linux/drivers/net/ethernet/intel/e1000e/82571.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82571EB Gigabit Ethernet Controller
   5 * 82571EB Gigabit Ethernet Controller (Copper)
   6 * 82571EB Gigabit Ethernet Controller (Fiber)
   7 * 82571EB Dual Port Gigabit Mezzanine Adapter
   8 * 82571EB Quad Port Gigabit Mezzanine Adapter
   9 * 82571PT Gigabit PT Quad Port Server ExpressModule
  10 * 82572EI Gigabit Ethernet Controller (Copper)
  11 * 82572EI Gigabit Ethernet Controller (Fiber)
  12 * 82572EI Gigabit Ethernet Controller
  13 * 82573V Gigabit Ethernet Controller (Copper)
  14 * 82573E Gigabit Ethernet Controller (Copper)
  15 * 82573L Gigabit Ethernet Controller
  16 * 82574L Gigabit Network Connection
  17 * 82583V Gigabit Network Connection
  18 */
  19
  20#include "e1000.h"
  21
  22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
  23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
  24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
  25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
  26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
  27                                      u16 words, u16 *data);
  28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
  29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
  30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
  31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
  32static s32 e1000_led_on_82574(struct e1000_hw *hw);
  33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
  34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
  35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
  36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
  37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
  38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
  39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
  40
  41/**
  42 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
  43 *  @hw: pointer to the HW structure
  44 **/
  45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
  46{
  47        struct e1000_phy_info *phy = &hw->phy;
  48        s32 ret_val;
  49
  50        if (hw->phy.media_type != e1000_media_type_copper) {
  51                phy->type = e1000_phy_none;
  52                return 0;
  53        }
  54
  55        phy->addr = 1;
  56        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  57        phy->reset_delay_us = 100;
  58
  59        phy->ops.power_up = e1000_power_up_phy_copper;
  60        phy->ops.power_down = e1000_power_down_phy_copper_82571;
  61
  62        switch (hw->mac.type) {
  63        case e1000_82571:
  64        case e1000_82572:
  65                phy->type = e1000_phy_igp_2;
  66                break;
  67        case e1000_82573:
  68                phy->type = e1000_phy_m88;
  69                break;
  70        case e1000_82574:
  71        case e1000_82583:
  72                phy->type = e1000_phy_bm;
  73                phy->ops.acquire = e1000_get_hw_semaphore_82574;
  74                phy->ops.release = e1000_put_hw_semaphore_82574;
  75                phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
  76                phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
  77                break;
  78        default:
  79                return -E1000_ERR_PHY;
  80        }
  81
  82        /* This can only be done after all function pointers are setup. */
  83        ret_val = e1000_get_phy_id_82571(hw);
  84        if (ret_val) {
  85                e_dbg("Error getting PHY ID\n");
  86                return ret_val;
  87        }
  88
  89        /* Verify phy id */
  90        switch (hw->mac.type) {
  91        case e1000_82571:
  92        case e1000_82572:
  93                if (phy->id != IGP01E1000_I_PHY_ID)
  94                        ret_val = -E1000_ERR_PHY;
  95                break;
  96        case e1000_82573:
  97                if (phy->id != M88E1111_I_PHY_ID)
  98                        ret_val = -E1000_ERR_PHY;
  99                break;
 100        case e1000_82574:
 101        case e1000_82583:
 102                if (phy->id != BME1000_E_PHY_ID_R2)
 103                        ret_val = -E1000_ERR_PHY;
 104                break;
 105        default:
 106                ret_val = -E1000_ERR_PHY;
 107                break;
 108        }
 109
 110        if (ret_val)
 111                e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
 112
 113        return ret_val;
 114}
 115
 116/**
 117 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 118 *  @hw: pointer to the HW structure
 119 **/
 120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
 121{
 122        struct e1000_nvm_info *nvm = &hw->nvm;
 123        u32 eecd = er32(EECD);
 124        u16 size;
 125
 126        nvm->opcode_bits = 8;
 127        nvm->delay_usec = 1;
 128        switch (nvm->override) {
 129        case e1000_nvm_override_spi_large:
 130                nvm->page_size = 32;
 131                nvm->address_bits = 16;
 132                break;
 133        case e1000_nvm_override_spi_small:
 134                nvm->page_size = 8;
 135                nvm->address_bits = 8;
 136                break;
 137        default:
 138                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 139                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 140                break;
 141        }
 142
 143        switch (hw->mac.type) {
 144        case e1000_82573:
 145        case e1000_82574:
 146        case e1000_82583:
 147                if (((eecd >> 15) & 0x3) == 0x3) {
 148                        nvm->type = e1000_nvm_flash_hw;
 149                        nvm->word_size = 2048;
 150                        /* Autonomous Flash update bit must be cleared due
 151                         * to Flash update issue.
 152                         */
 153                        eecd &= ~E1000_EECD_AUPDEN;
 154                        ew32(EECD, eecd);
 155                        break;
 156                }
 157                fallthrough;
 158        default:
 159                nvm->type = e1000_nvm_eeprom_spi;
 160                size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 161                             E1000_EECD_SIZE_EX_SHIFT);
 162                /* Added to a constant, "size" becomes the left-shift value
 163                 * for setting word_size.
 164                 */
 165                size += NVM_WORD_SIZE_BASE_SHIFT;
 166
 167                /* EEPROM access above 16k is unsupported */
 168                if (size > 14)
 169                        size = 14;
 170                nvm->word_size = BIT(size);
 171                break;
 172        }
 173
 174        /* Function Pointers */
 175        switch (hw->mac.type) {
 176        case e1000_82574:
 177        case e1000_82583:
 178                nvm->ops.acquire = e1000_get_hw_semaphore_82574;
 179                nvm->ops.release = e1000_put_hw_semaphore_82574;
 180                break;
 181        default:
 182                break;
 183        }
 184
 185        return 0;
 186}
 187
 188/**
 189 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 190 *  @hw: pointer to the HW structure
 191 **/
 192static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
 193{
 194        struct e1000_mac_info *mac = &hw->mac;
 195        u32 swsm = 0;
 196        u32 swsm2 = 0;
 197        bool force_clear_smbi = false;
 198
 199        /* Set media type and media-dependent function pointers */
 200        switch (hw->adapter->pdev->device) {
 201        case E1000_DEV_ID_82571EB_FIBER:
 202        case E1000_DEV_ID_82572EI_FIBER:
 203        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 204                hw->phy.media_type = e1000_media_type_fiber;
 205                mac->ops.setup_physical_interface =
 206                    e1000_setup_fiber_serdes_link_82571;
 207                mac->ops.check_for_link = e1000e_check_for_fiber_link;
 208                mac->ops.get_link_up_info =
 209                    e1000e_get_speed_and_duplex_fiber_serdes;
 210                break;
 211        case E1000_DEV_ID_82571EB_SERDES:
 212        case E1000_DEV_ID_82571EB_SERDES_DUAL:
 213        case E1000_DEV_ID_82571EB_SERDES_QUAD:
 214        case E1000_DEV_ID_82572EI_SERDES:
 215                hw->phy.media_type = e1000_media_type_internal_serdes;
 216                mac->ops.setup_physical_interface =
 217                    e1000_setup_fiber_serdes_link_82571;
 218                mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
 219                mac->ops.get_link_up_info =
 220                    e1000e_get_speed_and_duplex_fiber_serdes;
 221                break;
 222        default:
 223                hw->phy.media_type = e1000_media_type_copper;
 224                mac->ops.setup_physical_interface =
 225                    e1000_setup_copper_link_82571;
 226                mac->ops.check_for_link = e1000e_check_for_copper_link;
 227                mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
 228                break;
 229        }
 230
 231        /* Set mta register count */
 232        mac->mta_reg_count = 128;
 233        /* Set rar entry count */
 234        mac->rar_entry_count = E1000_RAR_ENTRIES;
 235        /* Adaptive IFS supported */
 236        mac->adaptive_ifs = true;
 237
 238        /* MAC-specific function pointers */
 239        switch (hw->mac.type) {
 240        case e1000_82573:
 241                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 242                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 243                mac->ops.led_on = e1000e_led_on_generic;
 244                mac->ops.blink_led = e1000e_blink_led_generic;
 245
 246                /* FWSM register */
 247                mac->has_fwsm = true;
 248                /* ARC supported; valid only if manageability features are
 249                 * enabled.
