linux/drivers/net/ethernet/dlink/dl2k.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   3/*
   4    Copyright (c) 2001, 2002 by D-Link Corporation
   5    Written by Edward Peng.<edward_peng@dlink.com.tw>
   6    Created 03-May-2001, base on Linux' sundance.c.
   7
   8*/
   9
  10#include "dl2k.h"
  11#include <linux/dma-mapping.h>
  12
  13#define dw32(reg, val)  iowrite32(val, ioaddr + (reg))
  14#define dw16(reg, val)  iowrite16(val, ioaddr + (reg))
  15#define dw8(reg, val)   iowrite8(val, ioaddr + (reg))
  16#define dr32(reg)       ioread32(ioaddr + (reg))
  17#define dr16(reg)       ioread16(ioaddr + (reg))
  18#define dr8(reg)        ioread8(ioaddr + (reg))
  19
  20#define MAX_UNITS 8
  21static int mtu[MAX_UNITS];
  22static int vlan[MAX_UNITS];
  23static int jumbo[MAX_UNITS];
  24static char *media[MAX_UNITS];
  25static int tx_flow=-1;
  26static int rx_flow=-1;
  27static int copy_thresh;
  28static int rx_coalesce=10;      /* Rx frame count each interrupt */
  29static int rx_timeout=200;      /* Rx DMA wait time in 640ns increments */
  30static int tx_coalesce=16;      /* HW xmit count each TxDMAComplete */
  31
  32
  33MODULE_AUTHOR ("Edward Peng");
  34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  35MODULE_LICENSE("GPL");
  36module_param_array(mtu, int, NULL, 0);
  37module_param_array(media, charp, NULL, 0);
  38module_param_array(vlan, int, NULL, 0);
  39module_param_array(jumbo, int, NULL, 0);
  40module_param(tx_flow, int, 0);
  41module_param(rx_flow, int, 0);
  42module_param(copy_thresh, int, 0);
  43module_param(rx_coalesce, int, 0);      /* Rx frame count each interrupt */
  44module_param(rx_timeout, int, 0);       /* Rx DMA wait time in 64ns increments */
  45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  46
  47
  48/* Enable the default interrupts */
  49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  50       UpdateStats | LinkEvent)
  51
  52static void dl2k_enable_int(struct netdev_private *np)
  53{
  54        void __iomem *ioaddr = np->ioaddr;
  55
  56        dw16(IntEnable, DEFAULT_INTR);
  57}
  58
  59static const int max_intrloop = 50;
  60static const int multicast_filter_limit = 0x40;
  61
  62static int rio_open (struct net_device *dev);
  63static void rio_timer (struct timer_list *t);
  64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
  65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  67static void rio_free_tx (struct net_device *dev, int irq);
  68static void tx_error (struct net_device *dev, int tx_status);
  69static int receive_packet (struct net_device *dev);
  70static void rio_error (struct net_device *dev, int int_status);
  71static void set_multicast (struct net_device *dev);
  72static struct net_device_stats *get_stats (struct net_device *dev);
  73static int clear_stats (struct net_device *dev);
  74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  75static int rio_close (struct net_device *dev);
  76static int find_miiphy (struct net_device *dev);
  77static int parse_eeprom (struct net_device *dev);
  78static int read_eeprom (struct netdev_private *, int eep_addr);
  79static int mii_wait_link (struct net_device *dev, int wait);
  80static int mii_set_media (struct net_device *dev);
  81static int mii_get_media (struct net_device *dev);
  82static int mii_set_media_pcs (struct net_device *dev);
  83static int mii_get_media_pcs (struct net_device *dev);
  84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  86                      u16 data);
  87
  88static const struct ethtool_ops ethtool_ops;
  89
  90static const struct net_device_ops netdev_ops = {
  91        .ndo_open               = rio_open,
  92        .ndo_start_xmit = start_xmit,
  93        .ndo_stop               = rio_close,
  94        .ndo_get_stats          = get_stats,
  95        .ndo_validate_addr      = eth_validate_addr,
  96        .ndo_set_mac_address    = eth_mac_addr,
  97        .ndo_set_rx_mode        = set_multicast,
  98        .ndo_eth_ioctl          = rio_ioctl,
  99        .ndo_tx_timeout         = rio_tx_timeout,
 100};
 101
 102static int
 103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 104{
 105        struct net_device *dev;
 106        struct netdev_private *np;
 107        static int card_idx;
 108        int chip_idx = ent->driver_data;
 109        int err, irq;
 110        void __iomem *ioaddr;
 111        void *ring_space;
 112        dma_addr_t ring_dma;
 113
 114        err = pci_enable_device (pdev);
 115        if (err)
 116                return err;
 117
 118        irq = pdev->irq;
 119        err = pci_request_regions (pdev, "dl2k");
 120        if (err)
 121                goto err_out_disable;
 122
 123        pci_set_master (pdev);
 124
 125        err = -ENOMEM;
 126
 127        dev = alloc_etherdev (sizeof (*np));
 128        if (!dev)
 129                goto err_out_res;
 130        SET_NETDEV_DEV(dev, &pdev->dev);
 131
 132        np = netdev_priv(dev);
 133
 134        /* IO registers range. */
 135        ioaddr = pci_iomap(pdev, 0, 0);
 136        if (!ioaddr)
 137                goto err_out_dev;
 138        np->eeprom_addr = ioaddr;
 139
 140#ifdef MEM_MAPPING
 141        /* MM registers range. */
 142        ioaddr = pci_iomap(pdev, 1, 0);
 143        if (!ioaddr)
 144                goto err_out_iounmap;
 145#endif
 146        np->ioaddr = ioaddr;
 147        np->chip_id = chip_idx;
 148        np->pdev = pdev;
 149        spin_lock_init (&np->tx_lock);
 150        spin_lock_init (&np->rx_lock);
 151
 152        /* Parse manual configuration */
 153        np->an_enable = 1;
 154        np->tx_coalesce = 1;
 155        if (card_idx < MAX_UNITS) {
 156                if (media[card_idx] != NULL) {
 157                        np->an_enable = 0;
 158                        if (strcmp (media[card_idx], "auto") == 0 ||
 159                            strcmp (media[card_idx], "autosense") == 0 ||
 160                            strcmp (media[card_idx], "0") == 0 ) {
 161                                np->an_enable = 2;
 162                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163                            strcmp (media[card_idx], "4") == 0) {
 164                                np->speed = 100;
 165                                np->full_duplex = 1;
 166                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 167                                   strcmp (media[card_idx], "3") == 0) {
 168                                np->speed = 100;
 169                                np->full_duplex = 0;
 170                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171                                   strcmp (media[card_idx], "2") == 0) {
 172                                np->speed = 10;
 173                                np->full_duplex = 1;
 174                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175                                   strcmp (media[card_idx], "1") == 0) {
 176                                np->speed = 10;
 177                                np->full_duplex = 0;
 178                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179                                 strcmp (media[card_idx], "6") == 0) {
 180                                np->speed=1000;
 181                                np->full_duplex=1;
 182                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183                                 strcmp (media[card_idx], "5") == 0) {
 184                                np->speed = 1000;
 185                                np->full_duplex = 0;
 186                        } else {
 187                                np->an_enable = 1;
 188                        }
 189                }
 190                if (jumbo[card_idx] != 0) {
 191                        np->jumbo = 1;
 192                        dev->mtu = MAX_JUMBO;
 193                } else {
 194                        np->jumbo = 0;
 195                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196                                dev->mtu = mtu[card_idx];
 197                }
 198                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199                    vlan[card_idx] : 0;
 200                if (rx_coalesce > 0 && rx_timeout > 0) {
 201                        np->rx_coalesce = rx_coalesce;
 202                        np->rx_timeout = rx_timeout;
 203                        np->coalesce = 1;
 204                }
 205                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208                if (tx_coalesce < 1)
 209                        tx_coalesce = 1;
 210                else if (tx_coalesce > TX_RING_SIZE-1)
 211                        tx_coalesce = TX_RING_SIZE - 1;
 212        }
 213        dev->netdev_ops = &netdev_ops;
 214        dev->watchdog_timeo = TX_TIMEOUT;
 215        dev->ethtool_ops = &ethtool_ops;
 216#if 0
 217        dev->features = NETIF_F_IP_CSUM;
 218#endif
 219        /* MTU range: 68 - 1536 or 8000 */
 220        dev->min_mtu = ETH_MIN_MTU;
 221        dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 222
 223        pci_set_drvdata (pdev, dev);
 224
