linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/ethtool.h>
  37#include <linux/pci.h>
  38
  39#include "t4vf_common.h"
  40#include "t4vf_defs.h"
  41
  42#include "../cxgb4/t4_regs.h"
  43#include "../cxgb4/t4_values.h"
  44#include "../cxgb4/t4fw_api.h"
  45
  46/*
  47 * Wait for the device to become ready (signified by our "who am I" register
  48 * returning a value other than all 1's).  Return an error if it doesn't
  49 * become ready ...
  50 */
  51int t4vf_wait_dev_ready(struct adapter *adapter)
  52{
  53        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  54        const u32 notready1 = 0xffffffff;
  55        const u32 notready2 = 0xeeeeeeee;
  56        u32 val;
  57
  58        val = t4_read_reg(adapter, whoami);
  59        if (val != notready1 && val != notready2)
  60                return 0;
  61        msleep(500);
  62        val = t4_read_reg(adapter, whoami);
  63        if (val != notready1 && val != notready2)
  64                return 0;
  65        else
  66                return -EIO;
  67}
  68
  69/*
  70 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  71 * (since the firmware data structures are specified in a big-endian layout).
  72 */
  73static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  74                         u32 mbox_data)
  75{
  76        for ( ; size; size -= 8, mbox_data += 8)
  77                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  78}
  79
  80/**
  81 *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
  82 *      @adapter: the adapter
  83 *      @cmd: the Firmware Mailbox Command or Reply
  84 *      @size: command length in bytes
  85 *      @access: the time (ms) needed to access the Firmware Mailbox
  86 *      @execute: the time (ms) the command spent being executed
  87 */
  88static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
  89                             int size, int access, int execute)
  90{
  91        struct mbox_cmd_log *log = adapter->mbox_log;
  92        struct mbox_cmd *entry;
  93        int i;
  94
  95        entry = mbox_cmd_log_entry(log, log->cursor++);
  96        if (log->cursor == log->size)
  97                log->cursor = 0;
  98
  99        for (i = 0; i < size / 8; i++)
 100                entry->cmd[i] = be64_to_cpu(cmd[i]);
 101        while (i < MBOX_LEN / 8)
 102                entry->cmd[i++] = 0;
 103        entry->timestamp = jiffies;
 104        entry->seqno = log->seqno++;
 105        entry->access = access;
 106        entry->execute = execute;
 107}
 108
 109/**
 110 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
 111 *      @adapter: the adapter
 112 *      @cmd: the command to write
 113 *      @size: command length in bytes
 114 *      @rpl: where to optionally store the reply
 115 *      @sleep_ok: if true we may sleep while awaiting command completion
 116 *
 117 *      Sends the given command to FW through the mailbox and waits for the
 118 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 119 *      the FW's reply to the command.  The command and its optional reply
 120 *      are of the same length.  FW can take up to 500 ms to respond.
 121 *      @sleep_ok determines whether we may sleep while awaiting the response.
 122 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 123 *
 124 *      The return value is 0 on success or a negative errno on failure.  A
 125 *      failure can happen either because we are not able to execute the
 126 *      command or FW executes it but signals an error.  In the latter case
 127 *      the return value is the error code indicated by FW (negated).
 128 */
 129int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 130                      void *rpl, bool sleep_ok)
 131{
 132        static const int delay[] = {
 133                1, 1, 3, 5, 10, 10, 20, 50, 100
 134        };
 135
 136        u16 access = 0, execute = 0;
 137        u32 v, mbox_data;
 138        int i, ms, delay_idx, ret;
 139        const __be64 *p;
 140        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 141        u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
 142        __be64 cmd_rpl[MBOX_LEN / 8];
 143        struct mbox_list entry;
 144
 145        /* In T6, mailbox size is changed to 128 bytes to avoid
 146         * invalidating the entire prefetch buffer.
 147         */
 148        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 149                mbox_data = T4VF_MBDATA_BASE_ADDR;
 150        else
 151                mbox_data = T6VF_MBDATA_BASE_ADDR;
 152
 153        /*
 154         * Commands must be multiples of 16 bytes in length and may not be
 155         * larger than the size of the Mailbox Data register array.
 156         */
 157        if ((size % 16) != 0 ||
 158            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 159                return -EINVAL;
 160
 161        /* Queue ourselves onto the mailbox access list.  When our entry is at
 162         * the front of the list, we have rights to access the mailbox.  So we
 163         * wait [for a while] till we're at the front [or bail out with an
 164         * EBUSY] ...
 165         */
 166        spin_lock(&adapter->mbox_lock);
 167        list_add_tail(&entry.list, &adapter->mlist.list);
 168        spin_unlock(&adapter->mbox_lock);
 169
 170        delay_idx = 0;
 171        ms = delay[0];
 172
 173        for (i = 0; ; i += ms) {
 174                /* If we've waited too long, return a busy indication.  This
 175                 * really ought to be based on our initial position in the
 176                 * mailbox access list but this is a start.  We very rearely
 177                 * contend on access to the mailbox ...
 178                 */
 179                if (i > FW_CMD_MAX_TIMEOUT) {
 180                        spin_lock(&adapter->mbox_lock);
 181                        list_del(&entry.list);
 182                        spin_unlock(&adapter->mbox_lock);
 183                        ret = -EBUSY;
 184                        t4vf_record_mbox(adapter, cmd, size, access, ret);
 185                        return ret;
 186                }
 187
 188                /* If we're at the head, break out and start the mailbox
 189                 * protocol.
 190                 */
 191                if (list_first_entry(&adapter->mlist.list, struct mbox_list,
 192                                     list) == &entry)
 193                        break;
 194
 195                /* Delay for a bit before checking again ... */
 196                if (sleep_ok) {
 197                        ms = delay[delay_idx];  /* last element may repeat */
 198                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 199                                delay_idx++;
 200                        msleep(ms);
 201                } else {
 202                        mdelay(ms);
 203                }
 204        }
 205
 206        /*
 207         * Loop trying to get ownership of the mailbox.  Return an error
 208         * if we can't gain ownership.
 209         */
 210        v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 211        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 212                v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 213        if (v != MBOX_OWNER_DRV) {
 214                spin_lock(&adapter->mbox_lock);
 215                list_del(&entry.list);
 216                spin_unlock(&adapter->mbox_lock);
 217                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 218                t4vf_record_mbox(adapter, cmd, size, access, ret);
 219                return ret;
 220        }
 221
 222        /*
 223         * Write the command array into the Mailbox Data register array and
 224         * transfer ownership of the mailbox to the firmware.
 225         *
 226         * For the VFs, the Mailbox Data "registers" are actually backed by
 227         * T4's "MA" interface rather than PL Registers (as is the case for
 228         * the PFs).  Because these are in different coherency domains, the
 229         * write to the VF's PL-register-backed Mailbox Control can race in
 230         * front of the writes to the MA-backed VF Mailbox Data "registers".
 231         * So we need to do a read-back on at least one byte of the VF Mailbox
 232         * Data registers before doing the write to the VF Mailbox Control
 233         * register.
 234         */
 235        if (cmd_op != FW_VI_STATS_CMD)
 236                t4vf_record_mbox(adapter, cmd, size, access, 0);
 237        for (i = 0, p = cmd; i < size; i += 8)
 238                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 239        t4_read_reg(adapter, mbox_data);         /* flush write */
 240
 241        t4_write_reg(adapter, mbox_ctl,
 242                     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 243        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 244
 245        /*
 246         * Spin waiting for firmware to acknowledge processing our command.
 247         */
 248        delay_idx = 0;
 249        ms = delay[0];
 250
 251        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 252                if (sleep_ok) {
 253                        ms = delay[delay_idx];
 254                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 255                                delay_idx++;
 256                        msleep(ms);
 257                } else
 258                        mdelay(ms);
 259
 260                /*
 261                 * If we're the owner, see if this is the reply we wanted.
 262                 */
 263                v = t4_read_reg(adapter, mbox_ctl);
 264                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 265                        /*
 266                         * If the Message Valid bit isn't on, revoke ownership
 267                         * of the mailbox and continue waiting for our reply.
 268                         */
 269                        if ((v & MBMSGVALID_F) == 0) {
 270                                t4_write_reg(adapter, mbox_ctl,
 271                                             MBOWNER_V(MBOX_OWNER_NONE));
 272                                continue;
 273                        }
 274
 275                        /*
 276                         * We now have our reply.  Extract the command return
 277                         * value, copy the reply back to our caller's buffer
 278                         * (if specified) and revoke ownership of the mailbox.
 279                         * We return the (negated) firmware command return
 280                         * code (this depends on FW_SUCCESS == 0).
