linux/drivers/net/ethernet/davicom/dm9000.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Davicom DM9000 Fast Ethernet driver for Linux.
   4 *      Copyright (C) 1997  Sten Wang
   5 *
   6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
   7 *
   8 * Additional updates, Copyright:
   9 *      Ben Dooks <ben@simtec.co.uk>
  10 *      Sascha Hauer <s.hauer@pengutronix.de>
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/ioport.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/interrupt.h>
  18#include <linux/skbuff.h>
  19#include <linux/spinlock.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22#include <linux/of.h>
  23#include <linux/of_net.h>
  24#include <linux/ethtool.h>
  25#include <linux/dm9000.h>
  26#include <linux/delay.h>
  27#include <linux/platform_device.h>
  28#include <linux/irq.h>
  29#include <linux/slab.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33
  34#include <asm/delay.h>
  35#include <asm/irq.h>
  36#include <asm/io.h>
  37
  38#include "dm9000.h"
  39
  40/* Board/System/Debug information/definition ---------------- */
  41
  42#define DM9000_PHY              0x40    /* PHY address 0x01 */
  43
  44#define CARDNAME        "dm9000"
  45
  46/*
  47 * Transmit timeout, default 5 seconds.
  48 */
  49static int watchdog = 5000;
  50module_param(watchdog, int, 0400);
  51MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  52
  53/*
  54 * Debug messages level
  55 */
  56static int debug;
  57module_param(debug, int, 0644);
  58MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
  59
  60/* DM9000 register address locking.
  61 *
  62 * The DM9000 uses an address register to control where data written
  63 * to the data register goes. This means that the address register
  64 * must be preserved over interrupts or similar calls.
  65 *
  66 * During interrupt and other critical calls, a spinlock is used to
  67 * protect the system, but the calls themselves save the address
  68 * in the address register in case they are interrupting another
  69 * access to the device.
  70 *
  71 * For general accesses a lock is provided so that calls which are
  72 * allowed to sleep are serialised so that the address register does
  73 * not need to be saved. This lock also serves to serialise access
  74 * to the EEPROM and PHY access registers which are shared between
  75 * these two devices.
  76 */
  77
  78/* The driver supports the original DM9000E, and now the two newer
  79 * devices, DM9000A and DM9000B.
  80 */
  81
  82enum dm9000_type {
  83        TYPE_DM9000E,   /* original DM9000 */
  84        TYPE_DM9000A,
  85        TYPE_DM9000B
  86};
  87
  88/* Structure/enum declaration ------------------------------- */
  89struct board_info {
  90
  91        void __iomem    *io_addr;       /* Register I/O base address */
  92        void __iomem    *io_data;       /* Data I/O address */
  93        u16              irq;           /* IRQ */
  94
  95        u16             tx_pkt_cnt;
  96        u16             queue_pkt_len;
  97        u16             queue_start_addr;
  98        u16             queue_ip_summed;
  99        u16             dbug_cnt;
 100        u8              io_mode;                /* 0:word, 2:byte */
 101        u8              phy_addr;
 102        u8              imr_all;
 103
 104        unsigned int    flags;
 105        unsigned int    in_timeout:1;
 106        unsigned int    in_suspend:1;
 107        unsigned int    wake_supported:1;
 108
 109        enum dm9000_type type;
 110
 111        void (*inblk)(void __iomem *port, void *data, int length);
 112        void (*outblk)(void __iomem *port, void *data, int length);
 113        void (*dumpblk)(void __iomem *port, int length);
 114
 115        struct device   *dev;        /* parent device */
 116
 117        struct resource *addr_res;   /* resources found */
 118        struct resource *data_res;
 119        struct resource *addr_req;   /* resources requested */
 120        struct resource *data_req;
 121
 122        int              irq_wake;
 123
 124        struct mutex     addr_lock;     /* phy and eeprom access lock */
 125
 126        struct delayed_work phy_poll;
 127        struct net_device  *ndev;
 128
 129        spinlock_t      lock;
 130
 131        struct mii_if_info mii;
 132        u32             msg_enable;
 133        u32             wake_state;
 134
 135        int             ip_summed;
 136
 137        struct regulator *power_supply;
 138};
 139
 140/* debug code */
 141
 142#define dm9000_dbg(db, lev, msg...) do {                \
 143        if ((lev) < debug) {                            \
 144                dev_dbg(db->dev, msg);                  \
 145        }                                               \
 146} while (0)
 147
 148static inline struct board_info *to_dm9000_board(struct net_device *dev)
 149{
 150        return netdev_priv(dev);
 151}
 152
 153/* DM9000 network board routine ---------------------------- */
 154
 155/*
 156 *   Read a byte from I/O port
 157 */
 158static u8
 159ior(struct board_info *db, int reg)
 160{
 161        writeb(reg, db->io_addr);
 162        return readb(db->io_data);
 163}
 164
 165/*
 166 *   Write a byte to I/O port
 167 */
 168
 169static void
 170iow(struct board_info *db, int reg, int value)
 171{
 172        writeb(reg, db->io_addr);
 173        writeb(value, db->io_data);
 174}
 175
 176static void
 177dm9000_reset(struct board_info *db)
 178{
 179        dev_dbg(db->dev, "resetting device\n");
 180
 181        /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 182         * The essential point is that we have to do a double reset, and the
 183         * instruction is to set LBK into MAC internal loopback mode.
 184         */
 185        iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 186        udelay(100); /* Application note says at least 20 us */
 187        if (ior(db, DM9000_NCR) & 1)
 188                dev_err(db->dev, "dm9000 did not respond to first reset\n");
 189
 190        iow(db, DM9000_NCR, 0);
 191        iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 192        udelay(100);
 193        if (ior(db, DM9000_NCR) & 1)
 194                dev_err(db->dev, "dm9000 did not respond to second reset\n");
 195}
 196
 197/* routines for sending block to chip */
 198
 199static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 200{
 201        iowrite8_rep(reg, data, count);
 202}
 203
 204static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 205{
 206        iowrite16_rep(reg, data, (count+1) >> 1);
 207}
 208
 209static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 210{
 211        iowrite32_rep(reg, data, (count+3) >> 2);
 212}
 213
 214/* input block from chip to memory */
 215
 216static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 217{
 218        ioread8_rep(reg, data, count);
 219}
 220
 221
 222static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 223{
 224        ioread16_rep(reg, data, (count+1) >> 1);
 225}
 226
 227static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 228{
 229        ioread32_rep(reg, data, (count+3) >> 2);
 230}
 231
 232/* dump block from chip to null */
 233
 234static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 235{
 236        int i;
 237
 238        for (i = 0; i < count; i++)
 239                readb(reg);
 240}
 241
 242static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 243{
 244        int i;
 245
 246        count = (count + 1) >> 1;
 247
 248        for (i = 0; i < count; i++)
 249                readw(reg);
 250}
 251
 252static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 253{
 254        int i;
 255
 256        count = (count + 3) >> 2;
 257
 258        for (i = 0; i < count; i++)
 259                readl(reg);
 260}
 261
 262/*
 263 * Sleep, either by using msleep() or if we are suspending, then
 264 * use mdelay() to sleep.
