linux/drivers/net/ethernet/intel/e1000e/ich8lan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46        struct ich8_hsfsts {
  47                u16 flcdone:1;  /* bit 0 Flash Cycle Done */
  48                u16 flcerr:1;   /* bit 1 Flash Cycle Error */
  49                u16 dael:1;     /* bit 2 Direct Access error Log */
  50                u16 berasesz:2; /* bit 4:3 Sector Erase Size */
  51                u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
  52                u16 reserved1:2;        /* bit 13:6 Reserved */
  53                u16 reserved2:6;        /* bit 13:6 Reserved */
  54                u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
  55                u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
  56        } hsf_status;
  57        u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63        struct ich8_hsflctl {
  64                u16 flcgo:1;    /* 0 Flash Cycle Go */
  65                u16 flcycle:2;  /* 2:1 Flash Cycle */
  66                u16 reserved:5; /* 7:3 Reserved  */
  67                u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
  68                u16 flockdn:6;  /* 15:10 Reserved */
  69        } hsf_ctrl;
  70        u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75        struct ich8_flracc {
  76                u32 grra:8;     /* 0:7 GbE region Read Access */
  77                u32 grwa:8;     /* 8:15 GbE region Write Access */
  78                u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
  79                u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
  80        } hsf_flregacc;
  81        u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86        struct ich8_pr {
  87                u32 base:13;    /* 0:12 Protected Range Base */
  88                u32 reserved1:2;        /* 13:14 Reserved */
  89                u32 rpe:1;      /* 15 Read Protection Enable */
  90                u32 limit:13;   /* 16:28 Protected Range Limit */
  91                u32 reserved2:2;        /* 29:30 Reserved */
  92                u32 wpe:1;      /* 31 Write Protection Enable */
  93        } range;
  94        u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101                                                u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103                                         u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105                                         u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107                                         u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109                                           u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111                                          u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113                                            u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115                                                 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143        return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148        return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153        writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158        writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)          __er16flash(hw, (reg))
 162#define er32flash(reg)          __er32flash(hw, (reg))
 163#define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178        u16 phy_reg = 0;
 179        u32 phy_id = 0;
 180        s32 ret_val = 0;
 181        u16 retry_count;
 182        u32 mac_reg = 0;
 183
 184        for (retry_count = 0; retry_count < 2; retry_count++) {
 185                ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186                if (ret_val || (phy_reg == 0xFFFF))
 187                        continue;
 188                phy_id = (u32)(phy_reg << 16);
 189
 190                ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191                if (ret_val || (phy_reg == 0xFFFF)) {
 192                        phy_id = 0;
 193                        continue;
 194                }
 195                phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196                break;
 197        }
 198
 199        if (hw->phy.id) {
 200                if (hw->phy.id == phy_id)
 201                        goto out;
 202        } else if (phy_id) {
 203                hw->phy.id = phy_id;
 204                hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205                goto out;
 206        }
 207
 208        /* In case the PHY needs to be in mdio slow mode,
 209         * set slow mode and try to get the PHY id again.
 210         */
 211        if (hw->mac.type < e1000_pch_lpt) {
 212                hw->phy.ops.release(hw);
 213                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214                if (!ret_val)
 215                        ret_val = e1000e_get_phy_id(hw);
 216                hw->phy.ops.acquire(hw);
 217        }
 218
 219        if (ret_val)
 220                return false;
 221out:
 222        if (hw->mac.type >= e1000_pch_lpt) {
 223                /* Only unforce SMBus if ME is not active */
 224                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225                        /* Unforce SMBus mode in PHY */
 226                        e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227                        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228                        e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230                        /* Unforce SMBus mode in MAC */
 231                        mac_reg = er32(CTRL_EXT);
 232                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233                        ew32(CTRL_EXT, mac_reg);
 234                }
 235        }
 236
 237        return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249        u32 mac_reg;
 250
 251        /* Set Phy Config Counter to 50msec */
 252        mac_reg = er32(FEXTNVM3);
 253        mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254        mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255        ew32(FEXTNVM3, mac_reg);
 256
 257        /* Toggle LANPHYPC Value bit */
 258        mac_reg = er32(CTRL);
 259        mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260        mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261        ew32(CTRL, mac_reg);
 262        e1e_flush();
 263        usleep_range(10, 20);
 264        mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265        ew32(CTRL, mac_reg);
 266        e1e_flush();
 267
 268        if (hw->mac.type < e1000_pch_lpt) {
 269                msleep(50);
 270        } else {
 271                u16 count = 20;
 272
 273                do {
 274                        usleep_range(5000, 6000);
 275                } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277                msleep(30);
 278        }
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290        struct e1000_adapter *adapter = hw->adapter;
 291        u32 mac_reg, fwsm = er32(FWSM);
 292        s32 ret_val;
 293
 294        /* Gate automatic PHY configuration by hardware on managed and
 295         * non-managed 82579 and newer adapters.
 296         */
 297        e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299        /* It is not possible to be certain of the current state of ULP
 300         * so forcibly disable it.
 301         */
 302        hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303        ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304        if (ret_val)
 305                e_warn("Failed to disable ULP\n");
 306
 307        ret_val = hw->phy.ops.acquire(hw);
 308        if (ret_val) {
 309                e_dbg("Failed to initialize PHY flow\n");
 310                goto out;
 311        }
 312
 313        /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314         * inaccessible and resetting the PHY is not blocked, toggle the
 315         * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316         */
 317        switch (hw->mac.type) {
 318        case e1000_pch_lpt:
 319        case e1000_pch_spt:
 320        case e1000_pch_cnp:
 321        case e1000_pch_tgp:
 322        case e1000_pch_adp:
 323        case e1000_pch_mtp:
 324        case e1000_pch_lnp:
 325                if (e1000_phy_is_accessible_pchlan(hw))
 326                        break;
 327
 328                /* Before toggling LANPHYPC, see if PHY is accessible by
 329                 * forcing MAC to SMBus mode first.
 330                 */
 331                mac_reg = er32(CTRL_EXT);
 332                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 333                ew32(CTRL_EXT, mac_reg);
 334
 335                /* Wait 50 milliseconds for MAC to finish any retries
 336                 * that it might be trying to perform from previous
 337                 * attempts to acknowledge any phy read requests.
 338                 */
 339                msleep(50);
 340
 341                fallthrough;
 342        case e1000_pch2lan:
 343                if (e1000_phy_is_accessible_pchlan(hw))
 344                        break;
 345
 346                fallthrough;
 347        case e1000_pchlan:
 348                if ((hw->mac.type == e1000_pchlan) &&
 349                    (fwsm & E1000_ICH_FWSM_FW_VALID))
 350                        break;
 351
 352                if (hw->phy.ops.check_reset_block(hw)) {
 353                        e_dbg("Required LANPHYPC toggle blocked by ME\n");
 354                        ret_val = -E1000_ERR_PHY;
 355                        break;
 356                }
 357
 358                /* Toggle LANPHYPC Value bit */
 359                e1000_toggle_lanphypc_pch_lpt(hw);
 360                if (hw->mac.type >= e1000_pch_lpt) {
 361                        if (e1000_phy_is_accessible_pchlan(hw))
 362                                break;
 363
 364                        /* Toggling LANPHYPC brings the PHY out of SMBus mode
 365                         * so ensure that the MAC is also out of SMBus mode
 366                         */
 367                        mac_reg = er32(CTRL_EXT);
 368                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 369                        ew32(CTRL_EXT, mac_reg);
 370
 371                        if (e1000_phy_is_accessible_pchlan(hw))
 372                                break;
 373
 374                        ret_val = -E1000_ERR_PHY;
 375                }
 376                break;
 377        default:
 378                break;
 379        }
 380
 381        hw->phy.ops.release(hw);
 382        if (!ret_val) {
 383
 384                /* Check to see if able to reset PHY.  Print error if not */
 385                if (hw->phy.ops.check_reset_block(hw)) {
 386                        e_err("Reset blocked by ME\n");
 387                        goto out;
 388                }
 389
 390                /* Reset the PHY before any access to it.  Doing so, ensures
 391                 * that the PHY is in a known good state before we read/write
 392                 * PHY registers.  The generic reset is sufficient here,
 393                 * because we haven't determined the PHY type yet.
 394                 */
 395                ret_val = e1000e_phy_hw_reset_generic(hw);
 396                if (ret_val)
 397                        goto out;
 398
 399                /* On a successful reset, possibly need to wait for the PHY
 400                 * to quiesce to an accessible state before returning control
 401                 * to the calling function.  If the PHY does not quiesce, then
 402                 * return E1000E_BLK_PHY_RESET, as this is the condition that
 403                 *  the PHY is in.
 404                 */
 405                ret_val = hw->phy.ops.check_reset_block(hw);
 406                if (ret_val)
 407                        e_err("ME blocked access to PHY after reset\n");
 408        }
 409
 410out:
 411        /* Ungate automatic PHY configuration on non-managed 82579 */
 412        if ((hw->mac.type == e1000_pch2lan) &&
 413            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 414                usleep_range(10000, 11000);
 415                e1000_gate_hw_phy_config_ich8lan(hw, false);
 416        }
 417
 418        return ret_val;
 419}
 420
 421/**
 422 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 423 *  @hw: pointer to the HW structure
 424 *
 425 *  Initialize family-specific PHY parameters and function pointers.
