virtual interfaces (too few Queue Sets)\n",
2501                         adapter->sge.max_ethqsets, adapter->params.nports);
2502                adapter->params.nports = adapter->sge.max_ethqsets;
2503        }
2504}
2505
2506/*
2507 * Perform early "adapter" initialization.  This is where we discover what
2508 * adapter parameters we're going to be using and initialize basic adapter
2509 * hardware support.
2510 */
2511static int adap_init0(struct adapter *adapter)
2512{
2513        struct sge_params *sge_params = &adapter->params.sge;
2514        struct sge *s = &adapter->sge;
2515        int err;
2516        u32 param, val = 0;
2517
2518        /*
2519         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2520         * 2.6.31 and later we can't call pci_reset_function() in order to
2521         * issue an FLR because of a self- deadlock on the device semaphore.
2522         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2523         * cases where they're needed -- for instance, some versions of KVM
2524         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2525         * use the firmware based reset in order to reset any per function
2526         * state.
2527         */
2528        err = t4vf_fw_reset(adapter);
2529        if (err < 0) {
2530                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2531                return err;
2532        }
2533
2534        /*
2535         * Grab basic operational parameters.  These will predominantly have
2536         * been set up by the Physical Function Driver or will be hard coded
2537         * into the adapter.  We just have to live with them ...  Note that
2538         * we _must_ get our VPD parameters before our SGE parameters because
2539         * we need to know the adapter's core clock from the VPD in order to
2540         * properly decode the SGE Timer Values.
2541         */
2542        err = t4vf_get_dev_params(adapter);
2543        if (err) {
2544                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2545                        " device parameters: err=%d\n", err);
2546                return err;
2547        }
2548        err = t4vf_get_vpd_params(adapter);
2549        if (err) {
2550                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2551                        " VPD parameters: err=%d\n", err);
2552                return err;
2553        }
2554        err = t4vf_get_sge_params(adapter);
2555        if (err) {
2556                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2557                        " SGE parameters: err=%d\n", err);
2558                return err;
2559        }
2560        err = t4vf_get_rss_glb_config(adapter);
2561        if (err) {
2562                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2563                        " RSS parameters: err=%d\n", err);
2564                return err;
2565        }
2566        if (adapter->params.rss.mode !=
2567            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2568                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2569                        " mode %d\n", adapter->params.rss.mode);
2570                return -EINVAL;
2571        }
2572        err = t4vf_sge_init(adapter);
2573        if (err) {
2574                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2575                        " err=%d\n", err);
2576                return err;
2577        }
2578
2579        /* If we're running on newer firmware, let it know that we're
2580         * prepared to deal with encapsulated CPL messages.  Older
2581         * firmware won't understand this and we'll just get
2582         * unencapsulated messages ...
2583         */
2584        param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2585                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2586        val = 1;
2587        (void) t4vf_set_params(adapter, 1, &param, &val);
2588
2589        /*
2590         * Retrieve our RX interrupt holdoff timer values and counter
2591         * threshold values from the SGE parameters.
2592         */
2593        s->timer_val[0] = core_ticks_to_us(adapter,
2594                TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2595        s->timer_val[1] = core_ticks_to_us(adapter,
2596                TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2597        s->timer_val[2] = core_ticks_to_us(adapter,
2598                TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2599        s->timer_val[3] = core_ticks_to_us(adapter,
2600                TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2601        s->timer_val[4] = core_ticks_to_us(adapter,
2602                TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2603        s->timer_val[5] = core_ticks_to_us(adapter,
2604                TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2605
2606        s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2607        s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2608        s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2609        s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2610
2611        /*
2612         * Grab our Virtual Interface resource allocation, extract the
2613         * features that we're interested in and do a bit of sanity testing on
2614         * what we discover.
