linux/drivers/net/ethernet/intel/e100.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4/*
   5 *      e100.c: Intel(R) PRO/100 ethernet driver
   6 *
   7 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8 *      original e100 driver, but better described as a munging of
   9 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10 *
  11 *      References:
  12 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13 *              Open Source Software Developers Manual,
  14 *              http://sourceforge.net/projects/e1000
  15 *
  16 *
  17 *                            Theory of Operation
  18 *
  19 *      I.   General
  20 *
  21 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22 *      controller family, which includes the 82557, 82558, 82559, 82550,
  23 *      82551, and 82562 devices.  82558 and greater controllers
  24 *      integrate the Intel 82555 PHY.  The controllers are used in
  25 *      server and client network interface cards, as well as in
  26 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27 *      configurations.  8255x supports a 32-bit linear addressing
  28 *      mode and operates at 33Mhz PCI clock rate.
  29 *
  30 *      II.  Driver Operation
  31 *
  32 *      Memory-mapped mode is used exclusively to access the device's
  33 *      shared-memory structure, the Control/Status Registers (CSR). All
  34 *      setup, configuration, and control of the device, including queuing
  35 *      of Tx, Rx, and configuration commands is through the CSR.
  36 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  37 *      protects the shared Command Block List (CBL).
  38 *
  39 *      8255x is highly MII-compliant and all access to the PHY go
  40 *      through the Management Data Interface (MDI).  Consequently, the
  41 *      driver leverages the mii.c library shared with other MII-compliant
  42 *      devices.
  43 *
  44 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  45 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  46 *      archs are supported.
  47 *
  48 *      III. Transmit
  49 *
  50 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  52 *      memory structure.  A TCB marked with the suspend-bit indicates
  53 *      the end of the ring.  The last TCB processed suspends the
  54 *      controller, and the controller can be restarted by issue a CU
  55 *      resume command to continue from the suspend point, or a CU start
  56 *      command to start at a given position in the ring.
  57 *
  58 *      Non-Tx commands (config, multicast setup, etc) are linked
  59 *      into the CBL ring along with Tx commands.  The common structure
  60 *      used for both Tx and non-Tx commands is the Command Block (CB).
  61 *
  62 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63 *      is the next CB to check for completion; cb_to_send is the first
  64 *      CB to start on in case of a previous failure to resume.  CB clean
  65 *      up happens in interrupt context in response to a CU interrupt.
  66 *      cbs_avail keeps track of number of free CB resources available.
  67 *
  68 *      Hardware padding of short packets to minimum packet size is
  69 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  70 *      with 00h.
  71 *
  72 *      IV.  Receive
  73 *
  74 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
  76 *      memory structure.  Rx skbs are allocated to contain both the RFD
  77 *      and the data buffer, but the RFD is pulled off before the skb is
  78 *      indicated.  The data buffer is aligned such that encapsulated
  79 *      protocol headers are u32-aligned.  Since the RFD is part of the
  80 *      mapped shared memory, and completion status is contained within
  81 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82 *      view from software and hardware.
  83 *
  84 *      In order to keep updates to the RFD link field from colliding with
  85 *      hardware writes to mark packets complete, we use the feature that
  86 *      hardware will not write to a size 0 descriptor and mark the previous
  87 *      packet as end-of-list (EL).   After updating the link, we remove EL
  88 *      and only then restore the size such that hardware may use the
  89 *      previous-to-end RFD.
  90 *
  91 *      Under typical operation, the  receive unit (RU) is start once,
  92 *      and the controller happily fills RFDs as frames arrive.  If
  93 *      replacement RFDs cannot be allocated, or the RU goes non-active,
  94 *      the RU must be restarted.  Frame arrival generates an interrupt,
  95 *      and Rx indication and re-allocation happen in the same context,
  96 *      therefore no locking is required.  A software-generated interrupt
  97 *      is generated from the watchdog to recover from a failed allocation
  98 *      scenario where all Rx resources have been indicated and none re-
  99 *      placed.
 100 *
 101 *      V.   Miscellaneous
 102 *
 103 *      VLAN offloading of tagging, stripping and filtering is not
 104 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 105 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 106 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107 *      not supported (hardware limitation).
 108 *
 109 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110 *
 111 *      Thanks to JC (jchapman@katalix.com) for helping with
 112 *      testing/troubleshooting the development driver.
 113 *
 114 *      TODO:
 115 *      o several entry points race with dev->close
 116 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 117 *
 118 *      FIXES:
 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120 *      - Stratus87247: protect MDI control register manipulations
 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123 */
 124
 125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126
 127#include <linux/hardirq.h>
 128#include <linux/interrupt.h>
 129#include <linux/module.h>
 130#include <linux/moduleparam.h>
 131#include <linux/kernel.h>
 132#include <linux/types.h>
 133#include <linux/sched.h>
 134#include <linux/slab.h>
 135#include <linux/delay.h>
 136#include <linux/init.h>
 137#include <linux/pci.h>
 138#include <linux/dma-mapping.h>
 139#include <linux/dmapool.h>
 140#include <linux/netdevice.h>
 141#include <linux/etherdevice.h>
 142#include <linux/mii.h>
 143#include <linux/if_vlan.h>
 144#include <linux/skbuff.h>
 145#include <linux/ethtool.h>
 146#include <linux/string.h>
 147#include <linux/firmware.h>
 148#include <linux/rtnetlink.h>
 149#include <asm/unaligned.h>
 150
 151
 152#define DRV_NAME                "e100"
 153#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 154#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 155
 156#define E100_WATCHDOG_PERIOD    (2 * HZ)
 157#define E100_NAPI_WEIGHT        16
 158
 159#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 160#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 161#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 162
 163MODULE_DESCRIPTION(DRV_DESCRIPTION);
 164MODULE_AUTHOR(DRV_COPYRIGHT);
 165MODULE_LICENSE("GPL v2");
 166MODULE_FIRMWARE(FIRMWARE_D101M);
 167MODULE_FIRMWARE(FIRMWARE_D101S);
 168MODULE_FIRMWARE(FIRMWARE_D102E);
 169
 170static int debug = 3;
 171static int eeprom_bad_csum_allow = 0;
 172static int use_io = 0;
 173module_param(debug, int, 0);
 174module_param(eeprom_bad_csum_allow, int, 0);
 175module_param(use_io, int, 0);
 176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 179
 180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 181        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 182        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 183static const struct pci_device_id e100_id_table[] = {
 184        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 185        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 186        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 187        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 188        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 189        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 190        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 191        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 192        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 193        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 194        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 195        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 196        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 197        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 198        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 199        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 200        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 201        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 202        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 203        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 204        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 205        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 206        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 207        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 208        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 209        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 210        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 211        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 212        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 213        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 219        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 220        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 221        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 222        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 223        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 224        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 225        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 226        { 0, }
 227};
 228MODULE_DEVICE_TABLE(pci, e100_id_table);
 229
 230enum mac {
 231        mac_82557_D100_A  = 0,
 232        mac_82557_D100_B  = 1,
 233        mac_82557_D100_C  = 2,
 234        mac_82558_D101_A4 = 4,
 235        mac_82558_D101_B0 = 5,
 236        mac_82559_D101M   = 8,
 237        mac_82559_D101S   = 9,
 238        mac_82550_D102    = 12,
 239        mac_82550_D102_C  = 13,
 240        mac_82551_E       = 14,
 241        mac_82551_F       = 15,
 242        mac_82551_10      = 16,
 243        mac_unknown       = 0xFF,
 244};
 245
 246enum phy {
 247        phy_100a     = 0x000003E0,
 248        phy_100c     = 0x035002A8,
 249        phy_82555_tx = 0x015002A8,
 250        phy_nsc_tx   = 0x5C002000,
 251        phy_82562_et = 0x033002A8,
 252        phy_82562_em = 0x032002A8,
 253        phy_82562_ek = 0x031002A8,
 254        phy_82562_eh = 0x017002A8,
 255        phy_82552_v  = 0xd061004d,
 256        phy_unknown  = 0xFFFFFFFF,
 257};
 258
 259/* CSR (Control/Status Registers) */
 260struct csr {
 261        struct {
 262                u8 status;
 263                u8 stat_ack;
 264                u8 cmd_lo;
 265                u8 cmd_hi;
 266                u32 gen_ptr;
 267        } scb;
 268        u32 port;
 269        u16 flash_ctrl;
 270        u8 eeprom_ctrl_lo;
 271        u8 eeprom_ctrl_hi;
 272        u32 mdi_ctrl;
 273        u32 rx_dma_count;
 274};
 275
 276enum scb_status {
 277        rus_no_res       = 0x08,
 278        rus_ready        = 0x10,
 279        rus_mask         = 0x3C,
 280};
 281
 282enum ru_state  {
 283        RU_SUSPENDED = 0,
 284        RU_RUNNING       = 1,
 285        RU_UNINITIALIZED = -1,
 286};
 287
 288enum scb_stat_ack {
 289        stat_ack_not_ours    = 0x00,
 290        stat_ack_sw_gen      = 0x04,
 291        stat_ack_rnr         = 0x10,
 292        stat_ack_cu_idle     = 0x20,
 293        stat_ack_frame_rx    = 0x40,
 294        stat_ack_cu_cmd_done = 0x80,
 295        stat_ack_not_present = 0xFF,
 296        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 297        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 298};
 299
 300enum scb_cmd_hi {
 301        irq_mask_none = 0x00,
 302        irq_mask_all  = 0x01,
 303        irq_sw_gen    = 0x02,
 304};
 305
 306enum scb_cmd_lo {
 307        cuc_nop        = 0x00,
 308        ruc_start      = 0x01,
 309        ruc_load_base  = 0x06,
 310        cuc_start      = 0x10,
 311        cuc_resume     = 0x20,
 312        cuc_dump_addr  = 0x40,
 313        cuc_dump_stats = 0x50,
 314        cuc_load_base  = 0x60,
 315        cuc_dump_reset = 0x70,
 316};
 317
 318enum cuc_dump {
 319        cuc_dump_complete       = 0x0000A005,
 320        cuc_dump_reset_complete = 0x0000A007,
 321};
 322
 323enum port {
 324        software_reset  = 0x0000,
 325        selftest        = 0x0001,
 326        selective_reset = 0x0002,
 327};
 328
 329enum eeprom_ctrl_lo {
 330        eesk = 0x01,
 331        eecs = 0x02,
 332        eedi = 0x04,
 333        eedo = 0x08,
 334};
 335
 336enum mdi_ctrl {
 337        mdi_write = 0x04000000,
 338        mdi_read  = 0x08000000,
 339        mdi_ready = 0x10000000,
 340};
 341
 342enum eeprom_op {
 343        op_write = 0x05,
 344        op_read  = 0x06,
 345        op_ewds  = 0x10,
 346        op_ewen  = 0x13,
 347};
 348
 349enum eeprom_offsets {
 350        eeprom_cnfg_mdix  = 0x03,
 351        eeprom_phy_iface  = 0x06,
 352        eeprom_id         = 0x0A,
 353        eeprom_config_asf = 0x0D,
 354        eeprom_smbus_addr = 0x90,
 355};
 356
 357enum eeprom_cnfg_mdix {
 358        eeprom_mdix_enabled = 0x0080,
 359};
 360
 361enum eeprom_phy_iface {
 362        NoSuchPhy = 0,
 363        I82553AB,
 364        I82553C,
 365        I82503,
 366        DP83840,
 367        S80C240,
 368        S80C24,
 369        I82555,
 370        DP83840A = 10,
 371};
 372
 373enum eeprom_id {
 374        eeprom_id_wol = 0x0020,
 375};
 376
 377enum eeprom_config_asf {
 378        eeprom_asf = 0x8000,
 379        eeprom_gcl = 0x4000,
 380};
 381
 382enum cb_status {
 383        cb_complete = 0x8000,
 384        cb_ok       = 0x2000,
 385};
 386
 387/*
 388 * cb_command - Command Block flags
 389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 390 */
 391enum cb_command {
 392        cb_nop    = 0x0000,
 393        cb_iaaddr = 0x0001,
 394        cb_config = 0x0002,
 395        cb_multi  = 0x0003,
 396        cb_tx     = 0x0004,
 397        cb_ucode  = 0x0005,
 398        cb_dump   = 0x0006,
 399        cb_tx_sf  = 0x0008,
 400        cb_tx_nc  = 0x0010,
 401        cb_cid    = 0x1f00,
 402        cb_i      = 0x2000,
 403        cb_s      = 0x4000,
 404        cb_el     = 0x8000,
 405};
 406
 407struct rfd {
 408        __le16 status;
 409        __le16 command;
 410        __le32 link;
 411        __le32 rbd;
 412        __le16 actual_size;
 413        __le16 size;
 414};
 415
 416struct rx {
 417        struct rx *next, *prev;
 418        struct sk_buff *skb;
 419        dma_addr_t dma_addr;
 420};
 421
 422#if defined(__BIG_ENDIAN_BITFIELD)
 423#define X(a,b)  b,a
 424#else
 425#define X(a,b)  a,b
 426#endif
 427struct config {
 428/*0*/   u8 X(byte_count:6, pad0:2);
 429/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 430/*2*/   u8 adaptive_ifs;
 431/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 432           term_write_cache_line:1), pad3:4);
 433/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 434/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 435/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 436           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 437           rx_save_overruns : 1), rx_save_bad_frames : 1);
 438/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 439           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 440           tx_dynamic_tbd:1);
 441/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 442/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 443           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 444/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 445           loopback:2);
 446/*11*/  u8 X(linear_priority:3, pad11:5);
 447/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 448/*13*/  u8 ip_addr_lo;
 449/*14*/  u8 ip_addr_hi;
 450/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 451           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 452           pad15_2:1), crs_or_cdt:1);
 453/*16*/  u8 fc_delay_lo;
 454/*17*/  u8 fc_delay_hi;