 250                 */
 251                mac->arc_subsystem_valid = !!(er32(FWSM) &
 252                                              E1000_FWSM_MODE_MASK);
 253                break;
 254        case e1000_82574:
 255        case e1000_82583:
 256                mac->ops.set_lan_id = e1000_set_lan_id_single_port;
 257                mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
 258                mac->ops.led_on = e1000_led_on_82574;
 259                break;
 260        default:
 261                mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
 262                mac->ops.led_on = e1000e_led_on_generic;
 263                mac->ops.blink_led = e1000e_blink_led_generic;
 264
 265                /* FWSM register */
 266                mac->has_fwsm = true;
 267                break;
 268        }
 269
 270        /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
 271         * first NVM or PHY access. This should be done for single-port
 272         * devices, and for one port only on dual-port devices so that
 273         * for those devices we can still use the SMBI lock to synchronize
 274         * inter-port accesses to the PHY & NVM.
 275         */
 276        switch (hw->mac.type) {
 277        case e1000_82571:
 278        case e1000_82572:
 279                swsm2 = er32(SWSM2);
 280
 281                if (!(swsm2 & E1000_SWSM2_LOCK)) {
 282                        /* Only do this for the first interface on this card */
 283                        ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
 284                        force_clear_smbi = true;
 285                } else {
 286                        force_clear_smbi = false;
 287                }
 288                break;
 289        default:
 290                force_clear_smbi = true;
 291                break;
 292        }
 293
 294        if (force_clear_smbi) {
 295                /* Make sure SWSM.SMBI is clear */
 296                swsm = er32(SWSM);
 297                if (swsm & E1000_SWSM_SMBI) {
 298                        /* This bit should not be set on a first interface, and
 299                         * indicates that the bootagent or EFI code has
 300                         * improperly left this bit enabled
 301                         */
 302                        e_dbg("Please update your 82571 Bootagent\n");
 303                }
 304                ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
 305        }
 306
 307        /* Initialize device specific counter of SMBI acquisition timeouts. */
 308        hw->dev_spec.e82571.smb_counter = 0;
 309
 310        return 0;
 311}
 312
 313static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
 314{
 315        struct e1000_hw *hw = &adapter->hw;
 316        static int global_quad_port_a;  /* global port a indication */
 317        struct pci_dev *pdev = adapter->pdev;
 318        int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
 319        s32 rc;
 320
 321        rc = e1000_init_mac_params_82571(hw);
 322        if (rc)
 323                return rc;
 324
 325        rc = e1000_init_nvm_params_82571(hw);
 326        if (rc)
 327                return rc;
 328
 329        rc = e1000_init_phy_params_82571(hw);
 330        if (rc)
 331                return rc;
 332
 333        /* tag quad port adapters first, it's used below */
 334        switch (pdev->device) {
 335        case E1000_DEV_ID_82571EB_QUAD_COPPER:
 336        case E1000_DEV_ID_82571EB_QUAD_FIBER:
 337        case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 338        case E1000_DEV_ID_82571PT_QUAD_COPPER:
 339                adapter->flags |= FLAG_IS_QUAD_PORT;
 340                /* mark the first port */
 341                if (global_quad_port_a == 0)
 342                        adapter->flags |= FLAG_IS_QUAD_PORT_A;
 343                /* Reset for multiple quad port adapters */
 344                global_quad_port_a++;
 345                if (global_quad_port_a == 4)
 346                        global_quad_port_a = 0;
 347                break;
 348        default:
 349                break;
 350        }
 351
 352        switch (adapter->hw.mac.type) {
 353        case e1000_82571:
 354                /* these dual ports don't have WoL on port B at all */
 355                if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
 356                     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
 357                     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
 358                    (is_port_b))
 359                        adapter->flags &= ~FLAG_HAS_WOL;
 360                /* quad ports only support WoL on port A */
 361                if (adapter->flags & FLAG_IS_QUAD_PORT &&
 362                    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
 363                        adapter->flags &= ~FLAG_HAS_WOL;
 364                /* Does not support WoL on any port */
 365                if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
 366                        adapter->flags &= ~FLAG_HAS_WOL;
 367                break;
 368        case e1000_82573:
 369                if (pdev->device == E1000_DEV_ID_82573L) {
 370                        adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
 371                        adapter->max_hw_frame_size = DEFAULT_JUMBO;
 372                }
 373                break;
 374        default:
 375                break;
 376        }
 377
 378        return 0;
 379}
 380
 381/**
 382 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 383 *  @hw: pointer to the HW structure
 384 *
 385 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 386 *  revision in the hardware structure.
 387 **/
 388static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
 389{
 390        struct e1000_phy_info *phy = &hw->phy;
 391        s32 ret_val;
 392        u16 phy_id = 0;
 393
 394        switch (hw->mac.type) {
 395        case e1000_82571:
 396        case e1000_82572:
 397                /* The 82571 firmware may still be configuring the PHY.
 398                 * In this case, we cannot access the PHY until the
 399                 * configuration is done.  So we explicitly set the
 400                 * PHY ID.
 401                 */
 402                phy->id = IGP01E1000_I_PHY_ID;
 403                break;
 404        case e1000_82573:
 405                return e1000e_get_phy_id(hw);
 406        case e1000_82574:
 407        case e1000_82583:
 408                ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
 409                if (ret_val)
 410                        return ret_val;
 411
 412                phy->id = (u32)(phy_id << 16);
 413                usleep_range(20, 40);
 414                ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
 415                if (ret_val)
 416                        return ret_val;
 417
 418                phy->id |= (u32)(phy_id);
 419                phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 420                break;
 421        default:
 422                return -E1000_ERR_PHY;
 423        }
 424
 425        return 0;
 426}
 427
 428/**
 429 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 430 *  @hw: pointer to the HW structure
 431 *
 432 *  Acquire the HW semaphore to access the PHY or NVM
 433 **/
 434static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
 435{
 436        u32 swsm;
 437        s32 sw_timeout = hw->nvm.word_size + 1;
 438        s32 fw_timeout = hw->nvm.word_size + 1;
 439        s32 i = 0;
 440
 441        /* If we have timedout 3 times on trying to acquire
 442         * the inter-port SMBI semaphore, there is old code
 443         * operating on the other port, and it is not
 444         * releasing SMBI. Modify the number of times that
 445         * we try for the semaphore to interwork with this
 446         * older code.
 447         */
 448        if (hw->dev_spec.e82571.smb_counter > 2)
 449                sw_timeout = 1;
 450
 451        /* Get the SW semaphore */
 452        while (i < sw_timeout) {
 453                swsm = er32(SWSM);
 454                if (!(swsm & E1000_SWSM_SMBI))
 455                        break;
 456
 457                usleep_range(50, 100);
 458                i++;
 459        }
 460
 461        if (i == sw_timeout) {
 462                e_dbg("Driver can't access device - SMBI bit is set.\n");
 463                hw->dev_spec.e82571.smb_counter++;
 464        }
 465        /* Get the FW semaphore. */
 466        for (i = 0; i < fw_timeout; i++) {
 467                swsm = er32(SWSM);
 468                ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
 469
 470                /* Semaphore acquired if bit latched */
 471                if (er32(SWSM) & E1000_SWSM_SWESMBI)
 472                        break;
 473
 474                usleep_range(50, 100);
 475        }
 476
 477        if (i == fw_timeout) {
 478                /* Release semaphores */
 479                e1000_put_hw_semaphore_82571(hw);
 480                e_dbg("Driver can't access the NVM\n");
 481                return -E1000_ERR_NVM;
 482        }
 483
 484        return 0;
 485}
 486
 487/**
 488 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 489 *  @hw: pointer to the HW structure
 490 *
 491 *  Release hardware semaphore used to access the PHY or NVM
 492 **/
 493static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
 494{
 495        u32 swsm;
 496
 497        swsm = er32(SWSM);
 498        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 499        ew32(SWSM, swsm);
 500}
 501
 502/**
 503 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 504 *  @hw: pointer to the HW structure
 505 *
 506 *  Acquire the HW semaphore during reset.