2615         */
2616        err = t4vf_get_vfres(adapter);
2617        if (err) {
2618                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2619                        " resources: err=%d\n", err);
2620                return err;
2621        }
2622
2623        /* Check for various parameter sanity issues */
2624        if (adapter->params.vfres.pmask == 0) {
2625                dev_err(adapter->pdev_dev, "no port access configured\n"
2626                        "usable!\n");
2627                return -EINVAL;
2628        }
2629        if (adapter->params.vfres.nvi == 0) {
2630                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2631                        "usable!\n");
2632                return -EINVAL;
2633        }
2634
2635        /* Initialize nports and max_ethqsets now that we have our Virtual
2636         * Function Resources.
2637         */
2638        size_nports_qsets(adapter);
2639
2640        adapter->flags |= CXGB4VF_FW_OK;
2641        return 0;
2642}
2643
2644static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2645                             u8 pkt_cnt_idx, unsigned int size,
2646                             unsigned int iqe_size)
2647{
2648        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2649                             (pkt_cnt_idx < SGE_NCOUNTERS ?
2650                              QINTR_CNT_EN_F : 0));
2651        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2652                            ? pkt_cnt_idx
2653                            : 0);
2654        rspq->iqe_len = iqe_size;
2655        rspq->size = size;
2656}
2657
2658/*
2659 * Perform default configuration of DMA queues depending on the number and
2660 * type of ports we found and the number of available CPUs.  Most settings can
2661 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2662 * being brought up for the first time.
2663 */
2664static void cfg_queues(struct adapter *adapter)
2665{
2666        struct sge *s = &adapter->sge;
2667        int q10g, n10g, qidx, pidx, qs;
2668        size_t iqe_size;
2669
2670        /*
2671         * We should not be called till we know how many Queue Sets we can
2672         * support.  In particular, this means that we need to know what kind
2673         * of interrupts we'll be using ...
2674         */
2675        BUG_ON((adapter->flags &
2676               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2677
2678        /*
2679         * Count the number of 10GbE Virtual Interfaces that we have.
2680         */
2681        n10g = 0;
2682        for_each_port(adapter, pidx)
2683                n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2684
2685        /*
2686         * We default to 1 queue per non-10G port and up to # of cores queues
2687         * per 10G port.
2688         */
2689        if (n10g == 0)
2690                q10g = 0;
2691        else {
2692                int n1g = (adapter->params.nports - n10g);
2693                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2694                if (q10g > num_online_cpus())
2695                        q10g = num_online_cpus();
2696        }
2697
2698        /*
2699         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2700         * The layout will be established in setup_sge_queues() when the
2701         * adapter is brough up for the first time.
2702         */
2703        qidx = 0;
2704        for_each_port(adapter, pidx) {
2705                struct port_info *pi = adap2pinfo(adapter, pidx);
2706
2707                pi->first_qset = qidx;
2708                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2709                qidx += pi->nqsets;
2710        }
2711        s->ethqsets = qidx;
2712
2713        /*
2714         * The Ingress Queue Entry Size for our various Response Queues needs
2715         * to be big enough to accommodate the largest message we can receive
2716         * from the chip/firmware; which is 64 bytes ...
2717         */
2718        iqe_size = 64;
2719
2720        /*
2721         * Set up default Queue Set parameters ...  Start off with the
2722         * shortest interrupt holdoff timer.
2723         */
2724        for (qs = 0; qs < s->max_ethqsets; qs++) {
2725                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2726                struct sge_eth_txq *txq = &s->ethtxq[qs];
2727
2728                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2729                rxq->fl.size = 72;
2730                txq->q.size = 1024;
2731        }
2732
2733        /*
2734         * The firmware event queue is used for link state changes and
2735         * notifications of TX DMA completions.
2736         */
2737        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2738
2739        /*
2740         * The forwarded interrupt queue is used when we're in MSI interrupt
2741         * mode.  In this mode all interrupts associated with RX queues will
2742         * be forwarded to a single queue which we'll associate with our MSI
2743         * interrupt vector.  The messages dropped in the forwarded interrupt
2744         * queue will indicate which ingress queue needs servicing ...  This
2745         * queue needs to be large enough to accommodate all of the ingress
2746         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2747         * from equalling the CIDX if every ingress queue has an outstanding
2748         * interrupt).  The queue doesn't need to be any larger because no
2749         * ingress queue will ever have more than one outstanding interrupt at
2750         * any time ...