 455/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 456           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 457/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 458           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 459           full_duplex_force:1), full_duplex_pin:1);
 460/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 461/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 462/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 463        u8 pad_d102[9];
 464};
 465
 466#define E100_MAX_MULTICAST_ADDRS        64
 467struct multi {
 468        __le16 count;
 469        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 470};
 471
 472/* Important: keep total struct u32-aligned */
 473#define UCODE_SIZE                      134
 474struct cb {
 475        __le16 status;
 476        __le16 command;
 477        __le32 link;
 478        union {
 479                u8 iaaddr[ETH_ALEN];
 480                __le32 ucode[UCODE_SIZE];
 481                struct config config;
 482                struct multi multi;
 483                struct {
 484                        u32 tbd_array;
 485                        u16 tcb_byte_count;
 486                        u8 threshold;
 487                        u8 tbd_count;
 488                        struct {
 489                                __le32 buf_addr;
 490                                __le16 size;
 491                                u16 eol;
 492                        } tbd;
 493                } tcb;
 494                __le32 dump_buffer_addr;
 495        } u;
 496        struct cb *next, *prev;
 497        dma_addr_t dma_addr;
 498        struct sk_buff *skb;
 499};
 500
 501enum loopback {
 502        lb_none = 0, lb_mac = 1, lb_phy = 3,
 503};
 504
 505struct stats {
 506        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 507                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 508                tx_multiple_collisions, tx_total_collisions;
 509        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 510                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 511                rx_short_frame_errors;
 512        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 513        __le16 xmt_tco_frames, rcv_tco_frames;
 514        __le32 complete;
 515};
 516
 517struct mem {
 518        struct {
 519                u32 signature;
 520                u32 result;
 521        } selftest;
 522        struct stats stats;
 523        u8 dump_buf[596];
 524};
 525
 526struct param_range {
 527        u32 min;
 528        u32 max;
 529        u32 count;
 530};
 531
 532struct params {
 533        struct param_range rfds;
 534        struct param_range cbs;
 535};
 536
 537struct nic {
 538        /* Begin: frequently used values: keep adjacent for cache effect */
 539        u32 msg_enable                          ____cacheline_aligned;
 540        struct net_device *netdev;
 541        struct pci_dev *pdev;
 542        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 543
 544        struct rx *rxs                          ____cacheline_aligned;
 545        struct rx *rx_to_use;
 546        struct rx *rx_to_clean;
 547        struct rfd blank_rfd;
 548        enum ru_state ru_running;
 549
 550        spinlock_t cb_lock                      ____cacheline_aligned;
 551        spinlock_t cmd_lock;
 552        struct csr __iomem *csr;
 553        enum scb_cmd_lo cuc_cmd;
 554        unsigned int cbs_avail;
 555        struct napi_struct napi;
 556        struct cb *cbs;
 557        struct cb *cb_to_use;
 558        struct cb *cb_to_send;
 559        struct cb *cb_to_clean;
 560        __le16 tx_command;
 561        /* End: frequently used values: keep adjacent for cache effect */
 562
 563        enum {
 564                ich                = (1 << 0),
 565                promiscuous        = (1 << 1),
 566                multicast_all      = (1 << 2),
 567                wol_magic          = (1 << 3),
 568                ich_10h_workaround = (1 << 4),
 569        } flags                                 ____cacheline_aligned;
 570
 571        enum mac mac;
 572        enum phy phy;
 573        struct params params;
 574        struct timer_list watchdog;
 575        struct mii_if_info mii;
 576        struct work_struct tx_timeout_task;
 577        enum loopback loopback;
 578
 579        struct mem *mem;
 580        dma_addr_t dma_addr;
 581
 582        struct dma_pool *cbs_pool;
 583        dma_addr_t cbs_dma_addr;
 584        u8 adaptive_ifs;
 585        u8 tx_threshold;
 586        u32 tx_frames;
 587        u32 tx_collisions;
 588        u32 tx_deferred;
 589        u32 tx_single_collisions;
 590        u32 tx_multiple_collisions;
 591        u32 tx_fc_pause;
 592        u32 tx_tco_frames;
 593
 594        u32 rx_fc_pause;
 595        u32 rx_fc_unsupported;
 596        u32 rx_tco_frames;
 597        u32 rx_short_frame_errors;
 598        u32 rx_over_length_errors;
 599
 600        u16 eeprom_wc;
 601        __le16 eeprom[256];
 602        spinlock_t mdio_lock;
 603        const struct firmware *fw;
 604};
 605
 606static inline void e100_write_flush(struct nic *nic)
 607{
 608        /* Flush previous PCI writes through intermediate bridges
 609         * by doing a benign read */
 610        (void)ioread8(&nic->csr->scb.status);
 611}
 612
 613static void e100_enable_irq(struct nic *nic)
 614{
 615        unsigned long flags;
 616
 617        spin_lock_irqsave(&nic->cmd_lock, flags);
 618        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 619        e100_write_flush(nic);
 620        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 621}
 622
 623static void e100_disable_irq(struct nic *nic)
 624{
 625        unsigned long flags;
 626
 627        spin_lock_irqsave(&nic->cmd_lock, flags);
 628        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 629        e100_write_flush(nic);
 630        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 631}
 632
 633static void e100_hw_reset(struct nic *nic)
 634{
 635        /* Put CU and RU into idle with a selective reset to get
 636         * device off of PCI bus */
 637        iowrite32(selective_reset, &nic->csr->port);
 638        e100_write_flush(nic); udelay(20);
 639
 640        /* Now fully reset device */
 641        iowrite32(software_reset, &nic->csr->port);
 642        e100_write_flush(nic); udelay(20);
 643
 644        /* Mask off our interrupt line - it's unmasked after reset */
 645        e100_disable_irq(nic);
 646}
 647
 648static int e100_self_test(struct nic *nic)
 649{
 650        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 651
 652        /* Passing the self-test is a pretty good indication
 653         * that the device can DMA to/from host memory */
 654
 655        nic->mem->selftest.signature = 0;
 656        nic->mem->selftest.result = 0xFFFFFFFF;
 657
 658        iowrite32(selftest | dma_addr, &nic->csr->port);
 659        e100_write_flush(nic);
 660        /* Wait 10 msec for self-test to complete */
 661        msleep(10);
 662
 663        /* Interrupts are enabled after self-test */
 664        e100_disable_irq(nic);
 665
 666        /* Check results of self-test */
 667        if (nic->mem->selftest.result != 0) {
 668                netif_err(nic, hw, nic->netdev,
 669                          "Self-test failed: result=0x%08X\n",
 670                          nic->mem->selftest.result);
 671                return -ETIMEDOUT;
 672        }
 673        if (nic->mem->selftest.signature == 0) {
 674                netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 675                return -ETIMEDOUT;
 676        }
 677
 678        return 0;
 679}
 680
 681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 682{
 683        u32 cmd_addr_data[3];
 684        u8 ctrl;
 685        int i, j;
 686
 687        /* Three cmds: write/erase enable, write data, write/erase disable */
 688        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 689        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 690                le16_to_cpu(data);
 691        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 692
 693        /* Bit-bang cmds to write word to eeprom */
 694        for (j = 0; j < 3; j++) {
 695
 696                /* Chip select */
 697                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 698                e100_write_flush(nic); udelay(4);
 699
 700                for (i = 31; i >= 0; i--) {
 701                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 702                                eecs | eedi : eecs;
 703                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 704                        e100_write_flush(nic); udelay(4);
 705
 706                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 707                        e100_write_flush(nic); udelay(4);
 708                }
 709                /* Wait 10 msec for cmd to complete */
 710                msleep(10);
 711
 712                /* Chip deselect */
 713                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 714                e100_write_flush(nic); udelay(4);
 715        }
 716};
 717
 718/* General technique stolen from the eepro100 driver - very clever */
 719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 720{
 721        u32 cmd_addr_data;
 722        u16 data = 0;
 723        u8 ctrl;
 724        int i;
 725
 726        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 727
 728        /* Chip select */
 729        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 730        e100_write_flush(nic); udelay(4);
 731
 732        /* Bit-bang to read word from eeprom */
 733        for (i = 31; i >= 0; i--) {
 734                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 735                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 736                e100_write_flush(nic); udelay(4);
 737
 738                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 739                e100_write_flush(nic); udelay(4);
 740
 741                /* Eeprom drives a dummy zero to EEDO after receiving
 742                 * complete address.  Use this to adjust addr_len. */
 743                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 744                if (!(ctrl & eedo) && i > 16) {
 745                        *addr_len -= (i - 16);
 746                        i = 17;
 747                }
 748
 749                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 750        }
 751
 752        /* Chip deselect */
 753        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 754        e100_write_flush(nic); udelay(4);
 755
 756        return cpu_to_le16(data);
 757};
 758
 759/* Load entire EEPROM image into driver cache and validate checksum */
 760static int e100_eeprom_load(struct nic *nic)
 761{
 762        u16 addr, addr_len = 8, checksum = 0;
 763
 764        /* Try reading with an 8-bit addr len to discover actual addr len */
 765        e100_eeprom_read(nic, &addr_len, 0);
 766        nic->eeprom_wc = 1 << addr_len;
 767
 768        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 769                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 770                if (addr < nic->eeprom_wc - 1)
 771                        checksum += le16_to_cpu(nic->eeprom[addr]);
 772        }
 773
 774        /* The checksum, stored in the last word, is calculated such that
 775         * the sum of words should be 0xBABA */
 776        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 777                netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 778                if (!eeprom_bad_csum_allow)
 779                        return -EAGAIN;
 780        }
 781
 782        return 0;
 783}
 784
 785/* Save (portion of) driver EEPROM cache to device and update checksum */
 786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 787{
 788        u16 addr, addr_len = 8, checksum = 0;
 789
 790        /* Try reading with an 8-bit addr len to discover actual addr len */
 791        e100_eeprom_read(nic, &addr_len, 0);
 792        nic->eeprom_wc = 1 << addr_len;
 793
 794        if (start + count >= nic->eeprom_wc)
 795                return -EINVAL;
 796
 797        for (addr = start; addr < start + count; addr++)
 798                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 799
 800        /* The checksum, stored in the last word, is calculated such that
 801         * the sum of words should be 0xBABA */
 802        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 803                checksum += le16_to_cpu(nic->eeprom[addr]);
 804        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 805        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 806                nic->eeprom[nic->eeprom_wc - 1]);
 807
 808        return 0;
 809}
 810
 811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 814{
 815        unsigned long flags;
 816        unsigned int i;
 817        int err = 0;
 818
 819        spin_lock_irqsave(&nic->cmd_lock, flags);
 820
 821        /* Previous command is accepted when SCB clears */
 822        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 823                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 824                        break;
 825                cpu_relax();
 826                if (unlikely(i > E100_WAIT_SCB_FAST))
 827                        udelay(5);
 828        }
 829        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 830                err = -EAGAIN;
 831                goto err_unlock;
 832        }
 833
 834        if (unlikely(cmd != cuc_resume))
 835                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 836        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 837
 838err_unlock:
 839        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 840
 841        return err;
 842}
 843
 844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 845        int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 846{
 847        struct cb *cb;
 848        unsigned long flags;
 849        int err;
 850
 851        spin_lock_irqsave(&nic->cb_lock, flags);
 852
 853        if (unlikely(!nic->cbs_avail)) {
 854                err = -ENOMEM;
 855                goto err_unlock;
 856        }
 857
 858        cb = nic->cb_to_use;
 859        nic->cb_to_use = cb->next;
 860        nic->cbs_avail--;
 861        cb->skb = skb;
 862
 863        err = cb_prepare(nic, cb, skb);
 864        if (err)
 865                goto err_unlock;
 866
 867        if (unlikely(!nic->cbs_avail))
 868                err = -ENOSPC;
 869
 870
 871        /* Order is important otherwise we'll be in a race with h/w:
 872         * set S-bit in current first, then clear S-bit in previous. */
 873        cb->command |= cpu_to_le16(cb_s);
 874        dma_wmb();
 875        cb->prev->command &= cpu_to_le16(~cb_s);
 876
 877        while (nic->cb_to_send != nic->cb_to_use) {
 878                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 879                        nic->cb_to_send->dma_addr))) {
 880                        /* Ok, here's where things get sticky.  It's
 881                         * possible that we can't schedule the command
 882                         * because the controller is too busy, so
 883                         * let's just queue the command and try again
 884                         * when another command is scheduled. */
 885                        if (err == -ENOSPC) {
 886                                //request a reset
 887                                schedule_work(&nic->tx_timeout_task);
 888                        }
 889                        break;
 890                } else {
 891                        nic->cuc_cmd = cuc_resume;
 892                        nic->cb_to_send = nic->cb_to_send->next;
 893                }
 894        }
 895
 896err_unlock:
 897        spin_unlock_irqrestore(&nic->cb_lock, flags);
 898
 899        return err;
 900}
 901
 902static int mdio_read(struct net_device *netdev, int addr, int reg)
 903{
 904        struct nic *nic = netdev_priv(netdev);
 905        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 906}
 907
 908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 909{
 910        struct nic *nic = netdev_priv(netdev);
 911
 912        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 913}
 914
 915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 917{
 918        u32 data_out = 0;
 919        unsigned int i;
 920        unsigned long flags;
 921
 922
 923        /*
 924         * Stratus87247: we shouldn't be writing the MDI control
 925         * register until the Ready bit shows True.  Also, since
 926         * manipulation of the MDI control registers is a multi-step
 927         * procedure it should be done under lock.