 507 *
 508 **/
 509static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
 510{
 511        u32 extcnf_ctrl;
 512        s32 i = 0;
 513
 514        extcnf_ctrl = er32(EXTCNF_CTRL);
 515        do {
 516                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 517                ew32(EXTCNF_CTRL, extcnf_ctrl);
 518                extcnf_ctrl = er32(EXTCNF_CTRL);
 519
 520                if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
 521                        break;
 522
 523                usleep_range(2000, 4000);
 524                i++;
 525        } while (i < MDIO_OWNERSHIP_TIMEOUT);
 526
 527        if (i == MDIO_OWNERSHIP_TIMEOUT) {
 528                /* Release semaphores */
 529                e1000_put_hw_semaphore_82573(hw);
 530                e_dbg("Driver can't access the PHY\n");
 531                return -E1000_ERR_PHY;
 532        }
 533
 534        return 0;
 535}
 536
 537/**
 538 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 539 *  @hw: pointer to the HW structure
 540 *
 541 *  Release hardware semaphore used during reset.
 542 *
 543 **/
 544static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
 545{
 546        u32 extcnf_ctrl;
 547
 548        extcnf_ctrl = er32(EXTCNF_CTRL);
 549        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
 550        ew32(EXTCNF_CTRL, extcnf_ctrl);
 551}
 552
 553static DEFINE_MUTEX(swflag_mutex);
 554
 555/**
 556 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 557 *  @hw: pointer to the HW structure
 558 *
 559 *  Acquire the HW semaphore to access the PHY or NVM.
 560 *
 561 **/
 562static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
 563{
 564        s32 ret_val;
 565
 566        mutex_lock(&swflag_mutex);
 567        ret_val = e1000_get_hw_semaphore_82573(hw);
 568        if (ret_val)
 569                mutex_unlock(&swflag_mutex);
 570        return ret_val;
 571}
 572
 573/**
 574 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 575 *  @hw: pointer to the HW structure
 576 *
 577 *  Release hardware semaphore used to access the PHY or NVM
 578 *
 579 **/
 580static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
 581{
 582        e1000_put_hw_semaphore_82573(hw);
 583        mutex_unlock(&swflag_mutex);
 584}
 585
 586/**
 587 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 588 *  @hw: pointer to the HW structure
 589 *  @active: true to enable LPLU, false to disable
 590 *
 591 *  Sets the LPLU D0 state according to the active flag.
 592 *  LPLU will not be activated unless the
 593 *  device autonegotiation advertisement meets standards of
 594 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 595 *  This is a function pointer entry point only called by
 596 *  PHY setup routines.
 597 **/
 598static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
 599{
 600        u32 data = er32(POEMB);
 601
 602        if (active)
 603                data |= E1000_PHY_CTRL_D0A_LPLU;
 604        else
 605                data &= ~E1000_PHY_CTRL_D0A_LPLU;
 606
 607        ew32(POEMB, data);
 608        return 0;
 609}
 610
 611/**
 612 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 613 *  @hw: pointer to the HW structure
 614 *  @active: boolean used to enable/disable lplu
 615 *
 616 *  The low power link up (lplu) state is set to the power management level D3
 617 *  when active is true, else clear lplu for D3. LPLU
 618 *  is used during Dx states where the power conservation is most important.
 619 *  During driver activity, SmartSpeed should be enabled so performance is
 620 *  maintained.
 621 **/
 622static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
 623{
 624        u32 data = er32(POEMB);
 625
 626        if (!active) {
 627                data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
 628        } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 629                   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
 630                   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
 631                data |= E1000_PHY_CTRL_NOND0A_LPLU;
 632        }
 633
 634        ew32(POEMB, data);
 635        return 0;
 636}
 637
 638/**
 639 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 640 *  @hw: pointer to the HW structure
 641 *
 642 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 643 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 644 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 645 *  hardware semaphore.
 646 **/
 647static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
 648{
 649        s32 ret_val;
 650
 651        ret_val = e1000_get_hw_semaphore_82571(hw);
 652        if (ret_val)
 653                return ret_val;
 654
 655        switch (hw->mac.type) {
 656        case e1000_82573:
 657                break;
 658        default:
 659                ret_val = e1000e_acquire_nvm(hw);
 660                break;
 661        }
 662
 663        if (ret_val)
 664                e1000_put_hw_semaphore_82571(hw);
 665
 666        return ret_val;
 667}
 668
 669/**
 670 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 674 **/
 675static void e1000_release_nvm_82571(struct e1000_hw *hw)
 676{
 677        e1000e_release_nvm(hw);
 678        e1000_put_hw_semaphore_82571(hw);
 679}
 680
 681/**
 682 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 683 *  @hw: pointer to the HW structure
 684 *  @offset: offset within the EEPROM to be written to
 685 *  @words: number of words to write
 686 *  @data: 16 bit word(s) to be written to the EEPROM
 687 *
 688 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 689 *
 690 *  If e1000e_update_nvm_checksum is not called after this function, the
 691 *  EEPROM will most likely contain an invalid checksum.
 692 **/
 693static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
 694                                 u16 *data)
 695{
 696        s32 ret_val;
 697
 698        switch (hw->mac.type) {
 699        case e1000_82573:
 700        case e1000_82574:
 701        case e1000_82583:
 702                ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
 703                break;
 704        case e1000_82571:
 705        case e1000_82572:
 706                ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
 707                break;
 708        default:
 709                ret_val = -E1000_ERR_NVM;
 710                break;
 711        }
 712
 713        return ret_val;
 714}
 715
 716/**
 717 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 718 *  @hw: pointer to the HW structure
 719 *
 720 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 721 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 722 *  value to the EEPROM.
 723 **/
 724static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
 725{
 726        u32 eecd;
 727        s32 ret_val;
 728        u16 i;
 729
 730        ret_val = e1000e_update_nvm_checksum_generic(hw);
 731        if (ret_val)
 732                return ret_val;
 733
 734        /* If our nvm is an EEPROM, then we're done
 735         * otherwise, commit the checksum to the flash NVM.
 736         */
 737        if (hw->nvm.type != e1000_nvm_flash_hw)
 738                return 0;
 739
 740        /* Check for pending operations. */
 741        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 742                usleep_range(1000, 2000);
 743                if (!(er32(EECD) & E1000_EECD_FLUPD))
 744                        break;
 745        }
 746
 747        if (i == E1000_FLASH_UPDATES)
 748                return -E1000_ERR_NVM;
 749
 750        /* Reset the firmware if using STM opcode. */
 751        if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
 752                /* The enabling of and the actual reset must be done
 753                 * in two write cycles.
 754                 */
 755                ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
 756                e1e_flush();
 757                ew32(HICR, E1000_HICR_FW_RESET);
 758        }
 759
 760        /* Commit the write to flash */
 761        eecd = er32(EECD) | E1000_EECD_FLUPD;
 762        ew32(EECD, eecd);
 763
 764        for (i = 0; i < E1000_FLASH_UPDATES; i++) {
 765                usleep_range(1000, 2000);
 766                if (!(er32(EECD) & E1000_EECD_FLUPD))
 767                        break;
 768        }
 769
 770        if (i == E1000_FLASH_UPDATES)
 771                return -E1000_ERR_NVM;
 772
 773        return 0;
 774}
 775
 776/**
 777 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 778 *  @hw: pointer to the HW structure
 779 *
 780 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 781 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 782 **/
 783static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
 784{
 785        if (hw->nvm.type == e1000_nvm_flash_hw)
 786                e1000_fix_nvm_checksum_82571(hw);
 787
 788        return e1000e_validate_nvm_checksum_generic(hw);
 789}
 790
 791/**
 792 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 793 *  @hw: pointer to the HW structure
 794 *  @offset: offset within the EEPROM to be written to
 795 *  @words: number of words to write
 796 *  @data: 16 bit word(s) to be written to the EEPROM
 797 *
 798 *  After checking for invalid values, poll the EEPROM to ensure the previous
 799 *  command has completed before trying to write the next word.  After write
 800 *  poll for completion.
 801 *
 802 *  If e1000e_update_nvm_checksum is not called after this function, the
 803 *  EEPROM will most likely contain an invalid checksum.
 804 **/
 805static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
 806                                      u16 words, u16 *data)
 807{
 808        struct e1000_nvm_info *nvm = &hw->nvm;
 809        u32 i, eewr = 0;
 810        s32 ret_val = 0;
 811
 812        /* A check for invalid values:  offset too large, too many words,
 813         * and not enough words.
