linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_cmd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2// Copyright (c) 2016-2017 Hisilicon Limited.
   3
   4#include <linux/device.h>
   5#include <linux/dma-direction.h>
   6#include <linux/dma-mapping.h>
   7#include <linux/err.h>
   8#include <linux/pci.h>
   9#include <linux/slab.h>
  10#include "hclgevf_cmd.h"
  11#include "hclgevf_main.h"
  12#include "hnae3.h"
  13
  14#define cmq_ring_to_dev(ring)   (&(ring)->dev->pdev->dev)
  15
  16static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
  17{
  18        int ntc = ring->next_to_clean;
  19        int ntu = ring->next_to_use;
  20        int used;
  21
  22        used = (ntu - ntc + ring->desc_num) % ring->desc_num;
  23
  24        return ring->desc_num - used - 1;
  25}
  26
  27static int hclgevf_is_valid_csq_clean_head(struct hclgevf_cmq_ring *ring,
  28                                           int head)
  29{
  30        int ntu = ring->next_to_use;
  31        int ntc = ring->next_to_clean;
  32
  33        if (ntu > ntc)
  34                return head >= ntc && head <= ntu;
  35
  36        return head >= ntc || head <= ntu;
  37}
  38
  39static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
  40{
  41        struct hclgevf_dev *hdev = container_of(hw, struct hclgevf_dev, hw);
  42        struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
  43        int clean;
  44        u32 head;
  45
  46        head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
  47        rmb(); /* Make sure head is ready before touch any data */
  48
  49        if (!hclgevf_is_valid_csq_clean_head(csq, head)) {
  50                dev_warn(&hdev->pdev->dev, "wrong cmd head (%u, %d-%d)\n", head,
  51                         csq->next_to_use, csq->next_to_clean);
  52                dev_warn(&hdev->pdev->dev,
  53                         "Disabling any further commands to IMP firmware\n");
  54                set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
  55                return -EIO;
  56        }
  57
  58        clean = (head - csq->next_to_clean + csq->desc_num) % csq->desc_num;
  59        csq->next_to_clean = head;
  60        return clean;
  61}
  62
  63static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
  64{
  65        u32 head;
  66
  67        head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
  68
  69        return head == hw->cmq.csq.next_to_use;
  70}
  71
  72static bool hclgevf_is_special_opcode(u16 opcode)
  73{
  74        const u16 spec_opcode[] = {0x30, 0x31, 0x32};
  75        int i;
  76
  77        for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
  78                if (spec_opcode[i] == opcode)
  79                        return true;
  80        }
  81
  82        return false;
  83}
  84
  85static void hclgevf_cmd_config_regs(struct hclgevf_cmq_ring *ring)
  86{
  87        struct hclgevf_dev *hdev = ring->dev;
  88        struct hclgevf_hw *hw = &hdev->hw;
  89        u32 reg_val;
  90
  91        if (ring->flag == HCLGEVF_TYPE_CSQ) {
  92                reg_val = lower_32_bits(ring->desc_dma_addr);
  93                hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
  94                reg_val = upper_32_bits(ring->desc_dma_addr);
  95                hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
  96
  97                reg_val = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
  98                reg_val &= HCLGEVF_NIC_SW_RST_RDY;
  99                reg_val |= (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
 100                hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
 101
 102                hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
 103                hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
 104        } else {
 105                reg_val = lower_32_bits(ring->desc_dma_addr);
 106                hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
 107                reg_val = upper_32_bits(ring->desc_dma_addr);
 108                hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