 928         */
 929        spin_lock_irqsave(&nic->mdio_lock, flags);
 930        for (i = 100; i; --i) {
 931                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 932                        break;
 933                udelay(20);
 934        }
 935        if (unlikely(!i)) {
 936                netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 937                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 938                return 0;               /* No way to indicate timeout error */
 939        }
 940        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 941
 942        for (i = 0; i < 100; i++) {
 943                udelay(20);
 944                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 945                        break;
 946        }
 947        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 948        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 949                     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 950                     dir == mdi_read ? "READ" : "WRITE",
 951                     addr, reg, data, data_out);
 952        return (u16)data_out;
 953}
 954
 955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 957                                 u32 addr,
 958                                 u32 dir,
 959                                 u32 reg,
 960                                 u16 data)
 961{
 962        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 963                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 964                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 965                                                        MII_ADVERTISE);
 966
 967                        /*
 968                         * Workaround Si issue where sometimes the part will not
 969                         * autoneg to 100Mbps even when advertised.
 970                         */
 971                        if (advert & ADVERTISE_100FULL)
 972                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 973                        else if (advert & ADVERTISE_100HALF)
 974                                data |= BMCR_SPEED100;
 975                }
 976        }
 977        return mdio_ctrl_hw(nic, addr, dir, reg, data);
 978}
 979
 980/* Fully software-emulated mdio_ctrl() function for cards without
 981 * MII-compliant PHYs.
 982 * For now, this is mainly geared towards 80c24 support; in case of further
 983 * requirements for other types (i82503, ...?) either extend this mechanism
 984 * or split it, whichever is cleaner.
 985 */
 986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 987                                      u32 addr,
 988                                      u32 dir,
 989                                      u32 reg,
 990                                      u16 data)
 991{
 992        /* might need to allocate a netdev_priv'ed register array eventually
 993         * to be able to record state changes, but for now
 994         * some fully hardcoded register handling ought to be ok I guess. */
 995
 996        if (dir == mdi_read) {
 997                switch (reg) {
 998                case MII_BMCR:
 999                        /* Auto-negotiation, right? */
1000                        return  BMCR_ANENABLE |
1001                                BMCR_FULLDPLX;
1002                case MII_BMSR:
1003                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1004                                BMSR_ANEGCAPABLE |
1005                                BMSR_10FULL;
1006                case MII_ADVERTISE:
1007                        /* 80c24 is a "combo card" PHY, right? */
1008                        return  ADVERTISE_10HALF |
1009                                ADVERTISE_10FULL;
1010                default:
1011                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013                                     dir == mdi_read ? "READ" : "WRITE",
1014                                     addr, reg, data);
1015                        return 0xFFFF;
1016                }
1017        } else {
1018                switch (reg) {
1019                default:
1020                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022                                     dir == mdi_read ? "READ" : "WRITE",
1023                                     addr, reg, data);
1024                        return 0xFFFF;
1025                }
1026        }
1027}
1028static inline int e100_phy_supports_mii(struct nic *nic)
1029{
1030        /* for now, just check it by comparing whether we
1031           are using MII software emulation.
1032        */
1033        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034}
1035
1036static void e100_get_defaults(struct nic *nic)
1037{
1038        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040
1041        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043        if (nic->mac == mac_unknown)
1044                nic->mac = mac_82557_D100_A;
1045
1046        nic->params.rfds = rfds;
1047        nic->params.cbs = cbs;
1048
1049        /* Quadwords to DMA into FIFO before starting frame transmit */
1050        nic->tx_threshold = 0xE0;
1051
1052        /* no interrupt for every tx completion, delay = 256us if not 557 */
1053        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056        /* Template for a freshly allocated RFD */
1057        nic->blank_rfd.command = 0;
1058        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061        /* MII setup */
1062        nic->mii.phy_id_mask = 0x1F;
1063        nic->mii.reg_num_mask = 0x1F;
1064        nic->mii.dev = nic->netdev;
1065        nic->mii.mdio_read = mdio_read;
1066        nic->mii.mdio_write = mdio_write;
1067}
1068
1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070{
1071        struct config *config = &cb->u.config;
1072        u8 *c = (u8 *)config;
1073        struct net_device *netdev = nic->netdev;
1074
1075        cb->command = cpu_to_le16(cb_config);
1076
1077        memset(config, 0, sizeof(struct config));
1078
1079        config->byte_count = 0x16;              /* bytes in this struct */
1080        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1081        config->direct_rx_dma = 0x1;            /* reserved */
1082        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1083        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1084        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1085        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1086        if (e100_phy_supports_mii(nic))
1087                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088        config->pad10 = 0x6;
1089        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1090        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1091        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1092        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1093        config->pad15_1 = 0x1;
1094        config->pad15_2 = 0x1;
1095        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1096        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1097        config->tx_padding = 0x1;               /* 1=pad short frames */
1098        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1099        config->pad18 = 0x1;
1100        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1101        config->pad20_1 = 0x1F;
1102        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1103        config->pad21_1 = 0x5;
1104
1105        config->adaptive_ifs = nic->adaptive_ifs;
1106        config->loopback = nic->loopback;
1107
1108        if (nic->mii.force_media && nic->mii.full_duplex)
1109                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1110
1111        if (nic->flags & promiscuous || nic->loopback) {
1112                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1113                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1114                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1115        }
1116
1117        if (unlikely(netdev->features & NETIF_F_RXFCS))
1118                config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1119
1120        if (nic->flags & multicast_all)
1121                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1122
1123        /* disable WoL when up */
1124        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1126
1127        if (nic->mac >= mac_82558_D101_A4) {
1128                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1129                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1130                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1131                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1132                if (nic->mac >= mac_82559_D101M) {
1133                        config->tno_intr = 0x1;         /* TCO stats enable */
1134                        /* Enable TCO in extended config */
1135                        if (nic->mac >= mac_82551_10) {
1136                                config->byte_count = 0x20; /* extended bytes */
1137                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138                        }
1139                } else {
1140                        config->standard_stat_counter = 0x0;
1141                }
1142        }
1143
1144        if (netdev->features & NETIF_F_RXALL) {
1145                config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148        }
1149
1150        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151                     c + 0);
1152        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153                     c + 8);
1154        netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155                     c + 16);
1156        return 0;
1157}
1158
1159/*************************************************************************
1160*  CPUSaver parameters
1161*
1162*  All CPUSaver parameters are 16-bit literals that are part of a
1163*  "move immediate value" instruction.  By changing the value of
1164*  the literal in the instruction before the code is loaded, the
1165*  driver can change the algorithm.
1166*
1167*  INTDELAY - This loads the dead-man timer with its initial value.
1168*    When this timer expires the interrupt is asserted, and the
1169*    timer is reset each time a new packet is received.  (see
1170*    BUNDLEMAX below to set the limit on number of chained packets)
1171*    The current default is 0x600 or 1536.  Experiments show that
1172*    the value should probably stay within the 0x200 - 0x1000.
1173*
1174*  BUNDLEMAX -
1175*    This sets the maximum number of frames that will be bundled.  In
1176*    some situations, such as the TCP windowing algorithm, it may be
1177*    better to limit the growth of the bundle size than let it go as
1178*    high as it can, because that could cause too much added latency.
1179*    The default is six, because this is the number of packets in the
1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
1181*    an interrupt for every frame received.  If you do not want to put
1182*    a limit on the bundle size, set this value to xFFFF.
1183*
1184*  BUNDLESMALL -
1185*    This contains a bit-mask describing the minimum size frame that
1186*    will be bundled.  The default masks the lower 7 bits, which means
1187*    that any frame less than 128 bytes in length will not be bundled,
1188*    but will instead immediately generate an interrupt.  This does
1189*    not affect the current bundle in any way.  Any frame that is 128
1190*    bytes or large will be bundled normally.  This feature is meant
1191*    to provide immediate indication of ACK frames in a TCP environment.
1192*    Customers were seeing poor performance when a machine with CPUSaver
1193*    enabled was sending but not receiving.  The delay introduced when
1194*    the ACKs were received was enough to reduce total throughput, because
1195*    the sender would sit idle until the ACK was finally seen.
1196*
1197*    The current default is 0xFF80, which masks out the lower 7 bits.
1198*    This means that any frame which is x7F (127) bytes or smaller
1199*    will cause an immediate interrupt.  Because this value must be a
1200*    bit mask, there are only a few valid values that can be used.  To
1201*    turn this feature off, the driver can write the value xFFFF to the
1202*    lower word of this instruction (in the same way that the other
1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204*    cause an interrupt to be generated for every frame, because all
1205*    standard Ethernet frames are <= 2047 bytes in length.
1206*************************************************************************/
1207
1208/* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214#define BUNDLESMALL 1
1215#define BUNDLEMAX (u16)6
1216#define INTDELAY (u16)1536 /* 0x600 */
1217
1218/* Initialize firmware */
1219static const struct firmware *e100_request_firmware(struct nic *nic)
1220{
1221        const char *fw_name;
1222        const struct firmware *fw = nic->fw;
1223        u8 timer, bundle, min_size;
1224        int err = 0;
1225        bool required = false;
1226
1227        /* do not load u-code for ICH devices */
1228        if (nic->flags & ich)
1229                return NULL;
1230
1231        /* Search for ucode match against h/w revision
1232         *
1233         * Based on comments in the source code for the FreeBSD fxp
1234         * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235         *
1236         *    "fixes for bugs in the B-step hardware (specifically, bugs
1237         *     with Inline Receive)."