 814         */
 815        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 816            (words == 0)) {
 817                e_dbg("nvm parameter(s) out of bounds\n");
 818                return -E1000_ERR_NVM;
 819        }
 820
 821        for (i = 0; i < words; i++) {
 822                eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
 823                        ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
 824                        E1000_NVM_RW_REG_START);
 825
 826                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 827                if (ret_val)
 828                        break;
 829
 830                ew32(EEWR, eewr);
 831
 832                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
 833                if (ret_val)
 834                        break;
 835        }
 836
 837        return ret_val;
 838}
 839
 840/**
 841 *  e1000_get_cfg_done_82571 - Poll for configuration done
 842 *  @hw: pointer to the HW structure
 843 *
 844 *  Reads the management control register for the config done bit to be set.
 845 **/
 846static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
 847{
 848        s32 timeout = PHY_CFG_TIMEOUT;
 849
 850        while (timeout) {
 851                if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
 852                        break;
 853                usleep_range(1000, 2000);
 854                timeout--;
 855        }
 856        if (!timeout) {
 857                e_dbg("MNG configuration cycle has not completed.\n");
 858                return -E1000_ERR_RESET;
 859        }
 860
 861        return 0;
 862}
 863
 864/**
 865 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 866 *  @hw: pointer to the HW structure
 867 *  @active: true to enable LPLU, false to disable
 868 *
 869 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 870 *  this function also disables smart speed and vice versa.  LPLU will not be
 871 *  activated unless the device autonegotiation advertisement meets standards
 872 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 873 *  pointer entry point only called by PHY setup routines.
 874 **/
 875static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
 876{
 877        struct e1000_phy_info *phy = &hw->phy;
 878        s32 ret_val;
 879        u16 data;
 880
 881        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 882        if (ret_val)
 883                return ret_val;
 884
 885        if (active) {
 886                data |= IGP02E1000_PM_D0_LPLU;
 887                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 888                if (ret_val)
 889                        return ret_val;
 890
 891                /* When LPLU is enabled, we should disable SmartSpeed */
 892                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 893                if (ret_val)
 894                        return ret_val;
 895                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 896                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
 897                if (ret_val)
 898                        return ret_val;
 899        } else {
 900                data &= ~IGP02E1000_PM_D0_LPLU;
 901                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
 902                if (ret_val)
 903                        return ret_val;
 904                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 905                 * during Dx states where the power conservation is most
 906                 * important.  During driver activity we should enable
 907                 * SmartSpeed, so performance is maintained.
 908                 */
 909                if (phy->smart_speed == e1000_smart_speed_on) {
 910                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 911                                           &data);
 912                        if (ret_val)
 913                                return ret_val;
 914
 915                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 916                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 917                                           data);
 918                        if (ret_val)
 919                                return ret_val;
 920                } else if (phy->smart_speed == e1000_smart_speed_off) {
 921                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 922                                           &data);
 923                        if (ret_val)
 924                                return ret_val;
 925
 926                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 927                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 928                                           data);
 929                        if (ret_val)
 930                                return ret_val;
 931                }
 932        }
 933
 934        return 0;
 935}
 936
 937/**
 938 *  e1000_reset_hw_82571 - Reset hardware
 939 *  @hw: pointer to the HW structure
 940 *
 941 *  This resets the hardware into a known state.
 942 **/
 943static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
 944{
 945        u32 ctrl, ctrl_ext, eecd, tctl;
 946        s32 ret_val;
 947
 948        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 949         * on the last TLP read/write transaction when MAC is reset.
 950         */
 951        ret_val = e1000e_disable_pcie_master(hw);
 952        if (ret_val)
 953                e_dbg("PCI-E Master disable polling has failed.\n");
 954
 955        e_dbg("Masking off all interrupts\n");
 956        ew32(IMC, 0xffffffff);
 957
 958        ew32(RCTL, 0);
 959        tctl = er32(TCTL);
 960        tctl &= ~E1000_TCTL_EN;
 961        ew32(TCTL, tctl);
 962        e1e_flush();
 963
 964        usleep_range(10000, 11000);
 965
 966        /* Must acquire the MDIO ownership before MAC reset.
 967         * Ownership defaults to firmware after a reset.
 968         */
 969        switch (hw->mac.type) {
 970        case e1000_82573:
 971                ret_val = e1000_get_hw_semaphore_82573(hw);
 972                break;
 973        case e1000_82574:
 974        case e1000_82583:
 975                ret_val = e1000_get_hw_semaphore_82574(hw);
 976                break;
 977        default:
 978                break;
 979        }
 980
 981        ctrl = er32(CTRL);
 982
 983        e_dbg("Issuing a global reset to MAC\n");
 984        ew32(CTRL, ctrl | E1000_CTRL_RST);
 985
 986        /* Must release MDIO ownership and mutex after MAC reset. */
 987        switch (hw->mac.type) {
 988        case e1000_82573:
 989                /* Release mutex only if the hw semaphore is acquired */
 990                if (!ret_val)
 991                        e1000_put_hw_semaphore_82573(hw);
 992                break;
 993        case e1000_82574:
 994        case e1000_82583:
 995                /* Release mutex only if the hw semaphore is acquired */
 996                if (!ret_val)
 997                        e1000_put_hw_semaphore_82574(hw);
 998                break;
 999        default:
1000                break;
1001        }
1002
1003        if (hw->nvm.type == e1000_nvm_flash_hw) {
1004                usleep_range(10, 20);
1005                ctrl_ext = er32(CTRL_EXT);
1006                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1007                ew32(CTRL_EXT, ctrl_ext);
1008                e1e_flush();
1009        }
1010
1011        ret_val = e1000e_get_auto_rd_done(hw);
1012        if (ret_val)
1013                /* We don't want to continue accessing MAC registers. */
1014                return ret_val;
1015
1016        /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1017         * Need to wait for Phy configuration completion before accessing
1018         * NVM and Phy.
1019         */
1020
1021        switch (hw->mac.type) {
1022        case e1000_82571:
1023        case e1000_82572:
1024                /* REQ and GNT bits need to be cleared when using AUTO_RD
1025                 * to access the EEPROM.
1026                 */
1027                eecd = er32(EECD);
1028                eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1029                ew32(EECD, eecd);
1030                break;
1031        case e1000_82573:
1032        case e1000_82574:
1033        case e1000_82583:
1034                msleep(25);
1035                break;
1036        default:
1037                break;
1038        }
1039
1040        /* Clear any pending interrupt events. */
1041        ew32(IMC, 0xffffffff);
1042        er32(ICR);
1043
1044        if (hw->mac.type == e1000_82571) {
1045                /* Install any alternate MAC address into RAR0 */
1046                ret_val = e1000_check_alt_mac_addr_generic(hw);
1047                if (ret_val)
1048                        return ret_val;
1049
1050                e1000e_set_laa_state_82571(hw, true);
1051        }
1052
1053        /* Reinitialize the 82571 serdes link state machine */
1054        if (hw->phy.media_type == e1000_media_type_internal_serdes)
1055                hw->mac.serdes_link_state = e1000_serdes_link_down;
1056
1057        return 0;
1058}
1059
1060/**
1061 *  e1000_init_hw_82571 - Initialize hardware
1062 *  @hw: pointer to the HW structure
1063 *
1064 *  This inits the hardware readying it for operation.
1065 **/
1066static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1067{
1068        struct e1000_mac_info *mac = &hw->mac;
1069        u32 reg_data;
1070        s32 ret_val;
1071        u16 i, rar_count = mac->rar_entry_count;
1072
1073        e1000_initialize_hw_bits_82571(hw);
1074
1075        /* Initialize identification LED */
1076        ret_val = mac->ops.id_led_init(hw);
1077        /* An error is not fatal and we should not stop init due to this */
1078        if (ret_val)
1079                e_dbg("Error initializing identification LED\n");
1080
1081        /* Disabling VLAN filtering */
1082        e_dbg("Initializing the IEEE VLAN\n");
1083        mac->ops.clear_vfta(hw);
1084
1085        /* Setup the receive address.
1086         * If, however, a locally administered address was assigned to the
1087         * 82571, we must reserve a RAR for it to work around an issue where
1088         * resetting one port will reload the MAC on the other port.