 225        ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 226                                        GFP_KERNEL);
 227        if (!ring_space)
 228                goto err_out_iounmap;
 229        np->tx_ring = ring_space;
 230        np->tx_ring_dma = ring_dma;
 231
 232        ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 233                                        GFP_KERNEL);
 234        if (!ring_space)
 235                goto err_out_unmap_tx;
 236        np->rx_ring = ring_space;
 237        np->rx_ring_dma = ring_dma;
 238
 239        /* Parse eeprom data */
 240        parse_eeprom (dev);
 241
 242        /* Find PHY address */
 243        err = find_miiphy (dev);
 244        if (err)
 245                goto err_out_unmap_rx;
 246
 247        /* Fiber device? */
 248        np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 249        np->link_status = 0;
 250        /* Set media and reset PHY */
 251        if (np->phy_media) {
 252                /* default Auto-Negotiation for fiber deivices */
 253                if (np->an_enable == 2) {
 254                        np->an_enable = 1;
 255                }
 256        } else {
 257                /* Auto-Negotiation is mandatory for 1000BASE-T,
 258                   IEEE 802.3ab Annex 28D page 14 */
 259                if (np->speed == 1000)
 260                        np->an_enable = 1;
 261        }
 262
 263        err = register_netdev (dev);
 264        if (err)
 265                goto err_out_unmap_rx;
 266
 267        card_idx++;
 268
 269        printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 270                dev->name, np->name, dev->dev_addr, irq);
 271        if (tx_coalesce > 1)
 272                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 273                                tx_coalesce);
 274        if (np->coalesce)
 275                printk(KERN_INFO
 276                       "rx_coalesce:\t%d packets\n"
 277                       "rx_timeout: \t%d ns\n",
 278                                np->rx_coalesce, np->rx_timeout*640);
 279        if (np->vlan)
 280                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 281        return 0;
 282
 283err_out_unmap_rx:
 284        dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
 285                          np->rx_ring_dma);
 286err_out_unmap_tx:
 287        dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
 288                          np->tx_ring_dma);
 289err_out_iounmap:
 290#ifdef MEM_MAPPING
 291        pci_iounmap(pdev, np->ioaddr);
 292#endif
 293        pci_iounmap(pdev, np->eeprom_addr);
 294err_out_dev:
 295        free_netdev (dev);
 296err_out_res:
 297        pci_release_regions (pdev);
 298err_out_disable:
 299        pci_disable_device (pdev);
 300        return err;
 301}
 302
 303static int
 304find_miiphy (struct net_device *dev)
 305{
 306        struct netdev_private *np = netdev_priv(dev);
 307        int i, phy_found = 0;
 308
 309        np->phy_addr = 1;
 310
 311        for (i = 31; i >= 0; i--) {
 312                int mii_status = mii_read (dev, i, 1);
 313                if (mii_status != 0xffff && mii_status != 0x0000) {
 314                        np->phy_addr = i;
 315                        phy_found++;
 316                }
 317        }
 318        if (!phy_found) {
 319                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 320                return -ENODEV;
 321        }
 322        return 0;
 323}
 324
 325static int
 326parse_eeprom (struct net_device *dev)
 327{
 328        struct netdev_private *np = netdev_priv(dev);
 329        void __iomem *ioaddr = np->ioaddr;
 330        int i, j;
 331        u8 sromdata[256];
 332        u8 *psib;
 333        u32 crc;
 334        PSROM_t psrom = (PSROM_t) sromdata;
 335
 336        int cid, next;
 337
 338        for (i = 0; i < 128; i++)
 339                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 340
 341        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
 342                /* Check CRC */
 343                crc = ~ether_crc_le (256 - 4, sromdata);
 344                if (psrom->crc != cpu_to_le32(crc)) {
 345                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 346                                        dev->name);
 347                        return -1;
 348                }
 349        }
 350
 351        /* Set MAC address */
 352        for (i = 0; i < 6; i++)
 353                dev->dev_addr[i] = psrom->mac_addr[i];
 354
 355        if (np->chip_id == CHIP_IP1000A) {
 356                np->led_mode = psrom->led_mode;
 357                return 0;
 358        }
 359
 360        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 361                return 0;
 362        }
 363
 364        /* Parse Software Information Block */
 365        i = 0x30;
 366        psib = (u8 *) sromdata;
 367        do {
 368                cid = psib[i++];
 369                next = psib[i++];
 370                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 371                        printk (KERN_ERR "Cell data error\n");
 372                        return -1;
 373                }
 374                switch (cid) {
 375                case 0: /* Format version */
 376                        break;
 377                case 1: /* End of cell */
 378                        return 0;
 379                case 2: /* Duplex Polarity */
 380                        np->duplex_polarity = psib[i];
 381                        dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 382                        break;
 383                case 3: /* Wake Polarity */
 384                        np->wake_polarity = psib[i];
 385                        break;
 386                case 9: /* Adapter description */
 387                        j = (next - i > 255) ? 255 : next - i;
 388                        memcpy (np->name, &(psib[i]), j);
 389                        break;
 390                case 4:
 391                case 5:
 392                case 6:
 393                case 7:
 394                case 8: /* Reversed */
 395                        break;
 396                default:        /* Unknown cell */
 397                        return -1;
 398                }
 399                i = next;
 400        } while (1);
 401
 402        return 0;
 403}
 404
 405static void rio_set_led_mode(struct net_device *dev)
 406{
 407        struct netdev_private *np = netdev_priv(dev);
 408        void __iomem *ioaddr = np->ioaddr;
 409        u32 mode;
 410
 411        if (np->chip_id != CHIP_IP1000A)
 412                return;
 413
 414        mode = dr32(ASICCtrl);
 415        mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 416
 417        if (np->led_mode & 0x01)
 418                mode |= IPG_AC_LED_MODE;
 419        if (np->led_mode & 0x02)
 420                mode |= IPG_AC_LED_MODE_BIT_1;
 421        if (np->led_mode & 0x08)
 422                mode |= IPG_AC_LED_SPEED;
 423
 424        dw32(ASICCtrl, mode);
 425}
 426
 427static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 428{
 429        return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 430}
 431
 432static void free_list(struct net_device *dev)
 433{
 434        struct netdev_private *np = netdev_priv(dev);
 435        struct sk_buff *skb;
 436        int i;
 437
 438        /* Free all the skbuffs in the queue. */
 439        for (i = 0; i < RX_RING_SIZE; i++) {
 440                skb = np->rx_skbuff[i];
 441                if (skb) {
 442                        dma_unmap_single(&np->pdev->dev,
 443                                         desc_to_dma(&np->rx_ring[i]),
 444                                         skb->len, DMA_FROM_DEVICE);
 445                        dev_kfree_skb(skb);
 446                        np->rx_skbuff[i] = NULL;
 447                }
 448                np->rx_ring[i].status = 0;
 449                np->rx_ring[i].fraginfo = 0;
 450        }
 451        for (i = 0; i < TX_RING_SIZE; i++) {
 452                skb = np->tx_skbuff[i];
 453                if (skb) {
 454                        dma_unmap_single(&np->pdev->dev,
 455                                         desc_to_dma(&np->tx_ring[i]),
 456                                         skb->len, DMA_TO_DEVICE);
 457                        dev_kfree_skb(skb);
 458                        np->tx_skbuff[i] = NULL;
 459                }
 460        }
 461}
 462
 463static void rio_reset_ring(struct netdev_private *np)
 464{
 465        int i;
 466
 467        np->cur_rx = 0;
 468        np->cur_tx = 0;
 469        np->old_rx = 0;
 470        np->old_tx = 0;
 471
 472        for (i = 0; i < TX_RING_SIZE; i++)
 473                np->tx_ring[i].status = cpu_to_le64(TFDDone);
 474
 475        for (i = 0; i < RX_RING_SIZE; i++)
 476                np->rx_ring[i].status = 0;
 477}
 478
 479 /* allocate and initialize Tx and Rx descriptors */
 480static int alloc_list(struct net_device *dev)
 481{
 482        struct netdev_private *np = netdev_priv(dev);
 483        int i;
 484
 485        rio_reset_ring(np);
 486        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 487