 426 **/
 427static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 428{
 429        struct e1000_phy_info *phy = &hw->phy;
 430        s32 ret_val;
 431
 432        phy->addr = 1;
 433        phy->reset_delay_us = 100;
 434
 435        phy->ops.set_page = e1000_set_page_igp;
 436        phy->ops.read_reg = e1000_read_phy_reg_hv;
 437        phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 438        phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 439        phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 440        phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 441        phy->ops.write_reg = e1000_write_phy_reg_hv;
 442        phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 443        phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 444        phy->ops.power_up = e1000_power_up_phy_copper;
 445        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 446        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 447
 448        phy->id = e1000_phy_unknown;
 449
 450        ret_val = e1000_init_phy_workarounds_pchlan(hw);
 451        if (ret_val)
 452                return ret_val;
 453
 454        if (phy->id == e1000_phy_unknown)
 455                switch (hw->mac.type) {
 456                default:
 457                        ret_val = e1000e_get_phy_id(hw);
 458                        if (ret_val)
 459                                return ret_val;
 460                        if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 461                                break;
 462                        fallthrough;
 463                case e1000_pch2lan:
 464                case e1000_pch_lpt:
 465                case e1000_pch_spt:
 466                case e1000_pch_cnp:
 467                case e1000_pch_tgp:
 468                case e1000_pch_adp:
 469                case e1000_pch_mtp:
 470                case e1000_pch_lnp:
 471                        /* In case the PHY needs to be in mdio slow mode,
 472                         * set slow mode and try to get the PHY id again.
 473                         */
 474                        ret_val = e1000_set_mdio_slow_mode_hv(hw);
 475                        if (ret_val)
 476                                return ret_val;
 477                        ret_val = e1000e_get_phy_id(hw);
 478                        if (ret_val)
 479                                return ret_val;
 480                        break;
 481                }
 482        phy->type = e1000e_get_phy_type_from_id(phy->id);
 483
 484        switch (phy->type) {
 485        case e1000_phy_82577:
 486        case e1000_phy_82579:
 487        case e1000_phy_i217:
 488                phy->ops.check_polarity = e1000_check_polarity_82577;
 489                phy->ops.force_speed_duplex =
 490                    e1000_phy_force_speed_duplex_82577;
 491                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 492                phy->ops.get_info = e1000_get_phy_info_82577;
 493                phy->ops.commit = e1000e_phy_sw_reset;
 494                break;
 495        case e1000_phy_82578:
 496                phy->ops.check_polarity = e1000_check_polarity_m88;
 497                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 498                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 499                phy->ops.get_info = e1000e_get_phy_info_m88;
 500                break;
 501        default:
 502                ret_val = -E1000_ERR_PHY;
 503                break;
 504        }
 505
 506        return ret_val;
 507}
 508
 509/**
 510 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 511 *  @hw: pointer to the HW structure
 512 *
 513 *  Initialize family-specific PHY parameters and function pointers.
 514 **/
 515static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 516{
 517        struct e1000_phy_info *phy = &hw->phy;
 518        s32 ret_val;
 519        u16 i = 0;
 520
 521        phy->addr = 1;
 522        phy->reset_delay_us = 100;
 523
 524        phy->ops.power_up = e1000_power_up_phy_copper;
 525        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 526
 527        /* We may need to do this twice - once for IGP and if that fails,
 528         * we'll set BM func pointers and try again
 529         */
 530        ret_val = e1000e_determine_phy_address(hw);
 531        if (ret_val) {
 532                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 533                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 534                ret_val = e1000e_determine_phy_address(hw);
 535                if (ret_val) {
 536                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 537                        return ret_val;
 538                }
 539        }
 540
 541        phy->id = 0;
 542        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 543               (i++ < 100)) {
 544                usleep_range(1000, 1100);
 545                ret_val = e1000e_get_phy_id(hw);
 546                if (ret_val)
 547                        return ret_val;
 548        }
 549
 550        /* Verify phy id */
 551        switch (phy->id) {
 552        case IGP03E1000_E_PHY_ID:
 553                phy->type = e1000_phy_igp_3;
 554                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 555                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 556                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 557                phy->ops.get_info = e1000e_get_phy_info_igp;
 558                phy->ops.check_polarity = e1000_check_polarity_igp;
 559                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 560                break;
 561        case IFE_E_PHY_ID:
 562        case IFE_PLUS_E_PHY_ID:
 563        case IFE_C_E_PHY_ID:
 564                phy->type = e1000_phy_ife;
 565                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 566                phy->ops.get_info = e1000_get_phy_info_ife;
 567                phy->ops.check_polarity = e1000_check_polarity_ife;
 568                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 569                break;
 570        case BME1000_E_PHY_ID:
 571                phy->type = e1000_phy_bm;
 572                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 573                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 574                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 575                phy->ops.commit = e1000e_phy_sw_reset;
 576                phy->ops.get_info = e1000e_get_phy_info_m88;
 577                phy->ops.check_polarity = e1000_check_polarity_m88;
 578                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 579                break;
 580        default:
 581                return -E1000_ERR_PHY;
 582        }
 583
 584        return 0;
 585}
 586
 587/**
 588 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 589 *  @hw: pointer to the HW structure
 590 *
 591 *  Initialize family-specific NVM parameters and function
 592 *  pointers.
 593 **/
 594static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 595{
 596        struct e1000_nvm_info *nvm = &hw->nvm;
 597        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 598        u32 gfpreg, sector_base_addr, sector_end_addr;
 599        u16 i;
 600        u32 nvm_size;
 601
 602        nvm->type = e1000_nvm_flash_sw;
 603
 604        if (hw->mac.type >= e1000_pch_spt) {
 605                /* in SPT, gfpreg doesn't exist. NVM size is taken from the
 606                 * STRAP register. This is because in SPT the GbE Flash region
 607                 * is no longer accessed through the flash registers. Instead,
 608                 * the mechanism has changed, and the Flash region access
 609                 * registers are now implemented in GbE memory space.
 610                 */
 611                nvm->flash_base_addr = 0;
 612                nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 613                    * NVM_SIZE_MULTIPLIER;
 614                nvm->flash_bank_size = nvm_size / 2;
 615                /* Adjust to word count */
 616                nvm->flash_bank_size /= sizeof(u16);
 617                /* Set the base address for flash register access */
 618                hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 619        } else {
 620                /* Can't read flash registers if register set isn't mapped. */
 621                if (!hw->flash_address) {
 622                        e_dbg("ERROR: Flash registers not mapped\n");
 623                        return -E1000_ERR_CONFIG;
 624                }
 625
 626                gfpreg = er32flash(ICH_FLASH_GFPREG);
 627
 628                /* sector_X_addr is a "sector"-aligned address (4096 bytes)
 629                 * Add 1 to sector_end_addr since this sector is included in
 630                 * the overall size.
 631                 */
 632                sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 633                sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 634
 635                /* flash_base_addr is byte-aligned */
 636                nvm->flash_base_addr = sector_base_addr
 637                    << FLASH_SECTOR_ADDR_SHIFT;
 638
 639                /* find total size of the NVM, then cut in half since the total
 640                 * size represents two separate NVM banks.
 641                 */
 642                nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 643                                        << FLASH_SECTOR_ADDR_SHIFT);
 644                nvm->flash_bank_size /= 2;
 645                /* Adjust to word count */
 646                nvm->flash_bank_size /= sizeof(u16);
 647        }
 648
 649        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 650
 651        /* Clear shadow ram */
 652        for (i = 0; i < nvm->word_size; i++) {
 653                dev_spec->shadow_ram[i].modified = false;
 654                dev_spec->shadow_ram[i].value = 0xFFFF;
 655        }
 656
 657        return 0;
 658}
 659
 660/**
 661 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 662 *  @hw: pointer to the HW structure
 663 *
 664 *  Initialize family-specific MAC parameters and function
 665 *  pointers.
 666 **/
 667static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 668{
 669        struct e1000_mac_info *mac = &hw->mac;
 670
 671        /* Set media type function pointer */
 672        hw->phy.media_type = e1000_media_type_copper;
 673
 674        /* Set mta register count */
 675        mac->mta_reg_count = 32;
 676        /* Set rar entry count */
 677        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 678        if (mac->type == e1000_ich8lan)
 679                mac->rar_entry_count--;
 680        /* FWSM register */
 681        mac->has_fwsm = true;
 682        /* ARC subsystem not supported */
 683        mac->arc_subsystem_valid = false;
 684        /* Adaptive IFS supported */
 685        mac->adaptive_ifs = true;
 686
 687        /* LED and other operations */
 688        switch (mac->type) {
 689        case e1000_ich8lan:
 690        case e1000_ich9lan:
 691        case e1000_ich10lan:
 692                /* check management mode */
 693                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 694                /* ID LED init */
 695                mac->ops.id_led_init = e1000e_id_led_init_generic;
 696                /* blink LED */
 697                mac->ops.blink_led = e1000e_blink_led_generic;
 698                /* setup LED */
 699                mac->ops.setup_led = e1000e_setup_led_generic;
 700                /* cleanup LED */
 701                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 702                /* turn on/off LED */
 703                mac->ops.led_on = e1000_led_on_ich8lan;
 704                mac->ops.led_off = e1000_led_off_ich8lan;
 705                break;
 706        case e1000_pch2lan:
 707                mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 708                mac->ops.rar_set = e1000_rar_set_pch2lan;
 709                fallthrough;
 710        case e1000_pch_lpt:
 711        case e1000_pch_spt:
 712        case e1000_pch_cnp:
 713        case e1000_pch_tgp:
 714        case e1000_pch_adp:
 715        case e1000_pch_mtp:
 716        case e1000_pch_lnp:
 717        case e1000_pchlan:
 718                /* check management mode */
 719                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 720                /* ID LED init */
 721                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 722                /* setup LED */
 723                mac->ops.setup_led = e1000_setup_led_pchlan;
 724                /* cleanup LED */
 725                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 726                /* turn on/off LED */
 727                mac->ops.led_on = e1000_led_on_pchlan;
 728                mac->ops.led_off = e1000_led_off_pchlan;
 729                break;
 730        default:
 731                break;
 732        }
 733
 734        if (mac->type >= e1000_pch_lpt) {
 735                mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 736                mac->ops.rar_set = e1000_rar_set_pch_lpt;
 737                mac->ops.setup_physical_interface =
 738                    e1000_setup_copper_link_pch_lpt;
 739                mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 740        }
 741
 742        /* Enable PCS Lock-loss workaround for ICH8 */
 743        if (mac->type == e1000_ich8lan)
 744                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 745
 746        return 0;
 747}
 748
 749/**
 750 *  __e1000_access_emi_reg_locked - Read/write EMI register
 751 *  @hw: pointer to the HW structure
 752 *  @address: EMI address to program
 753 *  @data: pointer to value to read/write from/to the EMI address
 754 *  @read: boolean flag to indicate read or write
 755 *
 756 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 757 **/
 758static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 759                                         u16 *data, bool read)
 760{
 761        s32 ret_val;
 762
 763        ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 764        if (ret_val)
 765                return ret_val;
 766
 767        if (read)
 768                ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 769        else
 770                ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 771
 772        return ret_val;
 773}
 774
 775/**
 776 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 777 *  @hw: pointer to the HW structure
 778 *  @addr: EMI address to program
 779 *  @data: value to be read from the EMI address
 780 *
 781 *  Assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 784{
 785        return __e1000_access_emi_reg_locked(hw, addr, data, true);
 786}
 787
 788/**
 789 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 790 *  @hw: pointer to the HW structure
 791 *  @addr: EMI address to program
 792 *  @data: value to be written to the EMI address
 793 *
 794 *  Assumes the SW/FW/HW Semaphore is already acquired.