1089         */
1090        if (e1000e_get_laa_state_82571(hw))
1091                rar_count--;
1092        e1000e_init_rx_addrs(hw, rar_count);
1093
1094        /* Zero out the Multicast HASH table */
1095        e_dbg("Zeroing the MTA\n");
1096        for (i = 0; i < mac->mta_reg_count; i++)
1097                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1098
1099        /* Setup link and flow control */
1100        ret_val = mac->ops.setup_link(hw);
1101
1102        /* Set the transmit descriptor write-back policy */
1103        reg_data = er32(TXDCTL(0));
1104        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1105                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1106        ew32(TXDCTL(0), reg_data);
1107
1108        /* ...for both queues. */
1109        switch (mac->type) {
1110        case e1000_82573:
1111                e1000e_enable_tx_pkt_filtering(hw);
1112                fallthrough;
1113        case e1000_82574:
1114        case e1000_82583:
1115                reg_data = er32(GCR);
1116                reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1117                ew32(GCR, reg_data);
1118                break;
1119        default:
1120                reg_data = er32(TXDCTL(1));
1121                reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1122                            E1000_TXDCTL_FULL_TX_DESC_WB |
1123                            E1000_TXDCTL_COUNT_DESC);
1124                ew32(TXDCTL(1), reg_data);
1125                break;
1126        }
1127
1128        /* Clear all of the statistics registers (clear on read).  It is
1129         * important that we do this after we have tried to establish link
1130         * because the symbol error count will increment wildly if there
1131         * is no link.
1132         */
1133        e1000_clear_hw_cntrs_82571(hw);
1134
1135        return ret_val;
1136}
1137
1138/**
1139 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Initializes required hardware-dependent bits needed for normal operation.
1143 **/
1144static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1145{
1146        u32 reg;
1147
1148        /* Transmit Descriptor Control 0 */
1149        reg = er32(TXDCTL(0));
1150        reg |= BIT(22);
1151        ew32(TXDCTL(0), reg);
1152
1153        /* Transmit Descriptor Control 1 */
1154        reg = er32(TXDCTL(1));
1155        reg |= BIT(22);
1156        ew32(TXDCTL(1), reg);
1157
1158        /* Transmit Arbitration Control 0 */
1159        reg = er32(TARC(0));
1160        reg &= ~(0xF << 27);    /* 30:27 */
1161        switch (hw->mac.type) {
1162        case e1000_82571:
1163        case e1000_82572:
1164                reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1165                break;
1166        case e1000_82574:
1167        case e1000_82583:
1168                reg |= BIT(26);
1169                break;
1170        default:
1171                break;
1172        }
1173        ew32(TARC(0), reg);
1174
1175        /* Transmit Arbitration Control 1 */
1176        reg = er32(TARC(1));
1177        switch (hw->mac.type) {
1178        case e1000_82571:
1179        case e1000_82572:
1180                reg &= ~(BIT(29) | BIT(30));
1181                reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1182                if (er32(TCTL) & E1000_TCTL_MULR)
1183                        reg &= ~BIT(28);
1184                else
1185                        reg |= BIT(28);
1186                ew32(TARC(1), reg);
1187                break;
1188        default:
1189                break;
1190        }
1191
1192        /* Device Control */
1193        switch (hw->mac.type) {
1194        case e1000_82573:
1195        case e1000_82574:
1196        case e1000_82583:
1197                reg = er32(CTRL);
1198                reg &= ~BIT(29);
1199                ew32(CTRL, reg);
1200                break;
1201        default:
1202                break;
1203        }
1204
1205        /* Extended Device Control */
1206        switch (hw->mac.type) {
1207        case e1000_82573:
1208        case e1000_82574:
1209        case e1000_82583:
1210                reg = er32(CTRL_EXT);
1211                reg &= ~BIT(23);
1212                reg |= BIT(22);
1213                ew32(CTRL_EXT, reg);
1214                break;
1215        default:
1216                break;
1217        }
1218
1219        if (hw->mac.type == e1000_82571) {
1220                reg = er32(PBA_ECC);
1221                reg |= E1000_PBA_ECC_CORR_EN;
1222                ew32(PBA_ECC, reg);
1223        }
1224
1225        /* Workaround for hardware errata.
1226         * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1227         */
1228        if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1229                reg = er32(CTRL_EXT);
1230                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1231                ew32(CTRL_EXT, reg);
1232        }
1233
1234        /* Disable IPv6 extension header parsing because some malformed
1235         * IPv6 headers can hang the Rx.
1236         */
1237        if (hw->mac.type <= e1000_82573) {
1238                reg = er32(RFCTL);
1239                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1240                ew32(RFCTL, reg);
1241        }
1242
1243        /* PCI-Ex Control Registers */
1244        switch (hw->mac.type) {
1245        case e1000_82574:
1246        case e1000_82583:
1247                reg = er32(GCR);
1248                reg |= BIT(22);
1249                ew32(GCR, reg);
1250
1251                /* Workaround for hardware errata.
1252                 * apply workaround for hardware errata documented in errata
1253                 * docs Fixes issue where some error prone or unreliable PCIe
1254                 * completions are occurring, particularly with ASPM enabled.
1255                 * Without fix, issue can cause Tx timeouts.
1256                 */
1257                reg = er32(GCR2);
1258                reg |= 1;
1259                ew32(GCR2, reg);
1260                break;
1261        default:
1262                break;
1263        }
1264}
1265
1266/**
1267 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1268 *  @hw: pointer to the HW structure
1269 *
1270 *  Clears the register array which contains the VLAN filter table by
1271 *  setting all the values to 0.
1272 **/
1273static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1274{
1275        u32 offset;
1276        u32 vfta_value = 0;
1277        u32 vfta_offset = 0;
1278        u32 vfta_bit_in_reg = 0;
1279
1280        switch (hw->mac.type) {
1281        case e1000_82573:
1282        case e1000_82574:
1283        case e1000_82583:
1284                if (hw->mng_cookie.vlan_id != 0) {
1285                        /* The VFTA is a 4096b bit-field, each identifying
1286                         * a single VLAN ID.  The following operations
1287                         * determine which 32b entry (i.e. offset) into the
1288                         * array we want to set the VLAN ID (i.e. bit) of
1289                         * the manageability unit.
1290                         */
1291                        vfta_offset = (hw->mng_cookie.vlan_id >>
1292                                       E1000_VFTA_ENTRY_SHIFT) &
1293                            E1000_VFTA_ENTRY_MASK;
1294                        vfta_bit_in_reg =
1295                            BIT(hw->mng_cookie.vlan_id &
1296                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1297                }
1298                break;
1299        default:
1300                break;
1301        }
1302        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1303                /* If the offset we want to clear is the same offset of the
1304                 * manageability VLAN ID, then clear all bits except that of
1305                 * the manageability unit.
1306                 */
1307                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1308                E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1309                e1e_flush();
1310        }
1311}
1312
1313/**
1314 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1315 *  @hw: pointer to the HW structure
1316 *
1317 *  Reads the NVM Initialization Control Word 2 and returns true
1318 *  (>0) if any manageability is enabled, else false (0).
1319 **/
1320static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1321{
1322        u16 data;
1323
1324        e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1325        return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1326}
1327
1328/**
1329 *  e1000_led_on_82574 - Turn LED on
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Turn LED on.
1333 **/
1334static s32 e1000_led_on_82574(struct e1000_hw *hw)
1335{
1336        u32 ctrl;
1337        u32 i;
1338
1339        ctrl = hw->mac.ledctl_mode2;
1340        if (!(E1000_STATUS_LU & er32(STATUS))) {
1341                /* If no link, then turn LED on by setting the invert bit
1342                 * for each LED that's "on" (0x0E) in ledctl_mode2.
1343                 */
1344                for (i = 0; i < 4; i++)
1345                        if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1346                            E1000_LEDCTL_MODE_LED_ON)
1347                                ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1348        }
1349        ew32(LEDCTL, ctrl);
1350
1351        return 0;
1352}
1353
1354/**
1355 *  e1000_check_phy_82574 - check 82574 phy hung state
1356 *  @hw: pointer to the HW structure
1357 *
1358 *  Returns whether phy is hung or not
1359 **/
1360bool e1000_check_phy_82574(struct e1000_hw *hw)
1361{
1362        u16 status_1kbt = 0;
1363        u16 receive_errors = 0;
1364        s32 ret_val;
1365
1366        /* Read PHY Receive Error counter first, if its is max - all F's then
1367         * read the Base1000T status register If both are max then PHY is hung.