 488        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 489        for (i = 0; i < TX_RING_SIZE; i++) {
 490                np->tx_skbuff[i] = NULL;
 491                np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 492                                              ((i + 1) % TX_RING_SIZE) *
 493                                              sizeof(struct netdev_desc));
 494        }
 495
 496        /* Initialize Rx descriptors & allocate buffers */
 497        for (i = 0; i < RX_RING_SIZE; i++) {
 498                /* Allocated fixed size of skbuff */
 499                struct sk_buff *skb;
 500
 501                skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 502                np->rx_skbuff[i] = skb;
 503                if (!skb) {
 504                        free_list(dev);
 505                        return -ENOMEM;
 506                }
 507
 508                np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 509                                                ((i + 1) % RX_RING_SIZE) *
 510                                                sizeof(struct netdev_desc));
 511                /* Rubicon now supports 40 bits of addressing space. */
 512                np->rx_ring[i].fraginfo =
 513                    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
 514                                               np->rx_buf_sz, DMA_FROM_DEVICE));
 515                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 516        }
 517
 518        return 0;
 519}
 520
 521static void rio_hw_init(struct net_device *dev)
 522{
 523        struct netdev_private *np = netdev_priv(dev);
 524        void __iomem *ioaddr = np->ioaddr;
 525        int i;
 526        u16 macctrl;
 527
 528        /* Reset all logic functions */
 529        dw16(ASICCtrl + 2,
 530             GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 531        mdelay(10);
 532
 533        rio_set_led_mode(dev);
 534
 535        /* DebugCtrl bit 4, 5, 9 must set */
 536        dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 537
 538        if (np->chip_id == CHIP_IP1000A &&
 539            (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 540                /* PHY magic taken from ipg driver, undocumented registers */
 541                mii_write(dev, np->phy_addr, 31, 0x0001);
 542                mii_write(dev, np->phy_addr, 27, 0x01e0);
 543                mii_write(dev, np->phy_addr, 31, 0x0002);
 544                mii_write(dev, np->phy_addr, 27, 0xeb8e);
 545                mii_write(dev, np->phy_addr, 31, 0x0000);
 546                mii_write(dev, np->phy_addr, 30, 0x005e);
 547                /* advertise 1000BASE-T half & full duplex, prefer MASTER */
 548                mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 549        }
 550
 551        if (np->phy_media)
 552                mii_set_media_pcs(dev);
 553        else
 554                mii_set_media(dev);
 555
 556        /* Jumbo frame */
 557        if (np->jumbo != 0)
 558                dw16(MaxFrameSize, MAX_JUMBO+14);
 559
 560        /* Set RFDListPtr */
 561        dw32(RFDListPtr0, np->rx_ring_dma);
 562        dw32(RFDListPtr1, 0);
 563
 564        /* Set station address */
 565        /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 566         * too. However, it doesn't work on IP1000A so we use 16-bit access.
 567         */
 568        for (i = 0; i < 3; i++)
 569                dw16(StationAddr0 + 2 * i,
 570                     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 571
 572        set_multicast (dev);
 573        if (np->coalesce) {
 574                dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 575        }
 576        /* Set RIO to poll every N*320nsec. */
 577        dw8(RxDMAPollPeriod, 0x20);
 578        dw8(TxDMAPollPeriod, 0xff);
 579        dw8(RxDMABurstThresh, 0x30);
 580        dw8(RxDMAUrgentThresh, 0x30);
 581        dw32(RmonStatMask, 0x0007ffff);
 582        /* clear statistics */
 583        clear_stats (dev);
 584
 585        /* VLAN supported */
 586        if (np->vlan) {
 587                /* priority field in RxDMAIntCtrl  */
 588                dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 589                /* VLANId */
 590                dw16(VLANId, np->vlan);
 591                /* Length/Type should be 0x8100 */
 592                dw32(VLANTag, 0x8100 << 16 | np->vlan);
 593                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 594                   VLAN information tagged by TFC' VID, CFI fields. */
 595                dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 596        }
 597
 598        /* Start Tx/Rx */
 599        dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 600
 601        macctrl = 0;
 602        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 603        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 604        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 605        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 606        dw16(MACCtrl, macctrl);
 607}
 608
 609static void rio_hw_stop(struct net_device *dev)
 610{
 611        struct netdev_private *np = netdev_priv(dev);
 612        void __iomem *ioaddr = np->ioaddr;
 613
 614        /* Disable interrupts */
 615        dw16(IntEnable, 0);
 616
 617        /* Stop Tx and Rx logics */
 618        dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 619}
 620
 621static int rio_open(struct net_device *dev)
 622{
 623        struct netdev_private *np = netdev_priv(dev);
 624        const int irq = np->pdev->irq;
 625        int i;
 626
 627        i = alloc_list(dev);
 628        if (i)
 629                return i;
 630
 631        rio_hw_init(dev);
 632
 633        i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 634        if (i) {
 635                rio_hw_stop(dev);
 636                free_list(dev);
 637                return i;
 638        }
 639
 640        timer_setup(&np->timer, rio_timer, 0);
 641        np->timer.expires = jiffies + 1 * HZ;
 642        add_timer(&np->timer);
 643
 644        netif_start_queue (dev);
 645
 646        dl2k_enable_int(np);
 647        return 0;
 648}
 649
 650static void
 651rio_timer (struct timer_list *t)
 652{
 653        struct netdev_private *np = from_timer(np, t, timer);
 654        struct net_device *dev = pci_get_drvdata(np->pdev);
 655        unsigned int entry;
 656        int next_tick = 1*HZ;
 657        unsigned long flags;
 658
 659        spin_lock_irqsave(&np->rx_lock, flags);
 660        /* Recover rx ring exhausted error */
 661        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 662                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 663                /* Re-allocate skbuffs to fill the descriptor ring */
 664                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 665                        struct sk_buff *skb;
 666                        entry = np->old_rx % RX_RING_SIZE;
 667                        /* Dropped packets don't need to re-allocate */
 668                        if (np->rx_skbuff[entry] == NULL) {
 669                                skb = netdev_alloc_skb_ip_align(dev,
 670                                                                np->rx_buf_sz);
 671                                if (skb == NULL) {
 672                                        np->rx_ring[entry].fraginfo = 0;
 673                                        printk (KERN_INFO
 674                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 675                                                dev->name, entry);
 676                                        break;
 677                                }
 678                                np->rx_skbuff[entry] = skb;
 679                                np->rx_ring[entry].fraginfo =
 680                                    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 681                                                                np->rx_buf_sz, DMA_FROM_DEVICE));
 682                        }
 683                        np->rx_ring[entry].fraginfo |=
 684                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 685                        np->rx_ring[entry].status = 0;
 686                } /* end for */
 687        } /* end if */
 688        spin_unlock_irqrestore (&np->rx_lock, flags);
 689        np->timer.expires = jiffies + next_tick;
 690        add_timer(&np->timer);
 691}
 692
 693static void
 694rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
 695{
 696        struct netdev_private *np = netdev_priv(dev);
 697        void __iomem *ioaddr = np->ioaddr;
 698
 699        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 700                dev->name, dr32(TxStatus));
 701        rio_free_tx(dev, 0);
 702        dev->if_port = 0;
 703        netif_trans_update(dev); /* prevent tx timeout */
 704}
 705
 706static netdev_tx_t
 707start_xmit (struct sk_buff *skb, struct net_device *dev)
 708{
 709        struct netdev_private *np = netdev_priv(dev);
 710        void __iomem *ioaddr = np->ioaddr;