1238         *
1239         * So we must fail if it cannot be loaded.
1240         *
1241         * The other microcode files are only required for the optional
1242         * CPUSaver feature.  Nice to have, but no reason to fail.
1243         */
1244        if (nic->mac == mac_82559_D101M) {
1245                fw_name = FIRMWARE_D101M;
1246        } else if (nic->mac == mac_82559_D101S) {
1247                fw_name = FIRMWARE_D101S;
1248        } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249                fw_name = FIRMWARE_D102E;
1250                required = true;
1251        } else { /* No ucode on other devices */
1252                return NULL;
1253        }
1254
1255        /* If the firmware has not previously been loaded, request a pointer
1256         * to it. If it was previously loaded, we are reinitializing the
1257         * adapter, possibly in a resume from hibernate, in which case
1258         * request_firmware() cannot be used.
1259         */
1260        if (!fw)
1261                err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263        if (err) {
1264                if (required) {
1265                        netif_err(nic, probe, nic->netdev,
1266                                  "Failed to load firmware \"%s\": %d\n",
1267                                  fw_name, err);
1268                        return ERR_PTR(err);
1269                } else {
1270                        netif_info(nic, probe, nic->netdev,
1271                                   "CPUSaver disabled. Needs \"%s\": %d\n",
1272                                   fw_name, err);
1273                        return NULL;
1274                }
1275        }
1276
1277        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279        if (fw->size != UCODE_SIZE * 4 + 3) {
1280                netif_err(nic, probe, nic->netdev,
1281                          "Firmware \"%s\" has wrong size %zu\n",
1282                          fw_name, fw->size);
1283                release_firmware(fw);
1284                return ERR_PTR(-EINVAL);
1285        }
1286
1287        /* Read timer, bundle and min_size from end of firmware blob */
1288        timer = fw->data[UCODE_SIZE * 4];
1289        bundle = fw->data[UCODE_SIZE * 4 + 1];
1290        min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293            min_size >= UCODE_SIZE) {
1294                netif_err(nic, probe, nic->netdev,
1295                          "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296                          fw_name, timer, bundle, min_size);
1297                release_firmware(fw);
1298                return ERR_PTR(-EINVAL);
1299        }
1300
1301        /* OK, firmware is validated and ready to use. Save a pointer
1302         * to it in the nic */
1303        nic->fw = fw;
1304        return fw;
1305}
1306
1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308                             struct sk_buff *skb)
1309{
1310        const struct firmware *fw = (void *)skb;
1311        u8 timer, bundle, min_size;
1312
1313        /* It's not a real skb; we just abused the fact that e100_exec_cb
1314           will pass it through to here... */
1315        cb->skb = NULL;
1316
1317        /* firmware is stored as little endian already */
1318        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320        /* Read timer, bundle and min_size from end of firmware blob */
1321        timer = fw->data[UCODE_SIZE * 4];
1322        bundle = fw->data[UCODE_SIZE * 4 + 1];
1323        min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325        /* Insert user-tunable settings in cb->u.ucode */
1326        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333        cb->command = cpu_to_le16(cb_ucode | cb_el);
1334        return 0;
1335}
1336
1337static inline int e100_load_ucode_wait(struct nic *nic)
1338{
1339        const struct firmware *fw;
1340        int err = 0, counter = 50;
1341        struct cb *cb = nic->cb_to_clean;
1342
1343        fw = e100_request_firmware(nic);
1344        /* If it's NULL, then no ucode is required */
1345        if (IS_ERR_OR_NULL(fw))
1346                return PTR_ERR_OR_ZERO(fw);
1347
1348        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349                netif_err(nic, probe, nic->netdev,
1350                          "ucode cmd failed with error %d\n", err);
1351
1352        /* must restart cuc */
1353        nic->cuc_cmd = cuc_start;
1354
1355        /* wait for completion */
1356        e100_write_flush(nic);
1357        udelay(10);
1358
1359        /* wait for possibly (ouch) 500ms */
1360        while (!(cb->status & cpu_to_le16(cb_complete))) {
1361                msleep(10);
1362                if (!--counter) break;
1363        }
1364
1365        /* ack any interrupts, something could have been set */
1366        iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368        /* if the command failed, or is not OK, notify and return */
1369        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370                netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371                err = -EPERM;
1372        }
1373
1374        return err;
1375}
1376
1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378        struct sk_buff *skb)
1379{
1380        cb->command = cpu_to_le16(cb_iaaddr);
1381        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382        return 0;
1383}
1384
1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386{
1387        cb->command = cpu_to_le16(cb_dump);
1388        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389                offsetof(struct mem, dump_buf));
1390        return 0;
1391}
1392
1393static int e100_phy_check_without_mii(struct nic *nic)
1394{
1395        u8 phy_type;
1396        int without_mii;
1397
1398        phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400        switch (phy_type) {
1401        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402        case I82503: /* Non-MII PHY; UNTESTED! */
1403        case S80C24: /* Non-MII PHY; tested and working */
1404                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406                 * doesn't have a programming interface of any sort.  The
1407                 * media is sensed automatically based on how the link partner
1408                 * is configured.  This is, in essence, manual configuration.
1409                 */
1410                netif_info(nic, probe, nic->netdev,
1411                           "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416                /* these might be needed for certain MII-less cards...
1417                 * nic->flags |= ich;
1418                 * nic->flags |= ich_10h_workaround; */
1419
1420                without_mii = 1;
1421                break;
1422        default:
1423                without_mii = 0;
1424                break;
1425        }
1426        return without_mii;
1427}
1428
1429#define NCONFIG_AUTO_SWITCH     0x0080
1430#define MII_NSC_CONG            MII_RESV1
1431#define NSC_CONG_ENABLE         0x0100
1432#define NSC_CONG_TXREADY        0x0400
1433#define ADVERTISE_FC_SUPPORTED  0x0400
1434static int e100_phy_init(struct nic *nic)
1435{
1436        struct net_device *netdev = nic->netdev;
1437        u32 addr;
1438        u16 bmcr, stat, id_lo, id_hi, cong;
1439
1440        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1441        for (addr = 0; addr < 32; addr++) {
1442                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1443                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1444                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1446                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1447                        break;
1448        }
1449        if (addr == 32) {
1450                /* uhoh, no PHY detected: check whether we seem to be some
1451                 * weird, rare variant which is *known* to not have any MII.
1452                 * But do this AFTER MII checking only, since this does
1453                 * lookup of EEPROM values which may easily be unreliable. */
1454                if (e100_phy_check_without_mii(nic))
1455                        return 0; /* simply return and hope for the best */
1456                else {
1457                        /* for unknown cases log a fatal error */
1458                        netif_err(nic, hw, nic->netdev,
1459                                  "Failed to locate any known PHY, aborting\n");
1460                        return -EAGAIN;
1461                }
1462        } else
1463                netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1464                             "phy_addr = %d\n", nic->mii.phy_id);
1465
1466        /* Get phy ID */
1467        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1468        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1469        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1470        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1471                     "phy ID = 0x%08X\n", nic->phy);
1472
1473        /* Select the phy and isolate the rest */
1474        for (addr = 0; addr < 32; addr++) {
1475                if (addr != nic->mii.phy_id) {
1476                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1477                } else if (nic->phy != phy_82552_v) {
1478                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1479                        mdio_write(netdev, addr, MII_BMCR,
1480                                bmcr & ~BMCR_ISOLATE);
1481                }
1482        }
1483        /*
1484         * Workaround for 82552:
1485         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1486         * other phy_id's) using bmcr value from addr discovery loop above.
1487         */
1488        if (nic->phy == phy_82552_v)
1489                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1490                        bmcr & ~BMCR_ISOLATE);
1491
1492        /* Handle National tx phys */
1493#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1494        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1495                /* Disable congestion control */
1496                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1497                cong |= NSC_CONG_TXREADY;
1498                cong &= ~NSC_CONG_ENABLE;
1499                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1500        }
1501
1502        if (nic->phy == phy_82552_v) {
1503                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1504
1505                /* assign special tweaked mdio_ctrl() function */
1506                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1507
1508                /* Workaround Si not advertising flow-control during autoneg */
1509                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1510                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1511
1512                /* Reset for the above changes to take effect */
1513                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1514                bmcr |= BMCR_RESET;
1515                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1516        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1517           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1518           (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1519                /* enable/disable MDI/MDI-X auto-switching. */
1520                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1521                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1522        }
1523
1524        return 0;
1525}
1526
1527static int e100_hw_init(struct nic *nic)
1528{
1529        int err = 0;
1530
1531        e100_hw_reset(nic);
1532
1533        netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1534        if ((err = e100_self_test(nic)))
1535                return err;
1536
1537        if ((err = e100_phy_init(nic)))
1538                return err;
1539        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1540                return err;
1541        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1542                return err;
1543        if ((err = e100_load_ucode_wait(nic)))
1544                return err;
1545        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1546                return err;
1547        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1548                return err;
1549        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1550                nic->dma_addr + offsetof(struct mem, stats))))
1551                return err;
1552        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1553                return err;
1554
1555        e100_disable_irq(nic);
1556
1557        return 0;
1558}
1559
1560static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1561{
1562        struct net_device *netdev = nic->netdev;
1563        struct netdev_hw_addr *ha;
1564        u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1565
1566        cb->command = cpu_to_le16(cb_multi);
1567        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1568        i = 0;
1569        netdev_for_each_mc_addr(ha, netdev) {
1570                if (i == count)
1571                        break;
1572                memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1573                        ETH_ALEN);
1574        }
1575        return 0;
1576}
1577
1578static void e100_set_multicast_list(struct net_device *netdev)
1579{
1580        struct nic *nic = netdev_priv(netdev);
1581
1582        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1583                     "mc_count=%d, flags=0x%04X\n",
1584                     netdev_mc_count(netdev), netdev->flags);
1585
1586        if (netdev->flags & IFF_PROMISC)
1587                nic->flags |= promiscuous;
1588        else
1589                nic->flags &= ~promiscuous;
1590
1591        if (netdev->flags & IFF_ALLMULTI ||
1592                netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1593                nic->flags |= multicast_all;
1594        else
1595                nic->flags &= ~multicast_all;
1596
1597        e100_exec_cb(nic, NULL, e100_configure);
1598        e100_exec_cb(nic, NULL, e100_multi);
1599}
1600
1601static void e100_update_stats(struct nic *nic)
1602{
1603        struct net_device *dev = nic->netdev;
1604        struct net_device_stats *ns = &dev->stats;
1605        struct stats *s = &nic->mem->stats;
1606        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1607                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1608                &s->complete;
1609
1610        /* Device's stats reporting may take several microseconds to
1611         * complete, so we're always waiting for results of the
1612         * previous command. */
1613
1614        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1615                *complete = 0;
1616                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1617                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1618                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1619                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1620                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1621                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1622                ns->collisions += nic->tx_collisions;
1623                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1624                        le32_to_cpu(s->tx_lost_crs);
1625                nic->rx_short_frame_errors +=
1626                        le32_to_cpu(s->rx_short_frame_errors);
1627                ns->rx_length_errors = nic->rx_short_frame_errors +
1628                        nic->rx_over_length_errors;
1629                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1630                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1631                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1632                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1633                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1634                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1635                        le32_to_cpu(s->rx_alignment_errors) +
1636                        le32_to_cpu(s->rx_short_frame_errors) +
1637                        le32_to_cpu(s->rx_cdt_errors);
1638                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1639                nic->tx_single_collisions +=
1640                        le32_to_cpu(s->tx_single_collisions);
1641                nic->tx_multiple_collisions +=
1642                        le32_to_cpu(s->tx_multiple_collisions);
1643                if (nic->mac >= mac_82558_D101_A4) {
1644                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1645                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1646                        nic->rx_fc_unsupported +=
1647                                le32_to_cpu(s->fc_rcv_unsupported);
1648                        if (nic->mac >= mac_82559_D101M) {
1649                                nic->tx_tco_frames +=
1650                                        le16_to_cpu(s->xmt_tco_frames);
1651                                nic->rx_tco_frames +=
1652                                        le16_to_cpu(s->rcv_tco_frames);
1653                        }
1654                }
1655        }
1656
1657
1658        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1659                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1660                             "exec cuc_dump_reset failed\n");
1661}
1662
1663static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1664{
1665        /* Adjust inter-frame-spacing (IFS) between two transmits if
1666         * we're getting collisions on a half-duplex connection. */
1667
1668        if (duplex == DUPLEX_HALF) {
1669                u32 prev = nic->adaptive_ifs;
1670                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1671
1672                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1673                   (nic->tx_frames > min_frames)) {
1674                        if (nic->adaptive_ifs < 60)
1675                                nic->adaptive_ifs += 5;
1676                } else if (nic->tx_frames < min_frames) {
1677                        if (nic->adaptive_ifs >= 5)
1678                                nic->adaptive_ifs -= 5;
1679                }
1680                if (nic->adaptive_ifs != prev)
1681                        e100_exec_cb(nic, NULL, e100_configure);
1682        }
1683}
1684
1685static void e100_watchdog(struct timer_list *t)
1686{
1687        struct nic *nic = from_timer(nic, t, watchdog);
1688        struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1689        u32 speed;
1690
1691        netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1692                     "right now = %ld\n", jiffies);
1693
1694        /* mii library handles link maintenance tasks */
1695
1696        mii_ethtool_gset(&nic->mii, &cmd);
1697        speed = ethtool_cmd_speed(&cmd);
1698
1699        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1700                netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1701                            speed == SPEED_100 ? 100 : 10,
1702                            cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1703        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1704                netdev_info(nic->netdev, "NIC Link is Down\n");
1705        }
1706
1707        mii_check_link(&nic->mii);
1708
1709        /* Software generated interrupt to recover from (rare) Rx
1710         * allocation failure.