 281                         */
 282                        get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
 283
 284                        /* return value in low-order little-endian word */
 285                        v = be64_to_cpu(cmd_rpl[0]);
 286
 287                        if (rpl) {
 288                                /* request bit in high-order BE word */
 289                                WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
 290                                         & FW_CMD_REQUEST_F) == 0);
 291                                memcpy(rpl, cmd_rpl, size);
 292                                WARN_ON((be32_to_cpu(*(__be32 *)rpl)
 293                                         & FW_CMD_REQUEST_F) != 0);
 294                        }
 295                        t4_write_reg(adapter, mbox_ctl,
 296                                     MBOWNER_V(MBOX_OWNER_NONE));
 297                        execute = i + ms;
 298                        if (cmd_op != FW_VI_STATS_CMD)
 299                                t4vf_record_mbox(adapter, cmd_rpl, size, access,
 300                                                 execute);
 301                        spin_lock(&adapter->mbox_lock);
 302                        list_del(&entry.list);
 303                        spin_unlock(&adapter->mbox_lock);
 304                        return -FW_CMD_RETVAL_G(v);
 305                }
 306        }
 307
 308        /* We timed out.  Return the error ... */
 309        ret = -ETIMEDOUT;
 310        t4vf_record_mbox(adapter, cmd, size, access, ret);
 311        spin_lock(&adapter->mbox_lock);
 312        list_del(&entry.list);
 313        spin_unlock(&adapter->mbox_lock);
 314        return ret;
 315}
 316
 317/* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
 318 * mask out bits in the Advertised Port Capabilities which are managed via
 319 * separate controls, like Pause Frames and Forward Error Correction.  In the
 320 * Virtual Function Common Code, since we never perform L1 Configuration on
 321 * the Link, the only things we really need to filter out are things which
 322 * we decode and report separately like Speed.
 323 */
 324#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
 325                     FW_PORT_CAP32_802_3_PAUSE | \
 326                     FW_PORT_CAP32_802_3_ASM_DIR | \
 327                     FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
 328                     FW_PORT_CAP32_ANEG)
 329
 330/**
 331 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
 332 *      @caps16: a 16-bit Port Capabilities value
 333 *
 334 *      Returns the equivalent 32-bit Port Capabilities value.
 335 */
 336static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
 337{
 338        fw_port_cap32_t caps32 = 0;
 339
 340        #define CAP16_TO_CAP32(__cap) \
 341                do { \
 342                        if (caps16 & FW_PORT_CAP_##__cap) \
 343                                caps32 |= FW_PORT_CAP32_##__cap; \
 344                } while (0)
 345
 346        CAP16_TO_CAP32(SPEED_100M);
 347        CAP16_TO_CAP32(SPEED_1G);
 348        CAP16_TO_CAP32(SPEED_25G);
 349        CAP16_TO_CAP32(SPEED_10G);
 350        CAP16_TO_CAP32(SPEED_40G);
 351        CAP16_TO_CAP32(SPEED_100G);
 352        CAP16_TO_CAP32(FC_RX);
 353        CAP16_TO_CAP32(FC_TX);
 354        CAP16_TO_CAP32(ANEG);
 355        CAP16_TO_CAP32(MDIAUTO);
 356        CAP16_TO_CAP32(MDISTRAIGHT);
 357        CAP16_TO_CAP32(FEC_RS);
 358        CAP16_TO_CAP32(FEC_BASER_RS);
 359        CAP16_TO_CAP32(802_3_PAUSE);
 360        CAP16_TO_CAP32(802_3_ASM_DIR);
 361
 362        #undef CAP16_TO_CAP32
 363
 364        return caps32;
 365}
 366
 367/* Translate Firmware Pause specification to Common Code */
 368static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
 369{
 370        enum cc_pause cc_pause = 0;
 371
 372        if (fw_pause & FW_PORT_CAP32_FC_RX)
 373                cc_pause |= PAUSE_RX;
 374        if (fw_pause & FW_PORT_CAP32_FC_TX)
 375                cc_pause |= PAUSE_TX;
 376
 377        return cc_pause;
 378}
 379
 380/* Translate Firmware Forward Error Correction specification to Common Code */
 381static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
 382{
 383        enum cc_fec cc_fec = 0;
 384
 385        if (fw_fec & FW_PORT_CAP32_FEC_RS)
 386                cc_fec |= FEC_RS;
 387        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
 388                cc_fec |= FEC_BASER_RS;
 389
 390        return cc_fec;
 391}
 392
 393/* Return the highest speed set in the port capabilities, in Mb/s. */
 394static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
 395{
 396        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
 397                do { \
 398                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 399                                return __speed; \
 400                } while (0)
 401
 402        TEST_SPEED_RETURN(400G, 400000);
 403        TEST_SPEED_RETURN(200G, 200000);
 404        TEST_SPEED_RETURN(100G, 100000);
 405        TEST_SPEED_RETURN(50G,   50000);
 406        TEST_SPEED_RETURN(40G,   40000);
 407        TEST_SPEED_RETURN(25G,   25000);
 408        TEST_SPEED_RETURN(10G,   10000);
 409        TEST_SPEED_RETURN(1G,     1000);
 410        TEST_SPEED_RETURN(100M,    100);
 411
 412        #undef TEST_SPEED_RETURN
 413
 414        return 0;
 415}
 416
 417/**
 418 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
 419 *      @acaps: advertised Port Capabilities
 420 *
 421 *      Get the highest speed for the port from the advertised Port
 422 *      Capabilities.  It will be either the highest speed from the list of
 423 *      speeds or whatever user has set using ethtool.
 424 */
 425static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
 426{
 427        #define TEST_SPEED_RETURN(__caps_speed) \
 428                do { \
 429                        if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 430                                return FW_PORT_CAP32_SPEED_##__caps_speed; \
 431                } while (0)
 432
 433        TEST_SPEED_RETURN(400G);
 434        TEST_SPEED_RETURN(200G);
 435        TEST_SPEED_RETURN(100G);
 436        TEST_SPEED_RETURN(50G);
 437        TEST_SPEED_RETURN(40G);
 438        TEST_SPEED_RETURN(25G);
 439        TEST_SPEED_RETURN(10G);
 440        TEST_SPEED_RETURN(1G);
 441        TEST_SPEED_RETURN(100M);
 442
 443        #undef TEST_SPEED_RETURN
 444        return 0;
 445}
 446
 447/*
 448 *      init_link_config - initialize a link's SW state
 449 *      @lc: structure holding the link state
 450 *      @pcaps: link Port Capabilities
 451 *      @acaps: link current Advertised Port Capabilities
 452 *
 453 *      Initializes the SW state maintained for each link, including the link's
 454 *      capabilities and default speed/flow-control/autonegotiation settings.
 455 */
 456static void init_link_config(struct link_config *lc,
 457                             fw_port_cap32_t pcaps,
 458                             fw_port_cap32_t acaps)
 459{
 460        lc->pcaps = pcaps;
 461        lc->lpacaps = 0;
 462        lc->speed_caps = 0;
 463        lc->speed = 0;
 464        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 465
 466        /* For Forward Error Control, we default to whatever the Firmware
 467         * tells us the Link is currently advertising.
 468         */
 469        lc->auto_fec = fwcap_to_cc_fec(acaps);
 470        lc->requested_fec = FEC_AUTO;
 471        lc->fec = lc->auto_fec;
 472
 473        /* If the Port is capable of Auto-Negtotiation, initialize it as
 474         * "enabled" and copy over all of the Physical Port Capabilities
 475         * to the Advertised Port Capabilities.  Otherwise mark it as
 476         * Auto-Negotiate disabled and select the highest supported speed
 477         * for the link.  Note parallel structure in t4_link_l1cfg_core()
 478         * and t4_handle_get_port_info().
 479         */
 480        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
 481                lc->acaps = acaps & ADVERT_MASK;
 482                lc->autoneg = AUTONEG_ENABLE;
 483                lc->requested_fc |= PAUSE_AUTONEG;
 484        } else {
 485                lc->acaps = 0;
 486                lc->autoneg = AUTONEG_DISABLE;
 487                lc->speed_caps = fwcap_to_fwspeed(acaps);
 488        }
 489}
 490
 491/**
 492 *      t4vf_port_init - initialize port hardware/software state
 493 *      @adapter: the adapter
 494 *      @pidx: the adapter port index
 495 */
 496int t4vf_port_init(struct adapter *adapter, int pidx)
 497{
 498        struct port_info *pi = adap2pinfo(adapter, pidx);
 499        unsigned int fw_caps = adapter->params.fw_caps_support;
 500        struct fw_vi_cmd vi_cmd, vi_rpl;
 501        struct fw_port_cmd port_cmd, port_rpl;
 502        enum fw_port_type port_type;
 503        int mdio_addr;
 504        fw_port_cap32_t pcaps, acaps;
 505        int ret;
 506
 507        /* If we haven't yet determined whether we're talking to Firmware
 508         * which knows the new 32-bit Port Capabilities, it's time to find
 509         * out now.  This will also tell new Firmware to send us Port Status
 510         * Updates using the new 32-bit Port Capabilities version of the
 511         * Port Information message.