 265 */
 266static void dm9000_msleep(struct board_info *db, unsigned int ms)
 267{
 268        if (db->in_suspend || db->in_timeout)
 269                mdelay(ms);
 270        else
 271                msleep(ms);
 272}
 273
 274/* Read a word from phyxcer */
 275static int
 276dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 277{
 278        struct board_info *db = netdev_priv(dev);
 279        unsigned long flags;
 280        unsigned int reg_save;
 281        int ret;
 282
 283        mutex_lock(&db->addr_lock);
 284
 285        spin_lock_irqsave(&db->lock, flags);
 286
 287        /* Save previous register address */
 288        reg_save = readb(db->io_addr);
 289
 290        /* Fill the phyxcer register into REG_0C */
 291        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 292
 293        /* Issue phyxcer read command */
 294        iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 295
 296        writeb(reg_save, db->io_addr);
 297        spin_unlock_irqrestore(&db->lock, flags);
 298
 299        dm9000_msleep(db, 1);           /* Wait read complete */
 300
 301        spin_lock_irqsave(&db->lock, flags);
 302        reg_save = readb(db->io_addr);
 303
 304        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
 305
 306        /* The read data keeps on REG_0D & REG_0E */
 307        ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 308
 309        /* restore the previous address */
 310        writeb(reg_save, db->io_addr);
 311        spin_unlock_irqrestore(&db->lock, flags);
 312
 313        mutex_unlock(&db->addr_lock);
 314
 315        dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 316        return ret;
 317}
 318
 319/* Write a word to phyxcer */
 320static void
 321dm9000_phy_write(struct net_device *dev,
 322                 int phyaddr_unused, int reg, int value)
 323{
 324        struct board_info *db = netdev_priv(dev);
 325        unsigned long flags;
 326        unsigned long reg_save;
 327
 328        dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 329        if (!db->in_timeout)
 330                mutex_lock(&db->addr_lock);
 331
 332        spin_lock_irqsave(&db->lock, flags);
 333
 334        /* Save previous register address */
 335        reg_save = readb(db->io_addr);
 336
 337        /* Fill the phyxcer register into REG_0C */
 338        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 339
 340        /* Fill the written data into REG_0D & REG_0E */
 341        iow(db, DM9000_EPDRL, value);
 342        iow(db, DM9000_EPDRH, value >> 8);
 343
 344        /* Issue phyxcer write command */
 345        iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 346
 347        writeb(reg_save, db->io_addr);
 348        spin_unlock_irqrestore(&db->lock, flags);
 349
 350        dm9000_msleep(db, 1);           /* Wait write complete */
 351
 352        spin_lock_irqsave(&db->lock, flags);
 353        reg_save = readb(db->io_addr);
 354
 355        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
 356
 357        /* restore the previous address */
 358        writeb(reg_save, db->io_addr);
 359
 360        spin_unlock_irqrestore(&db->lock, flags);
 361        if (!db->in_timeout)
 362                mutex_unlock(&db->addr_lock);
 363}
 364
 365/* dm9000_set_io
 366 *
 367 * select the specified set of io routines to use with the
 368 * device
 369 */
 370
 371static void dm9000_set_io(struct board_info *db, int byte_width)
 372{
 373        /* use the size of the data resource to work out what IO
 374         * routines we want to use
 375         */
 376
 377        switch (byte_width) {
 378        case 1:
 379                db->dumpblk = dm9000_dumpblk_8bit;
 380                db->outblk  = dm9000_outblk_8bit;
 381                db->inblk   = dm9000_inblk_8bit;
 382                break;
 383
 384
 385        case 3:
 386                dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 387                fallthrough;
 388        case 2:
 389                db->dumpblk = dm9000_dumpblk_16bit;
 390                db->outblk  = dm9000_outblk_16bit;
 391                db->inblk   = dm9000_inblk_16bit;
 392                break;
 393
 394        case 4:
 395        default:
 396                db->dumpblk = dm9000_dumpblk_32bit;
 397                db->outblk  = dm9000_outblk_32bit;
 398                db->inblk   = dm9000_inblk_32bit;
 399                break;
 400        }
 401}
 402
 403static void dm9000_schedule_poll(struct board_info *db)
 404{
 405        if (db->type == TYPE_DM9000E)
 406                schedule_delayed_work(&db->phy_poll, HZ * 2);
 407}
 408
 409static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 410{
 411        struct board_info *dm = to_dm9000_board(dev);
 412
 413        if (!netif_running(dev))
 414                return -EINVAL;
 415
 416        return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 417}
 418
 419static unsigned int
 420dm9000_read_locked(struct board_info *db, int reg)
 421{
 422        unsigned long flags;
 423        unsigned int ret;
 424
 425        spin_lock_irqsave(&db->lock, flags);
 426        ret = ior(db, reg);
 427        spin_unlock_irqrestore(&db->lock, flags);
 428
 429        return ret;
 430}
 431
 432static int dm9000_wait_eeprom(struct board_info *db)
 433{
 434        unsigned int status;
 435        int timeout = 8;        /* wait max 8msec */
 436
 437        /* The DM9000 data sheets say we should be able to
 438         * poll the ERRE bit in EPCR to wait for the EEPROM
 439         * operation. From testing several chips, this bit
 440         * does not seem to work.
 441         *
 442         * We attempt to use the bit, but fall back to the
 443         * timeout (which is why we do not return an error
 444         * on expiry) to say that the EEPROM operation has
 445         * completed.