1711         * Unfortunately have to use a spinlock to not re-enable interrupts
1712         * accidentally, due to hardware that shares a register between the
1713         * interrupt mask bit and the SW Interrupt generation bit */
1714        spin_lock_irq(&nic->cmd_lock);
1715        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1716        e100_write_flush(nic);
1717        spin_unlock_irq(&nic->cmd_lock);
1718
1719        e100_update_stats(nic);
1720        e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1721
1722        if (nic->mac <= mac_82557_D100_C)
1723                /* Issue a multicast command to workaround a 557 lock up */
1724                e100_set_multicast_list(nic->netdev);
1725
1726        if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1727                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1728                nic->flags |= ich_10h_workaround;
1729        else
1730                nic->flags &= ~ich_10h_workaround;
1731
1732        mod_timer(&nic->watchdog,
1733                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1734}
1735
1736static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1737        struct sk_buff *skb)
1738{
1739        dma_addr_t dma_addr;
1740        cb->command = nic->tx_command;
1741
1742        dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1743                                  DMA_TO_DEVICE);
1744        /* If we can't map the skb, have the upper layer try later */
1745        if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1746                dev_kfree_skb_any(skb);
1747                skb = NULL;
1748                return -ENOMEM;
1749        }
1750
1751        /*
1752         * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1753         * testing, ie sending frames with bad CRC.
1754         */
1755        if (unlikely(skb->no_fcs))
1756                cb->command |= cpu_to_le16(cb_tx_nc);
1757        else
1758                cb->command &= ~cpu_to_le16(cb_tx_nc);
1759
1760        /* interrupt every 16 packets regardless of delay */
1761        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1762                cb->command |= cpu_to_le16(cb_i);
1763        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1764        cb->u.tcb.tcb_byte_count = 0;
1765        cb->u.tcb.threshold = nic->tx_threshold;
1766        cb->u.tcb.tbd_count = 1;
1767        cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1768        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1769        skb_tx_timestamp(skb);
1770        return 0;
1771}
1772
1773static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1774                                   struct net_device *netdev)
1775{
1776        struct nic *nic = netdev_priv(netdev);
1777        int err;
1778
1779        if (nic->flags & ich_10h_workaround) {
1780                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1781                   Issue a NOP command followed by a 1us delay before
1782                   issuing the Tx command. */
1783                if (e100_exec_cmd(nic, cuc_nop, 0))
1784                        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1785                                     "exec cuc_nop failed\n");
1786                udelay(1);
1787        }
1788
1789        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1790
1791        switch (err) {
1792        case -ENOSPC:
1793                /* We queued the skb, but now we're out of space. */
1794                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1795                             "No space for CB\n");
1796                netif_stop_queue(netdev);
1797                break;
1798        case -ENOMEM:
1799                /* This is a hard error - log it. */
1800                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1801                             "Out of Tx resources, returning skb\n");
1802                netif_stop_queue(netdev);
1803                return NETDEV_TX_BUSY;
1804        }
1805
1806        return NETDEV_TX_OK;
1807}
1808
1809static int e100_tx_clean(struct nic *nic)
1810{
1811        struct net_device *dev = nic->netdev;
1812        struct cb *cb;
1813        int tx_cleaned = 0;
1814
1815        spin_lock(&nic->cb_lock);
1816
1817        /* Clean CBs marked complete */
1818        for (cb = nic->cb_to_clean;
1819            cb->status & cpu_to_le16(cb_complete);
1820            cb = nic->cb_to_clean = cb->next) {
1821                dma_rmb(); /* read skb after status */
1822                netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1823                             "cb[%d]->status = 0x%04X\n",
1824                             (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1825                             cb->status);
1826
1827                if (likely(cb->skb != NULL)) {
1828                        dev->stats.tx_packets++;
1829                        dev->stats.tx_bytes += cb->skb->len;
1830
1831                        dma_unmap_single(&nic->pdev->dev,
1832                                         le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1833                                         le16_to_cpu(cb->u.tcb.tbd.size),
1834                                         DMA_TO_DEVICE);
1835                        dev_kfree_skb_any(cb->skb);
1836                        cb->skb = NULL;
1837                        tx_cleaned = 1;
1838                }
1839                cb->status = 0;
1840                nic->cbs_avail++;
1841        }
1842
1843        spin_unlock(&nic->cb_lock);
1844
1845        /* Recover from running out of Tx resources in xmit_frame */
1846        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1847                netif_wake_queue(nic->netdev);
1848
1849        return tx_cleaned;
1850}
1851
1852static void e100_clean_cbs(struct nic *nic)
1853{
1854        if (nic->cbs) {
1855                while (nic->cbs_avail != nic->params.cbs.count) {
1856                        struct cb *cb = nic->cb_to_clean;
1857                        if (cb->skb) {
1858                                dma_unmap_single(&nic->pdev->dev,
1859                                                 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1860                                                 le16_to_cpu(cb->u.tcb.tbd.size),
1861                                                 DMA_TO_DEVICE);
1862                                dev_kfree_skb(cb->skb);
1863                        }
1864                        nic->cb_to_clean = nic->cb_to_clean->next;
1865                        nic->cbs_avail++;
1866                }
1867                dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1868                nic->cbs = NULL;
1869                nic->cbs_avail = 0;
1870        }
1871        nic->cuc_cmd = cuc_start;
1872        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1873                nic->cbs;
1874}
1875
1876static int e100_alloc_cbs(struct nic *nic)
1877{
1878        struct cb *cb;
1879        unsigned int i, count = nic->params.cbs.count;
1880
1881        nic->cuc_cmd = cuc_start;
1882        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1883        nic->cbs_avail = 0;
1884
1885        nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1886                                   &nic->cbs_dma_addr);
1887        if (!nic->cbs)
1888                return -ENOMEM;
1889
1890        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1891                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1892                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1893
1894                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1895                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1896                        ((i+1) % count) * sizeof(struct cb));
1897        }
1898
1899        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1900        nic->cbs_avail = count;
1901
1902        return 0;
1903}
1904
1905static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1906{
1907        if (!nic->rxs) return;
1908        if (RU_SUSPENDED != nic->ru_running) return;
1909
1910        /* handle init time starts */
1911        if (!rx) rx = nic->rxs;
1912
1913        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1914        if (rx->skb) {
1915                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1916                nic->ru_running = RU_RUNNING;
1917        }
1918}
1919
1920#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1921static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1922{
1923        if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1924                return -ENOMEM;
1925
1926        /* Init, and map the RFD. */
1927        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1928        rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1929                                      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1930
1931        if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1932                dev_kfree_skb_any(rx->skb);
1933                rx->skb = NULL;
1934                rx->dma_addr = 0;
1935                return -ENOMEM;
1936        }
1937
1938        /* Link the RFD to end of RFA by linking previous RFD to
1939         * this one.  We are safe to touch the previous RFD because
1940         * it is protected by the before last buffer's el bit being set */
1941        if (rx->prev->skb) {
1942                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1943                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1944                dma_sync_single_for_device(&nic->pdev->dev,
1945                                           rx->prev->dma_addr,
1946                                           sizeof(struct rfd),
1947                                           DMA_BIDIRECTIONAL);
1948        }
1949
1950        return 0;
1951}
1952
1953static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1954        unsigned int *work_done, unsigned int work_to_do)
1955{
1956        struct net_device *dev = nic->netdev;
1957        struct sk_buff *skb = rx->skb;
1958        struct rfd *rfd = (struct rfd *)skb->data;
1959        u16 rfd_status, actual_size;
1960        u16 fcs_pad = 0;
1961
1962        if (unlikely(work_done && *work_done >= work_to_do))
1963                return -EAGAIN;
1964
1965        /* Need to sync before taking a peek at cb_complete bit */
1966        dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1967                                sizeof(struct rfd), DMA_BIDIRECTIONAL);
1968        rfd_status = le16_to_cpu(rfd->status);
1969
1970        netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1971                     "status=0x%04X\n", rfd_status);
1972        dma_rmb(); /* read size after status bit */
1973
1974        /* If data isn't ready, nothing to indicate */
1975        if (unlikely(!(rfd_status & cb_complete))) {
1976                /* If the next buffer has the el bit, but we think the receiver
1977                 * is still running, check to see if it really stopped while
1978                 * we had interrupts off.
1979                 * This allows for a fast restart without re-enabling
1980                 * interrupts */
1981                if ((le16_to_cpu(rfd->command) & cb_el) &&
1982                    (RU_RUNNING == nic->ru_running))
1983
1984                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
1985                                nic->ru_running = RU_SUSPENDED;
1986                dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1987                                           sizeof(struct rfd),
1988                                           DMA_FROM_DEVICE);
1989                return -ENODATA;
1990        }
1991
1992        /* Get actual data size */
1993        if (unlikely(dev->features & NETIF_F_RXFCS))
1994                fcs_pad = 4;
1995        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1996        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1997                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1998
1999        /* Get data */
2000        dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
2001                         DMA_BIDIRECTIONAL);
2002
2003        /* If this buffer has the el bit, but we think the receiver
2004         * is still running, check to see if it really stopped while
2005         * we had interrupts off.
2006         * This allows for a fast restart without re-enabling interrupts.
2007         * This can happen when the RU sees the size change but also sees
2008         * the el bit set. */
2009        if ((le16_to_cpu(rfd->command) & cb_el) &&
2010            (RU_RUNNING == nic->ru_running)) {
2011
2012            if (ioread8(&nic->csr->scb.status) & rus_no_res)
2013                nic->ru_running = RU_SUSPENDED;
2014        }
2015
2016        /* Pull off the RFD and put the actual data (minus eth hdr) */
2017        skb_reserve(skb, sizeof(struct rfd));
2018        skb_put(skb, actual_size);
2019        skb->protocol = eth_type_trans(skb, nic->netdev);
2020
2021        /* If we are receiving all frames, then don't bother
2022         * checking for errors.