1368         */
1369        ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1370        if (ret_val)
1371                return false;
1372        if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1373                ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1374                if (ret_val)
1375                        return false;
1376                if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1377                    E1000_IDLE_ERROR_COUNT_MASK)
1378                        return true;
1379        }
1380
1381        return false;
1382}
1383
1384/**
1385 *  e1000_setup_link_82571 - Setup flow control and link settings
1386 *  @hw: pointer to the HW structure
1387 *
1388 *  Determines which flow control settings to use, then configures flow
1389 *  control.  Calls the appropriate media-specific link configuration
1390 *  function.  Assuming the adapter has a valid link partner, a valid link
1391 *  should be established.  Assumes the hardware has previously been reset
1392 *  and the transmitter and receiver are not enabled.
1393 **/
1394static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1395{
1396        /* 82573 does not have a word in the NVM to determine
1397         * the default flow control setting, so we explicitly
1398         * set it to full.
1399         */
1400        switch (hw->mac.type) {
1401        case e1000_82573:
1402        case e1000_82574:
1403        case e1000_82583:
1404                if (hw->fc.requested_mode == e1000_fc_default)
1405                        hw->fc.requested_mode = e1000_fc_full;
1406                break;
1407        default:
1408                break;
1409        }
1410
1411        return e1000e_setup_link_generic(hw);
1412}
1413
1414/**
1415 *  e1000_setup_copper_link_82571 - Configure copper link settings
1416 *  @hw: pointer to the HW structure
1417 *
1418 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1419 *  for link, once link is established calls to configure collision distance
1420 *  and flow control are called.
1421 **/
1422static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1423{
1424        u32 ctrl;
1425        s32 ret_val;
1426
1427        ctrl = er32(CTRL);
1428        ctrl |= E1000_CTRL_SLU;
1429        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1430        ew32(CTRL, ctrl);
1431
1432        switch (hw->phy.type) {
1433        case e1000_phy_m88:
1434        case e1000_phy_bm:
1435                ret_val = e1000e_copper_link_setup_m88(hw);
1436                break;
1437        case e1000_phy_igp_2:
1438                ret_val = e1000e_copper_link_setup_igp(hw);
1439                break;
1440        default:
1441                return -E1000_ERR_PHY;
1442        }
1443
1444        if (ret_val)
1445                return ret_val;
1446
1447        return e1000e_setup_copper_link(hw);
1448}
1449
1450/**
1451 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1452 *  @hw: pointer to the HW structure
1453 *
1454 *  Configures collision distance and flow control for fiber and serdes links.
1455 *  Upon successful setup, poll for link.
1456 **/
1457static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1458{
1459        switch (hw->mac.type) {
1460        case e1000_82571:
1461        case e1000_82572:
1462                /* If SerDes loopback mode is entered, there is no form
1463                 * of reset to take the adapter out of that mode.  So we
1464                 * have to explicitly take the adapter out of loopback
1465                 * mode.  This prevents drivers from twiddling their thumbs
1466                 * if another tool failed to take it out of loopback mode.
1467                 */
1468                ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1469                break;
1470        default:
1471                break;
1472        }
1473
1474        return e1000e_setup_fiber_serdes_link(hw);
1475}
1476
1477/**
1478 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1479 *  @hw: pointer to the HW structure
1480 *
1481 *  Reports the link state as up or down.
1482 *
1483 *  If autonegotiation is supported by the link partner, the link state is
1484 *  determined by the result of autonegotiation. This is the most likely case.
1485 *  If autonegotiation is not supported by the link partner, and the link
1486 *  has a valid signal, force the link up.
1487 *
1488 *  The link state is represented internally here by 4 states:
1489 *
1490 *  1) down
1491 *  2) autoneg_progress
1492 *  3) autoneg_complete (the link successfully autonegotiated)
1493 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1494 *
1495 **/
1496static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1497{
1498        struct e1000_mac_info *mac = &hw->mac;
1499        u32 rxcw;
1500        u32 ctrl;
1501        u32 status;
1502        u32 txcw;
1503        u32 i;
1504        s32 ret_val = 0;
1505
1506        ctrl = er32(CTRL);
1507        status = er32(STATUS);
1508        er32(RXCW);
1509        /* SYNCH bit and IV bit are sticky */
1510        usleep_range(10, 20);
1511        rxcw = er32(RXCW);
1512
1513        if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1514                /* Receiver is synchronized with no invalid bits.  */
1515                switch (mac->serdes_link_state) {
1516                case e1000_serdes_link_autoneg_complete:
1517                        if (!(status & E1000_STATUS_LU)) {
1518                                /* We have lost link, retry autoneg before
1519                                 * reporting link failure
1520                                 */
1521                                mac->serdes_link_state =
1522                                    e1000_serdes_link_autoneg_progress;
1523                                mac->serdes_has_link = false;
1524                                e_dbg("AN_UP     -> AN_PROG\n");
1525                        } else {
1526                                mac->serdes_has_link = true;
1527                        }
1528                        break;
1529
1530                case e1000_serdes_link_forced_up:
1531                        /* If we are receiving /C/ ordered sets, re-enable
1532                         * auto-negotiation in the TXCW register and disable
1533                         * forced link in the Device Control register in an
1534                         * attempt to auto-negotiate with our link partner.
1535                         */
1536                        if (rxcw & E1000_RXCW_C) {
1537                                /* Enable autoneg, and unforce link up */
1538                                ew32(TXCW, mac->txcw);
1539                                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1540                                mac->serdes_link_state =
1541                                    e1000_serdes_link_autoneg_progress;
1542                                mac->serdes_has_link = false;
1543                                e_dbg("FORCED_UP -> AN_PROG\n");
1544                        } else {
1545                                mac->serdes_has_link = true;
1546                        }
1547                        break;
1548
1549                case e1000_serdes_link_autoneg_progress:
1550                        if (rxcw & E1000_RXCW_C) {
1551                                /* We received /C/ ordered sets, meaning the
1552                                 * link partner has autonegotiated, and we can
1553                                 * trust the Link Up (LU) status bit.
1554                                 */
1555                                if (status & E1000_STATUS_LU) {
1556                                        mac->serdes_link_state =
1557                                            e1000_serdes_link_autoneg_complete;
1558                                        e_dbg("AN_PROG   -> AN_UP\n");
1559                                        mac->serdes_has_link = true;
1560                                } else {
1561                                        /* Autoneg completed, but failed. */
1562                                        mac->serdes_link_state =
1563                                            e1000_serdes_link_down;
1564                                        e_dbg("AN_PROG   -> DOWN\n");
1565                                }
1566                        } else {
1567                                /* The link partner did not autoneg.
1568                                 * Force link up and full duplex, and change
1569                                 * state to forced.
1570                                 */
1571                                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1572                                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1573                                ew32(CTRL, ctrl);
1574
1575                                /* Configure Flow Control after link up. */
1576                                ret_val = e1000e_config_fc_after_link_up(hw);
1577                                if (ret_val) {
1578                                        e_dbg("Error config flow control\n");
1579                                        break;
1580                                }
1581                                mac->serdes_link_state =
1582                                    e1000_serdes_link_forced_up;
1583                                mac->serdes_has_link = true;
1584                                e_dbg("AN_PROG   -> FORCED_UP\n");
1585                        }
1586                        break;
1587
1588                case e1000_serdes_link_down:
1589                default:
1590                        /* The link was down but the receiver has now gained
1591                         * valid sync, so lets see if we can bring the link
1592                         * up.