 795 **/
 796s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 797{
 798        return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 799}
 800
 801/**
 802 *  e1000_set_eee_pchlan - Enable/disable EEE support
 803 *  @hw: pointer to the HW structure
 804 *
 805 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 806 *  the link and the EEE capabilities of the link partner.  The LPI Control
 807 *  register bits will remain set only if/when link is up.
 808 *
 809 *  EEE LPI must not be asserted earlier than one second after link is up.
 810 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 811 *  can be link issues with some switches.  Other devices can have EEE LPI
 812 *  enabled immediately upon link up since they have a timer in hardware which
 813 *  prevents LPI from being asserted too early.
 814 **/
 815s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 816{
 817        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 818        s32 ret_val;
 819        u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 820
 821        switch (hw->phy.type) {
 822        case e1000_phy_82579:
 823                lpa = I82579_EEE_LP_ABILITY;
 824                pcs_status = I82579_EEE_PCS_STATUS;
 825                adv_addr = I82579_EEE_ADVERTISEMENT;
 826                break;
 827        case e1000_phy_i217:
 828                lpa = I217_EEE_LP_ABILITY;
 829                pcs_status = I217_EEE_PCS_STATUS;
 830                adv_addr = I217_EEE_ADVERTISEMENT;
 831                break;
 832        default:
 833                return 0;
 834        }
 835
 836        ret_val = hw->phy.ops.acquire(hw);
 837        if (ret_val)
 838                return ret_val;
 839
 840        ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 841        if (ret_val)
 842                goto release;
 843
 844        /* Clear bits that enable EEE in various speeds */
 845        lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 846
 847        /* Enable EEE if not disabled by user */
 848        if (!dev_spec->eee_disable) {
 849                /* Save off link partner's EEE ability */
 850                ret_val = e1000_read_emi_reg_locked(hw, lpa,
 851                                                    &dev_spec->eee_lp_ability);
 852                if (ret_val)
 853                        goto release;
 854
 855                /* Read EEE advertisement */
 856                ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 857                if (ret_val)
 858                        goto release;
 859
 860                /* Enable EEE only for speeds in which the link partner is
 861                 * EEE capable and for which we advertise EEE.
 862                 */
 863                if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 864                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 865
 866                if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 867                        e1e_rphy_locked(hw, MII_LPA, &data);
 868                        if (data & LPA_100FULL)
 869                                lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 870                        else
 871                                /* EEE is not supported in 100Half, so ignore
 872                                 * partner's EEE in 100 ability if full-duplex
 873                                 * is not advertised.
 874                                 */
 875                                dev_spec->eee_lp_ability &=
 876                                    ~I82579_EEE_100_SUPPORTED;
 877                }
 878        }
 879
 880        if (hw->phy.type == e1000_phy_82579) {
 881                ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 882                                                    &data);
 883                if (ret_val)
 884                        goto release;
 885
 886                data &= ~I82579_LPI_100_PLL_SHUT;
 887                ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888                                                     data);
 889        }
 890
 891        /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 892        ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 893        if (ret_val)
 894                goto release;
 895
 896        ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 897release:
 898        hw->phy.ops.release(hw);
 899
 900        return ret_val;
 901}
 902
 903/**
 904 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 905 *  @hw:   pointer to the HW structure
 906 *  @link: link up bool flag
 907 *
 908 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 909 *  preventing further DMA write requests.  Workaround the issue by disabling
 910 *  the de-assertion of the clock request when in 1Gpbs mode.
 911 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 912 *  speeds in order to avoid Tx hangs.
 913 **/
 914static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 915{
 916        u32 fextnvm6 = er32(FEXTNVM6);
 917        u32 status = er32(STATUS);
 918        s32 ret_val = 0;
 919        u16 reg;
 920
 921        if (link && (status & E1000_STATUS_SPEED_1000)) {
 922                ret_val = hw->phy.ops.acquire(hw);
 923                if (ret_val)
 924                        return ret_val;
 925
 926                ret_val =
 927                    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 928                                                &reg);
 929                if (ret_val)
 930                        goto release;
 931
 932                ret_val =
 933                    e1000e_write_kmrn_reg_locked(hw,
 934                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 935                                                 reg &
 936                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 937                if (ret_val)
 938                        goto release;
 939
 940                usleep_range(10, 20);
 941
 942                ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 943
 944                ret_val =
 945                    e1000e_write_kmrn_reg_locked(hw,
 946                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 947                                                 reg);
 948release:
 949                hw->phy.ops.release(hw);
 950        } else {
 951                /* clear FEXTNVM6 bit 8 on link down or 10/100 */
 952                fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 953
 954                if ((hw->phy.revision > 5) || !link ||
 955                    ((status & E1000_STATUS_SPEED_100) &&
 956                     (status & E1000_STATUS_FD)))
 957                        goto update_fextnvm6;
 958
 959                ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 960                if (ret_val)
 961                        return ret_val;
 962
 963                /* Clear link status transmit timeout */
 964                reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 965
 966                if (status & E1000_STATUS_SPEED_100) {
 967                        /* Set inband Tx timeout to 5x10us for 100Half */
 968                        reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 969
 970                        /* Do not extend the K1 entry latency for 100Half */
 971                        fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 972                } else {
 973                        /* Set inband Tx timeout to 50x10us for 10Full/Half */
 974                        reg |= 50 <<
 975                            I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 976
 977                        /* Extend the K1 entry latency for 10 Mbps */
 978                        fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 979                }
 980
 981                ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 982                if (ret_val)
 983                        return ret_val;
 984
 985update_fextnvm6:
 986                ew32(FEXTNVM6, fextnvm6);
 987        }
 988
 989        return ret_val;
 990}
 991
 992/**
 993 *  e1000_platform_pm_pch_lpt - Set platform power management values
 994 *  @hw: pointer to the HW structure
 995 *  @link: bool indicating link status
 996 *
 997 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 998 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 999 *  when link is up (which must not exceed the maximum latency supported
1000 *  by the platform), otherwise specify there is no LTR requirement.
1001 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1002 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1003 *  Capability register set, on this device LTR is set by writing the
1004 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1005 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1006 *  message to the PMC.
1007 **/
1008static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1009{
1010        u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1011            link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1012        u16 max_ltr_enc_d = 0;  /* maximum LTR decoded by platform */
1013        u16 lat_enc_d = 0;      /* latency decoded */
1014        u16 lat_enc = 0;        /* latency encoded */
1015
1016        if (link) {
1017                u16 speed, duplex, scale = 0;
1018                u16 max_snoop, max_nosnoop;
1019                u16 max_ltr_enc;        /* max LTR latency encoded */
1020                u64 value;
1021                u32 rxa;
1022
1023                if (!hw->adapter->max_frame_size) {
1024                        e_dbg("max_frame_size not set.\n");
1025                        return -E1000_ERR_CONFIG;
1026                }
1027
1028                hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1029                if (!speed) {
1030                        e_dbg("Speed not set.\n");
1031                        return -E1000_ERR_CONFIG;
1032                }
1033
1034                /* Rx Packet Buffer Allocation size (KB) */
1035                rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1036
1037                /* Determine the maximum latency tolerated by the device.
1038                 *
1039                 * Per the PCIe spec, the tolerated latencies are encoded as
1040                 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1041                 * a 10-bit value (0-1023) to provide a range from 1 ns to
1042                 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1043                 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1044                 */
1045                rxa *= 512;
1046                value = (rxa > hw->adapter->max_frame_size) ?
1047                        (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1048                        0;
1049
1050                while (value > PCI_LTR_VALUE_MASK) {
1051                        scale++;
1052                        value = DIV_ROUND_UP(value, BIT(5));
1053                }
1054                if (scale > E1000_LTRV_SCALE_MAX) {
1055                        e_dbg("Invalid LTR latency scale %d\n", scale);
1056                        return -E1000_ERR_CONFIG;
1057                }
1058                lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1059
1060                /* Determine the maximum latency tolerated by the platform */
1061                pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1062                                     &max_snoop);
1063                pci_read_config_word(hw->adapter->pdev,
1064                                     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1065                max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1066
1067                lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1068                             (1U << (E1000_LTRV_SCALE_FACTOR *
1069                             ((lat_enc & E1000_LTRV_SCALE_MASK)
1070                             >> E1000_LTRV_SCALE_SHIFT)));
1071
1072                max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1073                                 (1U << (E1000_LTRV_SCALE_FACTOR *
1074                                 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1075                                 >> E1000_LTRV_SCALE_SHIFT)));
1076
1077                if (lat_enc_d > max_ltr_enc_d)
1078                        lat_enc = max_ltr_enc;
1079        }
1080
1081        /* Set Snoop and No-Snoop latencies the same */
1082        reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1083        ew32(LTRV, reg);
1084
1085        return 0;
1086}
1087
1088/**
1089 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1090 *  @hw: pointer to the HW structure
1091 *  @to_sx: boolean indicating a system power state transition to Sx
1092 *
1093 *  When link is down, configure ULP mode to significantly reduce the power
1094 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1095 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1096 *  system, configure the ULP mode by software.