2751         */
2752        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2753                  iqe_size);
2754}
2755
2756/*
2757 * Reduce the number of Ethernet queues across all ports to at most n.
2758 * n provides at least one queue per port.
2759 */
2760static void reduce_ethqs(struct adapter *adapter, int n)
2761{
2762        int i;
2763        struct port_info *pi;
2764
2765        /*
2766         * While we have too many active Ether Queue Sets, interate across the
2767         * "ports" and reduce their individual Queue Set allocations.
2768         */
2769        BUG_ON(n < adapter->params.nports);
2770        while (n < adapter->sge.ethqsets)
2771                for_each_port(adapter, i) {
2772                        pi = adap2pinfo(adapter, i);
2773                        if (pi->nqsets > 1) {
2774                                pi->nqsets--;
2775                                adapter->sge.ethqsets--;
2776                                if (adapter->sge.ethqsets <= n)
2777                                        break;
2778                        }
2779                }
2780
2781        /*
2782         * Reassign the starting Queue Sets for each of the "ports" ...
2783         */
2784        n = 0;
2785        for_each_port(adapter, i) {
2786                pi = adap2pinfo(adapter, i);
2787                pi->first_qset = n;
2788                n += pi->nqsets;
2789        }
2790}
2791
2792/*
2793 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2794 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2795 * need.  Minimally we need one for every Virtual Interface plus those needed
2796 * for our "extras".  Note that this process may lower the maximum number of
2797 * allowed Queue Sets ...
2798 */
2799static int enable_msix(struct adapter *adapter)
2800{
2801        int i, want, need, nqsets;
2802        struct msix_entry entries[MSIX_ENTRIES];
2803        struct sge *s = &adapter->sge;
2804
2805        for (i = 0; i < MSIX_ENTRIES; ++i)
2806                entries[i].entry = i;
2807
2808        /*
2809         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2810         * plus those needed for our "extras" (for example, the firmware
2811         * message queue).  We _need_ at least one "Queue Set" per Virtual
2812         * Interface plus those needed for our "extras".  So now we get to see
2813         * if the song is right ...
2814         */
2815        want = s->max_ethqsets + MSIX_EXTRAS;
2816        need = adapter->params.nports + MSIX_EXTRAS;
2817
2818        want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2819        if (want < 0)
2820                return want;
2821
2822        nqsets = want - MSIX_EXTRAS;
2823        if (nqsets < s->max_ethqsets) {
2824                dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2825                         " for %d Queue Sets\n", nqsets);
2826                s->max_ethqsets = nqsets;
2827                if (nqsets < s->ethqsets)
2828                        reduce_ethqs(adapter, nqsets);
2829        }
2830        for (i = 0; i < want; ++i)
2831                adapter->msix_info[i].vec = entries[i].vector;
2832
2833        return 0;
2834}
2835
2836static const struct net_device_ops cxgb4vf_netdev_ops   = {
2837        .ndo_open               = cxgb4vf_open,
2838        .ndo_stop               = cxgb4vf_stop,
2839        .ndo_start_xmit         = t4vf_eth_xmit,
2840        .ndo_get_stats          = cxgb4vf_get_stats,
2841        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2842        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2843        .ndo_validate_addr      = eth_validate_addr,
2844        .ndo_eth_ioctl          = cxgb4vf_do_ioctl,
2845        .ndo_change_mtu         = cxgb4vf_change_mtu,
2846        .ndo_fix_features       = cxgb4vf_fix_features,
2847        .ndo_set_features       = cxgb4vf_set_features,
2848#ifdef CONFIG_NET_POLL_CONTROLLER
2849        .ndo_poll_controller    = cxgb4vf_poll_controller,
2850#endif
2851};
2852
2853/**
2854 *      cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2855 *                              address stored on the adapter
2856 *      @adapter: The adapter
2857 *
2858 *      Find the the port mask for the VF based on the index of mac
2859 *      address stored in the adapter. If no mac address is stored on
2860 *      the adapter for the VF, use the port mask received from the
2861 *      firmware.