 446         */
 447
 448        while (1) {
 449                status = dm9000_read_locked(db, DM9000_EPCR);
 450
 451                if ((status & EPCR_ERRE) == 0)
 452                        break;
 453
 454                msleep(1);
 455
 456                if (timeout-- < 0) {
 457                        dev_dbg(db->dev, "timeout waiting EEPROM\n");
 458                        break;
 459                }
 460        }
 461
 462        return 0;
 463}
 464
 465/*
 466 *  Read a word data from EEPROM
 467 */
 468static void
 469dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 470{
 471        unsigned long flags;
 472
 473        if (db->flags & DM9000_PLATF_NO_EEPROM) {
 474                to[0] = 0xff;
 475                to[1] = 0xff;
 476                return;
 477        }
 478
 479        mutex_lock(&db->addr_lock);
 480
 481        spin_lock_irqsave(&db->lock, flags);
 482
 483        iow(db, DM9000_EPAR, offset);
 484        iow(db, DM9000_EPCR, EPCR_ERPRR);
 485
 486        spin_unlock_irqrestore(&db->lock, flags);
 487
 488        dm9000_wait_eeprom(db);
 489
 490        /* delay for at-least 150uS */
 491        msleep(1);
 492
 493        spin_lock_irqsave(&db->lock, flags);
 494
 495        iow(db, DM9000_EPCR, 0x0);
 496
 497        to[0] = ior(db, DM9000_EPDRL);
 498        to[1] = ior(db, DM9000_EPDRH);
 499
 500        spin_unlock_irqrestore(&db->lock, flags);
 501
 502        mutex_unlock(&db->addr_lock);
 503}
 504
 505/*
 506 * Write a word data to SROM
 507 */
 508static void
 509dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 510{
 511        unsigned long flags;
 512
 513        if (db->flags & DM9000_PLATF_NO_EEPROM)
 514                return;
 515
 516        mutex_lock(&db->addr_lock);
 517
 518        spin_lock_irqsave(&db->lock, flags);
 519        iow(db, DM9000_EPAR, offset);
 520        iow(db, DM9000_EPDRH, data[1]);
 521        iow(db, DM9000_EPDRL, data[0]);
 522        iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 523        spin_unlock_irqrestore(&db->lock, flags);
 524
 525        dm9000_wait_eeprom(db);
 526
 527        mdelay(1);      /* wait at least 150uS to clear */
 528
 529        spin_lock_irqsave(&db->lock, flags);
 530        iow(db, DM9000_EPCR, 0);
 531        spin_unlock_irqrestore(&db->lock, flags);
 532
 533        mutex_unlock(&db->addr_lock);
 534}
 535
 536/* ethtool ops */
 537
 538static void dm9000_get_drvinfo(struct net_device *dev,
 539                               struct ethtool_drvinfo *info)
 540{
 541        struct board_info *dm = to_dm9000_board(dev);
 542
 543        strlcpy(info->driver, CARDNAME, sizeof(info->driver));
 544        strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
 545                sizeof(info->bus_info));
 546}
 547
 548static u32 dm9000_get_msglevel(struct net_device *dev)
 549{
 550        struct board_info *dm = to_dm9000_board(dev);
 551
 552        return dm->msg_enable;
 553}
 554
 555static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 556{
 557        struct board_info *dm = to_dm9000_board(dev);
 558
 559        dm->msg_enable = value;
 560}
 561
 562static int dm9000_get_link_ksettings(struct net_device *dev,
 563                                     struct ethtool_link_ksettings *cmd)
 564{
 565        struct board_info *dm = to_dm9000_board(dev);
 566
 567        mii_ethtool_get_link_ksettings(&dm->mii, cmd);
 568        return 0;
 569}
 570
 571static int dm9000_set_link_ksettings(struct net_device *dev,
 572                                     const struct ethtool_link_ksettings *cmd)
 573{
 574        struct board_info *dm = to_dm9000_board(dev);
 575
 576        return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
 577}
 578
 579static int dm9000_nway_reset(struct net_device *dev)
 580{
 581        struct board_info *dm = to_dm9000_board(dev);
 582        return mii_nway_restart(&dm->mii);
 583}
 584
 585static int dm9000_set_features(struct net_device *dev,
 586        netdev_features_t features)
 587{
 588        struct board_info *dm = to_dm9000_board(dev);
 589        netdev_features_t changed = dev->features ^ features;
 590        unsigned long flags;
 591
 592        if (!(changed & NETIF_F_RXCSUM))
 593                return 0;
 594
 595        spin_lock_irqsave(&dm->lock, flags);
 596        iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 597        spin_unlock_irqrestore(&dm->lock, flags);
 598
 599        return 0;
 600}
 601
 602static u32 dm9000_get_link(struct net_device *dev)
 603{
 604        struct board_info *dm = to_dm9000_board(dev);
 605        u32 ret;
 606
 607        if (dm->flags & DM9000_PLATF_EXT_PHY)
 608                ret = mii_link_ok(&dm->mii);
 609        else
 610                ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 611
 612        return ret;
 613}
 614
 615#define DM_EEPROM_MAGIC         (0x444D394B)
 616
 617static int dm9000_get_eeprom_len(struct net_device *dev)
 618{
 619        return 128;
 620}
 621
 622static int dm9000_get_eeprom(struct net_device *dev,
 623                             struct ethtool_eeprom *ee, u8 *data)
 624{
 625        struct board_info *dm = to_dm9000_board(dev);
 626        int offset = ee->offset;
 627        int len = ee->len;
 628        int i;
 629
 630        /* EEPROM access is aligned to two bytes */
 631
 632        if ((len & 1) != 0 || (offset & 1) != 0)
 633                return -EINVAL;
 634
 635        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 636                return -ENOENT;
 637
 638        ee->magic = DM_EEPROM_MAGIC;
 639
 640        for (i = 0; i < len; i += 2)
 641                dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 642
 643        return 0;
 644}
 645
 646static int dm9000_set_eeprom(struct net_device *dev,
 647                             struct ethtool_eeprom *ee, u8 *data)
 648{
 649        struct board_info *dm = to_dm9000_board(dev);
 650        int offset = ee->offset;
 651        int len = ee->len;
 652        int done;
 653
 654        /* EEPROM access is aligned to two bytes */
 655
 656        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 657                return -ENOENT;
 658
 659        if (ee->magic != DM_EEPROM_MAGIC)
 660                return -EINVAL;
 661
 662        while (len > 0) {
 663                if (len & 1 || offset & 1) {
 664                        int which = offset & 1;
 665                        u8 tmp[2];
 666
 667                        dm9000_read_eeprom(dm, offset / 2, tmp);
 668                        tmp[which] = *data;
 669                        dm9000_write_eeprom(dm, offset / 2, tmp);
 670
 671                        done = 1;
 672                } else {
 673                        dm9000_write_eeprom(dm, offset / 2, data);
 674                        done = 2;
 675                }
 676
 677                data += done;
 678                offset += done;
 679                len -= done;
 680        }
 681
 682        return 0;
 683}
 684
 685static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 686{
 687        struct board_info *dm = to_dm9000_board(dev);
 688
 689        memset(w, 0, sizeof(struct ethtool_wolinfo));
 690
 691        /* note, we could probably support wake-phy too */
 692        w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 693        w->wolopts = dm->wake_state;
 694}
 695
 696static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 697{
 698        struct board_info *dm = to_dm9000_board(dev);
 699        unsigned long flags;