 711        struct netdev_desc *txdesc;
 712        unsigned entry;
 713        u64 tfc_vlan_tag = 0;
 714
 715        if (np->link_status == 0) {     /* Link Down */
 716                dev_kfree_skb(skb);
 717                return NETDEV_TX_OK;
 718        }
 719        entry = np->cur_tx % TX_RING_SIZE;
 720        np->tx_skbuff[entry] = skb;
 721        txdesc = &np->tx_ring[entry];
 722
 723#if 0
 724        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 725                txdesc->status |=
 726                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 727                                 IPChecksumEnable);
 728        }
 729#endif
 730        if (np->vlan) {
 731                tfc_vlan_tag = VLANTagInsert |
 732                    ((u64)np->vlan << 32) |
 733                    ((u64)skb->priority << 45);
 734        }
 735        txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 736                                                       skb->len, DMA_TO_DEVICE));
 737        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 738
 739        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 740         * Work around: Always use 1 descriptor in 10Mbps mode */
 741        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 742                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 743                                              WordAlignDisable |
 744                                              TxDMAIndicate |
 745                                              (1 << FragCountShift));
 746        else
 747                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 748                                              WordAlignDisable |
 749                                              (1 << FragCountShift));
 750
 751        /* TxDMAPollNow */
 752        dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 753        /* Schedule ISR */
 754        dw32(CountDown, 10000);
 755        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 756        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 757                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 758                /* do nothing */
 759        } else if (!netif_queue_stopped(dev)) {
 760                netif_stop_queue (dev);
 761        }
 762
 763        /* The first TFDListPtr */
 764        if (!dr32(TFDListPtr0)) {
 765                dw32(TFDListPtr0, np->tx_ring_dma +
 766                     entry * sizeof (struct netdev_desc));
 767                dw32(TFDListPtr1, 0);
 768        }
 769
 770        return NETDEV_TX_OK;
 771}
 772
 773static irqreturn_t
 774rio_interrupt (int irq, void *dev_instance)
 775{
 776        struct net_device *dev = dev_instance;
 777        struct netdev_private *np = netdev_priv(dev);
 778        void __iomem *ioaddr = np->ioaddr;
 779        unsigned int_status;
 780        int cnt = max_intrloop;
 781        int handled = 0;
 782
 783        while (1) {
 784                int_status = dr16(IntStatus);
 785                dw16(IntStatus, int_status);
 786                int_status &= DEFAULT_INTR;
 787                if (int_status == 0 || --cnt < 0)
 788                        break;
 789                handled = 1;
 790                /* Processing received packets */
 791                if (int_status & RxDMAComplete)
 792                        receive_packet (dev);
 793                /* TxDMAComplete interrupt */
 794                if ((int_status & (TxDMAComplete|IntRequested))) {
 795                        int tx_status;
 796                        tx_status = dr32(TxStatus);
 797                        if (tx_status & 0x01)
 798                                tx_error (dev, tx_status);
 799                        /* Free used tx skbuffs */
 800                        rio_free_tx (dev, 1);
 801                }
 802
 803                /* Handle uncommon events */
 804                if (int_status &
 805                    (HostError | LinkEvent | UpdateStats))
 806                        rio_error (dev, int_status);
 807        }
 808        if (np->cur_tx != np->old_tx)
 809                dw32(CountDown, 100);
 810        return IRQ_RETVAL(handled);
 811}
 812
 813static void
 814rio_free_tx (struct net_device *dev, int irq)
 815{
 816        struct netdev_private *np = netdev_priv(dev);
 817        int entry = np->old_tx % TX_RING_SIZE;
 818        int tx_use = 0;
 819        unsigned long flag = 0;
 820
 821        if (irq)
 822                spin_lock(&np->tx_lock);
 823        else
 824                spin_lock_irqsave(&np->tx_lock, flag);
 825
 826        /* Free used tx skbuffs */
 827        while (entry != np->cur_tx) {
 828                struct sk_buff *skb;
 829
 830                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 831                        break;
 832                skb = np->tx_skbuff[entry];
 833                dma_unmap_single(&np->pdev->dev,
 834                                 desc_to_dma(&np->tx_ring[entry]), skb->len,
 835                                 DMA_TO_DEVICE);
 836                if (irq)
 837                        dev_consume_skb_irq(skb);
 838                else
 839                        dev_kfree_skb(skb);
 840
 841                np->tx_skbuff[entry] = NULL;
 842                entry = (entry + 1) % TX_RING_SIZE;
 843                tx_use++;
 844        }
 845        if (irq)
 846                spin_unlock(&np->tx_lock);
 847        else
 848                spin_unlock_irqrestore(&np->tx_lock, flag);
 849        np->old_tx = entry;
 850
 851        /* If the ring is no longer full, clear tx_full and
 852           call netif_wake_queue() */
 853
 854        if (netif_queue_stopped(dev) &&
 855            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 856            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 857                netif_wake_queue (dev);
 858        }
 859}
 860
 861static void
 862tx_error (struct net_device *dev, int tx_status)
 863{
 864        struct netdev_private *np = netdev_priv(dev);
 865        void __iomem *ioaddr = np->ioaddr;
 866        int frame_id;
 867        int i;
 868
 869        frame_id = (tx_status & 0xffff0000);
 870        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 871                dev->name, tx_status, frame_id);
 872        dev->stats.tx_errors++;
 873        /* Ttransmit Underrun */
 874        if (tx_status & 0x10) {
 875                dev->stats.tx_fifo_errors++;
 876                dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 877                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 878                dw16(ASICCtrl + 2,
 879                     TxReset | DMAReset | FIFOReset | NetworkReset);
 880                /* Wait for ResetBusy bit clear */
 881                for (i = 50; i > 0; i--) {
 882                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 883                                break;
 884                        mdelay (1);
 885                }
 886                rio_set_led_mode(dev);
 887                rio_free_tx (dev, 1);
 888                /* Reset TFDListPtr */
 889                dw32(TFDListPtr0, np->tx_ring_dma +
 890                     np->old_tx * sizeof (struct netdev_desc));
 891                dw32(TFDListPtr1, 0);
 892
 893                /* Let TxStartThresh stay default value */
 894        }
 895        /* Late Collision */
 896        if (tx_status & 0x04) {
 897                dev->stats.tx_fifo_errors++;
 898                /* TxReset and clear FIFO */
 899                dw16(ASICCtrl + 2, TxReset | FIFOReset);
 900                /* Wait reset done */
 901                for (i = 50; i > 0; i--) {
 902                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 903                                break;
 904                        mdelay (1);
 905                }
 906                rio_set_led_mode(dev);
 907                /* Let TxStartThresh stay default value */
 908        }
 909        /* Maximum Collisions */
 910        if (tx_status & 0x08)
 911                dev->stats.collisions++;
 912        /* Restart the Tx */
 913        dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 914}
 915
 916static int
 917receive_packet (struct net_device *dev)
 918{
 919        struct netdev_private *np = netdev_priv(dev);
 920        int entry = np->cur_rx % RX_RING_SIZE;
 921        int cnt = 30;
 922
 923        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 924        while (1) {
 925                struct netdev_desc *desc = &np->rx_ring[entry];
 926                int pkt_len;
 927                u64 frame_status;
 928
 929                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 930                    !(desc->status & cpu_to_le64(FrameStart)) ||
 931                    !(desc->status & cpu_to_le64(FrameEnd)))
 932                        break;
 933
 934                /* Chip omits the CRC. */
 935                frame_status = le64_to_cpu(desc->status);
 936                pkt_len = frame_status & 0xffff;
 937                if (--cnt < 0)
 938                        break;