 512         */
 513        if (fw_caps == FW_CAPS_UNKNOWN) {
 514                u32 param, val;
 515
 516                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
 517                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
 518                val = 1;
 519                ret = t4vf_set_params(adapter, 1, &param, &val);
 520                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
 521                adapter->params.fw_caps_support = fw_caps;
 522        }
 523
 524        /*
 525         * Execute a VI Read command to get our Virtual Interface information
 526         * like MAC address, etc.
 527         */
 528        memset(&vi_cmd, 0, sizeof(vi_cmd));
 529        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
 530                                       FW_CMD_REQUEST_F |
 531                                       FW_CMD_READ_F);
 532        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 533        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
 534        ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 535        if (ret != FW_SUCCESS)
 536                return ret;
 537
 538        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
 539        pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
 540        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 541
 542        /*
 543         * If we don't have read access to our port information, we're done
 544         * now.  Otherwise, execute a PORT Read command to get it ...
 545         */
 546        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 547                return 0;
 548
 549        memset(&port_cmd, 0, sizeof(port_cmd));
 550        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
 551                                            FW_CMD_REQUEST_F |
 552                                            FW_CMD_READ_F |
 553                                            FW_PORT_CMD_PORTID_V(pi->port_id));
 554        port_cmd.action_to_len16 = cpu_to_be32(
 555                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
 556                                     ? FW_PORT_ACTION_GET_PORT_INFO
 557                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
 558                FW_LEN16(port_cmd));
 559        ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 560        if (ret != FW_SUCCESS)
 561                return ret;
 562
 563        /* Extract the various fields from the Port Information message. */
 564        if (fw_caps == FW_CAPS16) {
 565                u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
 566
 567                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
 568                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
 569                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
 570                             : -1);
 571                pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
 572                acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
 573        } else {
 574                u32 lstatus32 =
 575                           be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
 576
 577                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
 578                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
 579                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
 580                             : -1);
 581                pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
 582                acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
 583        }
 584
 585        pi->port_type = port_type;
 586        pi->mdio_addr = mdio_addr;
 587        pi->mod_type = FW_PORT_MOD_TYPE_NA;
 588
 589        init_link_config(&pi->link_cfg, pcaps, acaps);
 590        return 0;
 591}
 592
 593/**
 594 *      t4vf_fw_reset - issue a reset to FW
 595 *      @adapter: the adapter
 596 *
 597 *      Issues a reset command to FW.  For a Physical Function this would
 598 *      result in the Firmware resetting all of its state.  For a Virtual
 599 *      Function this just resets the state associated with the VF.
 600 */
 601int t4vf_fw_reset(struct adapter *adapter)
 602{
 603        struct fw_reset_cmd cmd;
 604
 605        memset(&cmd, 0, sizeof(cmd));
 606        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
 607                                      FW_CMD_WRITE_F);
 608        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 609        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 610}
 611
 612/**
 613 *      t4vf_query_params - query FW or device parameters
 614 *      @adapter: the adapter
 615 *      @nparams: the number of parameters
 616 *      @params: the parameter names
 617 *      @vals: the parameter values
 618 *
 619 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 620 *      can be queried at once.
 621 */
 622static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 623                             const u32 *params, u32 *vals)
 624{
 625        int i, ret;
 626        struct fw_params_cmd cmd, rpl;
 627        struct fw_params_param *p;
 628        size_t len16;
 629
 630        if (nparams > 7)
 631                return -EINVAL;
 632
 633        memset(&cmd, 0, sizeof(cmd));
 634        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 635                                    FW_CMD_REQUEST_F |
 636                                    FW_CMD_READ_F);
 637        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 638                                      param[nparams].mnem), 16);
 639        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 640        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 641                p->mnem = htonl(*params++);
 642
 643        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 644        if (ret == 0)
 645                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 646                        *vals++ = be32_to_cpu(p->val);
 647        return ret;
 648}
 649
 650/**
 651 *      t4vf_set_params - sets FW or device parameters
 652 *      @adapter: the adapter
 653 *      @nparams: the number of parameters
 654 *      @params: the parameter names
 655 *      @vals: the parameter values
 656 *
 657 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 658 *      can be specified at once.
 659 */
 660int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 661                    const u32 *params, const u32 *vals)
 662{
 663        int i;
 664        struct fw_params_cmd cmd;
 665        struct fw_params_param *p;
 666        size_t len16;
 667
 668        if (nparams > 7)
 669                return -EINVAL;
 670
 671        memset(&cmd, 0, sizeof(cmd));
 672        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 673                                    FW_CMD_REQUEST_F |
 674                                    FW_CMD_WRITE_F);
 675        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 676                                      param[nparams]), 16);
 677        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 678        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 679                p->mnem = cpu_to_be32(*params++);
 680                p->val = cpu_to_be32(*vals++);
 681        }
 682
 683        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 684}
 685
 686/**
 687 *      t4vf_fl_pkt_align - return the fl packet alignment
 688 *      @adapter: the adapter
 689 *
 690 *      T4 has a single field to specify the packing and padding boundary.
 691 *      T5 onwards has separate fields for this and hence the alignment for
 692 *      next packet offset is maximum of these two.  And T6 changes the
 693 *      Ingress Padding Boundary Shift, so it's all a mess and it's best
 694 *      if we put this in low-level Common Code ...
 695 *
 696 */
 697int t4vf_fl_pkt_align(struct adapter *adapter)
 698{
 699        u32 sge_control, sge_control2;
 700        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
 701
 702        sge_control = adapter->params.sge.sge_control;
 703
 704        /* T4 uses a single control field to specify both the PCIe Padding and
 705         * Packing Boundary.  T5 introduced the ability to specify these
 706         * separately.  The actual Ingress Packet Data alignment boundary
 707         * within Packed Buffer Mode is the maximum of these two
 708         * specifications.  (Note that it makes no real practical sense to
 709         * have the Pading Boudary be larger than the Packing Boundary but you
 710         * could set the chip up that way and, in fact, legacy T4 code would
 711         * end doing this because it would initialize the Padding Boundary and
 712         * leave the Packing Boundary initialized to 0 (16 bytes).)
 713         * Padding Boundary values in T6 starts from 8B,
 714         * where as it is 32B for T4 and T5.
 715         */
 716        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 717                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
 718        else
 719                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
 720
 721        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
 722
 723        fl_align = ingpadboundary;
 724        if (!is_t4(adapter->params.chip)) {
 725                /* T5 has a different interpretation of one of the PCIe Packing
 726                 * Boundary values.
 727                 */
 728                sge_control2 = adapter->params.sge.sge_control2;
 729                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
 730                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
 731                        ingpackboundary = 16;
 732                else
 733                        ingpackboundary = 1 << (ingpackboundary +
 734                                                INGPACKBOUNDARY_SHIFT_X);
 735
 736                fl_align = max(ingpadboundary, ingpackboundary);
 737        }
 738        return fl_align;
 739}
 740
 741/**
 742 *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 743 *      @adapter: the adapter
 744 *      @qid: the Queue ID
 745 *      @qtype: the Ingress or Egress type for @qid
 746 *      @pbar2_qoffset: BAR2 Queue Offset
 747 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 748 *
 749 *      Returns the BAR2 SGE Queue Registers information associated with the
 750 *      indicated Absolute Queue ID.  These are passed back in return value
 751 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 752 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 753 *
 754 *      This may return an error which indicates that BAR2 SGE Queue
 755 *      registers aren't available.  If an error is not returned, then the
 756 *      following values are returned:
 757 *
 758 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 759 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 760 *
 761 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 762 *      require the "Inferred Queue ID" ability may be used.  E.g. the
 763 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 764 *      then these "Inferred Queue ID" register may not be used.
 765 */
 766int t4vf_bar2_sge_qregs(struct adapter *adapter,
 767                        unsigned int qid,
 768                        enum t4_bar2_qtype qtype,
 769                        u64 *pbar2_qoffset,
 770                        unsigned int *pbar2_qid)
 771{
 772        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
 773        u64 bar2_page_offset, bar2_qoffset;
 774        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
 775
 776        /* T4 doesn't support BAR2 SGE Queue registers.
 777         */
 778        if (is_t4(adapter->params.chip))
 779                return -EINVAL;
 780
 781        /* Get our SGE Page Size parameters.
 782         */
 783        page_shift = adapter->params.sge.sge_vf_hps + 10;
 784        page_size = 1 << page_shift;
 785
 786        /* Get the right Queues per Page parameters for our Queue.
 787         */
 788        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
 789                     ? adapter->params.sge.sge_vf_eq_qpp
 790                     : adapter->params.sge.sge_vf_iq_qpp);
 791        qpp_mask = (1 << qpp_shift) - 1;
 792
 793        /* Calculate the basics of the BAR2 SGE Queue register area:
 794         *  o The BAR2 page the Queue registers will be in.
 795         *  o The BAR2 Queue ID.
 796         *  o The BAR2 Queue ID Offset into the BAR2 page.