2862 */
2863static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2864{
2865        unsigned int naddr = 1, pidx = 0;
2866        unsigned int pmask, rmask = 0;
2867        u8 mac[ETH_ALEN];
2868        int err;
2869
2870        pmask = adapter->params.vfres.pmask;
2871        while (pmask) {
2872                if (pmask & 1) {
2873                        err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2874                        if (!err && !is_zero_ether_addr(mac))
2875                                rmask |= (1 << pidx);
2876                }
2877                pmask >>= 1;
2878                pidx++;
2879        }
2880        if (!rmask)
2881                rmask = adapter->params.vfres.pmask;
2882
2883        return rmask;
2884}
2885
2886/*
2887 * "Probe" a device: initialize a device and construct all kernel and driver
2888 * state needed to manage the device.  This routine is called "init_one" in
2889 * the PF Driver ...
2890 */
2891static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2892                             const struct pci_device_id *ent)
2893{
2894        struct adapter *adapter;
2895        struct net_device *netdev;
2896        struct port_info *pi;
2897        unsigned int pmask;
2898        int pci_using_dac;
2899        int err, pidx;
2900
2901        /*
2902         * Initialize generic PCI device state.
2903         */
2904        err = pci_enable_device(pdev);
2905        if (err) {
2906                dev_err(&pdev->dev, "cannot enable PCI device\n");
2907                return err;
2908        }
2909
2910        /*
2911         * Reserve PCI resources for the device.  If we can't get them some
2912         * other driver may have already claimed the device ...
2913         */
2914        err = pci_request_regions(pdev, KBUILD_MODNAME);
2915        if (err) {
2916                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2917                goto err_disable_device;
2918        }
2919
2920        /*
2921         * Set up our DMA mask: try for 64-bit address masking first and
2922         * fall back to 32-bit if we can't get 64 bits ...
2923         */
2924        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2925        if (err == 0) {
2926                pci_using_dac = 1;
2927        } else {
2928                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2929                if (err != 0) {
2930                        dev_err(&pdev->dev, "no usable DMA configuration\n");
2931                        goto err_release_regions;
2932                }
2933                pci_using_dac = 0;
2934        }
2935
2936        /*
2937         * Enable bus mastering for the device ...
2938         */
2939        pci_set_master(pdev);
2940
2941        /*
2942         * Allocate our adapter data structure and attach it to the device.
2943         */
2944        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2945        if (!adapter) {
2946                err = -ENOMEM;
2947                goto err_release_regions;
2948        }
2949        pci_set_drvdata(pdev, adapter);
2950        adapter->pdev = pdev;
2951        adapter->pdev_dev = &pdev->dev;
2952
2953        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2954                                    (sizeof(struct mbox_cmd) *
2955                                     T4VF_OS_LOG_MBOX_CMDS),
2956                                    GFP_KERNEL);
2957        if (!adapter->mbox_log) {
2958                err = -ENOMEM;
2959                goto err_free_adapter;
2960        }
2961        adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2962
2963        /*
2964         * Initialize SMP data synchronization resources.
2965         */
2966        spin_lock_init(&adapter->stats_lock);
2967        spin_lock_init(&adapter->mbox_lock);
2968        INIT_LIST_HEAD(&adapter->mlist.list);
2969
2970        /*
2971         * Map our I/O registers in BAR0.
2972         */
2973        adapter->regs = pci_ioremap_bar(pdev, 0);
2974        if (!adapter->regs) {
2975                dev_err(&pdev->dev, "cannot map device registers\n");
2976                err = -ENOMEM;
2977                goto err_free_adapter;
2978        }
2979
2980        /* Wait for the device to become ready before proceeding ...
2981         */
2982        err = t4vf_prep_adapter(adapter);
2983        if (err) {
2984                dev_err(adapter->pdev_dev, "device didn't become ready:"
2985                        " err=%d\n", err);
2986                goto err_unmap_bar0;
2987        }
2988
2989        /* For T5 and later we want to use the new BAR-based User Doorbells,
2990         * so we need to map BAR2 here ...