 939                /* Update rx error statistics, drop packet. */
 940                if (frame_status & RFS_Errors) {
 941                        dev->stats.rx_errors++;
 942                        if (frame_status & (RxRuntFrame | RxLengthError))
 943                                dev->stats.rx_length_errors++;
 944                        if (frame_status & RxFCSError)
 945                                dev->stats.rx_crc_errors++;
 946                        if (frame_status & RxAlignmentError && np->speed != 1000)
 947                                dev->stats.rx_frame_errors++;
 948                        if (frame_status & RxFIFOOverrun)
 949                                dev->stats.rx_fifo_errors++;
 950                } else {
 951                        struct sk_buff *skb;
 952
 953                        /* Small skbuffs for short packets */
 954                        if (pkt_len > copy_thresh) {
 955                                dma_unmap_single(&np->pdev->dev,
 956                                                 desc_to_dma(desc),
 957                                                 np->rx_buf_sz,
 958                                                 DMA_FROM_DEVICE);
 959                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 960                                np->rx_skbuff[entry] = NULL;
 961                        } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 962                                dma_sync_single_for_cpu(&np->pdev->dev,
 963                                                        desc_to_dma(desc),
 964                                                        np->rx_buf_sz,
 965                                                        DMA_FROM_DEVICE);
 966                                skb_copy_to_linear_data (skb,
 967                                                  np->rx_skbuff[entry]->data,
 968                                                  pkt_len);
 969                                skb_put (skb, pkt_len);
 970                                dma_sync_single_for_device(&np->pdev->dev,
 971                                                           desc_to_dma(desc),
 972                                                           np->rx_buf_sz,
 973                                                           DMA_FROM_DEVICE);
 974                        }
 975                        skb->protocol = eth_type_trans (skb, dev);
 976#if 0
 977                        /* Checksum done by hw, but csum value unavailable. */
 978                        if (np->pdev->pci_rev_id >= 0x0c &&
 979                                !(frame_status & (TCPError | UDPError | IPError))) {
 980                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 981                        }
 982#endif
 983                        netif_rx (skb);
 984                }
 985                entry = (entry + 1) % RX_RING_SIZE;
 986        }
 987        spin_lock(&np->rx_lock);
 988        np->cur_rx = entry;
 989        /* Re-allocate skbuffs to fill the descriptor ring */
 990        entry = np->old_rx;
 991        while (entry != np->cur_rx) {
 992                struct sk_buff *skb;
 993                /* Dropped packets don't need to re-allocate */
 994                if (np->rx_skbuff[entry] == NULL) {
 995                        skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 996                        if (skb == NULL) {
 997                                np->rx_ring[entry].fraginfo = 0;
 998                                printk (KERN_INFO
 999                                        "%s: receive_packet: "
1000                                        "Unable to re-allocate Rx skbuff.#%d\n",
1001                                        dev->name, entry);
1002                                break;
1003                        }
1004                        np->rx_skbuff[entry] = skb;
1005                        np->rx_ring[entry].fraginfo =
1006                            cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1007                                                       np->rx_buf_sz, DMA_FROM_DEVICE));
1008                }
1009                np->rx_ring[entry].fraginfo |=
1010                    cpu_to_le64((u64)np->rx_buf_sz << 48);
1011                np->rx_ring[entry].status = 0;
1012                entry = (entry + 1) % RX_RING_SIZE;
1013        }
1014        np->old_rx = entry;
1015        spin_unlock(&np->rx_lock);
1016        return 0;
1017}
1018
1019static void
1020rio_error (struct net_device *dev, int int_status)
1021{
1022        struct netdev_private *np = netdev_priv(dev);
1023        void __iomem *ioaddr = np->ioaddr;
1024        u16 macctrl;
1025
1026        /* Link change event */
1027        if (int_status & LinkEvent) {
1028                if (mii_wait_link (dev, 10) == 0) {
1029                        printk (KERN_INFO "%s: Link up\n", dev->name);
1030                        if (np->phy_media)
1031                                mii_get_media_pcs (dev);
1032                        else
1033                                mii_get_media (dev);
1034                        if (np->speed == 1000)
1035                                np->tx_coalesce = tx_coalesce;
1036                        else
1037                                np->tx_coalesce = 1;
1038                        macctrl = 0;
1039                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1040                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1041                        macctrl |= (np->tx_flow) ?
1042                                TxFlowControlEnable : 0;
1043                        macctrl |= (np->rx_flow) ?
1044                                RxFlowControlEnable : 0;
1045                        dw16(MACCtrl, macctrl);
1046                        np->link_status = 1;
1047                        netif_carrier_on(dev);
1048                } else {
1049                        printk (KERN_INFO "%s: Link off\n", dev->name);
1050                        np->link_status = 0;
1051                        netif_carrier_off(dev);
1052                }
1053        }
1054
1055        /* UpdateStats statistics registers */
1056        if (int_status & UpdateStats) {
1057                get_stats (dev);
1058        }
1059
1060        /* PCI Error, a catastronphic error related to the bus interface
1061           occurs, set GlobalReset and HostReset to reset. */
1062        if (int_status & HostError) {
1063                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1064                        dev->name, int_status);
1065                dw16(ASICCtrl + 2, GlobalReset | HostReset);
1066                mdelay (500);
1067                rio_set_led_mode(dev);
1068        }
1069}
1070
1071static struct net_device_stats *
1072get_stats (struct net_device *dev)
1073{
1074        struct netdev_private *np = netdev_priv(dev);
1075        void __iomem *ioaddr = np->ioaddr;
1076#ifdef MEM_MAPPING
1077        int i;
1078#endif
1079        unsigned int stat_reg;
1080
1081        /* All statistics registers need to be acknowledged,
1082           else statistic overflow could cause problems */
1083
1084        dev->stats.rx_packets += dr32(FramesRcvOk);
1085        dev->stats.tx_packets += dr32(FramesXmtOk);
1086        dev->stats.rx_bytes += dr32(OctetRcvOk);
1087        dev->stats.tx_bytes += dr32(OctetXmtOk);
1088
1089        dev->stats.multicast = dr32(McstFramesRcvdOk);
1090        dev->stats.collisions += dr32(SingleColFrames)
1091                             +  dr32(MultiColFrames);
1092
1093        /* detailed tx errors */
1094        stat_reg = dr16(FramesAbortXSColls);
1095        dev->stats.tx_aborted_errors += stat_reg;
1096        dev->stats.tx_errors += stat_reg;
1097
1098        stat_reg = dr16(CarrierSenseErrors);
1099        dev->stats.tx_carrier_errors += stat_reg;
1100        dev->stats.tx_errors += stat_reg;
1101
1102        /* Clear all other statistic register. */
1103        dr32(McstOctetXmtOk);
1104        dr16(BcstFramesXmtdOk);
1105        dr32(McstFramesXmtdOk);
1106        dr16(BcstFramesRcvdOk);
1107        dr16(MacControlFramesRcvd);
1108        dr16(FrameTooLongErrors);
1109        dr16(InRangeLengthErrors);
1110        dr16(FramesCheckSeqErrors);
1111        dr16(FramesLostRxErrors);
1112        dr32(McstOctetXmtOk);
1113        dr32(BcstOctetXmtOk);
1114        dr32(McstFramesXmtdOk);
1115        dr32(FramesWDeferredXmt);
1116        dr32(LateCollisions);
1117        dr16(BcstFramesXmtdOk);
1118        dr16(MacControlFramesXmtd);
1119        dr16(FramesWEXDeferal);
1120
1121#ifdef MEM_MAPPING
1122        for (i = 0x100; i <= 0x150; i += 4)
1123                dr32(i);
1124#endif
1125        dr16(TxJumboFrames);
1126        dr16(RxJumboFrames);
1127        dr16(TCPCheckSumErrors);
1128        dr16(UDPCheckSumErrors);
1129        dr16(IPCheckSumErrors);
1130        return &dev->stats;
1131}
1132
1133static int
1134clear_stats (struct net_device *dev)
1135{
1136        struct netdev_private *np = netdev_priv(dev);
1137        void __iomem *ioaddr = np->ioaddr;
1138#ifdef MEM_MAPPING
1139        int i;
1140#endif
1141
1142        /* All statistics registers need to be acknowledged,