 700        u32 opts = w->wolopts;
 701        u32 wcr = 0;
 702
 703        if (!dm->wake_supported)
 704                return -EOPNOTSUPP;
 705
 706        if (opts & ~WAKE_MAGIC)
 707                return -EINVAL;
 708
 709        if (opts & WAKE_MAGIC)
 710                wcr |= WCR_MAGICEN;
 711
 712        mutex_lock(&dm->addr_lock);
 713
 714        spin_lock_irqsave(&dm->lock, flags);
 715        iow(dm, DM9000_WCR, wcr);
 716        spin_unlock_irqrestore(&dm->lock, flags);
 717
 718        mutex_unlock(&dm->addr_lock);
 719
 720        if (dm->wake_state != opts) {
 721                /* change in wol state, update IRQ state */
 722
 723                if (!dm->wake_state)
 724                        irq_set_irq_wake(dm->irq_wake, 1);
 725                else if (dm->wake_state && !opts)
 726                        irq_set_irq_wake(dm->irq_wake, 0);
 727        }
 728
 729        dm->wake_state = opts;
 730        return 0;
 731}
 732
 733static const struct ethtool_ops dm9000_ethtool_ops = {
 734        .get_drvinfo            = dm9000_get_drvinfo,
 735        .get_msglevel           = dm9000_get_msglevel,
 736        .set_msglevel           = dm9000_set_msglevel,
 737        .nway_reset             = dm9000_nway_reset,
 738        .get_link               = dm9000_get_link,
 739        .get_wol                = dm9000_get_wol,
 740        .set_wol                = dm9000_set_wol,
 741        .get_eeprom_len         = dm9000_get_eeprom_len,
 742        .get_eeprom             = dm9000_get_eeprom,
 743        .set_eeprom             = dm9000_set_eeprom,
 744        .get_link_ksettings     = dm9000_get_link_ksettings,
 745        .set_link_ksettings     = dm9000_set_link_ksettings,
 746};
 747
 748static void dm9000_show_carrier(struct board_info *db,
 749                                unsigned carrier, unsigned nsr)
 750{
 751        int lpa;
 752        struct net_device *ndev = db->ndev;
 753        struct mii_if_info *mii = &db->mii;
 754        unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 755
 756        if (carrier) {
 757                lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 758                dev_info(db->dev,
 759                         "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 760                         ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 761                         (ncr & NCR_FDX) ? "full" : "half", lpa);
 762        } else {
 763                dev_info(db->dev, "%s: link down\n", ndev->name);
 764        }
 765}
 766
 767static void
 768dm9000_poll_work(struct work_struct *w)
 769{
 770        struct delayed_work *dw = to_delayed_work(w);
 771        struct board_info *db = container_of(dw, struct board_info, phy_poll);
 772        struct net_device *ndev = db->ndev;
 773
 774        if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 775            !(db->flags & DM9000_PLATF_EXT_PHY)) {
 776                unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 777                unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 778                unsigned new_carrier;
 779
 780                new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 781
 782                if (old_carrier != new_carrier) {
 783                        if (netif_msg_link(db))
 784                                dm9000_show_carrier(db, new_carrier, nsr);
 785
 786                        if (!new_carrier)
 787                                netif_carrier_off(ndev);
 788                        else
 789                                netif_carrier_on(ndev);
 790                }
 791        } else
 792                mii_check_media(&db->mii, netif_msg_link(db), 0);
 793
 794        if (netif_running(ndev))
 795                dm9000_schedule_poll(db);
 796}
 797
 798/* dm9000_release_board
 799 *
 800 * release a board, and any mapped resources
 801 */
 802
 803static void
 804dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 805{
 806        /* unmap our resources */
 807
 808        iounmap(db->io_addr);
 809        iounmap(db->io_data);
 810
 811        /* release the resources */
 812
 813        if (db->data_req)
 814                release_resource(db->data_req);
 815        kfree(db->data_req);
 816
 817        if (db->addr_req)
 818                release_resource(db->addr_req);
 819        kfree(db->addr_req);
 820}
 821
 822static unsigned char dm9000_type_to_char(enum dm9000_type type)
 823{
 824        switch (type) {
 825        case TYPE_DM9000E: return 'e';
 826        case TYPE_DM9000A: return 'a';
 827        case TYPE_DM9000B: return 'b';
 828        }
 829
 830        return '?';
 831}
 832
 833/*
 834 *  Set DM9000 multicast address
 835 */
 836static void
 837dm9000_hash_table_unlocked(struct net_device *dev)
 838{
 839        struct board_info *db = netdev_priv(dev);
 840        struct netdev_hw_addr *ha;
 841        int i, oft;
 842        u32 hash_val;
 843        u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 844        u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 845
 846        dm9000_dbg(db, 1, "entering %s\n", __func__);
 847
 848        for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 849                iow(db, oft, dev->dev_addr[i]);
 850
 851        if (dev->flags & IFF_PROMISC)
 852                rcr |= RCR_PRMSC;
 853
 854        if (dev->flags & IFF_ALLMULTI)
 855                rcr |= RCR_ALL;
 856
 857        /* the multicast address in Hash Table : 64 bits */
 858        netdev_for_each_mc_addr(ha, dev) {
 859                hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 860                hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 861        }
 862
 863        /* Write the hash table to MAC MD table */
 864        for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 865                iow(db, oft++, hash_table[i]);
 866                iow(db, oft++, hash_table[i] >> 8);
 867        }
 868
 869        iow(db, DM9000_RCR, rcr);
 870}
 871
 872static void
 873dm9000_hash_table(struct net_device *dev)
 874{
 875        struct board_info *db = netdev_priv(dev);
 876        unsigned long flags;
 877
 878        spin_lock_irqsave(&db->lock, flags);
 879        dm9000_hash_table_unlocked(dev);
 880        spin_unlock_irqrestore(&db->lock, flags);
 881}
 882
 883static void
 884dm9000_mask_interrupts(struct board_info *db)
 885{
 886        iow(db, DM9000_IMR, IMR_PAR);
 887}
 888
 889static void
 890dm9000_unmask_interrupts(struct board_info *db)
 891{
 892        iow(db, DM9000_IMR, db->imr_all);
 893}
 894
 895/*
 896 * Initialize dm9000 board
 897 */
 898static void
 899dm9000_init_dm9000(struct net_device *dev)
 900{
 901        struct board_info *db = netdev_priv(dev);
 902        unsigned int imr;
 903        unsigned int ncr;
 904
 905        dm9000_dbg(db, 1, "entering %s\n", __func__);
 906
 907        dm9000_reset(db);
 908        dm9000_mask_interrupts(db);
 909
 910        /* I/O mode */
 911        db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
 912
 913        /* Checksum mode */
 914        if (dev->hw_features & NETIF_F_RXCSUM)
 915                iow(db, DM9000_RCSR,
 916                        (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 917
 918        iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
 919        iow(db, DM9000_GPR, 0);
 920
 921        /* If we are dealing with DM9000B, some extra steps are required: a
 922         * manual phy reset, and setting init params.