 797         */
 798        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
 799        bar2_qid = qid & qpp_mask;
 800        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
 801
 802        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
 803         * hardware will infer the Absolute Queue ID simply from the writes to
 804         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
 805         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
 806         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
 807         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
 808         * from the BAR2 Page and BAR2 Queue ID.
 809         *
 810         * One important censequence of this is that some BAR2 SGE registers
 811         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
 812         * there.  But other registers synthesize the SGE Queue ID purely
 813         * from the writes to the registers -- the Write Combined Doorbell
 814         * Buffer is a good example.  These BAR2 SGE Registers are only
 815         * available for those BAR2 SGE Register areas where the SGE Absolute
 816         * Queue ID can be inferred from simple writes.
 817         */
 818        bar2_qoffset = bar2_page_offset;
 819        bar2_qinferred = (bar2_qid_offset < page_size);
 820        if (bar2_qinferred) {
 821                bar2_qoffset += bar2_qid_offset;
 822                bar2_qid = 0;
 823        }
 824
 825        *pbar2_qoffset = bar2_qoffset;
 826        *pbar2_qid = bar2_qid;
 827        return 0;
 828}
 829
 830unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
 831{
 832        u32 whoami;
 833
 834        whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
 835        return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
 836                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
 837}
 838
 839/**
 840 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 841 *      @adapter: the adapter
 842 *
 843 *      Retrieves various core SGE parameters in the form of hardware SGE
 844 *      register values.  The caller is responsible for decoding these as
 845 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 846 */
 847int t4vf_get_sge_params(struct adapter *adapter)
 848{
 849        struct sge_params *sge_params = &adapter->params.sge;
 850        u32 params[7], vals[7];
 851        int v;
 852
 853        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 854                     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
 855        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 856                     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
 857        params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 858                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
 859        params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 860                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
 861        params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 862                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
 863        params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 864                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
 865        params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 866                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
 867        v = t4vf_query_params(adapter, 7, params, vals);
 868        if (v)
 869                return v;
 870        sge_params->sge_control = vals[0];
 871        sge_params->sge_host_page_size = vals[1];
 872        sge_params->sge_fl_buffer_size[0] = vals[2];
 873        sge_params->sge_fl_buffer_size[1] = vals[3];
 874        sge_params->sge_timer_value_0_and_1 = vals[4];
 875        sge_params->sge_timer_value_2_and_3 = vals[5];
 876        sge_params->sge_timer_value_4_and_5 = vals[6];
 877
 878        /* T4 uses a single control field to specify both the PCIe Padding and
 879         * Packing Boundary.  T5 introduced the ability to specify these
 880         * separately with the Padding Boundary in SGE_CONTROL and and Packing
 881         * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
 882         * SGE_CONTROL in order to determine how ingress packet data will be
 883         * laid out in Packed Buffer Mode.  Unfortunately, older versions of
 884         * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
 885         * failure grabbing it we throw an error since we can't figure out the
 886         * right value.
 887         */
 888        if (!is_t4(adapter->params.chip)) {
 889                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 890                             FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
 891                v = t4vf_query_params(adapter, 1, params, vals);
 892                if (v != FW_SUCCESS) {
 893                        dev_err(adapter->pdev_dev,
 894                                "Unable to get SGE Control2; "
 895                                "probably old firmware.\n");
 896                        return v;
 897                }
 898                sge_params->sge_control2 = vals[0];
 899        }
 900
 901        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 902                     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
 903        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 904                     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
 905        v = t4vf_query_params(adapter, 2, params, vals);
 906        if (v)
 907                return v;
 908        sge_params->sge_ingress_rx_threshold = vals[0];
 909        sge_params->sge_congestion_control = vals[1];
 910
 911        /* For T5 and later we want to use the new BAR2 Doorbells.
 912         * Unfortunately, older firmware didn't allow the this register to be
 913         * read.
 914         */
 915        if (!is_t4(adapter->params.chip)) {
 916                unsigned int pf, s_hps, s_qpp;
 917
 918                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 919                             FW_PARAMS_PARAM_XYZ_V(
 920                                     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
 921                params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 922                             FW_PARAMS_PARAM_XYZ_V(
 923                                     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
 924                v = t4vf_query_params(adapter, 2, params, vals);
 925                if (v != FW_SUCCESS) {
 926                        dev_warn(adapter->pdev_dev,
 927                                 "Unable to get VF SGE Queues/Page; "
 928                                 "probably old firmware.\n");
 929                        return v;
 930                }
 931                sge_params->sge_egress_queues_per_page = vals[0];
 932                sge_params->sge_ingress_queues_per_page = vals[1];
 933
 934                /* We need the Queues/Page for our VF.  This is based on the
 935                 * PF from which we're instantiated and is indexed in the
 936                 * register we just read. Do it once here so other code in
 937                 * the driver can just use it.
 938                 */
 939                pf = t4vf_get_pf_from_vf(adapter);
 940                s_hps = (HOSTPAGESIZEPF0_S +
 941                         (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
 942                sge_params->sge_vf_hps =
 943                        ((sge_params->sge_host_page_size >> s_hps)
 944                         & HOSTPAGESIZEPF0_M);
 945
 946                s_qpp = (QUEUESPERPAGEPF0_S +
 947                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
 948                sge_params->sge_vf_eq_qpp =
 949                        ((sge_params->sge_egress_queues_per_page >> s_qpp)
 950                         & QUEUESPERPAGEPF0_M);
 951                sge_params->sge_vf_iq_qpp =
 952                        ((sge_params->sge_ingress_queues_per_page >> s_qpp)
 953                         & QUEUESPERPAGEPF0_M);
 954        }
 955
 956        return 0;
 957}
 958
 959/**
 960 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 961 *      @adapter: the adapter
 962 *
 963 *      Retrives various device Vital Product Data parameters.  The parameters
 964 *      are stored in @adapter->params.vpd.
 965 */
 966int t4vf_get_vpd_params(struct adapter *adapter)
 967{
 968        struct vpd_params *vpd_params = &adapter->params.vpd;
 969        u32 params[7], vals[7];
 970        int v;
 971
 972        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 973                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
 974        v = t4vf_query_params(adapter, 1, params, vals);
 975        if (v)
 976                return v;
 977        vpd_params->cclk = vals[0];
 978
 979        return 0;
 980}
 981
 982/**
 983 *      t4vf_get_dev_params - retrieve device paremeters
 984 *      @adapter: the adapter
 985 *
 986 *      Retrives various device parameters.  The parameters are stored in
 987 *      @adapter->params.dev.
 988 */
 989int t4vf_get_dev_params(struct adapter *adapter)
 990{
 991        struct dev_params *dev_params = &adapter->params.dev;
 992        u32 params[7], vals[7];
 993        int v;
 994
 995        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 996                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
 997        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 998                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
 999        v = t4vf_query_params(adapter, 2, params, vals);
1000        if (v)
1001                return v;
1002        dev_params->fwrev = vals[0];
1003        dev_params->tprev = vals[1];
1004
1005        return 0;
1006}
1007
1008/**
1009 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1010 *      @adapter: the adapter
1011 *
1012 *      Retrieves global RSS mode and parameters with which we have to live
1013 *      and stores them in the @adapter's RSS parameters.
1014 */
1015int t4vf_get_rss_glb_config(struct adapter *adapter)
1016{
1017        struct rss_params *rss = &adapter->params.rss;
1018        struct fw_rss_glb_config_cmd cmd, rpl;
1019        int v;
1020
1021        /*
1022         * Execute an RSS Global Configuration read command to retrieve
1023         * our RSS configuration.
1024         */
1025        memset(&cmd, 0, sizeof(cmd));
1026        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1027                                      FW_CMD_REQUEST_F |
1028                                      FW_CMD_READ_F);
1029        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1030        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1031        if (v)
1032                return v;
1033
1034        /*
1035         * Transate the big-endian RSS Global Configuration into our
1036         * cpu-endian format based on the RSS mode.  We also do first level
1037         * filtering at this point to weed out modes which don't support
1038         * VF Drivers ...
1039         */
1040        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1041                        be32_to_cpu(rpl.u.manual.mode_pkd));
1042        switch (rss->mode) {
1043        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1044                u32 word = be32_to_cpu(
1045                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1046
1047                rss->u.basicvirtual.synmapen =
1048                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1049                rss->u.basicvirtual.syn4tupenipv6 =
1050                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1051                rss->u.basicvirtual.syn2tupenipv6 =
1052                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1053                rss->u.basicvirtual.syn4tupenipv4 =
1054                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1055                rss->u.basicvirtual.syn2tupenipv4 =
1056                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1057
1058                rss->u.basicvirtual.ofdmapen =
1059                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1060
1061                rss->u.basicvirtual.tnlmapen =
1062                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1063                rss->u.basicvirtual.tnlalllookup =
1064                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1065
1066                rss->u.basicvirtual.hashtoeplitz =
1067                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1068
1069                /* we need at least Tunnel Map Enable to be set */
1070                if (!rss->u.basicvirtual.tnlmapen)
1071                        return -EINVAL;
1072                break;
1073        }
1074
1075        default:
1076                /* all unknown/unsupported RSS modes result in an error */
1077                return -EINVAL;
1078        }
1079
1080        return 0;
1081}
1082
1083/**
1084 *      t4vf_get_vfres - retrieve VF resource limits
1085 *      @adapter: the adapter
1086 *
1087 *      Retrieves configured resource limits and capabilities for a virtual
1088 *      function.  The results are stored in @adapter->vfres.