1143           else statistic overflow could cause problems */
1144        dr32(FramesRcvOk);
1145        dr32(FramesXmtOk);
1146        dr32(OctetRcvOk);
1147        dr32(OctetXmtOk);
1148
1149        dr32(McstFramesRcvdOk);
1150        dr32(SingleColFrames);
1151        dr32(MultiColFrames);
1152        dr32(LateCollisions);
1153        /* detailed rx errors */
1154        dr16(FrameTooLongErrors);
1155        dr16(InRangeLengthErrors);
1156        dr16(FramesCheckSeqErrors);
1157        dr16(FramesLostRxErrors);
1158
1159        /* detailed tx errors */
1160        dr16(FramesAbortXSColls);
1161        dr16(CarrierSenseErrors);
1162
1163        /* Clear all other statistic register. */
1164        dr32(McstOctetXmtOk);
1165        dr16(BcstFramesXmtdOk);
1166        dr32(McstFramesXmtdOk);
1167        dr16(BcstFramesRcvdOk);
1168        dr16(MacControlFramesRcvd);
1169        dr32(McstOctetXmtOk);
1170        dr32(BcstOctetXmtOk);
1171        dr32(McstFramesXmtdOk);
1172        dr32(FramesWDeferredXmt);
1173        dr16(BcstFramesXmtdOk);
1174        dr16(MacControlFramesXmtd);
1175        dr16(FramesWEXDeferal);
1176#ifdef MEM_MAPPING
1177        for (i = 0x100; i <= 0x150; i += 4)
1178                dr32(i);
1179#endif
1180        dr16(TxJumboFrames);
1181        dr16(RxJumboFrames);
1182        dr16(TCPCheckSumErrors);
1183        dr16(UDPCheckSumErrors);
1184        dr16(IPCheckSumErrors);
1185        return 0;
1186}
1187
1188static void
1189set_multicast (struct net_device *dev)
1190{
1191        struct netdev_private *np = netdev_priv(dev);
1192        void __iomem *ioaddr = np->ioaddr;
1193        u32 hash_table[2];
1194        u16 rx_mode = 0;
1195
1196        hash_table[0] = hash_table[1] = 0;
1197        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1198        hash_table[1] |= 0x02000000;
1199        if (dev->flags & IFF_PROMISC) {
1200                /* Receive all frames promiscuously. */
1201                rx_mode = ReceiveAllFrames;
1202        } else if ((dev->flags & IFF_ALLMULTI) ||
1203                        (netdev_mc_count(dev) > multicast_filter_limit)) {
1204                /* Receive broadcast and multicast frames */
1205                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1206        } else if (!netdev_mc_empty(dev)) {
1207                struct netdev_hw_addr *ha;
1208                /* Receive broadcast frames and multicast frames filtering
1209                   by Hashtable */
1210                rx_mode =
1211                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1212                netdev_for_each_mc_addr(ha, dev) {
1213                        int bit, index = 0;
1214                        int crc = ether_crc_le(ETH_ALEN, ha->addr);
1215                        /* The inverted high significant 6 bits of CRC are
1216                           used as an index to hashtable */
1217                        for (bit = 0; bit < 6; bit++)
1218                                if (crc & (1 << (31 - bit)))
1219                                        index |= (1 << bit);
1220                        hash_table[index / 32] |= (1 << (index % 32));
1221                }
1222        } else {
1223                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1224        }
1225        if (np->vlan) {
1226                /* ReceiveVLANMatch field in ReceiveMode */
1227                rx_mode |= ReceiveVLANMatch;
1228        }
1229
1230        dw32(HashTable0, hash_table[0]);
1231        dw32(HashTable1, hash_table[1]);
1232        dw16(ReceiveMode, rx_mode);
1233}
1234
1235static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1236{
1237        struct netdev_private *np = netdev_priv(dev);
1238
1239        strlcpy(info->driver, "dl2k", sizeof(info->driver));
1240        strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1241}
1242
1243static int rio_get_link_ksettings(struct net_device *dev,
1244                                  struct ethtool_link_ksettings *cmd)
1245{
1246        struct netdev_private *np = netdev_priv(dev);
1247        u32 supported, advertising;
1248
1249        if (np->phy_media) {
1250                /* fiber device */
1251                supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1252                advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1253                cmd->base.port = PORT_FIBRE;
1254        } else {
1255                /* copper device */
1256                supported = SUPPORTED_10baseT_Half |
1257                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1258                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1259                        SUPPORTED_Autoneg | SUPPORTED_MII;
1260                advertising = ADVERTISED_10baseT_Half |
1261                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1262                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1263                        ADVERTISED_Autoneg | ADVERTISED_MII;
1264                cmd->base.port = PORT_MII;
1265        }
1266        if (np->link_status) {
1267                cmd->base.speed = np->speed;
1268                cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1269        } else {
1270                cmd->base.speed = SPEED_UNKNOWN;
1271                cmd->base.duplex = DUPLEX_UNKNOWN;
1272        }
1273        if (np->an_enable)
1274                cmd->base.autoneg = AUTONEG_ENABLE;
1275        else
1276                cmd->base.autoneg = AUTONEG_DISABLE;
1277
1278        cmd->base.phy_address = np->phy_addr;
1279
1280        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1281                                                supported);
1282        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1283                                                advertising);
1284
1285        return 0;
1286}
1287
1288static int rio_set_link_ksettings(struct net_device *dev,
1289                                  const struct ethtool_link_ksettings *cmd)
1290{
1291        struct netdev_private *np = netdev_priv(dev);
1292        u32 speed = cmd->base.speed;
1293        u8 duplex = cmd->base.duplex;
1294
1295        netif_carrier_off(dev);
1296        if (cmd->base.autoneg == AUTONEG_ENABLE) {
1297                if (np->an_enable) {
1298                        return 0;
1299                } else {
1300                        np->an_enable = 1;
1301                        mii_set_media(dev);
1302                        return 0;
1303                }
1304        } else {
1305                np->an_enable = 0;
1306                if (np->speed == 1000) {
1307                        speed = SPEED_100;
1308                        duplex = DUPLEX_FULL;
1309                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1310                }
1311                switch (speed) {
1312                case SPEED_10:
1313                        np->speed = 10;
1314                        np->full_duplex = (duplex == DUPLEX_FULL);
1315                        break;
1316                case SPEED_100:
1317                        np->speed = 100;
1318                        np->full_duplex = (duplex == DUPLEX_FULL);
1319                        break;
1320                case SPEED_1000: /* not supported */
1321                default:
1322                        return -EINVAL;
1323                }
1324                mii_set_media(dev);
1325        }
1326        return 0;
1327}
1328
1329static u32 rio_get_link(struct net_device *dev)
1330{
1331        struct netdev_private *np = netdev_priv(dev);
1332        return np->link_status;
1333}
1334
1335static const struct ethtool_ops ethtool_ops = {
1336        .get_drvinfo = rio_get_drvinfo,
1337        .get_link = rio_get_link,
1338        .get_link_ksettings = rio_get_link_ksettings,
1339        .set_link_ksettings = rio_set_link_ksettings,
1340};
1341
1342static int
1343rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1344{
1345        int phy_addr;
1346        struct netdev_private *np = netdev_priv(dev);
1347        struct mii_ioctl_data *miidata = if_mii(rq);
1348
1349        phy_addr = np->phy_addr;
1350        switch (cmd) {
1351        case SIOCGMIIPHY:
1352                miidata->phy_id = phy_addr;
1353                break;
1354        case SIOCGMIIREG:
1355                miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1356                break;
1357        case SIOCSMIIREG:
1358                if (!capable(CAP_NET_ADMIN))
1359                        return -EPERM;
1360                mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1361                break;
1362        default:
1363                return -EOPNOTSUPP;
1364        }
1365        return 0;
1366}
1367
1368#define EEP_READ 0x0200
1369#define EEP_BUSY 0x8000
1370/* Read the EEPROM word */
1371/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1372static int read_eeprom(struct netdev_private *np, int eep_addr)
1373{
1374        void __iomem *ioaddr = np->eeprom_addr;
1375        int i = 1000;
1376
1377        dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1378        while (i-- > 0) {