 923         */
 924        if (db->type == TYPE_DM9000B) {
 925                dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 926                dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 927        }
 928
 929        ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 930
 931        /* if wol is needed, then always set NCR_WAKEEN otherwise we end
 932         * up dumping the wake events if we disable this. There is already
 933         * a wake-mask in DM9000_WCR */
 934        if (db->wake_supported)
 935                ncr |= NCR_WAKEEN;
 936
 937        iow(db, DM9000_NCR, ncr);
 938
 939        /* Program operating register */
 940        iow(db, DM9000_TCR, 0);         /* TX Polling clear */
 941        iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
 942        iow(db, DM9000_FCR, 0xff);      /* Flow Control */
 943        iow(db, DM9000_SMCR, 0);        /* Special Mode */
 944        /* clear TX status */
 945        iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 946        iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 947
 948        /* Set address filter table */
 949        dm9000_hash_table_unlocked(dev);
 950
 951        imr = IMR_PAR | IMR_PTM | IMR_PRM;
 952        if (db->type != TYPE_DM9000E)
 953                imr |= IMR_LNKCHNG;
 954
 955        db->imr_all = imr;
 956
 957        /* Init Driver variable */
 958        db->tx_pkt_cnt = 0;
 959        db->queue_pkt_len = 0;
 960        netif_trans_update(dev);
 961}
 962
 963/* Our watchdog timed out. Called by the networking layer */
 964static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
 965{
 966        struct board_info *db = netdev_priv(dev);
 967        u8 reg_save;
 968        unsigned long flags;
 969
 970        /* Save previous register address */
 971        spin_lock_irqsave(&db->lock, flags);
 972        db->in_timeout = 1;
 973        reg_save = readb(db->io_addr);
 974
 975        netif_stop_queue(dev);
 976        dm9000_init_dm9000(dev);
 977        dm9000_unmask_interrupts(db);
 978        /* We can accept TX packets again */
 979        netif_trans_update(dev); /* prevent tx timeout */
 980        netif_wake_queue(dev);
 981
 982        /* Restore previous register address */
 983        writeb(reg_save, db->io_addr);
 984        db->in_timeout = 0;
 985        spin_unlock_irqrestore(&db->lock, flags);
 986}
 987
 988static void dm9000_send_packet(struct net_device *dev,
 989                               int ip_summed,
 990                               u16 pkt_len)
 991{
 992        struct board_info *dm = to_dm9000_board(dev);
 993
 994        /* The DM9000 is not smart enough to leave fragmented packets alone. */
 995        if (dm->ip_summed != ip_summed) {
 996                if (ip_summed == CHECKSUM_NONE)
 997                        iow(dm, DM9000_TCCR, 0);
 998                else
 999                        iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1000                dm->ip_summed = ip_summed;
1001        }
1002
1003        /* Set TX length to DM9000 */
1004        iow(dm, DM9000_TXPLL, pkt_len);
1005        iow(dm, DM9000_TXPLH, pkt_len >> 8);
1006
1007        /* Issue TX polling command */
1008        iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1009}
1010
1011/*
1012 *  Hardware start transmission.
1013 *  Send a packet to media from the upper layer.
1014 */
1015static int
1016dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1017{
1018        unsigned long flags;
1019        struct board_info *db = netdev_priv(dev);
1020
1021        dm9000_dbg(db, 3, "%s:\n", __func__);
1022
1023        if (db->tx_pkt_cnt > 1)
1024                return NETDEV_TX_BUSY;
1025
1026        spin_lock_irqsave(&db->lock, flags);
1027
1028        /* Move data to DM9000 TX RAM */
1029        writeb(DM9000_MWCMD, db->io_addr);
1030
1031        (db->outblk)(db->io_data, skb->data, skb->len);
1032        dev->stats.tx_bytes += skb->len;
1033
1034        db->tx_pkt_cnt++;
1035        /* TX control: First packet immediately send, second packet queue */
1036        if (db->tx_pkt_cnt == 1) {
1037                dm9000_send_packet(dev, skb->ip_summed, skb->len);
1038        } else {
1039                /* Second packet */
1040                db->queue_pkt_len = skb->len;
1041                db->queue_ip_summed = skb->ip_summed;
1042                netif_stop_queue(dev);
1043        }
1044
1045        spin_unlock_irqrestore(&db->lock, flags);
1046
1047        /* free this SKB */
1048        dev_consume_skb_any(skb);
1049
1050        return NETDEV_TX_OK;
1051}
1052
1053/*
1054 * DM9000 interrupt handler
1055 * receive the packet to upper layer, free the transmitted packet
1056 */
1057
1058static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1059{
1060        int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1061
1062        if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1063                /* One packet sent complete */
1064                db->tx_pkt_cnt--;
1065                dev->stats.tx_packets++;
1066
1067                if (netif_msg_tx_done(db))
1068                        dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1069
1070                /* Queue packet check & send */
1071                if (db->tx_pkt_cnt > 0)
1072                        dm9000_send_packet(dev, db->queue_ip_summed,
1073                                           db->queue_pkt_len);
1074                netif_wake_queue(dev);
1075        }
1076}
1077
1078struct dm9000_rxhdr {
1079        u8      RxPktReady;
1080        u8      RxStatus;
1081        __le16  RxLen;
1082} __packed;
1083
1084/*
1085 *  Received a packet and pass to upper layer
1086 */
1087static void
1088dm9000_rx(struct net_device *dev)
1089{
1090        struct board_info *db = netdev_priv(dev);
1091        struct dm9000_rxhdr rxhdr;
1092        struct sk_buff *skb;
1093        u8 rxbyte, *rdptr;
1094        bool GoodPacket;
1095        int RxLen;
1096
1097        /* Check packet ready or not */
1098        do {
1099                ior(db, DM9000_MRCMDX); /* Dummy read */
1100
1101                /* Get most updated data */
1102                rxbyte = readb(db->io_data);
1103
1104                /* Status check: this byte must be 0 or 1 */
1105                if (rxbyte & DM9000_PKT_ERR) {
1106                        dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1107                        iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1108                        return;
1109                }
1110
1111                if (!(rxbyte & DM9000_PKT_RDY))
1112                        return;
1113
1114                /* A packet ready now  & Get status/length */
1115                GoodPacket = true;
1116                writeb(DM9000_MRCMD, db->io_addr);
1117
1118                (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1119
1120                RxLen = le16_to_cpu(rxhdr.RxLen);
1121
1122                if (netif_msg_rx_status(db))
1123                        dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1124                                rxhdr.RxStatus, RxLen);
1125
1126                /* Packet Status check */
1127                if (RxLen < 0x40) {
1128                        GoodPacket = false;
1129                        if (netif_msg_rx_err(db))
1130                                dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1131                }
1132
1133                if (RxLen > DM9000_PKT_MAX) {
1134                        dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1135                }
1136
1137                /* rxhdr.RxStatus is identical to RSR register. */
1138                if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1139                                      RSR_PLE | RSR_RWTO |