2991         */
2992        if (!is_t4(adapter->params.chip)) {
2993                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2994                                           pci_resource_len(pdev, 2));
2995                if (!adapter->bar2) {
2996                        dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2997                        err = -ENOMEM;
2998                        goto err_unmap_bar0;
2999                }
3000        }
3001        /*
3002         * Initialize adapter level features.
3003         */
3004        adapter->name = pci_name(pdev);
3005        adapter->msg_enable = DFLT_MSG_ENABLE;
3006
3007        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3008         * Ingress Packet Data to Free List Buffers in order to allow for
3009         * chipset performance optimizations between the Root Complex and
3010         * Memory Controllers.  (Messages to the associated Ingress Queue
3011         * notifying new Packet Placement in the Free Lists Buffers will be
3012         * send without the Relaxed Ordering Attribute thus guaranteeing that
3013         * all preceding PCIe Transaction Layer Packets will be processed
3014         * first.)  But some Root Complexes have various issues with Upstream
3015         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3016         * The PCIe devices which under the Root Complexes will be cleared the
3017         * Relaxed Ordering bit in the configuration space, So we check our
3018         * PCIe configuration space to see if it's flagged with advice against
3019         * using Relaxed Ordering.
3020         */
3021        if (!pcie_relaxed_ordering_enabled(pdev))
3022                adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3023
3024        err = adap_init0(adapter);
3025        if (err)
3026                dev_err(&pdev->dev,
3027                        "Adapter initialization failed, error %d. Continuing in debug mode\n",
3028                        err);
3029
3030        /* Initialize hash mac addr list */
3031        INIT_LIST_HEAD(&adapter->mac_hlist);
3032
3033        /*
3034         * Allocate our "adapter ports" and stitch everything together.
3035         */
3036        pmask = cxgb4vf_get_port_mask(adapter);
3037        for_each_port(adapter, pidx) {
3038                int port_id, viid;
3039                u8 mac[ETH_ALEN];
3040                unsigned int naddr = 1;
3041
3042                /*
3043                 * We simplistically allocate our virtual interfaces
3044                 * sequentially across the port numbers to which we have
3045                 * access rights.  This should be configurable in some manner
3046                 * ...
3047                 */
3048                if (pmask == 0)
3049                        break;
3050                port_id = ffs(pmask) - 1;
3051                pmask &= ~(1 << port_id);
3052
3053                /*
3054                 * Allocate our network device and stitch things together.
3055                 */
3056                netdev = alloc_etherdev_mq(sizeof(struct port_info),
3057                                           MAX_PORT_QSETS);
3058                if (netdev == NULL) {
3059                        err = -ENOMEM;
3060                        goto err_free_dev;
3061                }
3062                adapter->port[pidx] = netdev;
3063                SET_NETDEV_DEV(netdev, &pdev->dev);
3064                pi = netdev_priv(netdev);
3065                pi->adapter = adapter;
3066                pi->pidx = pidx;
3067                pi->port_id = port_id;
3068
3069                /*
3070                 * Initialize the starting state of our "port" and register
3071                 * it.
3072                 */
3073                pi->xact_addr_filt = -1;
3074                netdev->irq = pdev->irq;
3075
3076                netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3077                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3078                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3079                netdev->features = netdev->hw_features;
3080                if (pci_using_dac)
3081                        netdev->features |= NETIF_F_HIGHDMA;
3082                netdev->vlan_features = netdev->features & VLAN_FEAT;
3083
3084                netdev->priv_flags |= IFF_UNICAST_FLT;
3085                netdev->min_mtu = 81;
3086                netdev->max_mtu = ETH_MAX_MTU;
3087
3088                netdev->netdev_ops = &cxgb4vf_netdev_ops;
3089                netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3090                netdev->dev_port = pi->port_id;
3091
3092                /*
3093                 * If we haven't been able to contact the firmware, there's
3094                 * nothing else we can do for this "port" ...