1379                if (!(dr16(EepromCtrl) & EEP_BUSY))
1380                        return dr16(EepromData);
1381        }
1382        return 0;
1383}
1384
1385enum phy_ctrl_bits {
1386        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1387        MII_DUPLEX = 0x08,
1388};
1389
1390#define mii_delay() dr8(PhyCtrl)
1391static void
1392mii_sendbit (struct net_device *dev, u32 data)
1393{
1394        struct netdev_private *np = netdev_priv(dev);
1395        void __iomem *ioaddr = np->ioaddr;
1396
1397        data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1398        dw8(PhyCtrl, data);
1399        mii_delay ();
1400        dw8(PhyCtrl, data | MII_CLK);
1401        mii_delay ();
1402}
1403
1404static int
1405mii_getbit (struct net_device *dev)
1406{
1407        struct netdev_private *np = netdev_priv(dev);
1408        void __iomem *ioaddr = np->ioaddr;
1409        u8 data;
1410
1411        data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1412        dw8(PhyCtrl, data);
1413        mii_delay ();
1414        dw8(PhyCtrl, data | MII_CLK);
1415        mii_delay ();
1416        return (dr8(PhyCtrl) >> 1) & 1;
1417}
1418
1419static void
1420mii_send_bits (struct net_device *dev, u32 data, int len)
1421{
1422        int i;
1423
1424        for (i = len - 1; i >= 0; i--) {
1425                mii_sendbit (dev, data & (1 << i));
1426        }
1427}
1428
1429static int
1430mii_read (struct net_device *dev, int phy_addr, int reg_num)
1431{
1432        u32 cmd;
1433        int i;
1434        u32 retval = 0;
1435
1436        /* Preamble */
1437        mii_send_bits (dev, 0xffffffff, 32);
1438        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1439        /* ST,OP = 0110'b for read operation */
1440        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1441        mii_send_bits (dev, cmd, 14);
1442        /* Turnaround */
1443        if (mii_getbit (dev))
1444                goto err_out;
1445        /* Read data */
1446        for (i = 0; i < 16; i++) {
1447                retval |= mii_getbit (dev);
1448                retval <<= 1;
1449        }
1450        /* End cycle */
1451        mii_getbit (dev);
1452        return (retval >> 1) & 0xffff;
1453
1454      err_out:
1455        return 0;
1456}
1457static int
1458mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1459{
1460        u32 cmd;
1461
1462        /* Preamble */
1463        mii_send_bits (dev, 0xffffffff, 32);
1464        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1465        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1466        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1467        mii_send_bits (dev, cmd, 32);
1468        /* End cycle */
1469        mii_getbit (dev);
1470        return 0;
1471}
1472static int
1473mii_wait_link (struct net_device *dev, int wait)
1474{
1475        __u16 bmsr;
1476        int phy_addr;
1477        struct netdev_private *np;
1478
1479        np = netdev_priv(dev);
1480        phy_addr = np->phy_addr;
1481
1482        do {
1483                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1484                if (bmsr & BMSR_LSTATUS)
1485                        return 0;
1486                mdelay (1);
1487        } while (--wait > 0);
1488        return -1;
1489}
1490static int
1491mii_get_media (struct net_device *dev)
1492{
1493        __u16 negotiate;
1494        __u16 bmsr;
1495        __u16 mscr;
1496        __u16 mssr;
1497        int phy_addr;
1498        struct netdev_private *np;
1499
1500        np = netdev_priv(dev);
1501        phy_addr = np->phy_addr;
1502
1503        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1504        if (np->an_enable) {
1505                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1506                        /* Auto-Negotiation not completed */
1507                        return -1;
1508                }
1509                negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1510                        mii_read (dev, phy_addr, MII_LPA);
1511                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1512                mssr = mii_read (dev, phy_addr, MII_STAT1000);
1513                if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1514                        np->speed = 1000;
1515                        np->full_duplex = 1;
1516                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1517                } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1518                        np->speed = 1000;
1519                        np->full_duplex = 0;
1520                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1521                } else if (negotiate & ADVERTISE_100FULL) {
1522                        np->speed = 100;
1523                        np->full_duplex = 1;
1524                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1525                } else if (negotiate & ADVERTISE_100HALF) {
1526                        np->speed = 100;
1527                        np->full_duplex = 0;
1528                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1529                } else if (negotiate & ADVERTISE_10FULL) {
1530                        np->speed = 10;
1531                        np->full_duplex = 1;
1532                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1533                } else if (negotiate & ADVERTISE_10HALF) {
1534                        np->speed = 10;
1535                        np->full_duplex = 0;
1536                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1537                }
1538                if (negotiate & ADVERTISE_PAUSE_CAP) {
1539                        np->tx_flow &= 1;
1540                        np->rx_flow &= 1;
1541                } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1542                        np->tx_flow = 0;
1543                        np->rx_flow &= 1;
1544                }
1545                /* else tx_flow, rx_flow = user select  */
1546        } else {
1547                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1548                switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1549                case BMCR_SPEED1000:
1550                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1551                        break;
1552                case BMCR_SPEED100:
1553                        printk (KERN_INFO "Operating at 100 Mbps, ");
1554                        break;
1555                case 0:
1556                        printk (KERN_INFO "Operating at 10 Mbps, ");
1557                }
1558                if (bmcr & BMCR_FULLDPLX) {
1559                        printk (KERN_CONT "Full duplex\n");
1560                } else {
1561                        printk (KERN_CONT "Half duplex\n");
1562                }
1563        }
1564        if (np->tx_flow)
1565                printk(KERN_INFO "Enable Tx Flow Control\n");
1566        else
1567                printk(KERN_INFO "Disable Tx Flow Control\n");
1568        if (np->rx_flow)
1569                printk(KERN_INFO "Enable Rx Flow Control\n");
1570        else
1571                printk(KERN_INFO "Disable Rx Flow Control\n");
1572
1573        return 0;
1574}
1575
1576static int
1577mii_set_media (struct net_device *dev)
1578{
1579        __u16 pscr;
1580        __u16 bmcr;
1581        __u16 bmsr;
1582        __u16 anar;
1583        int phy_addr;
1584        struct netdev_private *np;
1585        np = netdev_priv(dev);
1586        phy_addr = np->phy_addr;
1587
1588        /* Does user set speed? */
1589        if (np->an_enable) {
1590                /* Advertise capabilities */
1591                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1592                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1593                        ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1594                          ADVERTISE_100HALF | ADVERTISE_10HALF |
1595                          ADVERTISE_100BASE4);
1596                if (bmsr & BMSR_100FULL)
1597                        anar |= ADVERTISE_100FULL;
1598                if (bmsr & BMSR_100HALF)
1599                        anar |= ADVERTISE_100HALF;
1600                if (bmsr & BMSR_100BASE4)
1601                        anar |= ADVERTISE_100BASE4;
1602                if (bmsr & BMSR_10FULL)
1603                        anar |= ADVERTISE_10FULL;
1604                if (bmsr & BMSR_10HALF)
1605                        anar |= ADVERTISE_10HALF;
1606                anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1607                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1608
1609                /* Enable Auto crossover */
1610                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1611                pscr |= 3 << 5; /* 11'b */
1612                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1613
1614                /* Soft reset PHY */
1615                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1616                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1617                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1618                mdelay(1);
1619        } else {