1089 */
1090int t4vf_get_vfres(struct adapter *adapter)
1091{
1092        struct vf_resources *vfres = &adapter->params.vfres;
1093        struct fw_pfvf_cmd cmd, rpl;
1094        int v;
1095        u32 word;
1096
1097        /*
1098         * Execute PFVF Read command to get VF resource limits; bail out early
1099         * with error on command failure.
1100         */
1101        memset(&cmd, 0, sizeof(cmd));
1102        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1103                                    FW_CMD_REQUEST_F |
1104                                    FW_CMD_READ_F);
1105        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1106        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1107        if (v)
1108                return v;
1109
1110        /*
1111         * Extract VF resource limits and return success.
1112         */
1113        word = be32_to_cpu(rpl.niqflint_niq);
1114        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1115        vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1116
1117        word = be32_to_cpu(rpl.type_to_neq);
1118        vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1119        vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1120
1121        word = be32_to_cpu(rpl.tc_to_nexactf);
1122        vfres->tc = FW_PFVF_CMD_TC_G(word);
1123        vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1124        vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1125
1126        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1127        vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1128        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1129        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1130
1131        return 0;
1132}
1133
1134/**
1135 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1136 *      @adapter: the adapter
1137 *      @viid: Virtual Interface ID
1138 *      @config: pointer to host-native VI RSS Configuration buffer
1139 *
1140 *      Reads the Virtual Interface's RSS configuration information and
1141 *      translates it into CPU-native format.
1142 */
1143int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1144                            union rss_vi_config *config)
1145{
1146        struct fw_rss_vi_config_cmd cmd, rpl;
1147        int v;
1148
1149        memset(&cmd, 0, sizeof(cmd));
1150        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1151                                     FW_CMD_REQUEST_F |
1152                                     FW_CMD_READ_F |
1153                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1154        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1155        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1156        if (v)
1157                return v;
1158
1159        switch (adapter->params.rss.mode) {
1160        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1161                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1162
1163                config->basicvirtual.ip6fourtupen =
1164                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1165                config->basicvirtual.ip6twotupen =
1166                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1167                config->basicvirtual.ip4fourtupen =
1168                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1169                config->basicvirtual.ip4twotupen =
1170                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1171                config->basicvirtual.udpen =
1172                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1173                config->basicvirtual.defaultq =
1174                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1175                break;
1176        }
1177
1178        default:
1179                return -EINVAL;
1180        }
1181
1182        return 0;
1183}
1184
1185/**
1186 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1187 *      @adapter: the adapter
1188 *      @viid: Virtual Interface ID
1189 *      @config: pointer to host-native VI RSS Configuration buffer
1190 *
1191 *      Write the Virtual Interface's RSS configuration information
1192 *      (translating it into firmware-native format before writing).
1193 */
1194int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1195                             union rss_vi_config *config)
1196{
1197        struct fw_rss_vi_config_cmd cmd, rpl;
1198
1199        memset(&cmd, 0, sizeof(cmd));
1200        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1201                                     FW_CMD_REQUEST_F |
1202                                     FW_CMD_WRITE_F |
1203                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1204        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1205        switch (adapter->params.rss.mode) {
1206        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1207                u32 word = 0;
1208
1209                if (config->basicvirtual.ip6fourtupen)
1210                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1211                if (config->basicvirtual.ip6twotupen)
1212                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1213                if (config->basicvirtual.ip4fourtupen)
1214                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1215                if (config->basicvirtual.ip4twotupen)
1216                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1217                if (config->basicvirtual.udpen)
1218                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1219                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1220                                config->basicvirtual.defaultq);
1221                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1222                break;
1223        }
1224
1225        default:
1226                return -EINVAL;
1227        }
1228
1229        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1230}
1231
1232/**
1233 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1234 *      @adapter: the adapter
1235 *      @viid: Virtual Interface of RSS Table Slice
1236 *      @start: starting entry in the table to write
1237 *      @n: how many table entries to write
1238 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1239 *      @nrspq: number of values in @rspq
1240 *
1241 *      Programs the selected part of the VI's RSS mapping table with the
1242 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1243 *      until the full table range is populated.
1244 *
1245 *      The caller must ensure the values in @rspq are in the range 0..1023.
1246 */
1247int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1248                          int start, int n, const u16 *rspq, int nrspq)
1249{
1250        const u16 *rsp = rspq;
1251        const u16 *rsp_end = rspq+nrspq;
1252        struct fw_rss_ind_tbl_cmd cmd;
1253
1254        /*
1255         * Initialize firmware command template to write the RSS table.
1256         */
1257        memset(&cmd, 0, sizeof(cmd));
1258        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1259                                     FW_CMD_REQUEST_F |
1260                                     FW_CMD_WRITE_F |
1261                                     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1262        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1263
1264        /*
1265         * Each firmware RSS command can accommodate up to 32 RSS Ingress
1266         * Queue Identifiers.  These Ingress Queue IDs are packed three to
1267         * a 32-bit word as 10-bit values with the upper remaining 2 bits
1268         * reserved.
1269         */
1270        while (n > 0) {
1271                __be32 *qp = &cmd.iq0_to_iq2;
1272                int nq = min(n, 32);
1273                int ret;
1274
1275                /*
1276                 * Set up the firmware RSS command header to send the next
1277                 * "nq" Ingress Queue IDs to the firmware.
1278                 */
1279                cmd.niqid = cpu_to_be16(nq);
1280                cmd.startidx = cpu_to_be16(start);
1281
1282                /*
1283                 * "nq" more done for the start of the next loop.
1284                 */
1285                start += nq;
1286                n -= nq;
1287
1288                /*
1289                 * While there are still Ingress Queue IDs to stuff into the
1290                 * current firmware RSS command, retrieve them from the
1291                 * Ingress Queue ID array and insert them into the command.
1292                 */
1293                while (nq > 0) {
1294                        /*
1295                         * Grab up to the next 3 Ingress Queue IDs (wrapping
1296                         * around the Ingress Queue ID array if necessary) and
1297                         * insert them into the firmware RSS command at the
1298                         * current 3-tuple position within the commad.
1299                         */
1300                        u16 qbuf[3];
1301                        u16 *qbp = qbuf;
1302                        int nqbuf = min(3, nq);
1303
1304                        nq -= nqbuf;
1305                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
1306                        while (nqbuf) {
1307                                nqbuf--;
1308                                *qbp++ = *rsp++;
1309                                if (rsp >= rsp_end)
1310                                        rsp = rspq;
1311                        }
1312                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1313                                            FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1314                                            FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1315                }
1316
1317                /*
1318                 * Send this portion of the RRS table update to the firmware;
1319                 * bail out on any errors.
1320                 */
1321                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1322                if (ret)
1323                        return ret;
1324        }
1325        return 0;
1326}
1327
1328/**
1329 *      t4vf_alloc_vi - allocate a virtual interface on a port
1330 *      @adapter: the adapter
1331 *      @port_id: physical port associated with the VI
1332 *
1333 *      Allocate a new Virtual Interface and bind it to the indicated
1334 *      physical port.  Return the new Virtual Interface Identifier on
1335 *      success, or a [negative] error number on failure.
1336 */
1337int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1338{
1339        struct fw_vi_cmd cmd, rpl;
1340        int v;
1341
1342        /*
1343         * Execute a VI command to allocate Virtual Interface and return its
1344         * VIID.
1345         */
1346        memset(&cmd, 0, sizeof(cmd));
1347        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1348                                    FW_CMD_REQUEST_F |
1349                                    FW_CMD_WRITE_F |
1350                                    FW_CMD_EXEC_F);
1351        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1352                                         FW_VI_CMD_ALLOC_F);
1353        cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1354        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1355        if (v)
1356                return v;
1357
1358        return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1359}
1360
1361/**
1362 *      t4vf_free_vi -- free a virtual interface
1363 *      @adapter: the adapter
1364 *      @viid: the virtual interface identifier
1365 *
1366 *      Free a previously allocated Virtual Interface.  Return an error on
1367 *      failure.
1368 */
1369int t4vf_free_vi(struct adapter *adapter, int viid)
1370{
1371        struct fw_vi_cmd cmd;
1372
1373        /*
1374         * Execute a VI command to free the Virtual Interface.