1140                                      RSR_LCS | RSR_RF)) {
1141                        GoodPacket = false;
1142                        if (rxhdr.RxStatus & RSR_FOE) {
1143                                if (netif_msg_rx_err(db))
1144                                        dev_dbg(db->dev, "fifo error\n");
1145                                dev->stats.rx_fifo_errors++;
1146                        }
1147                        if (rxhdr.RxStatus & RSR_CE) {
1148                                if (netif_msg_rx_err(db))
1149                                        dev_dbg(db->dev, "crc error\n");
1150                                dev->stats.rx_crc_errors++;
1151                        }
1152                        if (rxhdr.RxStatus & RSR_RF) {
1153                                if (netif_msg_rx_err(db))
1154                                        dev_dbg(db->dev, "length error\n");
1155                                dev->stats.rx_length_errors++;
1156                        }
1157                }
1158
1159                /* Move data from DM9000 */
1160                if (GoodPacket &&
1161                    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1162                        skb_reserve(skb, 2);
1163                        rdptr = skb_put(skb, RxLen - 4);
1164
1165                        /* Read received packet from RX SRAM */
1166
1167                        (db->inblk)(db->io_data, rdptr, RxLen);
1168                        dev->stats.rx_bytes += RxLen;
1169
1170                        /* Pass to upper layer */
1171                        skb->protocol = eth_type_trans(skb, dev);
1172                        if (dev->features & NETIF_F_RXCSUM) {
1173                                if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1174                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1175                                else
1176                                        skb_checksum_none_assert(skb);
1177                        }
1178                        netif_rx(skb);
1179                        dev->stats.rx_packets++;
1180
1181                } else {
1182                        /* need to dump the packet's data */
1183
1184                        (db->dumpblk)(db->io_data, RxLen);
1185                }
1186        } while (rxbyte & DM9000_PKT_RDY);
1187}
1188
1189static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1190{
1191        struct net_device *dev = dev_id;
1192        struct board_info *db = netdev_priv(dev);
1193        int int_status;
1194        unsigned long flags;
1195        u8 reg_save;
1196
1197        dm9000_dbg(db, 3, "entering %s\n", __func__);
1198
1199        /* A real interrupt coming */
1200
1201        /* holders of db->lock must always block IRQs */
1202        spin_lock_irqsave(&db->lock, flags);
1203
1204        /* Save previous register address */
1205        reg_save = readb(db->io_addr);
1206
1207        dm9000_mask_interrupts(db);
1208        /* Got DM9000 interrupt status */
1209        int_status = ior(db, DM9000_ISR);       /* Got ISR */
1210        iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1211
1212        if (netif_msg_intr(db))
1213                dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1214
1215        /* Received the coming packet */
1216        if (int_status & ISR_PRS)
1217                dm9000_rx(dev);
1218
1219        /* Transmit Interrupt check */
1220        if (int_status & ISR_PTS)
1221                dm9000_tx_done(dev, db);
1222
1223        if (db->type != TYPE_DM9000E) {
1224                if (int_status & ISR_LNKCHNG) {
1225                        /* fire a link-change request */
1226                        schedule_delayed_work(&db->phy_poll, 1);
1227                }
1228        }
1229
1230        dm9000_unmask_interrupts(db);
1231        /* Restore previous register address */
1232        writeb(reg_save, db->io_addr);
1233
1234        spin_unlock_irqrestore(&db->lock, flags);
1235
1236        return IRQ_HANDLED;
1237}
1238
1239static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1240{
1241        struct net_device *dev = dev_id;
1242        struct board_info *db = netdev_priv(dev);
1243        unsigned long flags;
1244        unsigned nsr, wcr;
1245
1246        spin_lock_irqsave(&db->lock, flags);
1247
1248        nsr = ior(db, DM9000_NSR);
1249        wcr = ior(db, DM9000_WCR);
1250
1251        dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1252
1253        if (nsr & NSR_WAKEST) {
1254                /* clear, so we can avoid */
1255                iow(db, DM9000_NSR, NSR_WAKEST);
1256
1257                if (wcr & WCR_LINKST)
1258                        dev_info(db->dev, "wake by link status change\n");
1259                if (wcr & WCR_SAMPLEST)
1260                        dev_info(db->dev, "wake by sample packet\n");
1261                if (wcr & WCR_MAGICST)
1262                        dev_info(db->dev, "wake by magic packet\n");
1263                if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1264                        dev_err(db->dev, "wake signalled with no reason? "
1265                                "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1266        }
1267
1268        spin_unlock_irqrestore(&db->lock, flags);
1269
1270        return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1271}
1272
1273#ifdef CONFIG_NET_POLL_CONTROLLER
1274/*
1275 *Used by netconsole
1276 */
1277static void dm9000_poll_controller(struct net_device *dev)
1278{
1279        disable_irq(dev->irq);
1280        dm9000_interrupt(dev->irq, dev);
1281        enable_irq(dev->irq);
1282}
1283#endif
1284
1285/*
1286 *  Open the interface.
1287 *  The interface is opened whenever "ifconfig" actives it.
1288 */
1289static int
1290dm9000_open(struct net_device *dev)
1291{
1292        struct board_info *db = netdev_priv(dev);
1293        unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1294
1295        if (netif_msg_ifup(db))
1296                dev_dbg(db->dev, "enabling %s\n", dev->name);
1297
1298        /* If there is no IRQ type specified, tell the user that this is a
1299         * problem
1300         */
1301        if (irq_flags == IRQF_TRIGGER_NONE)
1302                dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1303
1304        irq_flags |= IRQF_SHARED;
1305
1306        /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1307        iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1308        mdelay(1); /* delay needs by DM9000B */
1309
1310        /* Initialize DM9000 board */
1311        dm9000_init_dm9000(dev);
1312
1313        if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1314                return -EAGAIN;
1315        /* Now that we have an interrupt handler hooked up we can unmask
1316         * our interrupts
1317         */
1318        dm9000_unmask_interrupts(db);
1319
1320        /* Init driver variable */
1321        db->dbug_cnt = 0;
1322
1323        mii_check_media(&db->mii, netif_msg_link(db), 1);
1324        netif_start_queue(dev);
1325
1326        /* Poll initial link status */
1327        schedule_delayed_work(&db->phy_poll, 1);
1328
1329        return 0;
1330}
1331
1332static void
1333dm9000_shutdown(struct net_device *dev)
1334{
1335        struct board_info *db = netdev_priv(dev);
1336
1337        /* RESET device */
1338        dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1339        iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1340        dm9000_mask_interrupts(db);
1341        iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1342}
1343
1344/*
1345 * Stop the interface.
1346 * The interface is stopped when it is brought.