3095                 */
3096                if (!(adapter->flags & CXGB4VF_FW_OK))
3097                        continue;
3098
3099                viid = t4vf_alloc_vi(adapter, port_id);
3100                if (viid < 0) {
3101                        dev_err(&pdev->dev,
3102                                "cannot allocate VI for port %d: err=%d\n",
3103                                port_id, viid);
3104                        err = viid;
3105                        goto err_free_dev;
3106                }
3107                pi->viid = viid;
3108
3109                /*
3110                 * Initialize the hardware/software state for the port.
3111                 */
3112                err = t4vf_port_init(adapter, pidx);
3113                if (err) {
3114                        dev_err(&pdev->dev, "cannot initialize port %d\n",
3115                                pidx);
3116                        goto err_free_dev;
3117                }
3118
3119                err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3120                if (err) {
3121                        dev_err(&pdev->dev,
3122                                "unable to determine MAC ACL address, "
3123                                "continuing anyway.. (status %d)\n", err);
3124                } else if (naddr && adapter->params.vfres.nvi == 1) {
3125                        struct sockaddr addr;
3126
3127                        ether_addr_copy(addr.sa_data, mac);
3128                        err = cxgb4vf_set_mac_addr(netdev, &addr);
3129                        if (err) {
3130                                dev_err(&pdev->dev,
3131                                        "unable to set MAC address %pM\n",
3132                                        mac);
3133                                goto err_free_dev;
3134                        }
3135                        dev_info(&pdev->dev,
3136                                 "Using assigned MAC ACL: %pM\n", mac);
3137                }
3138        }
3139
3140        /* See what interrupts we'll be using.  If we've been configured to
3141         * use MSI-X interrupts, try to enable them but fall back to using
3142         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3143         * get MSI interrupts we bail with the error.
3144         */
3145        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3146                adapter->flags |= CXGB4VF_USING_MSIX;
3147        else {
3148                if (msi == MSI_MSIX) {
3149                        dev_info(adapter->pdev_dev,
3150                                 "Unable to use MSI-X Interrupts; falling "
3151                                 "back to MSI Interrupts\n");
3152
3153                        /* We're going to need a Forwarded Interrupt Queue so
3154                         * that may cut into how many Queue Sets we can
3155                         * support.
3156                         */
3157                        msi = MSI_MSI;
3158                        size_nports_qsets(adapter);
3159                }
3160                err = pci_enable_msi(pdev);
3161                if (err) {
3162                        dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3163                                " err=%d\n", err);
3164                        goto err_free_dev;
3165                }
3166                adapter->flags |= CXGB4VF_USING_MSI;
3167        }
3168
3169        /* Now that we know how many "ports" we have and what interrupt
3170         * mechanism we're going to use, we can configure our queue resources.
3171         */
3172        cfg_queues(adapter);
3173
3174        /*
3175         * The "card" is now ready to go.  If any errors occur during device
3176         * registration we do not fail the whole "card" but rather proceed
3177         * only with the ports we manage to register successfully.  However we
3178         * must register at least one net device.
3179         */
3180        for_each_port(adapter, pidx) {
3181                struct port_info *pi = netdev_priv(adapter->port[pidx]);
3182                netdev = adapter->port[pidx];
3183                if (netdev == NULL)
3184                        continue;
3185
3186                netif_set_real_num_tx_queues(netdev, pi->nqsets);
3187                netif_set_real_num_rx_queues(netdev, pi->nqsets);
3188
3189                err = register_netdev(netdev);
3190                if (err) {
3191                        dev_warn(&pdev->dev, "cannot register net device %s,"
3192                                 " skipping\n", netdev->name);
3193                        continue;
3194                }
3195
3196                netif_carrier_off(netdev);
3197                set_bit(pidx, &adapter->registered_device_map);
3198        }
3199        if (adapter->registered_device_map == 0) {
3200                dev_err(&pdev->dev, "could not register any net devices\n");
3201                goto err_disable_interrupts;
3202        }
3203
3204        /*
3205         * Set up our debugfs entries.