 109
 110                reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
 111                hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
 112
 113                hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
 114                hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
 115        }
 116}
 117
 118static void hclgevf_cmd_init_regs(struct hclgevf_hw *hw)
 119{
 120        hclgevf_cmd_config_regs(&hw->cmq.csq);
 121        hclgevf_cmd_config_regs(&hw->cmq.crq);
 122}
 123
 124static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
 125{
 126        int size = ring->desc_num * sizeof(struct hclgevf_desc);
 127
 128        ring->desc = dma_alloc_coherent(cmq_ring_to_dev(ring), size,
 129                                        &ring->desc_dma_addr, GFP_KERNEL);
 130        if (!ring->desc)
 131                return -ENOMEM;
 132
 133        return 0;
 134}
 135
 136static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
 137{
 138        int size  = ring->desc_num * sizeof(struct hclgevf_desc);
 139
 140        if (ring->desc) {
 141                dma_free_coherent(cmq_ring_to_dev(ring), size,
 142                                  ring->desc, ring->desc_dma_addr);
 143                ring->desc = NULL;
 144        }
 145}
 146
 147static int hclgevf_alloc_cmd_queue(struct hclgevf_dev *hdev, int ring_type)
 148{
 149        struct hclgevf_hw *hw = &hdev->hw;
 150        struct hclgevf_cmq_ring *ring =
 151                (ring_type == HCLGEVF_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
 152        int ret;
 153
 154        ring->dev = hdev;
 155        ring->flag = ring_type;
 156
 157        /* allocate CSQ/CRQ descriptor */
 158        ret = hclgevf_alloc_cmd_desc(ring);
 159        if (ret)
 160                dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
 161                        (ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
 162
 163        return ret;
 164}
 165
 166void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
 167                                  enum hclgevf_opcode_type opcode, bool is_read)
 168{
 169        memset(desc, 0, sizeof(struct hclgevf_desc));
 170        desc->opcode = cpu_to_le16(opcode);
 171        desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
 172                                 HCLGEVF_CMD_FLAG_IN);
 173        if (is_read)
 174                desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
 175        else
 176                desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
 177}
 178
 179struct vf_errcode {
 180        u32 imp_errcode;
 181        int common_errno;
 182};
 183
 184static void hclgevf_cmd_copy_desc(struct hclgevf_hw *hw,
 185                                  struct hclgevf_desc *desc, int num)
 186{
 187        struct hclgevf_desc *desc_to_use;
 188        int handle = 0;
 189
 190        while (handle < num) {
 191                desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
 192                *desc_to_use = desc[handle];
 193                (hw->cmq.csq.next_to_use)++;
 194                if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
 195                        hw->cmq.csq.next_to_use = 0;
 196                handle++;
 197        }
 198}
 199
 200static int hclgevf_cmd_convert_err_code(u16 desc_ret)
 201{
 202        struct vf_errcode hclgevf_cmd_errcode[] = {
 203                {HCLGEVF_CMD_EXEC_SUCCESS, 0},
 204                {HCLGEVF_CMD_NO_AUTH, -EPERM},
 205                {HCLGEVF_CMD_NOT_SUPPORTED, -EOPNOTSUPP},
 206                {HCLGEVF_CMD_QUEUE_FULL, -EXFULL},
 207                {HCLGEVF_CMD_NEXT_ERR, -ENOSR},
 208                {HCLGEVF_CMD_UNEXE_ERR, -ENOTBLK},
 209                {HCLGEVF_CMD_PARA_ERR, -EINVAL},
 210                {HCLGEVF_CMD_RESULT_ERR, -ERANGE},
 211                {HCLGEVF_CMD_TIMEOUT, -ETIME},
 212                {HCLGEVF_CMD_HILINK_ERR, -ENOLINK},
 213                {HCLGEVF_CMD_QUEUE_ILLEGAL, -ENXIO},
 214                {HCLGEVF_CMD_INVALID, -EBADR},