1593                         */
1594                        ew32(TXCW, mac->txcw);
1595                        ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1596                        mac->serdes_link_state =
1597                            e1000_serdes_link_autoneg_progress;
1598                        mac->serdes_has_link = false;
1599                        e_dbg("DOWN      -> AN_PROG\n");
1600                        break;
1601                }
1602        } else {
1603                if (!(rxcw & E1000_RXCW_SYNCH)) {
1604                        mac->serdes_has_link = false;
1605                        mac->serdes_link_state = e1000_serdes_link_down;
1606                        e_dbg("ANYSTATE  -> DOWN\n");
1607                } else {
1608                        /* Check several times, if SYNCH bit and CONFIG
1609                         * bit both are consistently 1 then simply ignore
1610                         * the IV bit and restart Autoneg
1611                         */
1612                        for (i = 0; i < AN_RETRY_COUNT; i++) {
1613                                usleep_range(10, 20);
1614                                rxcw = er32(RXCW);
1615                                if ((rxcw & E1000_RXCW_SYNCH) &&
1616                                    (rxcw & E1000_RXCW_C))
1617                                        continue;
1618
1619                                if (rxcw & E1000_RXCW_IV) {
1620                                        mac->serdes_has_link = false;
1621                                        mac->serdes_link_state =
1622                                            e1000_serdes_link_down;
1623                                        e_dbg("ANYSTATE  -> DOWN\n");
1624                                        break;
1625                                }
1626                        }
1627
1628                        if (i == AN_RETRY_COUNT) {
1629                                txcw = er32(TXCW);
1630                                txcw |= E1000_TXCW_ANE;
1631                                ew32(TXCW, txcw);
1632                                mac->serdes_link_state =
1633                                    e1000_serdes_link_autoneg_progress;
1634                                mac->serdes_has_link = false;
1635                                e_dbg("ANYSTATE  -> AN_PROG\n");
1636                        }
1637                }
1638        }
1639
1640        return ret_val;
1641}
1642
1643/**
1644 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1645 *  @hw: pointer to the HW structure
1646 *  @data: pointer to the NVM (EEPROM)
1647 *
1648 *  Read the EEPROM for the current default LED configuration.  If the
1649 *  LED configuration is not valid, set to a valid LED configuration.
1650 **/
1651static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1652{
1653        s32 ret_val;
1654
1655        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1656        if (ret_val) {
1657                e_dbg("NVM Read Error\n");
1658                return ret_val;
1659        }
1660
1661        switch (hw->mac.type) {
1662        case e1000_82573:
1663        case e1000_82574:
1664        case e1000_82583:
1665                if (*data == ID_LED_RESERVED_F746)
1666                        *data = ID_LED_DEFAULT_82573;
1667                break;
1668        default:
1669                if (*data == ID_LED_RESERVED_0000 ||
1670                    *data == ID_LED_RESERVED_FFFF)
1671                        *data = ID_LED_DEFAULT;
1672                break;
1673        }
1674
1675        return 0;
1676}
1677
1678/**
1679 *  e1000e_get_laa_state_82571 - Get locally administered address state
1680 *  @hw: pointer to the HW structure
1681 *
1682 *  Retrieve and return the current locally administered address state.
1683 **/
1684bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1685{
1686        if (hw->mac.type != e1000_82571)
1687                return false;
1688
1689        return hw->dev_spec.e82571.laa_is_present;
1690}
1691
1692/**
1693 *  e1000e_set_laa_state_82571 - Set locally administered address state
1694 *  @hw: pointer to the HW structure
1695 *  @state: enable/disable locally administered address
1696 *
1697 *  Enable/Disable the current locally administered address state.
1698 **/
1699void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1700{
1701        if (hw->mac.type != e1000_82571)
1702                return;
1703
1704        hw->dev_spec.e82571.laa_is_present = state;
1705
1706        /* If workaround is activated... */
1707        if (state)
1708                /* Hold a copy of the LAA in RAR[14] This is done so that
1709                 * between the time RAR[0] gets clobbered and the time it
1710                 * gets fixed, the actual LAA is in one of the RARs and no
1711                 * incoming packets directed to this port are dropped.
1712                 * Eventually the LAA will be in RAR[0] and RAR[14].
1713                 */
1714                hw->mac.ops.rar_set(hw, hw->mac.addr,
1715                                    hw->mac.rar_entry_count - 1);
1716}
1717
1718/**
1719 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1720 *  @hw: pointer to the HW structure
1721 *
1722 *  Verifies that the EEPROM has completed the update.  After updating the
1723 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1724 *  the checksum fix is not implemented, we need to set the bit and update
1725 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1726 *  we need to return bad checksum.
1727 **/
1728static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1729{
1730        struct e1000_nvm_info *nvm = &hw->nvm;
1731        s32 ret_val;
1732        u16 data;
1733
1734        if (nvm->type != e1000_nvm_flash_hw)
1735                return 0;
1736
1737        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1738         * 10h-12h.  Checksum may need to be fixed.
1739         */
1740        ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1741        if (ret_val)
1742                return ret_val;
1743
1744        if (!(data & 0x10)) {
1745                /* Read 0x23 and check bit 15.  This bit is a 1
1746                 * when the checksum has already been fixed.  If
1747                 * the checksum is still wrong and this bit is a
1748                 * 1, we need to return bad checksum.  Otherwise,
1749                 * we need to set this bit to a 1 and update the
1750                 * checksum.
1751                 */
1752                ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1753                if (ret_val)
1754                        return ret_val;
1755
1756                if (!(data & 0x8000)) {
1757                        data |= 0x8000;
1758                        ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1759                        if (ret_val)
1760                                return ret_val;
1761                        ret_val = e1000e_update_nvm_checksum(hw);
1762                        if (ret_val)
1763                                return ret_val;
1764                }
1765        }
1766
1767        return 0;
1768}
1769
1770/**
1771 *  e1000_read_mac_addr_82571 - Read device MAC address
1772 *  @hw: pointer to the HW structure
1773 **/
1774static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1775{
1776        if (hw->mac.type == e1000_82571) {
1777                s32 ret_val;
1778
1779                /* If there's an alternate MAC address place it in RAR0
1780                 * so that it will override the Si installed default perm
1781                 * address.
1782                 */
1783                ret_val = e1000_check_alt_mac_addr_generic(hw);
1784                if (ret_val)
1785                        return ret_val;
1786        }
1787
1788        return e1000_read_mac_addr_generic(hw);
1789}
1790
1791/**
1792 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1793 * @hw: pointer to the HW structure
1794 *
1795 * In the case of a PHY power down to save power, or to turn off link during a
1796 * driver unload, or wake on lan is not enabled, remove the link.
1797 **/
1798static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1799{
1800        struct e1000_phy_info *phy = &hw->phy;
1801        struct e1000_mac_info *mac = &hw->mac;
1802
1803        if (!phy->ops.check_reset_block)
1804                return;
1805
1806        /* If the management interface is not enabled, then power down */
1807        if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1808                e1000_power_down_phy_copper(hw);
1809}
1810
1811/**
1812 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Clears the hardware counters by reading the counter registers.