1097 */
1098s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1099{
1100        u32 mac_reg;
1101        s32 ret_val = 0;
1102        u16 phy_reg;
1103        u16 oem_reg = 0;
1104
1105        if ((hw->mac.type < e1000_pch_lpt) ||
1106            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1107            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1108            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1109            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1110            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1111                return 0;
1112
1113        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1114                /* Request ME configure ULP mode in the PHY */
1115                mac_reg = er32(H2ME);
1116                mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1117                ew32(H2ME, mac_reg);
1118
1119                goto out;
1120        }
1121
1122        if (!to_sx) {
1123                int i = 0;
1124
1125                /* Poll up to 5 seconds for Cable Disconnected indication */
1126                while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1127                        /* Bail if link is re-acquired */
1128                        if (er32(STATUS) & E1000_STATUS_LU)
1129                                return -E1000_ERR_PHY;
1130
1131                        if (i++ == 100)
1132                                break;
1133
1134                        msleep(50);
1135                }
1136                e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1137                      (er32(FEXT) &
1138                       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1139        }
1140
1141        ret_val = hw->phy.ops.acquire(hw);
1142        if (ret_val)
1143                goto out;
1144
1145        /* Force SMBus mode in PHY */
1146        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1147        if (ret_val)
1148                goto release;
1149        phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1150        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1151
1152        /* Force SMBus mode in MAC */
1153        mac_reg = er32(CTRL_EXT);
1154        mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1155        ew32(CTRL_EXT, mac_reg);
1156
1157        /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1158         * LPLU and disable Gig speed when entering ULP
1159         */
1160        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1161                ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162                                                       &oem_reg);
1163                if (ret_val)
1164                        goto release;
1165
1166                phy_reg = oem_reg;
1167                phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1168
1169                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1170                                                        phy_reg);
1171
1172                if (ret_val)
1173                        goto release;
1174        }
1175
1176        /* Set Inband ULP Exit, Reset to SMBus mode and
1177         * Disable SMBus Release on PERST# in PHY
1178         */
1179        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1180        if (ret_val)
1181                goto release;
1182        phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1183                    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1184        if (to_sx) {
1185                if (er32(WUFC) & E1000_WUFC_LNKC)
1186                        phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1187                else
1188                        phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189
1190                phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1191                phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1192        } else {
1193                phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1194                phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1195                phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1196        }
1197        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1198
1199        /* Set Disable SMBus Release on PERST# in MAC */
1200        mac_reg = er32(FEXTNVM7);
1201        mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1202        ew32(FEXTNVM7, mac_reg);
1203
1204        /* Commit ULP changes in PHY by starting auto ULP configuration */
1205        phy_reg |= I218_ULP_CONFIG1_START;
1206        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1207
1208        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1209            to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1210                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1211                                                        oem_reg);
1212                if (ret_val)
1213                        goto release;
1214        }
1215
1216release:
1217        hw->phy.ops.release(hw);
1218out:
1219        if (ret_val)
1220                e_dbg("Error in ULP enable flow: %d\n", ret_val);
1221        else
1222                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1223
1224        return ret_val;
1225}
1226
1227/**
1228 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1229 *  @hw: pointer to the HW structure
1230 *  @force: boolean indicating whether or not to force disabling ULP
1231 *
1232 *  Un-configure ULP mode when link is up, the system is transitioned from
1233 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1234 *  system, poll for an indication from ME that ULP has been un-configured.
1235 *  If not on an ME enabled system, un-configure the ULP mode by software.
1236 *
1237 *  During nominal operation, this function is called when link is acquired
1238 *  to disable ULP mode (force=false); otherwise, for example when unloading
1239 *  the driver or during Sx->S0 transitions, this is called with force=true
1240 *  to forcibly disable ULP.
1241 */
1242static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1243{
1244        s32 ret_val = 0;
1245        u32 mac_reg;
1246        u16 phy_reg;
1247        int i = 0;
1248
1249        if ((hw->mac.type < e1000_pch_lpt) ||
1250            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1251            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1252            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1253            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1254            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1255                return 0;
1256
1257        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1258                struct e1000_adapter *adapter = hw->adapter;
1259                bool firmware_bug = false;
1260
1261                if (force) {
1262                        /* Request ME un-configure ULP mode in the PHY */
1263                        mac_reg = er32(H2ME);
1264                        mac_reg &= ~E1000_H2ME_ULP;
1265                        mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1266                        ew32(H2ME, mac_reg);
1267                }
1268
1269                /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1270                 * If this takes more than 1 second, show a warning indicating a
1271                 * firmware bug
1272                 */
1273                while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1274                        if (i++ == 250) {
1275                                ret_val = -E1000_ERR_PHY;
1276                                goto out;
1277                        }
1278                        if (i > 100 && !firmware_bug)
1279                                firmware_bug = true;
1280
1281                        usleep_range(10000, 11000);
1282                }
1283                if (firmware_bug)
1284                        e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1285                               i * 10);
1286                else
1287                        e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1288                              i * 10);
1289
1290                if (force) {
1291                        mac_reg = er32(H2ME);
1292                        mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1293                        ew32(H2ME, mac_reg);
1294                } else {
1295                        /* Clear H2ME.ULP after ME ULP configuration */
1296                        mac_reg = er32(H2ME);
1297                        mac_reg &= ~E1000_H2ME_ULP;
1298                        ew32(H2ME, mac_reg);
1299                }
1300
1301                goto out;
1302        }
1303
1304        ret_val = hw->phy.ops.acquire(hw);
1305        if (ret_val)
1306                goto out;
1307
1308        if (force)
1309                /* Toggle LANPHYPC Value bit */
1310                e1000_toggle_lanphypc_pch_lpt(hw);
1311
1312        /* Unforce SMBus mode in PHY */
1313        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1314        if (ret_val) {
1315                /* The MAC might be in PCIe mode, so temporarily force to
1316                 * SMBus mode in order to access the PHY.
1317                 */
1318                mac_reg = er32(CTRL_EXT);
1319                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1320                ew32(CTRL_EXT, mac_reg);
1321
1322                msleep(50);
1323
1324                ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1325                                                       &phy_reg);
1326                if (ret_val)
1327                        goto release;
1328        }
1329        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1330        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1331
1332        /* Unforce SMBus mode in MAC */
1333        mac_reg = er32(CTRL_EXT);
1334        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1335        ew32(CTRL_EXT, mac_reg);
1336
1337        /* When ULP mode was previously entered, K1 was disabled by the
1338         * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1339         */
1340        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1341        if (ret_val)
1342                goto release;
1343        phy_reg |= HV_PM_CTRL_K1_ENABLE;
1344        e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1345
1346        /* Clear ULP enabled configuration */
1347        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1348        if (ret_val)
1349                goto release;
1350        phy_reg &= ~(I218_ULP_CONFIG1_IND |
1351                     I218_ULP_CONFIG1_STICKY_ULP |
1352                     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1353                     I218_ULP_CONFIG1_WOL_HOST |
1354                     I218_ULP_CONFIG1_INBAND_EXIT |
1355                     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1356                     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1357                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1358        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1359
1360        /* Commit ULP changes by starting auto ULP configuration */
1361        phy_reg |= I218_ULP_CONFIG1_START;
1362        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364        /* Clear Disable SMBus Release on PERST# in MAC */
1365        mac_reg = er32(FEXTNVM7);
1366        mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1367        ew32(FEXTNVM7, mac_reg);
1368
1369release:
1370        hw->phy.ops.release(hw);
1371        if (force) {
1372                e1000_phy_hw_reset(hw);
1373                msleep(50);
1374        }
1375out:
1376        if (ret_val)
1377                e_dbg("Error in ULP disable flow: %d\n", ret_val);
1378        else
1379                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1380
1381        return ret_val;
1382}
1383
1384/**
1385 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1386 *  @hw: pointer to the HW structure
1387 *
1388 *  Checks to see of the link status of the hardware has changed.  If a
1389 *  change in link status has been detected, then we read the PHY registers
1390 *  to get the current speed/duplex if link exists.
1391 **/
1392static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1393{
1394        struct e1000_mac_info *mac = &hw->mac;
1395        s32 ret_val, tipg_reg = 0;
1396        u16 emi_addr, emi_val = 0;
1397        bool link;
1398        u16 phy_reg;
1399
1400        /* We only want to go out to the PHY registers to see if Auto-Neg
1401         * has completed and/or if our link status has changed.  The
1402         * get_link_status flag is set upon receiving a Link Status
1403         * Change or Rx Sequence Error interrupt.
1404         */
1405        if (!mac->get_link_status)
1406                return 0;
1407        mac->get_link_status = false;
1408
1409        /* First we want to see if the MII Status Register reports
1410         * link.  If so, then we want to get the current speed/duplex
1411         * of the PHY.
1412         */
1413        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1414        if (ret_val)
1415                goto out;
1416
1417        if (hw->mac.type == e1000_pchlan) {
1418                ret_val = e1000_k1_gig_workaround_hv(hw, link);
1419                if (ret_val)
1420                        goto out;
1421        }
1422
1423        /* When connected at 10Mbps half-duplex, some parts are excessively
1424         * aggressive resulting in many collisions. To avoid this, increase
1425         * the IPG and reduce Rx latency in the PHY.