3206         */
3207        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3208                adapter->debugfs_root =
3209                        debugfs_create_dir(pci_name(pdev),
3210                                           cxgb4vf_debugfs_root);
3211                setup_debugfs(adapter);
3212        }
3213
3214        /*
3215         * Print a short notice on the existence and configuration of the new
3216         * VF network device ...
3217         */
3218        for_each_port(adapter, pidx) {
3219                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3220                         adapter->port[pidx]->name,
3221                         (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3222                         (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3223        }
3224
3225        /*
3226         * Return success!
3227         */
3228        return 0;
3229
3230        /*
3231         * Error recovery and exit code.  Unwind state that's been created
3232         * so far and return the error.
3233         */
3234err_disable_interrupts:
3235        if (adapter->flags & CXGB4VF_USING_MSIX) {
3236                pci_disable_msix(adapter->pdev);
3237                adapter->flags &= ~CXGB4VF_USING_MSIX;
3238        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3239                pci_disable_msi(adapter->pdev);
3240                adapter->flags &= ~CXGB4VF_USING_MSI;
3241        }
3242
3243err_free_dev:
3244        for_each_port(adapter, pidx) {
3245                netdev = adapter->port[pidx];
3246                if (netdev == NULL)
3247                        continue;
3248                pi = netdev_priv(netdev);
3249                if (pi->viid)
3250                        t4vf_free_vi(adapter, pi->viid);
3251                if (test_bit(pidx, &adapter->registered_device_map))
3252                        unregister_netdev(netdev);
3253                free_netdev(netdev);
3254        }
3255
3256        if (!is_t4(adapter->params.chip))
3257                iounmap(adapter->bar2);
3258
3259err_unmap_bar0:
3260        iounmap(adapter->regs);
3261
3262err_free_adapter:
3263        kfree(adapter->mbox_log);
3264        kfree(adapter);
3265
3266err_release_regions:
3267        pci_release_regions(pdev);
3268        pci_clear_master(pdev);
3269
3270err_disable_device:
3271        pci_disable_device(pdev);
3272
3273        return err;
3274}
3275
3276/*
3277 * "Remove" a device: tear down all kernel and driver state created in the
3278 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3279 * that this is called "remove_one" in the PF Driver.)
3280 */
3281static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3282{
3283        struct adapter *adapter = pci_get_drvdata(pdev);
3284        struct hash_mac_addr *entry, *tmp;
3285
3286        /*
3287         * Tear down driver state associated with device.
3288         */
3289        if (adapter) {
3290                int pidx;
3291
3292                /*
3293                 * Stop all of our activity.  Unregister network port,
3294                 * disable interrupts, etc.
3295                 */
3296                for_each_port(adapter, pidx)
3297                        if (test_bit(pidx, &adapter->registered_device_map))
3298                                unregister_netdev(adapter->port[pidx]);
3299                t4vf_sge_stop(adapter);
3300                if (adapter->flags & CXGB4VF_USING_MSIX) {
3301                        pci_disable_msix(adapter->pdev);
3302                        adapter->flags &= ~CXGB4VF_USING_MSIX;
3303                } else if (adapter->flags & CXGB4VF_USING_MSI) {
3304                        pci_disable_msi(adapter->pdev);
3305                        adapter->flags &= ~CXGB4VF_USING_MSI;
3306                }
3307
3308                /*
3309                 * Tear down our debugfs entries.
3310                 */
3311                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3312                        cleanup_debugfs(adapter);
3313                        debugfs_remove_recursive(adapter->debugfs_root);
3314                }
3315
3316                /*
3317                 * Free all of the various resources which we've acquired ...
3318                 */
3319                t4vf_free_sge_resources(adapter);
3320                for_each_port(adapter, pidx) {
3321                        struct net_device *netdev = adapter->port[pidx];
3322                        struct port_info *pi;
3323
3324                        if (netdev == NULL)
3325                                continue;
3326
3327                        pi = netdev_priv(netdev);
3328                        if (pi->viid)
3329                                t4vf_free_vi(adapter, pi->viid);
3330                        free_netdev(netdev);
3331                }
3332                iounmap(adapter->regs);
3333                if (!is_t4(adapter->params.chip))
3334                        iounmap(adapter->bar2);
3335                kfree(adapter->mbox_log);
3336                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3337                                         list) {
3338                        list_del(&entry->list);
3339                        kfree(entry);
3340                }
3341                kfree(adapter);
3342        }
3343
3344        /*
3345         * Disable the device and release its PCI resources.