1375         */
1376        memset(&cmd, 0, sizeof(cmd));
1377        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1378                                    FW_CMD_REQUEST_F |
1379                                    FW_CMD_EXEC_F);
1380        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1381                                         FW_VI_CMD_FREE_F);
1382        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1383        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1384}
1385
1386/**
1387 *      t4vf_enable_vi - enable/disable a virtual interface
1388 *      @adapter: the adapter
1389 *      @viid: the Virtual Interface ID
1390 *      @rx_en: 1=enable Rx, 0=disable Rx
1391 *      @tx_en: 1=enable Tx, 0=disable Tx
1392 *
1393 *      Enables/disables a virtual interface.
1394 */
1395int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1396                   bool rx_en, bool tx_en)
1397{
1398        struct fw_vi_enable_cmd cmd;
1399
1400        memset(&cmd, 0, sizeof(cmd));
1401        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1402                                     FW_CMD_REQUEST_F |
1403                                     FW_CMD_EXEC_F |
1404                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1405        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1406                                       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1407                                       FW_LEN16(cmd));
1408        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1409}
1410
1411/**
1412 *      t4vf_enable_pi - enable/disable a Port's virtual interface
1413 *      @adapter: the adapter
1414 *      @pi: the Port Information structure
1415 *      @rx_en: 1=enable Rx, 0=disable Rx
1416 *      @tx_en: 1=enable Tx, 0=disable Tx
1417 *
1418 *      Enables/disables a Port's virtual interface.  If the Virtual
1419 *      Interface enable/disable operation is successful, we notify the
1420 *      OS-specific code of a potential Link Status change via the OS Contract
1421 *      API t4vf_os_link_changed().
1422 */
1423int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1424                   bool rx_en, bool tx_en)
1425{
1426        int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1427
1428        if (ret)
1429                return ret;
1430        t4vf_os_link_changed(adapter, pi->pidx,
1431                             rx_en && tx_en && pi->link_cfg.link_ok);
1432        return 0;
1433}
1434
1435/**
1436 *      t4vf_identify_port - identify a VI's port by blinking its LED
1437 *      @adapter: the adapter
1438 *      @viid: the Virtual Interface ID
1439 *      @nblinks: how many times to blink LED at 2.5 Hz
1440 *
1441 *      Identifies a VI's port by blinking its LED.
1442 */
1443int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1444                       unsigned int nblinks)
1445{
1446        struct fw_vi_enable_cmd cmd;
1447
1448        memset(&cmd, 0, sizeof(cmd));
1449        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1450                                     FW_CMD_REQUEST_F |
1451                                     FW_CMD_EXEC_F |
1452                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1453        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1454                                       FW_LEN16(cmd));
1455        cmd.blinkdur = cpu_to_be16(nblinks);
1456        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1457}
1458
1459/**
1460 *      t4vf_set_rxmode - set Rx properties of a virtual interface
1461 *      @adapter: the adapter
1462 *      @viid: the VI id
1463 *      @mtu: the new MTU or -1 for no change
1464 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1465 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1466 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1467 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1468 *              -1 no change
1469 *      @sleep_ok: call is allowed to sleep
1470 *
1471 *      Sets Rx properties of a virtual interface.
1472 */
1473int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1474                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1475                    bool sleep_ok)
1476{
1477        struct fw_vi_rxmode_cmd cmd;
1478
1479        /* convert to FW values */
1480        if (mtu < 0)
1481                mtu = FW_VI_RXMODE_CMD_MTU_M;
1482        if (promisc < 0)
1483                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1484        if (all_multi < 0)
1485                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1486        if (bcast < 0)
1487                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1488        if (vlanex < 0)
1489                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1490
1491        memset(&cmd, 0, sizeof(cmd));
1492        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1493                                     FW_CMD_REQUEST_F |
1494                                     FW_CMD_WRITE_F |
1495                                     FW_VI_RXMODE_CMD_VIID_V(viid));
1496        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1497        cmd.mtu_to_vlanexen =
1498                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1499                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1500                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1501                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1502                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1503        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1504}
1505
1506/**
1507 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508 *      @adapter: the adapter
1509 *      @viid: the Virtual Interface Identifier
1510 *      @free: if true any existing filters for this VI id are first removed
1511 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1512 *      @addr: the MAC address(es)
1513 *      @idx: where to store the index of each allocated filter
1514 *      @hash: pointer to hash address filter bitmap
1515 *      @sleep_ok: call is allowed to sleep
1516 *
1517 *      Allocates an exact-match filter for each of the supplied addresses and
1518 *      sets it to the corresponding address.  If @idx is not %NULL it should
1519 *      have at least @naddr entries, each of which will be set to the index of
1520 *      the filter allocated for the corresponding MAC address.  If a filter
1521 *      could not be allocated for an address its index is set to 0xffff.
1522 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1523 *      are hashed and update the hash filter bitmap pointed at by @hash.
1524 *
1525 *      Returns a negative error number or the number of filters allocated.
1526 */
1527int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1528                        unsigned int naddr, const u8 **addr, u16 *idx,
1529                        u64 *hash, bool sleep_ok)
1530{
1531        int offset, ret = 0;
1532        unsigned nfilters = 0;
1533        unsigned int rem = naddr;
1534        struct fw_vi_mac_cmd cmd, rpl;
1535        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1536
1537        if (naddr > max_naddr)
1538                return -EINVAL;
1539
1540        for (offset = 0; offset < naddr; /**/) {
1541                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1542                                         ? rem
1543                                         : ARRAY_SIZE(cmd.u.exact));
1544                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1545                                                     u.exact[fw_naddr]), 16);
1546                struct fw_vi_mac_exact *p;
1547                int i;
1548
1549                memset(&cmd, 0, sizeof(cmd));
1550                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1551                                             FW_CMD_REQUEST_F |
1552                                             FW_CMD_WRITE_F |
1553                                             (free ? FW_CMD_EXEC_F : 0) |
1554                                             FW_VI_MAC_CMD_VIID_V(viid));
1555                cmd.freemacs_to_len16 =
1556                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1557                                    FW_CMD_LEN16_V(len16));
1558
1559                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1560                        p->valid_to_idx = cpu_to_be16(
1561                                FW_VI_MAC_CMD_VALID_F |
1562                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1563                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1564                }
1565
1566
1567                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1568                                        sleep_ok);
1569                if (ret && ret != -ENOMEM)
1570                        break;
1571
1572                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1573                        u16 index = FW_VI_MAC_CMD_IDX_G(
1574                                be16_to_cpu(p->valid_to_idx));
1575
1576                        if (idx)
1577                                idx[offset+i] =
1578                                        (index >= max_naddr
1579                                         ? 0xffff
1580                                         : index);
1581                        if (index < max_naddr)
1582                                nfilters++;
1583                        else if (hash)
1584                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1585                }
1586
1587                free = false;
1588                offset += fw_naddr;
1589                rem -= fw_naddr;
1590        }
1591
1592        /*
1593         * If there were no errors or we merely ran out of room in our MAC
1594         * address arena, return the number of filters actually written.
1595         */
1596        if (ret == 0 || ret == -ENOMEM)
1597                ret = nfilters;
1598        return ret;
1599}
1600
1601/**
1602 *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603 *      @adapter: the adapter
1604 *      @viid: the VI id
1605 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1606 *      @addr: the MAC address(es)
1607 *      @sleep_ok: call is allowed to sleep
1608 *
1609 *      Frees the exact-match filter for each of the supplied addresses
1610 *
1611 *      Returns a negative error number or the number of filters freed.
1612 */
1613int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1614                       unsigned int naddr, const u8 **addr, bool sleep_ok)
1615{
1616        int offset, ret = 0;
1617        struct fw_vi_mac_cmd cmd;
1618        unsigned int nfilters = 0;
1619        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1620        unsigned int rem = naddr;
1621
1622        if (naddr > max_naddr)
1623                return -EINVAL;
1624
1625        for (offset = 0; offset < (int)naddr ; /**/) {
1626                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1627                                         rem : ARRAY_SIZE(cmd.u.exact));
1628                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1629                                                     u.exact[fw_naddr]), 16);
1630                struct fw_vi_mac_exact *p;
1631                int i;
1632
1633                memset(&cmd, 0, sizeof(cmd));
1634                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1635                                     FW_CMD_REQUEST_F |
1636                                     FW_CMD_WRITE_F |
1637                                     FW_CMD_EXEC_V(0) |
1638                                     FW_VI_MAC_CMD_VIID_V(viid));
1639                cmd.freemacs_to_len16 =
1640                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641                                            FW_CMD_LEN16_V(len16));
1642
1643                for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1644                        p->valid_to_idx = cpu_to_be16(
1645                                FW_VI_MAC_CMD_VALID_F |
1646                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1647                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1648                }
1649
1650                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1651                                        sleep_ok);
1652                if (ret)
1653                        break;
1654
1655                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1656                        u16 index = FW_VI_MAC_CMD_IDX_G(
1657                                                be16_to_cpu(p->valid_to_idx));
1658
1659                        if (index < max_naddr)
1660                                nfilters++;
1661                }
1662
1663                offset += fw_naddr;
1664                rem -= fw_naddr;
1665        }
1666
1667        if (ret == 0)
1668                ret = nfilters;
1669        return ret;
1670}
1671
1672/**
1673 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1674 *      @adapter: the adapter
1675 *      @viid: the Virtual Interface ID
1676 *      @idx: index of existing filter for old value of MAC address, or -1
1677 *      @addr: the new MAC address value
1678 *      @persist: if idx < 0, the new MAC allocation should be persistent
1679 *
1680 *      Modifies an exact-match filter and sets it to the new MAC address.