1426         */
1427        if ((hw->mac.type >= e1000_pch2lan) && link) {
1428                u16 speed, duplex;
1429
1430                e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1431                tipg_reg = er32(TIPG);
1432                tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1433
1434                if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1435                        tipg_reg |= 0xFF;
1436                        /* Reduce Rx latency in analog PHY */
1437                        emi_val = 0;
1438                } else if (hw->mac.type >= e1000_pch_spt &&
1439                           duplex == FULL_DUPLEX && speed != SPEED_1000) {
1440                        tipg_reg |= 0xC;
1441                        emi_val = 1;
1442                } else {
1443
1444                        /* Roll back the default values */
1445                        tipg_reg |= 0x08;
1446                        emi_val = 1;
1447                }
1448
1449                ew32(TIPG, tipg_reg);
1450
1451                ret_val = hw->phy.ops.acquire(hw);
1452                if (ret_val)
1453                        goto out;
1454
1455                if (hw->mac.type == e1000_pch2lan)
1456                        emi_addr = I82579_RX_CONFIG;
1457                else
1458                        emi_addr = I217_RX_CONFIG;
1459                ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1460
1461                if (hw->mac.type >= e1000_pch_lpt) {
1462                        u16 phy_reg;
1463
1464                        e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1465                        phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1466                        if (speed == SPEED_100 || speed == SPEED_10)
1467                                phy_reg |= 0x3E8;
1468                        else
1469                                phy_reg |= 0xFA;
1470                        e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1471
1472                        if (speed == SPEED_1000) {
1473                                hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1474                                                            &phy_reg);
1475
1476                                phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1477
1478                                hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1479                                                             phy_reg);
1480                        }
1481                }
1482                hw->phy.ops.release(hw);
1483
1484                if (ret_val)
1485                        goto out;
1486
1487                if (hw->mac.type >= e1000_pch_spt) {
1488                        u16 data;
1489                        u16 ptr_gap;
1490
1491                        if (speed == SPEED_1000) {
1492                                ret_val = hw->phy.ops.acquire(hw);
1493                                if (ret_val)
1494                                        goto out;
1495
1496                                ret_val = e1e_rphy_locked(hw,
1497                                                          PHY_REG(776, 20),
1498                                                          &data);
1499                                if (ret_val) {
1500                                        hw->phy.ops.release(hw);
1501                                        goto out;
1502                                }
1503
1504                                ptr_gap = (data & (0x3FF << 2)) >> 2;
1505                                if (ptr_gap < 0x18) {
1506                                        data &= ~(0x3FF << 2);
1507                                        data |= (0x18 << 2);
1508                                        ret_val =
1509                                            e1e_wphy_locked(hw,
1510                                                            PHY_REG(776, 20),
1511                                                            data);
1512                                }
1513                                hw->phy.ops.release(hw);
1514                                if (ret_val)
1515                                        goto out;
1516                        } else {
1517                                ret_val = hw->phy.ops.acquire(hw);
1518                                if (ret_val)
1519                                        goto out;
1520
1521                                ret_val = e1e_wphy_locked(hw,
1522                                                          PHY_REG(776, 20),
1523                                                          0xC023);
1524                                hw->phy.ops.release(hw);
1525                                if (ret_val)
1526                                        goto out;
1527
1528                        }
1529                }
1530        }
1531
1532        /* I217 Packet Loss issue:
1533         * ensure that FEXTNVM4 Beacon Duration is set correctly
1534         * on power up.
1535         * Set the Beacon Duration for I217 to 8 usec
1536         */
1537        if (hw->mac.type >= e1000_pch_lpt) {
1538                u32 mac_reg;
1539
1540                mac_reg = er32(FEXTNVM4);
1541                mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1542                mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1543                ew32(FEXTNVM4, mac_reg);
1544        }
1545
1546        /* Work-around I218 hang issue */
1547        if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1548            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1549            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1550            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1551                ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1552                if (ret_val)
1553                        goto out;
1554        }
1555        if (hw->mac.type >= e1000_pch_lpt) {
1556                /* Set platform power management values for
1557                 * Latency Tolerance Reporting (LTR)
1558                 */
1559                ret_val = e1000_platform_pm_pch_lpt(hw, link);
1560                if (ret_val)
1561                        goto out;
1562        }
1563
1564        /* Clear link partner's EEE ability */
1565        hw->dev_spec.ich8lan.eee_lp_ability = 0;
1566
1567        if (hw->mac.type >= e1000_pch_lpt) {
1568                u32 fextnvm6 = er32(FEXTNVM6);
1569
1570                if (hw->mac.type == e1000_pch_spt) {
1571                        /* FEXTNVM6 K1-off workaround - for SPT only */
1572                        u32 pcieanacfg = er32(PCIEANACFG);
1573
1574                        if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1575                                fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1576                        else
1577                                fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1578                }
1579
1580                ew32(FEXTNVM6, fextnvm6);
1581        }
1582
1583        if (!link)
1584                goto out;
1585
1586        switch (hw->mac.type) {
1587        case e1000_pch2lan:
1588                ret_val = e1000_k1_workaround_lv(hw);
1589                if (ret_val)
1590                        return ret_val;
1591                fallthrough;
1592        case e1000_pchlan:
1593                if (hw->phy.type == e1000_phy_82578) {
1594                        ret_val = e1000_link_stall_workaround_hv(hw);
1595                        if (ret_val)
1596                                return ret_val;
1597                }
1598
1599                /* Workaround for PCHx parts in half-duplex:
1600                 * Set the number of preambles removed from the packet
1601                 * when it is passed from the PHY to the MAC to prevent
1602                 * the MAC from misinterpreting the packet type.
1603                 */
1604                e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1605                phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1606
1607                if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1608                        phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1609
1610                e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1611                break;
1612        default:
1613                break;
1614        }
1615
1616        /* Check if there was DownShift, must be checked
1617         * immediately after link-up
1618         */
1619        e1000e_check_downshift(hw);
1620
1621        /* Enable/Disable EEE after link up */
1622        if (hw->phy.type > e1000_phy_82579) {
1623                ret_val = e1000_set_eee_pchlan(hw);
1624                if (ret_val)
1625                        return ret_val;
1626        }
1627
1628        /* If we are forcing speed/duplex, then we simply return since
1629         * we have already determined whether we have link or not.
1630         */
1631        if (!mac->autoneg)
1632                return -E1000_ERR_CONFIG;
1633
1634        /* Auto-Neg is enabled.  Auto Speed Detection takes care
1635         * of MAC speed/duplex configuration.  So we only need to
1636         * configure Collision Distance in the MAC.
1637         */
1638        mac->ops.config_collision_dist(hw);
1639
1640        /* Configure Flow Control now that Auto-Neg has completed.
1641         * First, we need to restore the desired flow control
1642         * settings because we may have had to re-autoneg with a
1643         * different link partner.
1644         */
1645        ret_val = e1000e_config_fc_after_link_up(hw);
1646        if (ret_val)
1647                e_dbg("Error configuring flow control\n");
1648
1649        return ret_val;
1650
1651out:
1652        mac->get_link_status = true;
1653        return ret_val;
1654}
1655
1656static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1657{
1658        struct e1000_hw *hw = &adapter->hw;
1659        s32 rc;
1660
1661        rc = e1000_init_mac_params_ich8lan(hw);
1662        if (rc)
1663                return rc;
1664
1665        rc = e1000_init_nvm_params_ich8lan(hw);
1666        if (rc)
1667                return rc;
1668
1669        switch (hw->mac.type) {
1670        case e1000_ich8lan:
1671        case e1000_ich9lan:
1672        case e1000_ich10lan:
1673                rc = e1000_init_phy_params_ich8lan(hw);
1674                break;
1675        case e1000_pchlan:
1676        case e1000_pch2lan:
1677        case e1000_pch_lpt:
1678        case e1000_pch_spt:
1679        case e1000_pch_cnp:
1680        case e1000_pch_tgp:
1681        case e1000_pch_adp:
1682        case e1000_pch_mtp:
1683        case e1000_pch_lnp:
1684                rc = e1000_init_phy_params_pchlan(hw);
1685                break;
1686        default:
1687                break;
1688        }
1689        if (rc)
1690                return rc;
1691
1692        /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1693         * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1694         */
1695        if ((adapter->hw.phy.type == e1000_phy_ife) ||
1696            ((adapter->hw.mac.type >= e1000_pch2lan) &&
1697             (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1698                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1699                adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1700
1701                hw->mac.ops.blink_led = NULL;
1702        }
1703
1704        if ((adapter->hw.mac.type == e1000_ich8lan) &&
1705            (adapter->hw.phy.type != e1000_phy_ife))
1706                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1707
1708        /* Enable workaround for 82579 w/ ME enabled */
1709        if ((adapter->hw.mac.type == e1000_pch2lan) &&
1710            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1711                adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1712
1713        return 0;
1714}
1715
1716static DEFINE_MUTEX(nvm_mutex);
1717
1718/**
1719 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1720 *  @hw: pointer to the HW structure
1721 *
1722 *  Acquires the mutex for performing NVM operations.
1723 **/
1724static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1725{
1726        mutex_lock(&nvm_mutex);
1727
1728        return 0;
1729}
1730
1731/**
1732 *  e1000_release_nvm_ich8lan - Release NVM mutex
1733 *  @hw: pointer to the HW structure
1734 *
1735 *  Releases the mutex used while performing NVM operations.
1736 **/
1737static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1738{
1739        mutex_unlock(&nvm_mutex);
1740}
1741
1742/**
1743 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  Acquires the software control flag for performing PHY and select
1747 *  MAC CSR accesses.
1748 **/
1749static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1750{
1751        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1752        s32 ret_val = 0;
1753
1754        if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1755                             &hw->adapter->state)) {
1756                e_dbg("contention for Phy access\n");
1757                return -E1000_ERR_PHY;
1758        }
1759
1760        while (timeout) {
1761                extcnf_ctrl = er32(EXTCNF_CTRL);
1762                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1763                        break;
1764
1765                mdelay(1);
1766                timeout--;
1767        }
1768
1769        if (!timeout) {
1770                e_dbg("SW has already locked the resource.\n");
1771                ret_val = -E1000_ERR_CONFIG;
1772                goto out;
1773        }
1774
1775        timeout = SW_FLAG_TIMEOUT;
1776
1777        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1778        ew32(EXTCNF_CTRL, extcnf_ctrl);
1779
1780        while (timeout) {
1781                extcnf_ctrl = er32(EXTCNF_CTRL);
1782                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1783                        break;
1784
1785                mdelay(1);
1786                timeout--;
1787        }
1788
1789        if (!timeout) {
1790                e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1791                      er32(FWSM), extcnf_ctrl);
1792                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1793                ew32(EXTCNF_CTRL, extcnf_ctrl);
1794                ret_val = -E1000_ERR_CONFIG;
1795                goto out;
1796        }
1797
1798out:
1799        if (ret_val)
1800                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1801
1802        return ret_val;
1803}
1804
1805/**
1806 *  e1000_release_swflag_ich8lan - Release software control flag
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  Releases the software control flag for performing PHY and select
1810 *  MAC CSR accesses.