3346         */
3347        pci_disable_device(pdev);
3348        pci_clear_master(pdev);
3349        pci_release_regions(pdev);
3350}
3351
3352/*
3353 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3354 * delivery.
3355 */
3356static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3357{
3358        struct adapter *adapter;
3359        int pidx;
3360
3361        adapter = pci_get_drvdata(pdev);
3362        if (!adapter)
3363                return;
3364
3365        /* Disable all Virtual Interfaces.  This will shut down the
3366         * delivery of all ingress packets into the chip for these
3367         * Virtual Interfaces.
3368         */
3369        for_each_port(adapter, pidx)
3370                if (test_bit(pidx, &adapter->registered_device_map))
3371                        unregister_netdev(adapter->port[pidx]);
3372
3373        /* Free up all Queues which will prevent further DMA and
3374         * Interrupts allowing various internal pathways to drain.
3375         */
3376        t4vf_sge_stop(adapter);
3377        if (adapter->flags & CXGB4VF_USING_MSIX) {
3378                pci_disable_msix(adapter->pdev);
3379                adapter->flags &= ~CXGB4VF_USING_MSIX;
3380        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3381                pci_disable_msi(adapter->pdev);
3382                adapter->flags &= ~CXGB4VF_USING_MSI;
3383        }
3384
3385        /*
3386         * Free up all Queues which will prevent further DMA and
3387         * Interrupts allowing various internal pathways to drain.
3388         */
3389        t4vf_free_sge_resources(adapter);
3390        pci_set_drvdata(pdev, NULL);
3391}
3392
3393/* Macros needed to support the PCI Device ID Table ...
3394 */
3395#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3396        static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3397#define CH_PCI_DEVICE_ID_FUNCTION       0x8
3398
3399#define CH_PCI_ID_TABLE_ENTRY(devid) \
3400                { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3401
3402#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3403
3404#include "../cxgb4/t4_pci_id_tbl.h"
3405
3406MODULE_DESCRIPTION(DRV_DESC);
3407MODULE_AUTHOR("Chelsio Communications");
3408MODULE_LICENSE("Dual BSD/GPL");
3409MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3410
3411static struct pci_driver cxgb4vf_driver = {
3412        .name           = KBUILD_MODNAME,
3413        .id_table       = cxgb4vf_pci_tbl,
3414        .probe          = cxgb4vf_pci_probe,
3415        .remove         = cxgb4vf_pci_remove,
3416        .shutdown       = cxgb4vf_pci_shutdown,
3417};
3418
3419/*
3420 * Initialize global driver state.
3421 */
3422static int __init cxgb4vf_module_init(void)
3423{
3424        int ret;
3425
3426        /*
3427         * Vet our module parameters.
3428         */
3429        if (msi != MSI_MSIX && msi != MSI_MSI) {
3430                pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3431                        msi, MSI_MSIX, MSI_MSI);
3432                return -EINVAL;
3433        }
3434
3435        /* Debugfs support is optional, debugfs will warn if this fails */
3436        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3437
3438        ret = pci_register_driver(&cxgb4vf_driver);
3439        if (ret < 0)
3440                debugfs_remove(cxgb4vf_debugfs_root);
3441        return ret;
3442}
3443
3444/*
3445 * Tear down global driver state.
3446 */
3447static void __exit cxgb4vf_module_exit(void)
3448{
3449        pci_unregister_driver(&cxgb4vf_driver);
3450        debugfs_remove(cxgb4vf_debugfs_root);
3451}
3452
3453module_init(cxgb4vf_module_init);
3454module_exit(cxgb4vf_module_exit);
3455