 215        };
 216        u32 errcode_count = ARRAY_SIZE(hclgevf_cmd_errcode);
 217        u32 i;
 218
 219        for (i = 0; i < errcode_count; i++)
 220                if (hclgevf_cmd_errcode[i].imp_errcode == desc_ret)
 221                        return hclgevf_cmd_errcode[i].common_errno;
 222
 223        return -EIO;
 224}
 225
 226static int hclgevf_cmd_check_retval(struct hclgevf_hw *hw,
 227                                    struct hclgevf_desc *desc, int num, int ntc)
 228{
 229        u16 opcode, desc_ret;
 230        int handle;
 231
 232        opcode = le16_to_cpu(desc[0].opcode);
 233        for (handle = 0; handle < num; handle++) {
 234                /* Get the result of hardware write back */
 235                desc[handle] = hw->cmq.csq.desc[ntc];
 236                ntc++;
 237                if (ntc == hw->cmq.csq.desc_num)
 238                        ntc = 0;
 239        }
 240        if (likely(!hclgevf_is_special_opcode(opcode)))
 241                desc_ret = le16_to_cpu(desc[num - 1].retval);
 242        else
 243                desc_ret = le16_to_cpu(desc[0].retval);
 244        hw->cmq.last_status = desc_ret;
 245
 246        return hclgevf_cmd_convert_err_code(desc_ret);
 247}
 248
 249static int hclgevf_cmd_check_result(struct hclgevf_hw *hw,
 250                                    struct hclgevf_desc *desc, int num, int ntc)
 251{
 252        struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
 253        bool is_completed = false;
 254        u32 timeout = 0;
 255        int handle, ret;
 256
 257        /* If the command is sync, wait for the firmware to write back,
 258         * if multi descriptors to be sent, use the first one to check
 259         */
 260        if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
 261                do {
 262                        if (hclgevf_cmd_csq_done(hw)) {
 263                                is_completed = true;
 264                                break;
 265                        }
 266                        udelay(1);
 267                        timeout++;
 268                } while (timeout < hw->cmq.tx_timeout);
 269        }
 270
 271        if (!is_completed)
 272                ret = -EBADE;
 273        else
 274                ret = hclgevf_cmd_check_retval(hw, desc, num, ntc);
 275
 276        /* Clean the command send queue */
 277        handle = hclgevf_cmd_csq_clean(hw);
 278        if (handle < 0)
 279                ret = handle;
 280        else if (handle != num)
 281                dev_warn(&hdev->pdev->dev,
 282                         "cleaned %d, need to clean %d\n", handle, num);
 283        return ret;
 284}
 285
 286/* hclgevf_cmd_send - send command to command queue
 287 * @hw: pointer to the hw struct
 288 * @desc: prefilled descriptor for describing the command
 289 * @num : the number of descriptors to be sent
 290 *
 291 * This is the main send command for command queue, it
 292 * sends the queue, cleans the queue, etc
 293 */
 294int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
 295{
 296        struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
 297        struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
 298        int ret;
 299        int ntc;
 300
 301        spin_lock_bh(&hw->cmq.csq.lock);
 302
 303        if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) {
 304                spin_unlock_bh(&hw->cmq.csq.lock);
 305                return -EBUSY;
 306        }
 307
 308        if (num > hclgevf_ring_space(&hw->cmq.csq)) {
 309                /* If CMDQ ring is full, SW HEAD and HW HEAD may be different,
 310                 * need update the SW HEAD pointer csq->next_to_clean
 311                 */
 312                csq->next_to_clean = hclgevf_read_dev(hw,
 313                                                      HCLGEVF_NIC_CSQ_HEAD_REG);
 314                spin_unlock_bh(&hw->cmq.csq.lock);
 315                return -EBUSY;
 316        }
 317
 318        /* Record the location of desc in the ring for this time
 319         * which will be use for hardware to write back