1347 */
1348static int
1349dm9000_stop(struct net_device *ndev)
1350{
1351        struct board_info *db = netdev_priv(ndev);
1352
1353        if (netif_msg_ifdown(db))
1354                dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1355
1356        cancel_delayed_work_sync(&db->phy_poll);
1357
1358        netif_stop_queue(ndev);
1359        netif_carrier_off(ndev);
1360
1361        /* free interrupt */
1362        free_irq(ndev->irq, ndev);
1363
1364        dm9000_shutdown(ndev);
1365
1366        return 0;
1367}
1368
1369static const struct net_device_ops dm9000_netdev_ops = {
1370        .ndo_open               = dm9000_open,
1371        .ndo_stop               = dm9000_stop,
1372        .ndo_start_xmit         = dm9000_start_xmit,
1373        .ndo_tx_timeout         = dm9000_timeout,
1374        .ndo_set_rx_mode        = dm9000_hash_table,
1375        .ndo_eth_ioctl          = dm9000_ioctl,
1376        .ndo_set_features       = dm9000_set_features,
1377        .ndo_validate_addr      = eth_validate_addr,
1378        .ndo_set_mac_address    = eth_mac_addr,
1379#ifdef CONFIG_NET_POLL_CONTROLLER
1380        .ndo_poll_controller    = dm9000_poll_controller,
1381#endif
1382};
1383
1384static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1385{
1386        struct dm9000_plat_data *pdata;
1387        struct device_node *np = dev->of_node;
1388        int ret;
1389
1390        if (!IS_ENABLED(CONFIG_OF) || !np)
1391                return ERR_PTR(-ENXIO);
1392
1393        pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1394        if (!pdata)
1395                return ERR_PTR(-ENOMEM);
1396
1397        if (of_find_property(np, "davicom,ext-phy", NULL))
1398                pdata->flags |= DM9000_PLATF_EXT_PHY;
1399        if (of_find_property(np, "davicom,no-eeprom", NULL))
1400                pdata->flags |= DM9000_PLATF_NO_EEPROM;
1401
1402        ret = of_get_mac_address(np, pdata->dev_addr);
1403        if (ret == -EPROBE_DEFER)
1404                return ERR_PTR(ret);
1405
1406        return pdata;
1407}
1408
1409/*
1410 * Search DM9000 board, allocate space and register it
1411 */
1412static int
1413dm9000_probe(struct platform_device *pdev)
1414{
1415        struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1416        struct board_info *db;  /* Point a board information structure */
1417        struct net_device *ndev;
1418        struct device *dev = &pdev->dev;
1419        const unsigned char *mac_src;
1420        int ret = 0;
1421        int iosize;
1422        int i;
1423        u32 id_val;
1424        int reset_gpios;
1425        enum of_gpio_flags flags;
1426        struct regulator *power;
1427        bool inv_mac_addr = false;
1428
1429        power = devm_regulator_get(dev, "vcc");
1430        if (IS_ERR(power)) {
1431                if (PTR_ERR(power) == -EPROBE_DEFER)
1432                        return -EPROBE_DEFER;
1433                dev_dbg(dev, "no regulator provided\n");
1434        } else {
1435                ret = regulator_enable(power);
1436                if (ret != 0) {
1437                        dev_err(dev,
1438                                "Failed to enable power regulator: %d\n", ret);
1439                        return ret;
1440                }
1441                dev_dbg(dev, "regulator enabled\n");
1442        }
1443
1444        reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1445                                              &flags);
1446        if (gpio_is_valid(reset_gpios)) {
1447                ret = devm_gpio_request_one(dev, reset_gpios, flags,
1448                                            "dm9000_reset");
1449                if (ret) {
1450                        dev_err(dev, "failed to request reset gpio %d: %d\n",
1451                                reset_gpios, ret);
1452                        goto out_regulator_disable;
1453                }
1454
1455                /* According to manual PWRST# Low Period Min 1ms */
1456                msleep(2);
1457                gpio_set_value(reset_gpios, 1);
1458                /* Needs 3ms to read eeprom when PWRST is deasserted */
1459                msleep(4);
1460        }
1461
1462        if (!pdata) {
1463                pdata = dm9000_parse_dt(&pdev->dev);
1464                if (IS_ERR(pdata)) {
1465                        ret = PTR_ERR(pdata);
1466                        goto out_regulator_disable;
1467                }
1468        }
1469
1470        /* Init network device */
1471        ndev = alloc_etherdev(sizeof(struct board_info));
1472        if (!ndev) {
1473                ret = -ENOMEM;
1474                goto out_regulator_disable;
1475        }
1476
1477        SET_NETDEV_DEV(ndev, &pdev->dev);
1478
1479        dev_dbg(&pdev->dev, "dm9000_probe()\n");
1480
1481        /* setup board info structure */
1482        db = netdev_priv(ndev);
1483
1484        db->dev = &pdev->dev;
1485        db->ndev = ndev;
1486        if (!IS_ERR(power))
1487                db->power_supply = power;
1488
1489        spin_lock_init(&db->lock);
1490        mutex_init(&db->addr_lock);
1491
1492        INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1493
1494        db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1495        db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1496
1497        if (!db->addr_res || !db->data_res) {
1498                dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1499                        db->addr_res, db->data_res);
1500                ret = -ENOENT;
1501                goto out;
1502        }
1503
1504        ndev->irq = platform_get_irq(pdev, 0);
1505        if (ndev->irq < 0) {
1506                ret = ndev->irq;
1507                goto out;
1508        }
1509
1510        db->irq_wake = platform_get_irq_optional(pdev, 1);
1511        if (db->irq_wake >= 0) {
1512                dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1513
1514                ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1515                                  IRQF_SHARED, dev_name(db->dev), ndev);
1516                if (ret) {
1517                        dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1518                } else {
1519
1520                        /* test to see if irq is really wakeup capable */
1521                        ret = irq_set_irq_wake(db->irq_wake, 1);
1522                        if (ret) {
1523                                dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1524                                        db->irq_wake, ret);
1525                        } else {
1526                                irq_set_irq_wake(db->irq_wake, 0);
1527                                db->wake_supported = 1;
1528                        }
1529                }
1530        }
1531
1532        iosize = resource_size(db->addr_res);
1533        db->addr_req = request_mem_region(db->addr_res->start, iosize,
1534                                          pdev->name);
1535
1536        if (db->addr_req == NULL) {
1537                dev_err(db->dev, "cannot claim address reg area\n");
1538                ret = -EIO;
1539                goto out;
1540        }
1541
1542        db->io_addr = ioremap(db->addr_res->start, iosize);
1543
1544        if (db->io_addr == NULL) {
1545                dev_err(db->dev, "failed to ioremap address reg\n");
1546                ret = -EINVAL;
1547                goto out;
1548        }
1549
1550        iosize = resource_size(db->data_res);
1551        db->data_req = request_mem_region(db->data_res->start, iosize,
1552                                          pdev->name);
1553
1554        if (db->data_req == NULL) {
1555                dev_err(db->dev, "cannot claim data reg area\n");
1556                ret = -EIO;
1557                goto out;
1558        }
1559
1560        db->io_data = ioremap(db->data_res->start, iosize);
1561
1562        if (db->io_data == NULL) {
1563                dev_err(db->dev, "failed to ioremap data reg\n");
1564                ret = -EINVAL;
1565                goto out;
1566        }
1567
1568        /* fill in parameters for net-dev structure */
1569        ndev->base_addr = (unsigned long)db->io_addr;
1570
1571        /* ensure at least we have a default set of IO routines */