1620                /* Force speed setting */
1621                /* 1) Disable Auto crossover */
1622                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1623                pscr &= ~(3 << 5);
1624                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1625
1626                /* 2) PHY Reset */
1627                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1628                bmcr |= BMCR_RESET;
1629                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630
1631                /* 3) Power Down */
1632                bmcr = 0x1940;  /* must be 0x1940 */
1633                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1634                mdelay (100);   /* wait a certain time */
1635
1636                /* 4) Advertise nothing */
1637                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1638
1639                /* 5) Set media and Power Up */
1640                bmcr = BMCR_PDOWN;
1641                if (np->speed == 100) {
1642                        bmcr |= BMCR_SPEED100;
1643                        printk (KERN_INFO "Manual 100 Mbps, ");
1644                } else if (np->speed == 10) {
1645                        printk (KERN_INFO "Manual 10 Mbps, ");
1646                }
1647                if (np->full_duplex) {
1648                        bmcr |= BMCR_FULLDPLX;
1649                        printk (KERN_CONT "Full duplex\n");
1650                } else {
1651                        printk (KERN_CONT "Half duplex\n");
1652                }
1653#if 0
1654                /* Set 1000BaseT Master/Slave setting */
1655                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1656                mscr |= MII_MSCR_CFG_ENABLE;
1657                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1658#endif
1659                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660                mdelay(10);
1661        }
1662        return 0;
1663}
1664
1665static int
1666mii_get_media_pcs (struct net_device *dev)
1667{
1668        __u16 negotiate;
1669        __u16 bmsr;
1670        int phy_addr;
1671        struct netdev_private *np;
1672
1673        np = netdev_priv(dev);
1674        phy_addr = np->phy_addr;
1675
1676        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1677        if (np->an_enable) {
1678                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1679                        /* Auto-Negotiation not completed */
1680                        return -1;
1681                }
1682                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1683                        mii_read (dev, phy_addr, PCS_ANLPAR);
1684                np->speed = 1000;
1685                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1686                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1687                        np->full_duplex = 1;
1688                } else {
1689                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1690                        np->full_duplex = 0;
1691                }
1692                if (negotiate & PCS_ANAR_PAUSE) {
1693                        np->tx_flow &= 1;
1694                        np->rx_flow &= 1;
1695                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1696                        np->tx_flow = 0;
1697                        np->rx_flow &= 1;
1698                }
1699                /* else tx_flow, rx_flow = user select  */
1700        } else {
1701                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1702                printk (KERN_INFO "Operating at 1000 Mbps, ");
1703                if (bmcr & BMCR_FULLDPLX) {
1704                        printk (KERN_CONT "Full duplex\n");
1705                } else {
1706                        printk (KERN_CONT "Half duplex\n");
1707                }
1708        }
1709        if (np->tx_flow)
1710                printk(KERN_INFO "Enable Tx Flow Control\n");
1711        else
1712                printk(KERN_INFO "Disable Tx Flow Control\n");
1713        if (np->rx_flow)
1714                printk(KERN_INFO "Enable Rx Flow Control\n");
1715        else
1716                printk(KERN_INFO "Disable Rx Flow Control\n");
1717
1718        return 0;
1719}
1720
1721static int
1722mii_set_media_pcs (struct net_device *dev)
1723{
1724        __u16 bmcr;
1725        __u16 esr;
1726        __u16 anar;
1727        int phy_addr;
1728        struct netdev_private *np;
1729        np = netdev_priv(dev);
1730        phy_addr = np->phy_addr;
1731
1732        /* Auto-Negotiation? */
1733        if (np->an_enable) {
1734                /* Advertise capabilities */
1735                esr = mii_read (dev, phy_addr, PCS_ESR);
1736                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1737                        ~PCS_ANAR_HALF_DUPLEX &
1738                        ~PCS_ANAR_FULL_DUPLEX;
1739                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1740                        anar |= PCS_ANAR_HALF_DUPLEX;
1741                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1742                        anar |= PCS_ANAR_FULL_DUPLEX;
1743                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1744                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1745
1746                /* Soft reset PHY */
1747                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1748                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1749                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1750                mdelay(1);
1751        } else {
1752                /* Force speed setting */
1753                /* PHY Reset */
1754                bmcr = BMCR_RESET;
1755                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1756                mdelay(10);
1757                if (np->full_duplex) {
1758                        bmcr = BMCR_FULLDPLX;
1759                        printk (KERN_INFO "Manual full duplex\n");
1760                } else {
1761                        bmcr = 0;
1762                        printk (KERN_INFO "Manual half duplex\n");
1763                }
1764                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1765                mdelay(10);
1766
1767                /*  Advertise nothing */
1768                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1769        }
1770        return 0;
1771}
1772
1773
1774static int
1775rio_close (struct net_device *dev)
1776{
1777        struct netdev_private *np = netdev_priv(dev);
1778        struct pci_dev *pdev = np->pdev;
1779
1780        netif_stop_queue (dev);
1781
1782        rio_hw_stop(dev);
1783
1784        free_irq(pdev->irq, dev);
1785        del_timer_sync (&np->timer);
1786
1787        free_list(dev);
1788
1789        return 0;
1790}
1791
1792static void
1793rio_remove1 (struct pci_dev *pdev)
1794{
1795        struct net_device *dev = pci_get_drvdata (pdev);
1796
1797        if (dev) {
1798                struct netdev_private *np = netdev_priv(dev);
1799
1800                unregister_netdev (dev);
1801                dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1802                                  np->rx_ring_dma);
1803                dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1804                                  np->tx_ring_dma);
1805#ifdef MEM_MAPPING
1806                pci_iounmap(pdev, np->ioaddr);
1807#endif
1808                pci_iounmap(pdev, np->eeprom_addr);
1809                free_netdev (dev);
1810                pci_release_regions (pdev);
1811                pci_disable_device (pdev);
1812        }
1813}
1814
1815#ifdef CONFIG_PM_SLEEP
1816static int rio_suspend(struct device *device)
1817{
1818        struct net_device *dev = dev_get_drvdata(device);
1819        struct netdev_private *np = netdev_priv(dev);
1820
1821        if (!netif_running(dev))
1822                return 0;
1823
1824        netif_device_detach(dev);
1825        del_timer_sync(&np->timer);
1826        rio_hw_stop(dev);
1827
1828        return 0;
1829}
1830
1831static int rio_resume(struct device *device)
1832{
1833        struct net_device *dev = dev_get_drvdata(device);
1834        struct netdev_private *np = netdev_priv(dev);
1835
1836        if (!netif_running(dev))
1837                return 0;
1838
1839        rio_reset_ring(np);
1840        rio_hw_init(dev);
1841        np->timer.expires = jiffies + 1 * HZ;
1842        add_timer(&np->timer);
1843        netif_device_attach(dev);
1844        dl2k_enable_int(np);
1845
1846        return 0;
1847}
1848
1849static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1850#define RIO_PM_OPS    (&rio_pm_ops)
1851
1852#else
1853
1854#define RIO_PM_OPS      NULL
1855
1856#endif /* CONFIG_PM_SLEEP */
1857
1858static struct pci_driver rio_driver = {
1859        .name           = "dl2k",
1860        .id_table       = rio_pci_tbl,
1861        .probe          = rio_probe1,
1862        .remove         = rio_remove1,
1863        .driver.pm      = RIO_PM_OPS,
1864};
1865
1866module_pci_driver(rio_driver);
1867
1868/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1869