 320         */
 321        ntc = hw->cmq.csq.next_to_use;
 322
 323        hclgevf_cmd_copy_desc(hw, desc, num);
 324
 325        /* Write to hardware */
 326        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
 327                          hw->cmq.csq.next_to_use);
 328
 329        ret = hclgevf_cmd_check_result(hw, desc, num, ntc);
 330
 331        spin_unlock_bh(&hw->cmq.csq.lock);
 332
 333        return ret;
 334}
 335
 336static void hclgevf_set_default_capability(struct hclgevf_dev *hdev)
 337{
 338        struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
 339
 340        set_bit(HNAE3_DEV_SUPPORT_FD_B, ae_dev->caps);
 341        set_bit(HNAE3_DEV_SUPPORT_GRO_B, ae_dev->caps);
 342        set_bit(HNAE3_DEV_SUPPORT_FEC_B, ae_dev->caps);
 343}
 344
 345static const struct hclgevf_caps_bit_map hclgevf_cmd_caps_bit_map0[] = {
 346        {HCLGEVF_CAP_UDP_GSO_B, HNAE3_DEV_SUPPORT_UDP_GSO_B},
 347        {HCLGEVF_CAP_INT_QL_B, HNAE3_DEV_SUPPORT_INT_QL_B},
 348        {HCLGEVF_CAP_TQP_TXRX_INDEP_B, HNAE3_DEV_SUPPORT_TQP_TXRX_INDEP_B},
 349        {HCLGEVF_CAP_HW_TX_CSUM_B, HNAE3_DEV_SUPPORT_HW_TX_CSUM_B},
 350        {HCLGEVF_CAP_UDP_TUNNEL_CSUM_B, HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B},
 351        {HCLGEVF_CAP_RXD_ADV_LAYOUT_B, HNAE3_DEV_SUPPORT_RXD_ADV_LAYOUT_B},
 352};
 353
 354static void hclgevf_parse_capability(struct hclgevf_dev *hdev,
 355                                     struct hclgevf_query_version_cmd *cmd)
 356{
 357        struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
 358        u32 caps, i;
 359
 360        caps = __le32_to_cpu(cmd->caps[0]);
 361        for (i = 0; i < ARRAY_SIZE(hclgevf_cmd_caps_bit_map0); i++)
 362                if (hnae3_get_bit(caps, hclgevf_cmd_caps_bit_map0[i].imp_bit))
 363                        set_bit(hclgevf_cmd_caps_bit_map0[i].local_bit,
 364                                ae_dev->caps);
 365}
 366
 367static __le32 hclgevf_build_api_caps(void)
 368{
 369        u32 api_caps = 0;
 370
 371        hnae3_set_bit(api_caps, HCLGEVF_API_CAP_FLEX_RSS_TBL_B, 1);
 372
 373        return cpu_to_le32(api_caps);
 374}
 375
 376static int hclgevf_cmd_query_version_and_capability(struct hclgevf_dev *hdev)
 377{
 378        struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
 379        struct hclgevf_query_version_cmd *resp;
 380        struct hclgevf_desc desc;
 381        int status;
 382
 383        resp = (struct hclgevf_query_version_cmd *)desc.data;
 384
 385        hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
 386        resp->api_caps = hclgevf_build_api_caps();
 387        status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
 388        if (status)
 389                return status;
 390
 391        hdev->fw_version = le32_to_cpu(resp->firmware);
 392
 393        ae_dev->dev_version = le32_to_cpu(resp->hardware) <<
 394                                 HNAE3_PCI_REVISION_BIT_SIZE;
 395        ae_dev->dev_version |= hdev->pdev->revision;
 396
 397        if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
 398                hclgevf_set_default_capability(hdev);
 399
 400        hclgevf_parse_capability(hdev, resp);
 401
 402        return status;
 403}
 404
 405int hclgevf_cmd_queue_init(struct hclgevf_dev *hdev)
 406{
 407        int ret;
 408
 409        /* Setup the lock for command queue */
 410        spin_lock_init(&hdev->hw.cmq.csq.lock);
 411        spin_lock_init(&hdev->hw.cmq.crq.lock);
 412
 413        hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
 414        hdev->hw.cmq.csq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
 415        hdev->hw.cmq.crq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
 416
 417        ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CSQ);
 418        if (ret) {
 419                dev_err(&hdev->pdev->dev,
 420                        "CSQ ring setup error %d\n", ret);
 421                return ret;
 422        }
 423
 424        ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CRQ);
 425        if (ret) {