1572        dm9000_set_io(db, iosize);
1573
1574        /* check to see if anything is being over-ridden */
1575        if (pdata != NULL) {
1576                /* check to see if the driver wants to over-ride the
1577                 * default IO width */
1578
1579                if (pdata->flags & DM9000_PLATF_8BITONLY)
1580                        dm9000_set_io(db, 1);
1581
1582                if (pdata->flags & DM9000_PLATF_16BITONLY)
1583                        dm9000_set_io(db, 2);
1584
1585                if (pdata->flags & DM9000_PLATF_32BITONLY)
1586                        dm9000_set_io(db, 4);
1587
1588                /* check to see if there are any IO routine
1589                 * over-rides */
1590
1591                if (pdata->inblk != NULL)
1592                        db->inblk = pdata->inblk;
1593
1594                if (pdata->outblk != NULL)
1595                        db->outblk = pdata->outblk;
1596
1597                if (pdata->dumpblk != NULL)
1598                        db->dumpblk = pdata->dumpblk;
1599
1600                db->flags = pdata->flags;
1601        }
1602
1603#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1604        db->flags |= DM9000_PLATF_SIMPLE_PHY;
1605#endif
1606
1607        dm9000_reset(db);
1608
1609        /* try multiple times, DM9000 sometimes gets the read wrong */
1610        for (i = 0; i < 8; i++) {
1611                id_val  = ior(db, DM9000_VIDL);
1612                id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1613                id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1614                id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1615
1616                if (id_val == DM9000_ID)
1617                        break;
1618                dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1619        }
1620
1621        if (id_val != DM9000_ID) {
1622                dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1623                ret = -ENODEV;
1624                goto out;
1625        }
1626
1627        /* Identify what type of DM9000 we are working on */
1628
1629        id_val = ior(db, DM9000_CHIPR);
1630        dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1631
1632        switch (id_val) {
1633        case CHIPR_DM9000A:
1634                db->type = TYPE_DM9000A;
1635                break;
1636        case CHIPR_DM9000B:
1637                db->type = TYPE_DM9000B;
1638                break;
1639        default:
1640                dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1641                db->type = TYPE_DM9000E;
1642        }
1643
1644        /* dm9000a/b are capable of hardware checksum offload */
1645        if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1646                ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1647                ndev->features |= ndev->hw_features;
1648        }
1649
1650        /* from this point we assume that we have found a DM9000 */
1651
1652        ndev->netdev_ops        = &dm9000_netdev_ops;
1653        ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1654        ndev->ethtool_ops       = &dm9000_ethtool_ops;
1655
1656        db->msg_enable       = NETIF_MSG_LINK;
1657        db->mii.phy_id_mask  = 0x1f;
1658        db->mii.reg_num_mask = 0x1f;
1659        db->mii.force_media  = 0;
1660        db->mii.full_duplex  = 0;
1661        db->mii.dev          = ndev;
1662        db->mii.mdio_read    = dm9000_phy_read;
1663        db->mii.mdio_write   = dm9000_phy_write;
1664
1665        mac_src = "eeprom";
1666
1667        /* try reading the node address from the attached EEPROM */
1668        for (i = 0; i < 6; i += 2)
1669                dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1670
1671        if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1672                mac_src = "platform data";
1673                memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1674        }
1675
1676        if (!is_valid_ether_addr(ndev->dev_addr)) {
1677                /* try reading from mac */
1678
1679                mac_src = "chip";
1680                for (i = 0; i < 6; i++)
1681                        ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1682        }
1683
1684        if (!is_valid_ether_addr(ndev->dev_addr)) {
1685                inv_mac_addr = true;
1686                eth_hw_addr_random(ndev);
1687                mac_src = "random";
1688        }
1689
1690
1691        platform_set_drvdata(pdev, ndev);
1692        ret = register_netdev(ndev);
1693
1694        if (ret == 0) {
1695                if (inv_mac_addr)
1696                        dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1697                                 ndev->name);
1698                printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1699                       ndev->name, dm9000_type_to_char(db->type),
1700                       db->io_addr, db->io_data, ndev->irq,
1701                       ndev->dev_addr, mac_src);
1702        }
1703        return 0;
1704
1705out:
1706        dev_err(db->dev, "not found (%d).\n", ret);
1707
1708        dm9000_release_board(pdev, db);
1709        free_netdev(ndev);
1710
1711out_regulator_disable:
1712        if (!IS_ERR(power))
1713                regulator_disable(power);
1714
1715        return ret;
1716}
1717
1718static int
1719dm9000_drv_suspend(struct device *dev)
1720{
1721        struct net_device *ndev = dev_get_drvdata(dev);
1722        struct board_info *db;
1723
1724        if (ndev) {
1725                db = netdev_priv(ndev);
1726                db->in_suspend = 1;
1727
1728                if (!netif_running(ndev))
1729                        return 0;
1730
1731                netif_device_detach(ndev);
1732
1733                /* only shutdown if not using WoL */
1734                if (!db->wake_state)
1735                        dm9000_shutdown(ndev);
1736        }
1737        return 0;
1738}
1739
1740static int
1741dm9000_drv_resume(struct device *dev)
1742{
1743        struct net_device *ndev = dev_get_drvdata(dev);
1744        struct board_info *db = netdev_priv(ndev);
1745
1746        if (ndev) {
1747                if (netif_running(ndev)) {
1748                        /* reset if we were not in wake mode to ensure if
1749                         * the device was powered off it is in a known state */
1750                        if (!db->wake_state) {
1751                                dm9000_init_dm9000(ndev);
1752                                dm9000_unmask_interrupts(db);
1753                        }
1754
1755                        netif_device_attach(ndev);
1756                }
1757
1758                db->in_suspend = 0;
1759        }
1760        return 0;
1761}
1762
1763static const struct dev_pm_ops dm9000_drv_pm_ops = {
1764        .suspend        = dm9000_drv_suspend,
1765        .resume         = dm9000_drv_resume,
1766};
1767
1768static int
1769dm9000_drv_remove(struct platform_device *pdev)
1770{
1771        struct net_device *ndev = platform_get_drvdata(pdev);
1772        struct board_info *dm = to_dm9000_board(ndev);
1773
1774        unregister_netdev(ndev);
1775        dm9000_release_board(pdev, dm);
1776        free_netdev(ndev);              /* free device structure */
1777        if (dm->power_supply)
1778                regulator_disable(dm->power_supply);
1779
1780        dev_dbg(&pdev->dev, "released and freed device\n");
1781        return 0;
1782}
1783
1784#ifdef CONFIG_OF
1785static const struct of_device_id dm9000_of_matches[] = {
1786        { .compatible = "davicom,dm9000", },
1787        { /* sentinel */ }
1788};
1789MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1790#endif
1791
1792static struct platform_driver dm9000_driver = {
1793        .driver = {
1794                .name    = "dm9000",
1795                .pm      = &dm9000_drv_pm_ops,
1796                .of_match_table = of_match_ptr(dm9000_of_matches),
1797        },
1798        .probe   = dm9000_probe,
1799        .remove  = dm9000_drv_remove,
1800};
1801
1802module_platform_driver(dm9000_driver);
1803
1804MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1805MODULE_DESCRIPTION("Davicom DM9000 network driver");
1806MODULE_LICENSE("GPL");
1807MODULE_ALIAS("platform:dm9000");
1808