1811 **/
1812static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1813{
1814        u32 extcnf_ctrl;
1815
1816        extcnf_ctrl = er32(EXTCNF_CTRL);
1817
1818        if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1819                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1820                ew32(EXTCNF_CTRL, extcnf_ctrl);
1821        } else {
1822                e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1823        }
1824
1825        clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1826}
1827
1828/**
1829 *  e1000_check_mng_mode_ich8lan - Checks management mode
1830 *  @hw: pointer to the HW structure
1831 *
1832 *  This checks if the adapter has any manageability enabled.
1833 *  This is a function pointer entry point only called by read/write
1834 *  routines for the PHY and NVM parts.
1835 **/
1836static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1837{
1838        u32 fwsm;
1839
1840        fwsm = er32(FWSM);
1841        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842                ((fwsm & E1000_FWSM_MODE_MASK) ==
1843                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1844}
1845
1846/**
1847 *  e1000_check_mng_mode_pchlan - Checks management mode
1848 *  @hw: pointer to the HW structure
1849 *
1850 *  This checks if the adapter has iAMT enabled.
1851 *  This is a function pointer entry point only called by read/write
1852 *  routines for the PHY and NVM parts.
1853 **/
1854static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1855{
1856        u32 fwsm;
1857
1858        fwsm = er32(FWSM);
1859        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1860            (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1861}
1862
1863/**
1864 *  e1000_rar_set_pch2lan - Set receive address register
1865 *  @hw: pointer to the HW structure
1866 *  @addr: pointer to the receive address
1867 *  @index: receive address array register
1868 *
1869 *  Sets the receive address array register at index to the address passed
1870 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1871 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1872 *  Use SHRA[0-3] in place of those reserved for ME.
1873 **/
1874static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1875{
1876        u32 rar_low, rar_high;
1877
1878        /* HW expects these in little endian so we reverse the byte order
1879         * from network order (big endian) to little endian
1880         */
1881        rar_low = ((u32)addr[0] |
1882                   ((u32)addr[1] << 8) |
1883                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1884
1885        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1886
1887        /* If MAC address zero, no need to set the AV bit */
1888        if (rar_low || rar_high)
1889                rar_high |= E1000_RAH_AV;
1890
1891        if (index == 0) {
1892                ew32(RAL(index), rar_low);
1893                e1e_flush();
1894                ew32(RAH(index), rar_high);
1895                e1e_flush();
1896                return 0;
1897        }
1898
1899        /* RAR[1-6] are owned by manageability.  Skip those and program the
1900         * next address into the SHRA register array.
1901         */
1902        if (index < (u32)(hw->mac.rar_entry_count)) {
1903                s32 ret_val;
1904
1905                ret_val = e1000_acquire_swflag_ich8lan(hw);
1906                if (ret_val)
1907                        goto out;
1908
1909                ew32(SHRAL(index - 1), rar_low);
1910                e1e_flush();
1911                ew32(SHRAH(index - 1), rar_high);
1912                e1e_flush();
1913
1914                e1000_release_swflag_ich8lan(hw);
1915
1916                /* verify the register updates */
1917                if ((er32(SHRAL(index - 1)) == rar_low) &&
1918                    (er32(SHRAH(index - 1)) == rar_high))
1919                        return 0;
1920
1921                e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1922                      (index - 1), er32(FWSM));
1923        }
1924
1925out:
1926        e_dbg("Failed to write receive address at index %d\n", index);
1927        return -E1000_ERR_CONFIG;
1928}
1929
1930/**
1931 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1932 *  @hw: pointer to the HW structure
1933 *
1934 *  Get the number of available receive registers that the Host can
1935 *  program. SHRA[0-10] are the shared receive address registers
1936 *  that are shared between the Host and manageability engine (ME).
1937 *  ME can reserve any number of addresses and the host needs to be
1938 *  able to tell how many available registers it has access to.
1939 **/
1940static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1941{
1942        u32 wlock_mac;
1943        u32 num_entries;
1944
1945        wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1946        wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1947
1948        switch (wlock_mac) {
1949        case 0:
1950                /* All SHRA[0..10] and RAR[0] available */
1951                num_entries = hw->mac.rar_entry_count;
1952                break;
1953        case 1:
1954                /* Only RAR[0] available */
1955                num_entries = 1;
1956                break;
1957        default:
1958                /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1959                num_entries = wlock_mac + 1;
1960                break;
1961        }
1962
1963        return num_entries;
1964}
1965
1966/**
1967 *  e1000_rar_set_pch_lpt - Set receive address registers
1968 *  @hw: pointer to the HW structure
1969 *  @addr: pointer to the receive address
1970 *  @index: receive address array register
1971 *
1972 *  Sets the receive address register array at index to the address passed
1973 *  in by addr. For LPT, RAR[0] is the base address register that is to
1974 *  contain the MAC address. SHRA[0-10] are the shared receive address
1975 *  registers that are shared between the Host and manageability engine (ME).
1976 **/
1977static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1978{
1979        u32 rar_low, rar_high;
1980        u32 wlock_mac;
1981
1982        /* HW expects these in little endian so we reverse the byte order
1983         * from network order (big endian) to little endian
1984         */
1985        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1986                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1987
1988        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1989
1990        /* If MAC address zero, no need to set the AV bit */
1991        if (rar_low || rar_high)
1992                rar_high |= E1000_RAH_AV;
1993
1994        if (index == 0) {
1995                ew32(RAL(index), rar_low);
1996                e1e_flush();
1997                ew32(RAH(index), rar_high);
1998                e1e_flush();
1999                return 0;
2000        }
2001
2002        /* The manageability engine (ME) can lock certain SHRAR registers that
2003         * it is using - those registers are unavailable for use.
2004         */
2005        if (index < hw->mac.rar_entry_count) {
2006                wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2007                wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2008
2009                /* Check if all SHRAR registers are locked */
2010                if (wlock_mac == 1)
2011                        goto out;
2012
2013                if ((wlock_mac == 0) || (index <= wlock_mac)) {
2014                        s32 ret_val;
2015
2016                        ret_val = e1000_acquire_swflag_ich8lan(hw);
2017
2018                        if (ret_val)
2019                                goto out;
2020
2021                        ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2022                        e1e_flush();
2023                        ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2024                        e1e_flush();
2025
2026                        e1000_release_swflag_ich8lan(hw);
2027
2028                        /* verify the register updates */
2029                        if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2030                            (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2031                                return 0;
2032                }
2033        }
2034
2035out:
2036        e_dbg("Failed to write receive address at index %d\n", index);
2037        return -E1000_ERR_CONFIG;
2038}
2039
2040/**
2041 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2042 *  @hw: pointer to the HW structure
2043 *
2044 *  Checks if firmware is blocking the reset of the PHY.
2045 *  This is a function pointer entry point only called by
2046 *  reset routines.
2047 **/
2048static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2049{
2050        bool blocked = false;
2051        int i = 0;
2052
2053        while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2054               (i++ < 30))
2055                usleep_range(10000, 11000);
2056        return blocked ? E1000_BLK_PHY_RESET : 0;
2057}
2058
2059/**
2060 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2061 *  @hw: pointer to the HW structure
2062 *
2063 *  Assumes semaphore already acquired.
2064 *
2065 **/
2066static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2067{
2068        u16 phy_data;
2069        u32 strap = er32(STRAP);
2070        u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2071            E1000_STRAP_SMT_FREQ_SHIFT;
2072        s32 ret_val;
2073
2074        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2075
2076        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2077        if (ret_val)
2078                return ret_val;
2079
2080        phy_data &= ~HV_SMB_ADDR_MASK;
2081        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2082        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2083
2084        if (hw->phy.type == e1000_phy_i217) {
2085                /* Restore SMBus frequency */
2086                if (freq--) {
2087                        phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2088                        phy_data |= (freq & BIT(0)) <<
2089                            HV_SMB_ADDR_FREQ_LOW_SHIFT;
2090                        phy_data |= (freq & BIT(1)) <<
2091                            (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2092                } else {
2093                        e_dbg("Unsupported SMB frequency in PHY\n");
2094                }
2095        }
2096
2097        return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2098}
2099
2100/**
2101 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2102 *  @hw:   pointer to the HW structure
2103 *
2104 *  SW should configure the LCD from the NVM extended configuration region
2105 *  as a workaround for certain parts.
2106 **/
2107static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2108{
2109        struct e1000_phy_info *phy = &hw->phy;
2110        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2111        s32 ret_val = 0;
2112        u16 word_addr, reg_data, reg_addr, phy_page = 0;
2113
2114        /* Initialize the PHY from the NVM on ICH platforms.  This
2115         * is needed due to an issue where the NVM configuration is
2116         * not properly autoloaded after power transitions.
2117         * Therefore, after each PHY reset, we will load the
2118         * configuration data out of the NVM manually.