 426                dev_err(&hdev->pdev->dev,
 427                        "CRQ ring setup error %d\n", ret);
 428                goto err_csq;
 429        }
 430
 431        return 0;
 432err_csq:
 433        hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
 434        return ret;
 435}
 436
 437int hclgevf_cmd_init(struct hclgevf_dev *hdev)
 438{
 439        int ret;
 440
 441        spin_lock_bh(&hdev->hw.cmq.csq.lock);
 442        spin_lock(&hdev->hw.cmq.crq.lock);
 443
 444        /* initialize the pointers of async rx queue of mailbox */
 445        hdev->arq.hdev = hdev;
 446        hdev->arq.head = 0;
 447        hdev->arq.tail = 0;
 448        atomic_set(&hdev->arq.count, 0);
 449        hdev->hw.cmq.csq.next_to_clean = 0;
 450        hdev->hw.cmq.csq.next_to_use = 0;
 451        hdev->hw.cmq.crq.next_to_clean = 0;
 452        hdev->hw.cmq.crq.next_to_use = 0;
 453
 454        hclgevf_cmd_init_regs(&hdev->hw);
 455
 456        spin_unlock(&hdev->hw.cmq.crq.lock);
 457        spin_unlock_bh(&hdev->hw.cmq.csq.lock);
 458
 459        clear_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
 460
 461        /* Check if there is new reset pending, because the higher level
 462         * reset may happen when lower level reset is being processed.
 463         */
 464        if (hclgevf_is_reset_pending(hdev)) {
 465                ret = -EBUSY;
 466                goto err_cmd_init;
 467        }
 468
 469        /* get version and device capabilities */
 470        ret = hclgevf_cmd_query_version_and_capability(hdev);
 471        if (ret) {
 472                dev_err(&hdev->pdev->dev,
 473                        "failed to query version and capabilities, ret = %d\n", ret);
 474                goto err_cmd_init;
 475        }
 476
 477        dev_info(&hdev->pdev->dev, "The firmware version is %lu.%lu.%lu.%lu\n",
 478                 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE3_MASK,
 479                                 HNAE3_FW_VERSION_BYTE3_SHIFT),
 480                 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE2_MASK,
 481                                 HNAE3_FW_VERSION_BYTE2_SHIFT),
 482                 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE1_MASK,
 483                                 HNAE3_FW_VERSION_BYTE1_SHIFT),
 484                 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE0_MASK,
 485                                 HNAE3_FW_VERSION_BYTE0_SHIFT));
 486
 487        return 0;
 488
 489err_cmd_init:
 490        set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
 491
 492        return ret;
 493}
 494
 495static void hclgevf_cmd_uninit_regs(struct hclgevf_hw *hw)
 496{
 497        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, 0);
 498        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, 0);
 499        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 0);
 500        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
 501        hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
 502        hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, 0);
 503        hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, 0);
 504        hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, 0);
 505        hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
 506        hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
 507}
 508
 509void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
 510{
 511        set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
 512        /* wait to ensure that the firmware completes the possible left
 513         * over commands.
 514         */
 515        msleep(HCLGEVF_CMDQ_CLEAR_WAIT_TIME);
 516        spin_lock_bh(&hdev->hw.cmq.csq.lock);
 517        spin_lock(&hdev->hw.cmq.crq.lock);
 518        hclgevf_cmd_uninit_regs(&hdev->hw);
 519        spin_unlock(&hdev->hw.cmq.crq.lock);
 520        spin_unlock_bh(&hdev->hw.cmq.csq.lock);
 521
 522        hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
 523        hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
 524}
 525