2023         */
2024        if (unlikely(dev->features & NETIF_F_RXALL)) {
2025                if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2026                        /* Received oversized frame, but keep it. */
2027                        nic->rx_over_length_errors++;
2028                goto process_skb;
2029        }
2030
2031        if (unlikely(!(rfd_status & cb_ok))) {
2032                /* Don't indicate if hardware indicates errors */
2033                dev_kfree_skb_any(skb);
2034        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2035                /* Don't indicate oversized frames */
2036                nic->rx_over_length_errors++;
2037                dev_kfree_skb_any(skb);
2038        } else {
2039process_skb:
2040                dev->stats.rx_packets++;
2041                dev->stats.rx_bytes += (actual_size - fcs_pad);
2042                netif_receive_skb(skb);
2043                if (work_done)
2044                        (*work_done)++;
2045        }
2046
2047        rx->skb = NULL;
2048
2049        return 0;
2050}
2051
2052static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2053        unsigned int work_to_do)
2054{
2055        struct rx *rx;
2056        int restart_required = 0, err = 0;
2057        struct rx *old_before_last_rx, *new_before_last_rx;
2058        struct rfd *old_before_last_rfd, *new_before_last_rfd;
2059
2060        /* Indicate newly arrived packets */
2061        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2062                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2063                /* Hit quota or no more to clean */
2064                if (-EAGAIN == err || -ENODATA == err)
2065                        break;
2066        }
2067
2068
2069        /* On EAGAIN, hit quota so have more work to do, restart once
2070         * cleanup is complete.
2071         * Else, are we already rnr? then pay attention!!! this ensures that
2072         * the state machine progression never allows a start with a
2073         * partially cleaned list, avoiding a race between hardware
2074         * and rx_to_clean when in NAPI mode */
2075        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2076                restart_required = 1;
2077
2078        old_before_last_rx = nic->rx_to_use->prev->prev;
2079        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2080
2081        /* Alloc new skbs to refill list */
2082        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2083                if (unlikely(e100_rx_alloc_skb(nic, rx)))
2084                        break; /* Better luck next time (see watchdog) */
2085        }
2086
2087        new_before_last_rx = nic->rx_to_use->prev->prev;
2088        if (new_before_last_rx != old_before_last_rx) {
2089                /* Set the el-bit on the buffer that is before the last buffer.
2090                 * This lets us update the next pointer on the last buffer
2091                 * without worrying about hardware touching it.
2092                 * We set the size to 0 to prevent hardware from touching this
2093                 * buffer.
2094                 * When the hardware hits the before last buffer with el-bit
2095                 * and size of 0, it will RNR interrupt, the RUS will go into
2096                 * the No Resources state.  It will not complete nor write to
2097                 * this buffer. */
2098                new_before_last_rfd =
2099                        (struct rfd *)new_before_last_rx->skb->data;
2100                new_before_last_rfd->size = 0;
2101                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2102                dma_sync_single_for_device(&nic->pdev->dev,
2103                                           new_before_last_rx->dma_addr,
2104                                           sizeof(struct rfd),
2105                                           DMA_BIDIRECTIONAL);
2106
2107                /* Now that we have a new stopping point, we can clear the old
2108                 * stopping point.  We must sync twice to get the proper
2109                 * ordering on the hardware side of things. */
2110                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111                dma_sync_single_for_device(&nic->pdev->dev,
2112                                           old_before_last_rx->dma_addr,
2113                                           sizeof(struct rfd),
2114                                           DMA_BIDIRECTIONAL);
2115                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2116                                                        + ETH_FCS_LEN);
2117                dma_sync_single_for_device(&nic->pdev->dev,
2118                                           old_before_last_rx->dma_addr,
2119                                           sizeof(struct rfd),
2120                                           DMA_BIDIRECTIONAL);
2121        }
2122
2123        if (restart_required) {
2124                // ack the rnr?
2125                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2126                e100_start_receiver(nic, nic->rx_to_clean);
2127                if (work_done)
2128                        (*work_done)++;
2129        }
2130}
2131
2132static void e100_rx_clean_list(struct nic *nic)
2133{
2134        struct rx *rx;
2135        unsigned int i, count = nic->params.rfds.count;
2136
2137        nic->ru_running = RU_UNINITIALIZED;
2138
2139        if (nic->rxs) {
2140                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2141                        if (rx->skb) {
2142                                dma_unmap_single(&nic->pdev->dev,
2143                                                 rx->dma_addr, RFD_BUF_LEN,
2144                                                 DMA_BIDIRECTIONAL);
2145                                dev_kfree_skb(rx->skb);
2146                        }
2147                }
2148                kfree(nic->rxs);
2149                nic->rxs = NULL;
2150        }
2151
2152        nic->rx_to_use = nic->rx_to_clean = NULL;
2153}
2154
2155static int e100_rx_alloc_list(struct nic *nic)
2156{
2157        struct rx *rx;
2158        unsigned int i, count = nic->params.rfds.count;
2159        struct rfd *before_last;
2160
2161        nic->rx_to_use = nic->rx_to_clean = NULL;
2162        nic->ru_running = RU_UNINITIALIZED;
2163
2164        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2165                return -ENOMEM;
2166
2167        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2168                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2169                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2170                if (e100_rx_alloc_skb(nic, rx)) {
2171                        e100_rx_clean_list(nic);
2172                        return -ENOMEM;
2173                }
2174        }
2175        /* Set the el-bit on the buffer that is before the last buffer.
2176         * This lets us update the next pointer on the last buffer without
2177         * worrying about hardware touching it.
2178         * We set the size to 0 to prevent hardware from touching this buffer.
2179         * When the hardware hits the before last buffer with el-bit and size
2180         * of 0, it will RNR interrupt, the RU will go into the No Resources
2181         * state.  It will not complete nor write to this buffer. */
2182        rx = nic->rxs->prev->prev;
2183        before_last = (struct rfd *)rx->skb->data;
2184        before_last->command |= cpu_to_le16(cb_el);
2185        before_last->size = 0;
2186        dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2187                                   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2188
2189        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2190        nic->ru_running = RU_SUSPENDED;
2191
2192        return 0;
2193}
2194
2195static irqreturn_t e100_intr(int irq, void *dev_id)
2196{
2197        struct net_device *netdev = dev_id;
2198        struct nic *nic = netdev_priv(netdev);
2199        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2200
2201        netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2202                     "stat_ack = 0x%02X\n", stat_ack);
2203
2204        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2205           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2206                return IRQ_NONE;
2207
2208        /* Ack interrupt(s) */
2209        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2210
2211        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2212        if (stat_ack & stat_ack_rnr)
2213                nic->ru_running = RU_SUSPENDED;
2214
2215        if (likely(napi_schedule_prep(&nic->napi))) {
2216                e100_disable_irq(nic);
2217                __napi_schedule(&nic->napi);
2218        }
2219
2220        return IRQ_HANDLED;
2221}
2222
2223static int e100_poll(struct napi_struct *napi, int budget)
2224{
2225        struct nic *nic = container_of(napi, struct nic, napi);
2226        unsigned int work_done = 0;
2227
2228        e100_rx_clean(nic, &work_done, budget);
2229        e100_tx_clean(nic);
2230
2231        /* If budget fully consumed, continue polling */
2232        if (work_done == budget)
2233                return budget;
2234
2235        /* only re-enable interrupt if stack agrees polling is really done */
2236        if (likely(napi_complete_done(napi, work_done)))
2237                e100_enable_irq(nic);
2238
2239        return work_done;
2240}
2241
2242#ifdef CONFIG_NET_POLL_CONTROLLER
2243static void e100_netpoll(struct net_device *netdev)
2244{
2245        struct nic *nic = netdev_priv(netdev);
2246
2247        e100_disable_irq(nic);
2248        e100_intr(nic->pdev->irq, netdev);
2249        e100_tx_clean(nic);
2250        e100_enable_irq(nic);
2251}
2252#endif
2253
2254static int e100_set_mac_address(struct net_device *netdev, void *p)
2255{
2256        struct nic *nic = netdev_priv(netdev);
2257        struct sockaddr *addr = p;
2258
2259        if (!is_valid_ether_addr(addr->sa_data))
2260                return -EADDRNOTAVAIL;
2261
2262        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2263        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2264
2265        return 0;
2266}
2267
2268static int e100_asf(struct nic *nic)
2269{
2270        /* ASF can be enabled from eeprom */
2271        return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2272           (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2273           !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2274           ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2275}
2276
2277static int e100_up(struct nic *nic)
2278{
2279        int err;
2280
2281        if ((err = e100_rx_alloc_list(nic)))
2282                return err;
2283        if ((err = e100_alloc_cbs(nic)))
2284                goto err_rx_clean_list;
2285        if ((err = e100_hw_init(nic)))
2286                goto err_clean_cbs;
2287        e100_set_multicast_list(nic->netdev);
2288        e100_start_receiver(nic, NULL);
2289        mod_timer(&nic->watchdog, jiffies);
2290        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2291                nic->netdev->name, nic->netdev)))
2292                goto err_no_irq;
2293        netif_wake_queue(nic->netdev);
2294        napi_enable(&nic->napi);
2295        /* enable ints _after_ enabling poll, preventing a race between
2296         * disable ints+schedule */
2297        e100_enable_irq(nic);
2298        return 0;
2299
2300err_no_irq:
2301        del_timer_sync(&nic->watchdog);
2302err_clean_cbs:
2303        e100_clean_cbs(nic);
2304err_rx_clean_list:
2305        e100_rx_clean_list(nic);
2306        return err;
2307}
2308
2309static void e100_down(struct nic *nic)
2310{
2311        /* wait here for poll to complete */
2312        napi_disable(&nic->napi);
2313        netif_stop_queue(nic->netdev);
2314        e100_hw_reset(nic);
2315        free_irq(nic->pdev->irq, nic->netdev);
2316        del_timer_sync(&nic->watchdog);
2317        netif_carrier_off(nic->netdev);
2318        e100_clean_cbs(nic);
2319        e100_rx_clean_list(nic);
2320}
2321
2322static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2323{
2324        struct nic *nic = netdev_priv(netdev);
2325
2326        /* Reset outside of interrupt context, to avoid request_irq
2327         * in interrupt context */
2328        schedule_work(&nic->tx_timeout_task);
2329}
2330
2331static void e100_tx_timeout_task(struct work_struct *work)
2332{
2333        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2334        struct net_device *netdev = nic->netdev;
2335
2336        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2337                     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2338
2339        rtnl_lock();
2340        if (netif_running(netdev)) {
2341                e100_down(netdev_priv(netdev));
2342                e100_up(netdev_priv(netdev));
2343        }
2344        rtnl_unlock();
2345}
2346
2347static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2348{
2349        int err;
2350        struct sk_buff *skb;
2351
2352        /* Use driver resources to perform internal MAC or PHY
2353         * loopback test.  A single packet is prepared and transmitted
2354         * in loopback mode, and the test passes if the received
2355         * packet compares byte-for-byte to the transmitted packet. */
2356
2357        if ((err = e100_rx_alloc_list(nic)))
2358                return err;
2359        if ((err = e100_alloc_cbs(nic)))
2360                goto err_clean_rx;
2361
2362        /* ICH PHY loopback is broken so do MAC loopback instead */
2363        if (nic->flags & ich && loopback_mode == lb_phy)
2364                loopback_mode = lb_mac;
2365
2366        nic->loopback = loopback_mode;
2367        if ((err = e100_hw_init(nic)))
2368                goto err_loopback_none;
2369
2370        if (loopback_mode == lb_phy)
2371                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2372                        BMCR_LOOPBACK);
2373
2374        e100_start_receiver(nic, NULL);
2375
2376        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2377                err = -ENOMEM;
2378                goto err_loopback_none;
2379        }
2380        skb_put(skb, ETH_DATA_LEN);
2381        memset(skb->data, 0xFF, ETH_DATA_LEN);
2382        e100_xmit_frame(skb, nic->netdev);
2383
2384        msleep(10);
2385
2386        dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2387                                RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2388
2389        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2390           skb->data, ETH_DATA_LEN))
2391                err = -EAGAIN;
2392
2393err_loopback_none:
2394        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2395        nic->loopback = lb_none;
2396        e100_clean_cbs(nic);
2397        e100_hw_reset(nic);
2398err_clean_rx:
2399        e100_rx_clean_list(nic);
2400        return err;
2401}
2402
2403#define MII_LED_CONTROL 0x1B
2404#define E100_82552_LED_OVERRIDE 0x19
2405#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2406#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2407
2408static int e100_get_link_ksettings(struct net_device *netdev,
2409                                   struct ethtool_link_ksettings *cmd)
2410{
2411        struct nic *nic = netdev_priv(netdev);
2412
2413        mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2414
2415        return 0;
2416}
2417
2418static int e100_set_link_ksettings(struct net_device *netdev,
2419                                   const struct ethtool_link_ksettings *cmd)
2420{
2421        struct nic *nic = netdev_priv(netdev);
2422        int err;
2423
2424        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2425        err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2426        e100_exec_cb(nic, NULL, e100_configure);
2427
2428        return err;
2429}
2430
2431static void e100_get_drvinfo(struct net_device *netdev,
2432        struct ethtool_drvinfo *info)
2433{
2434        struct nic *nic = netdev_priv(netdev);
2435        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2436        strlcpy(info->bus_info, pci_name(nic->pdev),
2437                sizeof(info->bus_info));
2438}
2439
2440#define E100_PHY_REGS 0x1D
2441static int e100_get_regs_len(struct net_device *netdev)
2442{
2443        struct nic *nic = netdev_priv(netdev);
2444
2445        /* We know the number of registers, and the size of the dump buffer.