2119         */
2120        switch (hw->mac.type) {
2121        case e1000_ich8lan:
2122                if (phy->type != e1000_phy_igp_3)
2123                        return ret_val;
2124
2125                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2126                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2127                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2128                        break;
2129                }
2130                fallthrough;
2131        case e1000_pchlan:
2132        case e1000_pch2lan:
2133        case e1000_pch_lpt:
2134        case e1000_pch_spt:
2135        case e1000_pch_cnp:
2136        case e1000_pch_tgp:
2137        case e1000_pch_adp:
2138        case e1000_pch_mtp:
2139        case e1000_pch_lnp:
2140                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2141                break;
2142        default:
2143                return ret_val;
2144        }
2145
2146        ret_val = hw->phy.ops.acquire(hw);
2147        if (ret_val)
2148                return ret_val;
2149
2150        data = er32(FEXTNVM);
2151        if (!(data & sw_cfg_mask))
2152                goto release;
2153
2154        /* Make sure HW does not configure LCD from PHY
2155         * extended configuration before SW configuration
2156         */
2157        data = er32(EXTCNF_CTRL);
2158        if ((hw->mac.type < e1000_pch2lan) &&
2159            (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2160                goto release;
2161
2162        cnf_size = er32(EXTCNF_SIZE);
2163        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2164        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2165        if (!cnf_size)
2166                goto release;
2167
2168        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2169        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2170
2171        if (((hw->mac.type == e1000_pchlan) &&
2172             !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2173            (hw->mac.type > e1000_pchlan)) {
2174                /* HW configures the SMBus address and LEDs when the
2175                 * OEM and LCD Write Enable bits are set in the NVM.
2176                 * When both NVM bits are cleared, SW will configure
2177                 * them instead.
2178                 */
2179                ret_val = e1000_write_smbus_addr(hw);
2180                if (ret_val)
2181                        goto release;
2182
2183                data = er32(LEDCTL);
2184                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2185                                                        (u16)data);
2186                if (ret_val)
2187                        goto release;
2188        }
2189
2190        /* Configure LCD from extended configuration region. */
2191
2192        /* cnf_base_addr is in DWORD */
2193        word_addr = (u16)(cnf_base_addr << 1);
2194
2195        for (i = 0; i < cnf_size; i++) {
2196                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2197                if (ret_val)
2198                        goto release;
2199
2200                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2201                                         1, &reg_addr);
2202                if (ret_val)
2203                        goto release;
2204
2205                /* Save off the PHY page for future writes. */
2206                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2207                        phy_page = reg_data;
2208                        continue;
2209                }
2210
2211                reg_addr &= PHY_REG_MASK;
2212                reg_addr |= phy_page;
2213
2214                ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2215                if (ret_val)
2216                        goto release;
2217        }
2218
2219release:
2220        hw->phy.ops.release(hw);
2221        return ret_val;
2222}
2223
2224/**
2225 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2226 *  @hw:   pointer to the HW structure
2227 *  @link: link up bool flag
2228 *
2229 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2230 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2231 *  If link is down, the function will restore the default K1 setting located
2232 *  in the NVM.
2233 **/
2234static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2235{
2236        s32 ret_val = 0;
2237        u16 status_reg = 0;
2238        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2239
2240        if (hw->mac.type != e1000_pchlan)
2241                return 0;
2242
2243        /* Wrap the whole flow with the sw flag */
2244        ret_val = hw->phy.ops.acquire(hw);
2245        if (ret_val)
2246                return ret_val;
2247
2248        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2249        if (link) {
2250                if (hw->phy.type == e1000_phy_82578) {
2251                        ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2252                                                  &status_reg);
2253                        if (ret_val)
2254                                goto release;
2255
2256                        status_reg &= (BM_CS_STATUS_LINK_UP |
2257                                       BM_CS_STATUS_RESOLVED |
2258                                       BM_CS_STATUS_SPEED_MASK);
2259
2260                        if (status_reg == (BM_CS_STATUS_LINK_UP |
2261                                           BM_CS_STATUS_RESOLVED |
2262                                           BM_CS_STATUS_SPEED_1000))
2263                                k1_enable = false;
2264                }
2265
2266                if (hw->phy.type == e1000_phy_82577) {
2267                        ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2268                        if (ret_val)
2269                                goto release;
2270
2271                        status_reg &= (HV_M_STATUS_LINK_UP |
2272                                       HV_M_STATUS_AUTONEG_COMPLETE |
2273                                       HV_M_STATUS_SPEED_MASK);
2274
2275                        if (status_reg == (HV_M_STATUS_LINK_UP |
2276                                           HV_M_STATUS_AUTONEG_COMPLETE |
2277                                           HV_M_STATUS_SPEED_1000))
2278                                k1_enable = false;
2279                }
2280
2281                /* Link stall fix for link up */
2282                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2283                if (ret_val)
2284                        goto release;
2285
2286        } else {
2287                /* Link stall fix for link down */
2288                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2289                if (ret_val)
2290                        goto release;
2291        }
2292
2293        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2294
2295release:
2296        hw->phy.ops.release(hw);
2297
2298        return ret_val;
2299}
2300
2301/**
2302 *  e1000_configure_k1_ich8lan - Configure K1 power state
2303 *  @hw: pointer to the HW structure
2304 *  @k1_enable: K1 state to configure
2305 *
2306 *  Configure the K1 power state based on the provided parameter.
2307 *  Assumes semaphore already acquired.
2308 *
2309 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2310 **/
2311s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2312{
2313        s32 ret_val;
2314        u32 ctrl_reg = 0;
2315        u32 ctrl_ext = 0;
2316        u32 reg = 0;
2317        u16 kmrn_reg = 0;
2318
2319        ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2320                                              &kmrn_reg);
2321        if (ret_val)
2322                return ret_val;
2323
2324        if (k1_enable)
2325                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2326        else
2327                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2328
2329        ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330                                               kmrn_reg);
2331        if (ret_val)
2332                return ret_val;
2333
2334        usleep_range(20, 40);
2335        ctrl_ext = er32(CTRL_EXT);
2336        ctrl_reg = er32(CTRL);
2337
2338        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2339        reg |= E1000_CTRL_FRCSPD;
2340        ew32(CTRL, reg);
2341
2342        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2343        e1e_flush();
2344        usleep_range(20, 40);
2345        ew32(CTRL, ctrl_reg);
2346        ew32(CTRL_EXT, ctrl_ext);
2347        e1e_flush();
2348        usleep_range(20, 40);
2349
2350        return 0;
2351}
2352
2353/**
2354 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2355 *  @hw:       pointer to the HW structure
2356 *  @d0_state: boolean if entering d0 or d3 device state
2357 *
2358 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2359 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2360 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2361 **/
2362static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2363{
2364        s32 ret_val = 0;
2365        u32 mac_reg;
2366        u16 oem_reg;
2367
2368        if (hw->mac.type < e1000_pchlan)
2369                return ret_val;
2370
2371        ret_val = hw->phy.ops.acquire(hw);
2372        if (ret_val)
2373                return ret_val;
2374
2375        if (hw->mac.type == e1000_pchlan) {
2376                mac_reg = er32(EXTCNF_CTRL);
2377                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2378                        goto release;
2379        }
2380
2381        mac_reg = er32(FEXTNVM);
2382        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2383                goto release;
2384
2385        mac_reg = er32(PHY_CTRL);
2386
2387        ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2388        if (ret_val)
2389                goto release;
2390
2391        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2392
2393        if (d0_state) {
2394                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2395                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2396
2397                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2398                        oem_reg |= HV_OEM_BITS_LPLU;
2399        } else {
2400                if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2401                               E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2402                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404                if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2405                               E1000_PHY_CTRL_NOND0A_LPLU))
2406                        oem_reg |= HV_OEM_BITS_LPLU;
2407        }
2408
2409        /* Set Restart auto-neg to activate the bits */
2410        if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2411            !hw->phy.ops.check_reset_block(hw))
2412                oem_reg |= HV_OEM_BITS_RESTART_AN;
2413
2414        ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2415
2416release:
2417        hw->phy.ops.release(hw);
2418
2419        return ret_val;
2420}
2421
2422/**
2423 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2424 *  @hw:   pointer to the HW structure
2425 **/
2426static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2427{
2428        s32 ret_val;
2429        u16 data;
2430
2431        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2432        if (ret_val)
2433                return ret_val;
2434
2435        data |= HV_KMRN_MDIO_SLOW;
2436
2437        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2438
2439        return ret_val;
2440}
2441
2442/**
2443 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2444 *  @hw: pointer to the HW structure
2445 *
2446 *  A series of PHY workarounds to be done after every PHY reset.
2447 **/
2448static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2449{
2450        s32 ret_val = 0;
2451        u16 phy_data;
2452
2453        if (hw->mac.type != e1000_pchlan)
2454                return 0;
2455
2456        /* Set MDIO slow mode before any other MDIO access */
2457        if (hw->phy.type == e1000_phy_82577) {
2458                ret_val = e1000_set_mdio_slow_mode_hv(hw);
2459                if (ret_val)
2460                        return ret_val;
2461        }
2462
2463        if (((hw->phy.type == e1000_phy_82577) &&
2464             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2465            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2466                /* Disable generation of early preamble */
2467                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2468                if (ret_val)
2469                        return ret_val;
2470
2471                /* Preamble tuning for SSC */
2472                ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2473                if (ret_val)
2474                        return ret_val;
2475        }
2476
2477        if (hw->phy.type == e1000_phy_82578) {
2478                /* Return registers to default by doing a soft reset then
2479                 * writing 0x3140 to the control register.
2480                 */
2481                if (hw->phy.revision < 2) {
2482                        e1000e_phy_sw_reset(hw);
2483                        ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2484                        if (ret_val)
2485                                return ret_val;
2486                }
2487        }
2488
2489        /* Select page 0 */
2490        ret_val = hw->phy.ops.acquire(hw);
2491        if (ret_val)
2492                return ret_val;
2493
2494        hw->phy.addr = 1;
2495        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2496        hw->phy.ops.release(hw);
2497        if (ret_val)
2498                return ret_val;
2499
2500        /* Configure the K1 Si workaround during phy reset assuming there is
2501         * link so that it disables K1 if link is in 1Gbps.