1681 *      Note that in general it is not possible to modify the value of a given
1682 *      filter so the generic way to modify an address filter is to free the
1683 *      one being used by the old address value and allocate a new filter for
1684 *      the new address value.  @idx can be -1 if the address is a new
1685 *      addition.
1686 *
1687 *      Returns a negative error number or the index of the filter with the new
1688 *      MAC value.
1689 */
1690int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1691                    int idx, const u8 *addr, bool persist)
1692{
1693        int ret;
1694        struct fw_vi_mac_cmd cmd, rpl;
1695        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1696        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1697                                             u.exact[1]), 16);
1698        unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1699
1700        /*
1701         * If this is a new allocation, determine whether it should be
1702         * persistent (across a "freemacs" operation) or not.
1703         */
1704        if (idx < 0)
1705                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1706
1707        memset(&cmd, 0, sizeof(cmd));
1708        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1709                                     FW_CMD_REQUEST_F |
1710                                     FW_CMD_WRITE_F |
1711                                     FW_VI_MAC_CMD_VIID_V(viid));
1712        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1713        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1714                                      FW_VI_MAC_CMD_IDX_V(idx));
1715        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1716
1717        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1718        if (ret == 0) {
1719                p = &rpl.u.exact[0];
1720                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1721                if (ret >= max_mac_addr)
1722                        ret = -ENOMEM;
1723        }
1724        return ret;
1725}
1726
1727/**
1728 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729 *      @adapter: the adapter
1730 *      @viid: the Virtual Interface Identifier
1731 *      @ucast: whether the hash filter should also match unicast addresses
1732 *      @vec: the value to be written to the hash filter
1733 *      @sleep_ok: call is allowed to sleep
1734 *
1735 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1736 */
1737int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1738                       bool ucast, u64 vec, bool sleep_ok)
1739{
1740        struct fw_vi_mac_cmd cmd;
1741        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1742                                             u.exact[0]), 16);
1743
1744        memset(&cmd, 0, sizeof(cmd));
1745        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1746                                     FW_CMD_REQUEST_F |
1747                                     FW_CMD_WRITE_F |
1748                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1749        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1750                                            FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1751                                            FW_CMD_LEN16_V(len16));
1752        cmd.u.hash.hashvec = cpu_to_be64(vec);
1753        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1754}
1755
1756/**
1757 *      t4vf_get_port_stats - collect "port" statistics
1758 *      @adapter: the adapter
1759 *      @pidx: the port index
1760 *      @s: the stats structure to fill
1761 *
1762 *      Collect statistics for the "port"'s Virtual Interface.
1763 */
1764int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1765                        struct t4vf_port_stats *s)
1766{
1767        struct port_info *pi = adap2pinfo(adapter, pidx);
1768        struct fw_vi_stats_vf fwstats;
1769        unsigned int rem = VI_VF_NUM_STATS;
1770        __be64 *fwsp = (__be64 *)&fwstats;
1771
1772        /*
1773         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774         * commands.  We could use a Work Request and get all of them at once
1775         * but that's an asynchronous interface which is awkward to use.
1776         */
1777        while (rem) {
1778                unsigned int ix = VI_VF_NUM_STATS - rem;
1779                unsigned int nstats = min(6U, rem);
1780                struct fw_vi_stats_cmd cmd, rpl;
1781                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1782                              sizeof(struct fw_vi_stats_ctl));
1783                size_t len16 = DIV_ROUND_UP(len, 16);
1784                int ret;
1785
1786                memset(&cmd, 0, sizeof(cmd));
1787                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1788                                             FW_VI_STATS_CMD_VIID_V(pi->viid) |
1789                                             FW_CMD_REQUEST_F |
1790                                             FW_CMD_READ_F);
1791                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1792                cmd.u.ctl.nstats_ix =
1793                        cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1794                                    FW_VI_STATS_CMD_NSTATS_V(nstats));
1795                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1796                if (ret)
1797                        return ret;
1798
1799                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1800
1801                rem -= nstats;
1802                fwsp += nstats;
1803        }
1804
1805        /*
1806         * Translate firmware statistics into host native statistics.
1807         */
1808        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1809        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1810        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1811        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1812        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1813        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1814        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1815        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1816        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1817
1818        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1819        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1820        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1821        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1822        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1823        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1824
1825        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1826
1827        return 0;
1828}
1829
1830/**
1831 *      t4vf_iq_free - free an ingress queue and its free lists
1832 *      @adapter: the adapter
1833 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834 *      @iqid: ingress queue ID
1835 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1836 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1837 *
1838 *      Frees an ingress queue and its associated free lists, if any.
1839 */
1840int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1841                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1842{
1843        struct fw_iq_cmd cmd;
1844
1845        memset(&cmd, 0, sizeof(cmd));
1846        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1847                                    FW_CMD_REQUEST_F |
1848                                    FW_CMD_EXEC_F);
1849        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1850                                         FW_LEN16(cmd));
1851        cmd.type_to_iqandstindex =
1852                cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1853
1854        cmd.iqid = cpu_to_be16(iqid);
1855        cmd.fl0id = cpu_to_be16(fl0id);
1856        cmd.fl1id = cpu_to_be16(fl1id);
1857        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1858}
1859
1860/**
1861 *      t4vf_eth_eq_free - free an Ethernet egress queue
1862 *      @adapter: the adapter
1863 *      @eqid: egress queue ID
1864 *
1865 *      Frees an Ethernet egress queue.
1866 */
1867int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1868{
1869        struct fw_eq_eth_cmd cmd;
1870
1871        memset(&cmd, 0, sizeof(cmd));
1872        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1873                                    FW_CMD_REQUEST_F |
1874                                    FW_CMD_EXEC_F);
1875        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1876                                         FW_LEN16(cmd));
1877        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1878        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1879}
1880
1881/**
1882 *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883 *      @link_down_rc: Link Down Reason Code
1884 *
1885 *      Returns a string representation of the Link Down Reason Code.
1886 */
1887static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1888{
1889        static const char * const reason[] = {
1890                "Link Down",
1891                "Remote Fault",
1892                "Auto-negotiation Failure",
1893                "Reserved",
1894                "Insufficient Airflow",
1895                "Unable To Determine Reason",
1896                "No RX Signal Detected",
1897                "Reserved",
1898        };
1899
1900        if (link_down_rc >= ARRAY_SIZE(reason))
1901                return "Bad Reason Code";
1902
1903        return reason[link_down_rc];
1904}
1905
1906/**
1907 *      t4vf_handle_get_port_info - process a FW reply message
1908 *      @pi: the port info
1909 *      @cmd: start of the FW message
1910 *
1911 *      Processes a GET_PORT_INFO FW reply message.
1912 */
1913static void t4vf_handle_get_port_info(struct port_info *pi,
1914                                      const struct fw_port_cmd *cmd)
1915{
1916        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1917        struct link_config *lc = &pi->link_cfg;
1918        struct adapter *adapter = pi->adapter;
1919        unsigned int speed, fc, fec, adv_fc;
1920        enum fw_port_module_type mod_type;
1921        int action, link_ok, linkdnrc;
1922        enum fw_port_type port_type;
1923
1924        /* Extract the various fields from the Port Information message. */
1925        action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1926        switch (action) {
1927        case FW_PORT_ACTION_GET_PORT_INFO: {
1928                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1929
1930                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1931                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1932                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1933                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1934                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1935                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1936                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1937
1938                /* Unfortunately the format of the Link Status in the old
1939                 * 16-bit Port Information message isn't the same as the
1940                 * 16-bit Port Capabilities bitfield used everywhere else ...
1941                 */
1942                linkattr = 0;
1943                if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1944                        linkattr |= FW_PORT_CAP32_FC_RX;
1945                if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1946                        linkattr |= FW_PORT_CAP32_FC_TX;
1947                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1948                        linkattr |= FW_PORT_CAP32_SPEED_100M;
1949                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1950                        linkattr |= FW_PORT_CAP32_SPEED_1G;
1951                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1952                        linkattr |= FW_PORT_CAP32_SPEED_10G;
1953                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1954                        linkattr |= FW_PORT_CAP32_SPEED_25G;
1955                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1956                        linkattr |= FW_PORT_CAP32_SPEED_40G;
1957                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1958                        linkattr |= FW_PORT_CAP32_SPEED_100G;
1959
1960                break;
1961        }
1962
1963        case FW_PORT_ACTION_GET_PORT_INFO32: {
1964                u32 lstatus32;
1965
1966                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1967                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1968                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1969                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1970                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1971                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1972                acaps = be32_to_cpu(cmd->u.info32.acaps32);
1973                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1974                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1975                break;
1976        }
1977
1978        default:
1979                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1980                        be32_to_cpu(cmd->action_to_len16));
1981                return;
1982        }
1983
1984        fec = fwcap_to_cc_fec(acaps);
1985        adv_fc = fwcap_to_cc_pause(acaps);
1986        fc = fwcap_to_cc_pause(linkattr);
1987        speed = fwcap_to_speed(linkattr);
1988
1989        if (mod_type != pi->mod_type) {
1990                /* When a new Transceiver Module is inserted, the Firmware
1991                 * will examine any Forward Error Correction parameters
1992                 * present in the Transceiver Module i2c EPROM and determine
1993                 * the supported and recommended FEC settings from those
1994                 * based on IEEE 802.3 standards.  We always record the
1995                 * IEEE 802.3 recommended "automatic" settings.