2446         * Calculate the total size in bytes.
2447         */
2448        return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2449}
2450
2451static void e100_get_regs(struct net_device *netdev,
2452        struct ethtool_regs *regs, void *p)
2453{
2454        struct nic *nic = netdev_priv(netdev);
2455        u32 *buff = p;
2456        int i;
2457
2458        regs->version = (1 << 24) | nic->pdev->revision;
2459        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2460                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2461                ioread16(&nic->csr->scb.status);
2462        for (i = 0; i < E100_PHY_REGS; i++)
2463                /* Note that we read the registers in reverse order. This
2464                 * ordering is the ABI apparently used by ethtool and other
2465                 * applications.
2466                 */
2467                buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2468                                        E100_PHY_REGS - 1 - i);
2469        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2470        e100_exec_cb(nic, NULL, e100_dump);
2471        msleep(10);
2472        memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2473               sizeof(nic->mem->dump_buf));
2474}
2475
2476static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2477{
2478        struct nic *nic = netdev_priv(netdev);
2479        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2480        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2481}
2482
2483static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2484{
2485        struct nic *nic = netdev_priv(netdev);
2486
2487        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2488            !device_can_wakeup(&nic->pdev->dev))
2489                return -EOPNOTSUPP;
2490
2491        if (wol->wolopts)
2492                nic->flags |= wol_magic;
2493        else
2494                nic->flags &= ~wol_magic;
2495
2496        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2497
2498        e100_exec_cb(nic, NULL, e100_configure);
2499
2500        return 0;
2501}
2502
2503static u32 e100_get_msglevel(struct net_device *netdev)
2504{
2505        struct nic *nic = netdev_priv(netdev);
2506        return nic->msg_enable;
2507}
2508
2509static void e100_set_msglevel(struct net_device *netdev, u32 value)
2510{
2511        struct nic *nic = netdev_priv(netdev);
2512        nic->msg_enable = value;
2513}
2514
2515static int e100_nway_reset(struct net_device *netdev)
2516{
2517        struct nic *nic = netdev_priv(netdev);
2518        return mii_nway_restart(&nic->mii);
2519}
2520
2521static u32 e100_get_link(struct net_device *netdev)
2522{
2523        struct nic *nic = netdev_priv(netdev);
2524        return mii_link_ok(&nic->mii);
2525}
2526
2527static int e100_get_eeprom_len(struct net_device *netdev)
2528{
2529        struct nic *nic = netdev_priv(netdev);
2530        return nic->eeprom_wc << 1;
2531}
2532
2533#define E100_EEPROM_MAGIC       0x1234
2534static int e100_get_eeprom(struct net_device *netdev,
2535        struct ethtool_eeprom *eeprom, u8 *bytes)
2536{
2537        struct nic *nic = netdev_priv(netdev);
2538
2539        eeprom->magic = E100_EEPROM_MAGIC;
2540        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2541
2542        return 0;
2543}
2544
2545static int e100_set_eeprom(struct net_device *netdev,
2546        struct ethtool_eeprom *eeprom, u8 *bytes)
2547{
2548        struct nic *nic = netdev_priv(netdev);
2549
2550        if (eeprom->magic != E100_EEPROM_MAGIC)
2551                return -EINVAL;
2552
2553        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2554
2555        return e100_eeprom_save(nic, eeprom->offset >> 1,
2556                (eeprom->len >> 1) + 1);
2557}
2558
2559static void e100_get_ringparam(struct net_device *netdev,
2560        struct ethtool_ringparam *ring)
2561{
2562        struct nic *nic = netdev_priv(netdev);
2563        struct param_range *rfds = &nic->params.rfds;
2564        struct param_range *cbs = &nic->params.cbs;
2565
2566        ring->rx_max_pending = rfds->max;
2567        ring->tx_max_pending = cbs->max;
2568        ring->rx_pending = rfds->count;
2569        ring->tx_pending = cbs->count;
2570}
2571
2572static int e100_set_ringparam(struct net_device *netdev,
2573        struct ethtool_ringparam *ring)
2574{
2575        struct nic *nic = netdev_priv(netdev);
2576        struct param_range *rfds = &nic->params.rfds;
2577        struct param_range *cbs = &nic->params.cbs;
2578
2579        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580                return -EINVAL;
2581
2582        if (netif_running(netdev))
2583                e100_down(nic);
2584        rfds->count = max(ring->rx_pending, rfds->min);
2585        rfds->count = min(rfds->count, rfds->max);
2586        cbs->count = max(ring->tx_pending, cbs->min);
2587        cbs->count = min(cbs->count, cbs->max);
2588        netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589                   rfds->count, cbs->count);
2590        if (netif_running(netdev))
2591                e100_up(nic);
2592
2593        return 0;
2594}
2595
2596static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597        "Link test     (on/offline)",
2598        "Eeprom test   (on/offline)",
2599        "Self test        (offline)",
2600        "Mac loopback     (offline)",
2601        "Phy loopback     (offline)",
2602};
2603#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2604
2605static void e100_diag_test(struct net_device *netdev,
2606        struct ethtool_test *test, u64 *data)
2607{
2608        struct ethtool_cmd cmd;
2609        struct nic *nic = netdev_priv(netdev);
2610        int i;
2611
2612        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613        data[0] = !mii_link_ok(&nic->mii);
2614        data[1] = e100_eeprom_load(nic);
2615        if (test->flags & ETH_TEST_FL_OFFLINE) {
2616
2617                /* save speed, duplex & autoneg settings */
2618                mii_ethtool_gset(&nic->mii, &cmd);
2619
2620                if (netif_running(netdev))
2621                        e100_down(nic);
2622                data[2] = e100_self_test(nic);
2623                data[3] = e100_loopback_test(nic, lb_mac);
2624                data[4] = e100_loopback_test(nic, lb_phy);
2625
2626                /* restore speed, duplex & autoneg settings */
2627                mii_ethtool_sset(&nic->mii, &cmd);
2628
2629                if (netif_running(netdev))
2630                        e100_up(nic);
2631        }
2632        for (i = 0; i < E100_TEST_LEN; i++)
2633                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634
2635        msleep_interruptible(4 * 1000);
2636}
2637
2638static int e100_set_phys_id(struct net_device *netdev,
2639                            enum ethtool_phys_id_state state)
2640{
2641        struct nic *nic = netdev_priv(netdev);
2642        enum led_state {
2643                led_on     = 0x01,
2644                led_off    = 0x04,
2645                led_on_559 = 0x05,
2646                led_on_557 = 0x07,
2647        };
2648        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649                MII_LED_CONTROL;
2650        u16 leds = 0;
2651
2652        switch (state) {
2653        case ETHTOOL_ID_ACTIVE:
2654                return 2;
2655
2656        case ETHTOOL_ID_ON:
2657                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658                       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659                break;
2660
2661        case ETHTOOL_ID_OFF:
2662                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663                break;
2664
2665        case ETHTOOL_ID_INACTIVE:
2666                break;
2667        }
2668
2669        mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670        return 0;
2671}
2672
2673static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679        "tx_heartbeat_errors", "tx_window_errors",
2680        /* device-specific stats */
2681        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682        "tx_flow_control_pause", "rx_flow_control_pause",
2683        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684        "rx_short_frame_errors", "rx_over_length_errors",
2685};
2686#define E100_NET_STATS_LEN      21
2687#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2688
2689static int e100_get_sset_count(struct net_device *netdev, int sset)
2690{
2691        switch (sset) {
2692        case ETH_SS_TEST:
2693                return E100_TEST_LEN;
2694        case ETH_SS_STATS:
2695                return E100_STATS_LEN;
2696        default:
2697                return -EOPNOTSUPP;
2698        }
2699}
2700
2701static void e100_get_ethtool_stats(struct net_device *netdev,
2702        struct ethtool_stats *stats, u64 *data)
2703{
2704        struct nic *nic = netdev_priv(netdev);
2705        int i;
2706
2707        for (i = 0; i < E100_NET_STATS_LEN; i++)
2708                data[i] = ((unsigned long *)&netdev->stats)[i];
2709
2710        data[i++] = nic->tx_deferred;
2711        data[i++] = nic->tx_single_collisions;
2712        data[i++] = nic->tx_multiple_collisions;
2713        data[i++] = nic->tx_fc_pause;
2714        data[i++] = nic->rx_fc_pause;
2715        data[i++] = nic->rx_fc_unsupported;
2716        data[i++] = nic->tx_tco_frames;
2717        data[i++] = nic->rx_tco_frames;
2718        data[i++] = nic->rx_short_frame_errors;
2719        data[i++] = nic->rx_over_length_errors;
2720}
2721
2722static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723{
2724        switch (stringset) {
2725        case ETH_SS_TEST:
2726                memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727                break;
2728        case ETH_SS_STATS:
2729                memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730                break;
2731        }
2732}
2733
2734static const struct ethtool_ops e100_ethtool_ops = {
2735        .get_drvinfo            = e100_get_drvinfo,
2736        .get_regs_len           = e100_get_regs_len,
2737        .get_regs               = e100_get_regs,
2738        .get_wol                = e100_get_wol,
2739        .set_wol                = e100_set_wol,
2740        .get_msglevel           = e100_get_msglevel,
2741        .set_msglevel           = e100_set_msglevel,
2742        .nway_reset             = e100_nway_reset,
2743        .get_link               = e100_get_link,
2744        .get_eeprom_len         = e100_get_eeprom_len,
2745        .get_eeprom             = e100_get_eeprom,
2746        .set_eeprom             = e100_set_eeprom,
2747        .get_ringparam          = e100_get_ringparam,
2748        .set_ringparam          = e100_set_ringparam,
2749        .self_test              = e100_diag_test,
2750        .get_strings            = e100_get_strings,
2751        .set_phys_id            = e100_set_phys_id,
2752        .get_ethtool_stats      = e100_get_ethtool_stats,
2753        .get_sset_count         = e100_get_sset_count,
2754        .get_ts_info            = ethtool_op_get_ts_info,
2755        .get_link_ksettings     = e100_get_link_ksettings,
2756        .set_link_ksettings     = e100_set_link_ksettings,
2757};
2758
2759static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760{
2761        struct nic *nic = netdev_priv(netdev);
2762
2763        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764}
2765
2766static int e100_alloc(struct nic *nic)
2767{
2768        nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769                                      &nic->dma_addr, GFP_KERNEL);
2770        return nic->mem ? 0 : -ENOMEM;
2771}
2772
2773static void e100_free(struct nic *nic)
2774{
2775        if (nic->mem) {
2776                dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777                                  nic->mem, nic->dma_addr);
2778                nic->mem = NULL;
2779        }
2780}
2781
2782static int e100_open(struct net_device *netdev)
2783{
2784        struct nic *nic = netdev_priv(netdev);
2785        int err = 0;
2786
2787        netif_carrier_off(netdev);
2788        if ((err = e100_up(nic)))
2789                netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790        return err;
2791}
2792
2793static int e100_close(struct net_device *netdev)
2794{
2795        e100_down(netdev_priv(netdev));
2796        return 0;
2797}
2798
2799static int e100_set_features(struct net_device *netdev,
2800                             netdev_features_t features)
2801{
2802        struct nic *nic = netdev_priv(netdev);
2803        netdev_features_t changed = features ^ netdev->features;
2804
2805        if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806                return 0;
2807
2808        netdev->features = features;
2809        e100_exec_cb(nic, NULL, e100_configure);
2810        return 1;
2811}
2812
2813static const struct net_device_ops e100_netdev_ops = {