1816 **/
1817static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1818{
1819        e1000e_clear_hw_cntrs_base(hw);
1820
1821        er32(PRC64);
1822        er32(PRC127);
1823        er32(PRC255);
1824        er32(PRC511);
1825        er32(PRC1023);
1826        er32(PRC1522);
1827        er32(PTC64);
1828        er32(PTC127);
1829        er32(PTC255);
1830        er32(PTC511);
1831        er32(PTC1023);
1832        er32(PTC1522);
1833
1834        er32(ALGNERRC);
1835        er32(RXERRC);
1836        er32(TNCRS);
1837        er32(CEXTERR);
1838        er32(TSCTC);
1839        er32(TSCTFC);
1840
1841        er32(MGTPRC);
1842        er32(MGTPDC);
1843        er32(MGTPTC);
1844
1845        er32(IAC);
1846        er32(ICRXOC);
1847
1848        er32(ICRXPTC);
1849        er32(ICRXATC);
1850        er32(ICTXPTC);
1851        er32(ICTXATC);
1852        er32(ICTXQEC);
1853        er32(ICTXQMTC);
1854        er32(ICRXDMTC);
1855}
1856
1857static const struct e1000_mac_operations e82571_mac_ops = {
1858        /* .check_mng_mode: mac type dependent */
1859        /* .check_for_link: media type dependent */
1860        .id_led_init            = e1000e_id_led_init_generic,
1861        .cleanup_led            = e1000e_cleanup_led_generic,
1862        .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1863        .get_bus_info           = e1000e_get_bus_info_pcie,
1864        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1865        /* .get_link_up_info: media type dependent */
1866        /* .led_on: mac type dependent */
1867        .led_off                = e1000e_led_off_generic,
1868        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1869        .write_vfta             = e1000_write_vfta_generic,
1870        .clear_vfta             = e1000_clear_vfta_82571,
1871        .reset_hw               = e1000_reset_hw_82571,
1872        .init_hw                = e1000_init_hw_82571,
1873        .setup_link             = e1000_setup_link_82571,
1874        /* .setup_physical_interface: media type dependent */
1875        .setup_led              = e1000e_setup_led_generic,
1876        .config_collision_dist  = e1000e_config_collision_dist_generic,
1877        .read_mac_addr          = e1000_read_mac_addr_82571,
1878        .rar_set                = e1000e_rar_set_generic,
1879        .rar_get_count          = e1000e_rar_get_count_generic,
1880};
1881
1882static const struct e1000_phy_operations e82_phy_ops_igp = {
1883        .acquire                = e1000_get_hw_semaphore_82571,
1884        .check_polarity         = e1000_check_polarity_igp,
1885        .check_reset_block      = e1000e_check_reset_block_generic,
1886        .commit                 = NULL,
1887        .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1888        .get_cfg_done           = e1000_get_cfg_done_82571,
1889        .get_cable_length       = e1000e_get_cable_length_igp_2,
1890        .get_info               = e1000e_get_phy_info_igp,
1891        .read_reg               = e1000e_read_phy_reg_igp,
1892        .release                = e1000_put_hw_semaphore_82571,
1893        .reset                  = e1000e_phy_hw_reset_generic,
1894        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1895        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1896        .write_reg              = e1000e_write_phy_reg_igp,
1897        .cfg_on_link_up         = NULL,
1898};
1899
1900static const struct e1000_phy_operations e82_phy_ops_m88 = {
1901        .acquire                = e1000_get_hw_semaphore_82571,
1902        .check_polarity         = e1000_check_polarity_m88,
1903        .check_reset_block      = e1000e_check_reset_block_generic,
1904        .commit                 = e1000e_phy_sw_reset,
1905        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1906        .get_cfg_done           = e1000e_get_cfg_done_generic,
1907        .get_cable_length       = e1000e_get_cable_length_m88,
1908        .get_info               = e1000e_get_phy_info_m88,
1909        .read_reg               = e1000e_read_phy_reg_m88,
1910        .release                = e1000_put_hw_semaphore_82571,
1911        .reset                  = e1000e_phy_hw_reset_generic,
1912        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1913        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1914        .write_reg              = e1000e_write_phy_reg_m88,
1915        .cfg_on_link_up         = NULL,
1916};
1917
1918static const struct e1000_phy_operations e82_phy_ops_bm = {
1919        .acquire                = e1000_get_hw_semaphore_82571,
1920        .check_polarity         = e1000_check_polarity_m88,
1921        .check_reset_block      = e1000e_check_reset_block_generic,
1922        .commit                 = e1000e_phy_sw_reset,
1923        .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1924        .get_cfg_done           = e1000e_get_cfg_done_generic,
1925        .get_cable_length       = e1000e_get_cable_length_m88,
1926        .get_info               = e1000e_get_phy_info_m88,
1927        .read_reg               = e1000e_read_phy_reg_bm2,
1928        .release                = e1000_put_hw_semaphore_82571,
1929        .reset                  = e1000e_phy_hw_reset_generic,
1930        .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1931        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1932        .write_reg              = e1000e_write_phy_reg_bm2,
1933        .cfg_on_link_up         = NULL,
1934};
1935
1936static const struct e1000_nvm_operations e82571_nvm_ops = {
1937        .acquire                = e1000_acquire_nvm_82571,
1938        .read                   = e1000e_read_nvm_eerd,
1939        .release                = e1000_release_nvm_82571,
1940        .reload                 = e1000e_reload_nvm_generic,
1941        .update                 = e1000_update_nvm_checksum_82571,
1942        .valid_led_default      = e1000_valid_led_default_82571,
1943        .validate               = e1000_validate_nvm_checksum_82571,
1944        .write                  = e1000_write_nvm_82571,
1945};
1946
1947const struct e1000_info e1000_82571_info = {
1948        .mac                    = e1000_82571,
1949        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1950                                  | FLAG_HAS_JUMBO_FRAMES
1951                                  | FLAG_HAS_WOL
1952                                  | FLAG_APME_IN_CTRL3
1953                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1954                                  | FLAG_HAS_SMART_POWER_DOWN
1955                                  | FLAG_RESET_OVERWRITES_LAA /* errata */
1956                                  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1957                                  | FLAG_APME_CHECK_PORT_B,
1958        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1959                                  | FLAG2_DMA_BURST,
1960        .pba                    = 38,
1961        .max_hw_frame_size      = DEFAULT_JUMBO,
1962        .get_variants           = e1000_get_variants_82571,
1963        .mac_ops                = &e82571_mac_ops,
1964        .phy_ops                = &e82_phy_ops_igp,
1965        .nvm_ops                = &e82571_nvm_ops,
1966};
1967
1968const struct e1000_info e1000_82572_info = {
1969        .mac                    = e1000_82572,
1970        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1971                                  | FLAG_HAS_JUMBO_FRAMES
1972                                  | FLAG_HAS_WOL
1973                                  | FLAG_APME_IN_CTRL3
1974                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1975                                  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1976        .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1977                                  | FLAG2_DMA_BURST,
1978        .pba                    = 38,
1979        .max_hw_frame_size      = DEFAULT_JUMBO,
1980        .get_variants           = e1000_get_variants_82571,
1981        .mac_ops                = &e82571_mac_ops,
1982        .phy_ops                = &e82_phy_ops_igp,
1983        .nvm_ops                = &e82571_nvm_ops,
1984};
1985
1986const struct e1000_info e1000_82573_info = {
1987        .mac                    = e1000_82573,
1988        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1989                                  | FLAG_HAS_WOL
1990                                  | FLAG_APME_IN_CTRL3
1991                                  | FLAG_HAS_SMART_POWER_DOWN
1992                                  | FLAG_HAS_AMT
1993                                  | FLAG_HAS_SWSM_ON_LOAD,
1994        .flags2                 = FLAG2_DISABLE_ASPM_L1
1995                                  | FLAG2_DISABLE_ASPM_L0S,
1996        .pba                    = 20,
1997        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1998        .get_variants           = e1000_get_variants_82571,
1999        .mac_ops                = &e82571_mac_ops,
2000        .phy_ops                = &e82_phy_ops_m88,
2001        .nvm_ops                = &e82571_nvm_ops,
2002};
2003
2004const struct e1000_info e1000_82574_info = {
2005        .mac                    = e1000_82574,
2006        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2007                                  | FLAG_HAS_MSIX
2008                                  | FLAG_HAS_JUMBO_FRAMES
2009                                  | FLAG_HAS_WOL
2010                                  | FLAG_HAS_HW_TIMESTAMP
2011                                  | FLAG_APME_IN_CTRL3
2012                                  | FLAG_HAS_SMART_POWER_DOWN
2013                                  | FLAG_HAS_AMT
2014                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2015        .flags2                  = FLAG2_CHECK_PHY_HANG
2016                                  | FLAG2_DISABLE_ASPM_L0S
2017                                  | FLAG2_DISABLE_ASPM_L1
2018                                  | FLAG2_NO_DISABLE_RX
2019                                  | FLAG2_DMA_BURST
2020                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2021        .pba                    = 32,
2022        .max_hw_frame_size      = DEFAULT_JUMBO,
2023        .get_variants           = e1000_get_variants_82571,
2024        .mac_ops                = &e82571_mac_ops,
2025        .phy_ops                = &e82_phy_ops_bm,
2026        .nvm_ops                = &e82571_nvm_ops,
2027};
2028
2029const struct e1000_info e1000_82583_info = {
2030        .mac                    = e1000_82583,
2031        .flags                  = FLAG_HAS_HW_VLAN_FILTER
2032                                  | FLAG_HAS_WOL
2033                                  | FLAG_HAS_HW_TIMESTAMP
2034                                  | FLAG_APME_IN_CTRL3
2035                                  | FLAG_HAS_SMART_POWER_DOWN
2036                                  | FLAG_HAS_AMT
2037                                  | FLAG_HAS_JUMBO_FRAMES
2038                                  | FLAG_HAS_CTRLEXT_ON_LOAD,
2039        .flags2                 = FLAG2_DISABLE_ASPM_L0S
2040                                  | FLAG2_DISABLE_ASPM_L1
2041                                  | FLAG2_NO_DISABLE_RX
2042                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2043        .pba                    = 32,
2044        .max_hw_frame_size      = DEFAULT_JUMBO,
2045        .get_variants           = e1000_get_variants_82571,
2046        .mac_ops                = &e82571_mac_ops,
2047        .phy_ops                = &e82_phy_ops_bm,
2048        .nvm_ops                = &e82571_nvm_ops,
2049};
2050