1996                 */
1997                lc->auto_fec = fec;
1998
1999                /* Some versions of the early T6 Firmware "cheated" when
2000                 * handling different Transceiver Modules by changing the
2001                 * underlaying Port Type reported to the Host Drivers.  As
2002                 * such we need to capture whatever Port Type the Firmware
2003                 * sends us and record it in case it's different from what we
2004                 * were told earlier.  Unfortunately, since Firmware is
2005                 * forever, we'll need to keep this code here forever, but in
2006                 * later T6 Firmware it should just be an assignment of the
2007                 * same value already recorded.
2008                 */
2009                pi->port_type = port_type;
2010
2011                pi->mod_type = mod_type;
2012                t4vf_os_portmod_changed(adapter, pi->pidx);
2013        }
2014
2015        if (link_ok != lc->link_ok || speed != lc->speed ||
2016            fc != lc->fc || adv_fc != lc->advertised_fc ||
2017            fec != lc->fec) {
2018                /* something changed */
2019                if (!link_ok && lc->link_ok) {
2020                        lc->link_down_rc = linkdnrc;
2021                        dev_warn_ratelimited(adapter->pdev_dev,
2022                                             "Port %d link down, reason: %s\n",
2023                                             pi->port_id,
2024                                             t4vf_link_down_rc_str(linkdnrc));
2025                }
2026                lc->link_ok = link_ok;
2027                lc->speed = speed;
2028                lc->advertised_fc = adv_fc;
2029                lc->fc = fc;
2030                lc->fec = fec;
2031
2032                lc->pcaps = pcaps;
2033                lc->lpacaps = lpacaps;
2034                lc->acaps = acaps & ADVERT_MASK;
2035
2036                /* If we're not physically capable of Auto-Negotiation, note
2037                 * this as Auto-Negotiation disabled.  Otherwise, we track
2038                 * what Auto-Negotiation settings we have.  Note parallel
2039                 * structure in init_link_config().
2040                 */
2041                if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2042                        lc->autoneg = AUTONEG_DISABLE;
2043                } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2044                        lc->autoneg = AUTONEG_ENABLE;
2045                } else {
2046                        /* When Autoneg is disabled, user needs to set
2047                         * single speed.
2048                         * Similar to cxgb4_ethtool.c: set_link_ksettings
2049                         */
2050                        lc->acaps = 0;
2051                        lc->speed_caps = fwcap_to_speed(acaps);
2052                        lc->autoneg = AUTONEG_DISABLE;
2053                }
2054
2055                t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2056        }
2057}
2058
2059/**
2060 *      t4vf_update_port_info - retrieve and update port information if changed
2061 *      @pi: the port_info
2062 *
2063 *      We issue a Get Port Information Command to the Firmware and, if
2064 *      successful, we check to see if anything is different from what we
2065 *      last recorded and update things accordingly.
2066 */
2067int t4vf_update_port_info(struct port_info *pi)
2068{
2069        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2070        struct fw_port_cmd port_cmd;
2071        int ret;
2072
2073        memset(&port_cmd, 0, sizeof(port_cmd));
2074        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2075                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
2076                                            FW_PORT_CMD_PORTID_V(pi->port_id));
2077        port_cmd.action_to_len16 = cpu_to_be32(
2078                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2079                                     ? FW_PORT_ACTION_GET_PORT_INFO
2080                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
2081                FW_LEN16(port_cmd));
2082        ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2083                           &port_cmd);
2084        if (ret)
2085                return ret;
2086        t4vf_handle_get_port_info(pi, &port_cmd);
2087        return 0;
2088}
2089
2090/**
2091 *      t4vf_handle_fw_rpl - process a firmware reply message
2092 *      @adapter: the adapter
2093 *      @rpl: start of the firmware message
2094 *
2095 *      Processes a firmware message, such as link state change messages.
2096 */
2097int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2098{
2099        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2100        u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2101
2102        switch (opcode) {
2103        case FW_PORT_CMD: {
2104                /*
2105                 * Link/module state change message.
2106                 */
2107                const struct fw_port_cmd *port_cmd =
2108                        (const struct fw_port_cmd *)rpl;
2109                int action = FW_PORT_CMD_ACTION_G(
2110                        be32_to_cpu(port_cmd->action_to_len16));
2111                int port_id, pidx;
2112
2113                if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2114                    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2115                        dev_err(adapter->pdev_dev,
2116                                "Unknown firmware PORT reply action %x\n",
2117                                action);
2118                        break;
2119                }
2120
2121                port_id = FW_PORT_CMD_PORTID_G(
2122                        be32_to_cpu(port_cmd->op_to_portid));
2123                for_each_port(adapter, pidx) {
2124                        struct port_info *pi = adap2pinfo(adapter, pidx);
2125
2126                        if (pi->port_id != port_id)
2127                                continue;
2128                        t4vf_handle_get_port_info(pi, port_cmd);
2129                }
2130                break;
2131        }
2132
2133        default:
2134                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2135                        opcode);
2136        }
2137        return 0;
2138}
2139
2140int t4vf_prep_adapter(struct adapter *adapter)
2141{
2142        int err;
2143        unsigned int chipid;
2144
2145        /* Wait for the device to become ready before proceeding ...
2146         */
2147        err = t4vf_wait_dev_ready(adapter);
2148        if (err)
2149                return err;
2150
2151        /* Default port and clock for debugging in case we can't reach
2152         * firmware.
2153         */
2154        adapter->params.nports = 1;
2155        adapter->params.vfres.pmask = 1;
2156        adapter->params.vpd.cclk = 50000;
2157
2158        adapter->params.chip = 0;
2159        switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2160        case CHELSIO_T4:
2161                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2162                adapter->params.arch.sge_fl_db = DBPRIO_F;
2163                adapter->params.arch.mps_tcam_size =
2164                                NUM_MPS_CLS_SRAM_L_INSTANCES;
2165                break;
2166
2167        case CHELSIO_T5:
2168                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2169                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2170                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2171                adapter->params.arch.mps_tcam_size =
2172                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2173                break;
2174
2175        case CHELSIO_T6:
2176                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2177                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2178                adapter->params.arch.sge_fl_db = 0;
2179                adapter->params.arch.mps_tcam_size =
2180                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2181                break;
2182        }
2183
2184        return 0;
2185}
2186
2187/**
2188 *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2189 *                            the VI of this VF.
2190 *      @adapter: The adapter
2191 *      @port: The port associated with vf
2192 *      @naddr: the number of ACL MAC addresses returned in addr
2193 *      @addr: Placeholder for MAC addresses
2194 *
2195 *      Find the MAC address to be set to the VF's VI. The requested MAC address
2196 *      is from the host OS via callback in the PF driver.
2197 */
2198int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
2199                        unsigned int *naddr, u8 *addr)
2200{
2201        struct fw_acl_mac_cmd cmd;
2202        int ret;
2203
2204        memset(&cmd, 0, sizeof(cmd));
2205        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2206                                    FW_CMD_REQUEST_F |
2207                                    FW_CMD_READ_F);
2208        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2209        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2210        if (ret)
2211                return ret;
2212
2213        if (cmd.nmac < *naddr)
2214                *naddr = cmd.nmac;
2215
2216        switch (port) {
2217        case 3:
2218                memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2219                break;
2220        case 2:
2221                memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2222                break;
2223        case 1:
2224                memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2225                break;
2226        case 0:
2227                memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2228                break;
2229        }
2230
2231        return ret;
2232}
2233
2234/**
2235 *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2236 *                             the VI of this VF.
2237 *      @adapter: The adapter
2238 *
2239 *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2240 *      is from the host OS via callback in the PF driver.
2241 */
2242int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2243{
2244        struct fw_acl_vlan_cmd cmd;
2245        int vlan = 0;
2246        int ret = 0;
2247
2248        cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2249                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
2250
2251        /* Note: Do not enable the ACL */
2252        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2253
2254        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2255
2256        if (!ret)
2257                vlan = be16_to_cpu(cmd.vlanid[0]);
2258
2259        return vlan;
2260}
2261