2814        .ndo_open               = e100_open,
2815        .ndo_stop               = e100_close,
2816        .ndo_start_xmit         = e100_xmit_frame,
2817        .ndo_validate_addr      = eth_validate_addr,
2818        .ndo_set_rx_mode        = e100_set_multicast_list,
2819        .ndo_set_mac_address    = e100_set_mac_address,
2820        .ndo_eth_ioctl          = e100_do_ioctl,
2821        .ndo_tx_timeout         = e100_tx_timeout,
2822#ifdef CONFIG_NET_POLL_CONTROLLER
2823        .ndo_poll_controller    = e100_netpoll,
2824#endif
2825        .ndo_set_features       = e100_set_features,
2826};
2827
2828static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829{
2830        struct net_device *netdev;
2831        struct nic *nic;
2832        int err;
2833
2834        if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835                return -ENOMEM;
2836
2837        netdev->hw_features |= NETIF_F_RXFCS;
2838        netdev->priv_flags |= IFF_SUPP_NOFCS;
2839        netdev->hw_features |= NETIF_F_RXALL;
2840
2841        netdev->netdev_ops = &e100_netdev_ops;
2842        netdev->ethtool_ops = &e100_ethtool_ops;
2843        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2845
2846        nic = netdev_priv(netdev);
2847        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848        nic->netdev = netdev;
2849        nic->pdev = pdev;
2850        nic->msg_enable = (1 << debug) - 1;
2851        nic->mdio_ctrl = mdio_ctrl_hw;
2852        pci_set_drvdata(pdev, netdev);
2853
2854        if ((err = pci_enable_device(pdev))) {
2855                netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856                goto err_out_free_dev;
2857        }
2858
2859        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860                netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861                err = -ENODEV;
2862                goto err_out_disable_pdev;
2863        }
2864
2865        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866                netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867                goto err_out_disable_pdev;
2868        }
2869
2870        if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871                netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872                goto err_out_free_res;
2873        }
2874
2875        SET_NETDEV_DEV(netdev, &pdev->dev);
2876
2877        if (use_io)
2878                netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879
2880        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881        if (!nic->csr) {
2882                netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883                err = -ENOMEM;
2884                goto err_out_free_res;
2885        }
2886
2887        if (ent->driver_data)
2888                nic->flags |= ich;
2889        else
2890                nic->flags &= ~ich;
2891
2892        e100_get_defaults(nic);
2893
2894        /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895        if (nic->mac < mac_82558_D101_A4)
2896                netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897
2898        /* locks must be initialized before calling hw_reset */
2899        spin_lock_init(&nic->cb_lock);
2900        spin_lock_init(&nic->cmd_lock);
2901        spin_lock_init(&nic->mdio_lock);
2902
2903        /* Reset the device before pci_set_master() in case device is in some
2904         * funky state and has an interrupt pending - hint: we don't have the
2905         * interrupt handler registered yet. */
2906        e100_hw_reset(nic);
2907
2908        pci_set_master(pdev);
2909
2910        timer_setup(&nic->watchdog, e100_watchdog, 0);
2911
2912        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913
2914        if ((err = e100_alloc(nic))) {
2915                netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916                goto err_out_iounmap;
2917        }
2918
2919        if ((err = e100_eeprom_load(nic)))
2920                goto err_out_free;
2921
2922        e100_phy_init(nic);
2923
2924        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2925        if (!is_valid_ether_addr(netdev->dev_addr)) {
2926                if (!eeprom_bad_csum_allow) {
2927                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928                        err = -EAGAIN;
2929                        goto err_out_free;
2930                } else {
2931                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932                }
2933        }
2934
2935        /* Wol magic packet can be enabled from eeprom */
2936        if ((nic->mac >= mac_82558_D101_A4) &&
2937           (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938                nic->flags |= wol_magic;
2939                device_set_wakeup_enable(&pdev->dev, true);
2940        }
2941
2942        /* ack any pending wake events, disable PME */
2943        pci_pme_active(pdev, false);
2944
2945        strcpy(netdev->name, "eth%d");
2946        if ((err = register_netdev(netdev))) {
2947                netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948                goto err_out_free;
2949        }
2950        nic->cbs_pool = dma_pool_create(netdev->name,
2951                           &nic->pdev->dev,
2952                           nic->params.cbs.max * sizeof(struct cb),
2953                           sizeof(u32),
2954                           0);
2955        if (!nic->cbs_pool) {
2956                netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957                err = -ENOMEM;
2958                goto err_out_pool;
2959        }
2960        netif_info(nic, probe, nic->netdev,
2961                   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962                   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963                   pdev->irq, netdev->dev_addr);
2964
2965        return 0;
2966
2967err_out_pool:
2968        unregister_netdev(netdev);
2969err_out_free:
2970        e100_free(nic);
2971err_out_iounmap:
2972        pci_iounmap(pdev, nic->csr);
2973err_out_free_res:
2974        pci_release_regions(pdev);
2975err_out_disable_pdev:
2976        pci_disable_device(pdev);
2977err_out_free_dev:
2978        free_netdev(netdev);
2979        return err;
2980}
2981
2982static void e100_remove(struct pci_dev *pdev)
2983{
2984        struct net_device *netdev = pci_get_drvdata(pdev);
2985
2986        if (netdev) {
2987                struct nic *nic = netdev_priv(netdev);
2988                unregister_netdev(netdev);
2989                e100_free(nic);
2990                pci_iounmap(pdev, nic->csr);
2991                dma_pool_destroy(nic->cbs_pool);
2992                free_netdev(netdev);
2993                pci_release_regions(pdev);
2994                pci_disable_device(pdev);
2995        }
2996}
2997
2998#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3001static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002{
3003        struct net_device *netdev = pci_get_drvdata(pdev);
3004        struct nic *nic = netdev_priv(netdev);
3005
3006        if (netif_running(netdev))
3007                e100_down(nic);
3008        netif_device_detach(netdev);
3009
3010        if ((nic->flags & wol_magic) | e100_asf(nic)) {
3011                /* enable reverse auto-negotiation */
3012                if (nic->phy == phy_82552_v) {
3013                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3014                                                   E100_82552_SMARTSPEED);
3015
3016                        mdio_write(netdev, nic->mii.phy_id,
3017                                   E100_82552_SMARTSPEED, smartspeed |
3018                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3019                }
3020                *enable_wake = true;
3021        } else {
3022                *enable_wake = false;
3023        }
3024
3025        pci_clear_master(pdev);
3026}
3027
3028static int __e100_power_off(struct pci_dev *pdev, bool wake)
3029{
3030        if (wake)
3031                return pci_prepare_to_sleep(pdev);
3032
3033        pci_wake_from_d3(pdev, false);
3034        pci_set_power_state(pdev, PCI_D3hot);
3035
3036        return 0;
3037}
3038
3039static int __maybe_unused e100_suspend(struct device *dev_d)
3040{
3041        bool wake;
3042
3043        __e100_shutdown(to_pci_dev(dev_d), &wake);
3044
3045        device_wakeup_disable(dev_d);
3046
3047        return 0;
3048}
3049
3050static int __maybe_unused e100_resume(struct device *dev_d)
3051{
3052        struct net_device *netdev = dev_get_drvdata(dev_d);
3053        struct nic *nic = netdev_priv(netdev);
3054
3055        /* disable reverse auto-negotiation */
3056        if (nic->phy == phy_82552_v) {
3057                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3058                                           E100_82552_SMARTSPEED);
3059
3060                mdio_write(netdev, nic->mii.phy_id,
3061                           E100_82552_SMARTSPEED,
3062                           smartspeed & ~(E100_82552_REV_ANEG));
3063        }
3064
3065        netif_device_attach(netdev);
3066        if (netif_running(netdev))
3067                e100_up(nic);
3068
3069        return 0;
3070}
3071
3072static void e100_shutdown(struct pci_dev *pdev)
3073{
3074        bool wake;
3075        __e100_shutdown(pdev, &wake);
3076        if (system_state == SYSTEM_POWER_OFF)
3077                __e100_power_off(pdev, wake);
3078}
3079
3080/* ------------------ PCI Error Recovery infrastructure  -------------- */
3081/**
3082 * e100_io_error_detected - called when PCI error is detected.
3083 * @pdev: Pointer to PCI device
3084 * @state: The current pci connection state
3085 */
3086static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3087{
3088        struct net_device *netdev = pci_get_drvdata(pdev);
3089        struct nic *nic = netdev_priv(netdev);
3090
3091        netif_device_detach(netdev);
3092
3093        if (state == pci_channel_io_perm_failure)
3094                return PCI_ERS_RESULT_DISCONNECT;
3095
3096        if (netif_running(netdev))
3097                e100_down(nic);
3098        pci_disable_device(pdev);
3099
3100        /* Request a slot reset. */
3101        return PCI_ERS_RESULT_NEED_RESET;
3102}
3103
3104/**
3105 * e100_io_slot_reset - called after the pci bus has been reset.
3106 * @pdev: Pointer to PCI device
3107 *
3108 * Restart the card from scratch.
3109 */
3110static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3111{
3112        struct net_device *netdev = pci_get_drvdata(pdev);
3113        struct nic *nic = netdev_priv(netdev);
3114
3115        if (pci_enable_device(pdev)) {
3116                pr_err("Cannot re-enable PCI device after reset\n");
3117                return PCI_ERS_RESULT_DISCONNECT;
3118        }
3119        pci_set_master(pdev);
3120
3121        /* Only one device per card can do a reset */
3122        if (0 != PCI_FUNC(pdev->devfn))
3123                return PCI_ERS_RESULT_RECOVERED;
3124        e100_hw_reset(nic);
3125        e100_phy_init(nic);
3126
3127        return PCI_ERS_RESULT_RECOVERED;
3128}
3129
3130/**
3131 * e100_io_resume - resume normal operations
3132 * @pdev: Pointer to PCI device
3133 *
3134 * Resume normal operations after an error recovery
3135 * sequence has been completed.
3136 */
3137static void e100_io_resume(struct pci_dev *pdev)
3138{
3139        struct net_device *netdev = pci_get_drvdata(pdev);
3140        struct nic *nic = netdev_priv(netdev);
3141
3142        /* ack any pending wake events, disable PME */
3143        pci_enable_wake(pdev, PCI_D0, 0);
3144
3145        netif_device_attach(netdev);
3146        if (netif_running(netdev)) {
3147                e100_open(netdev);
3148                mod_timer(&nic->watchdog, jiffies);
3149        }
3150}
3151
3152static const struct pci_error_handlers e100_err_handler = {
3153        .error_detected = e100_io_error_detected,
3154        .slot_reset = e100_io_slot_reset,
3155        .resume = e100_io_resume,
3156};
3157
3158static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3159
3160static struct pci_driver e100_driver = {
3161        .name =         DRV_NAME,
3162        .id_table =     e100_id_table,
3163        .probe =        e100_probe,
3164        .remove =       e100_remove,
3165
3166        /* Power Management hooks */
3167        .driver.pm =    &e100_pm_ops,
3168
3169        .shutdown =     e100_shutdown,
3170        .err_handler = &e100_err_handler,
3171};
3172
3173static int __init e100_init_module(void)
3174{
3175        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3176                pr_info("%s\n", DRV_DESCRIPTION);
3177                pr_info("%s\n", DRV_COPYRIGHT);
3178        }
3179        return pci_register_driver(&e100_driver);
3180}
3181
3182static void __exit e100_cleanup_module(void)
3183{
3184        pci_unregister_driver(&e100_driver);
3185}
3186
3187module_init(e100_init_module);
3188module_exit(e100_cleanup_module);
3189