2502         */
2503        ret_val = e1000_k1_gig_workaround_hv(hw, true);
2504        if (ret_val)
2505                return ret_val;
2506
2507        /* Workaround for link disconnects on a busy hub in half duplex */
2508        ret_val = hw->phy.ops.acquire(hw);
2509        if (ret_val)
2510                return ret_val;
2511        ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2512        if (ret_val)
2513                goto release;
2514        ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2515        if (ret_val)
2516                goto release;
2517
2518        /* set MSE higher to enable link to stay up when noise is high */
2519        ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2520release:
2521        hw->phy.ops.release(hw);
2522
2523        return ret_val;
2524}
2525
2526/**
2527 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2528 *  @hw:   pointer to the HW structure
2529 **/
2530void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2531{
2532        u32 mac_reg;
2533        u16 i, phy_reg = 0;
2534        s32 ret_val;
2535
2536        ret_val = hw->phy.ops.acquire(hw);
2537        if (ret_val)
2538                return;
2539        ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2540        if (ret_val)
2541                goto release;
2542
2543        /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2544        for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2545                mac_reg = er32(RAL(i));
2546                hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2547                                           (u16)(mac_reg & 0xFFFF));
2548                hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2549                                           (u16)((mac_reg >> 16) & 0xFFFF));
2550
2551                mac_reg = er32(RAH(i));
2552                hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2553                                           (u16)(mac_reg & 0xFFFF));
2554                hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2555                                           (u16)((mac_reg & E1000_RAH_AV)
2556                                                 >> 16));
2557        }
2558
2559        e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2560
2561release:
2562        hw->phy.ops.release(hw);
2563}
2564
2565/**
2566 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2567 *  with 82579 PHY
2568 *  @hw: pointer to the HW structure
2569 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2570 **/
2571s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2572{
2573        s32 ret_val = 0;
2574        u16 phy_reg, data;
2575        u32 mac_reg;
2576        u16 i;
2577
2578        if (hw->mac.type < e1000_pch2lan)
2579                return 0;
2580
2581        /* disable Rx path while enabling/disabling workaround */
2582        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2583        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2584        if (ret_val)
2585                return ret_val;
2586
2587        if (enable) {
2588                /* Write Rx addresses (rar_entry_count for RAL/H, and
2589                 * SHRAL/H) and initial CRC values to the MAC
2590                 */
2591                for (i = 0; i < hw->mac.rar_entry_count; i++) {
2592                        u8 mac_addr[ETH_ALEN] = { 0 };
2593                        u32 addr_high, addr_low;
2594
2595                        addr_high = er32(RAH(i));
2596                        if (!(addr_high & E1000_RAH_AV))
2597                                continue;
2598                        addr_low = er32(RAL(i));
2599                        mac_addr[0] = (addr_low & 0xFF);
2600                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
2601                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
2602                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
2603                        mac_addr[4] = (addr_high & 0xFF);
2604                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
2605
2606                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2607                }
2608
2609                /* Write Rx addresses to the PHY */
2610                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2611
2612                /* Enable jumbo frame workaround in the MAC */
2613                mac_reg = er32(FFLT_DBG);
2614                mac_reg &= ~BIT(14);
2615                mac_reg |= (7 << 15);
2616                ew32(FFLT_DBG, mac_reg);
2617
2618                mac_reg = er32(RCTL);
2619                mac_reg |= E1000_RCTL_SECRC;
2620                ew32(RCTL, mac_reg);
2621
2622                ret_val = e1000e_read_kmrn_reg(hw,
2623                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2624                                               &data);
2625                if (ret_val)
2626                        return ret_val;
2627                ret_val = e1000e_write_kmrn_reg(hw,
2628                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629                                                data | BIT(0));
2630                if (ret_val)
2631                        return ret_val;
2632                ret_val = e1000e_read_kmrn_reg(hw,
2633                                               E1000_KMRNCTRLSTA_HD_CTRL,
2634                                               &data);
2635                if (ret_val)
2636                        return ret_val;
2637                data &= ~(0xF << 8);
2638                data |= (0xB << 8);
2639                ret_val = e1000e_write_kmrn_reg(hw,
2640                                                E1000_KMRNCTRLSTA_HD_CTRL,
2641                                                data);
2642                if (ret_val)
2643                        return ret_val;
2644
2645                /* Enable jumbo frame workaround in the PHY */
2646                e1e_rphy(hw, PHY_REG(769, 23), &data);
2647                data &= ~(0x7F << 5);
2648                data |= (0x37 << 5);
2649                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2650                if (ret_val)
2651                        return ret_val;
2652                e1e_rphy(hw, PHY_REG(769, 16), &data);
2653                data &= ~BIT(13);
2654                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2655                if (ret_val)
2656                        return ret_val;
2657                e1e_rphy(hw, PHY_REG(776, 20), &data);
2658                data &= ~(0x3FF << 2);
2659                data |= (E1000_TX_PTR_GAP << 2);
2660                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2661                if (ret_val)
2662                        return ret_val;
2663                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2664                if (ret_val)
2665                        return ret_val;
2666                e1e_rphy(hw, HV_PM_CTRL, &data);
2667                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2668                if (ret_val)
2669                        return ret_val;
2670        } else {
2671                /* Write MAC register values back to h/w defaults */
2672                mac_reg = er32(FFLT_DBG);
2673                mac_reg &= ~(0xF << 14);
2674                ew32(FFLT_DBG, mac_reg);
2675
2676                mac_reg = er32(RCTL);
2677                mac_reg &= ~E1000_RCTL_SECRC;
2678                ew32(RCTL, mac_reg);
2679
2680                ret_val = e1000e_read_kmrn_reg(hw,
2681                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2682                                               &data);
2683                if (ret_val)
2684                        return ret_val;
2685                ret_val = e1000e_write_kmrn_reg(hw,
2686                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687                                                data & ~BIT(0));
2688                if (ret_val)
2689                        return ret_val;
2690                ret_val = e1000e_read_kmrn_reg(hw,
2691                                               E1000_KMRNCTRLSTA_HD_CTRL,
2692                                               &data);
2693                if (ret_val)
2694                        return ret_val;
2695                data &= ~(0xF << 8);
2696                data |= (0xB << 8);
2697                ret_val = e1000e_write_kmrn_reg(hw,
2698                                                E1000_KMRNCTRLSTA_HD_CTRL,
2699                                                data);
2700                if (ret_val)
2701                        return ret_val;
2702
2703                /* Write PHY register values back to h/w defaults */
2704                e1e_rphy(hw, PHY_REG(769, 23), &data);
2705                data &= ~(0x7F << 5);
2706                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2707                if (ret_val)
2708                        return ret_val;
2709                e1e_rphy(hw, PHY_REG(769, 16), &data);
2710                data |= BIT(13);
2711                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2712                if (ret_val)
2713                        return ret_val;
2714                e1e_rphy(hw, PHY_REG(776, 20), &data);
2715                data &= ~(0x3FF << 2);
2716                data |= (0x8 << 2);
2717                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2718                if (ret_val)
2719                        return ret_val;
2720                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2721                if (ret_val)
2722                        return ret_val;
2723                e1e_rphy(hw, HV_PM_CTRL, &data);
2724                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2725                if (ret_val)
2726                        return ret_val;
2727        }
2728
2729        /* re-enable Rx path after enabling/disabling workaround */
2730        return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2731}
2732
2733/**
2734 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2735 *  @hw: pointer to the HW structure
2736 *
2737 *  A series of PHY workarounds to be done after every PHY reset.
2738 **/
2739static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2740{
2741        s32 ret_val = 0;
2742
2743        if (hw->mac.type != e1000_pch2lan)
2744                return 0;
2745
2746        /* Set MDIO slow mode before any other MDIO access */
2747        ret_val = e1000_set_mdio_slow_mode_hv(hw);
2748        if (ret_val)
2749                return ret_val;
2750
2751        ret_val = hw->phy.ops.acquire(hw);
2752        if (ret_val)
2753                return ret_val;
2754        /* set MSE higher to enable link to stay up when noise is high */
2755        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2756        if (ret_val)
2757                goto release;
2758        /* drop link after 5 times MSE threshold was reached */
2759        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2760release:
2761        hw->phy.ops.release(hw);
2762
2763        return ret_val;
2764}
2765
2766/**
2767 *  e1000_k1_workaround_lv - K1 Si workaround
2768 *  @hw:   pointer to the HW structure
2769 *
2770 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2771 *  Disable K1 in 1000Mbps and 100Mbps
2772 **/
2773static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2774{
2775        s32 ret_val = 0;
2776        u16 status_reg = 0;
2777
2778        if (hw->mac.type != e1000_pch2lan)
2779                return 0;
2780
2781        /* Set K1 beacon duration based on 10Mbs speed */
2782        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2783        if (ret_val)
2784                return ret_val;
2785
2786        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2787            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2788                if (status_reg &
2789                    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2790                        u16 pm_phy_reg;
2791
2792                        /* LV 1G/100 Packet drop issue wa  */
2793                        ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2794                        if (ret_val)
2795                                return ret_val;
2796                        pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2797                        ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2798                        if (ret_val)
2799                                return ret_val;
2800                } else {
2801                        u32 mac_reg;
2802
2803                        mac_reg = er32(FEXTNVM4);
2804                        mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2805                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2806                        ew32(FEXTNVM4, mac_reg);
2807                }
2808        }
2809
2810        return ret_val;
2811}
2812
2813/**
2814 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2815 *  @hw:   pointer to the HW structure
2816 *  @gate: boolean set to true to gate, false to ungate
2817 *
2818 *  Gate/ungate the automatic PHY configuration via hardware; perform
2819 *  the configuration via software instead.
2820 **/
2821static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2822{
2823        u32 extcnf_ctrl;
2824
2825        if (hw->mac.type < e1000_pch2lan)
2826                return;
2827
2828        extcnf_ctrl = er32(EXTCNF_CTRL);
2829
2830        if (gate)
2831                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2832        else
2833                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2834
2835        ew32(EXTCNF_CTRL, extcnf_ctrl);
2836}
2837
2838/**
2839 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2840 *  @hw: pointer to the HW structure
2841 *
2842 *  Check the appropriate indication the MAC has finished configuring the
2843 *  PHY after a software reset.
2844 **/
2845static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2846{
2847        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2848
2849        /* Wait for basic configuration completes before proceeding */
2850        do {
2851                data = er32(STATUS);
2852                data &= E1000_STATUS_LAN_INIT_DONE;
2853                usleep_range(100, 200);
2854        } while ((!data) && --loop);
2855
2856        /* If basic configuration is incomplete before the above loop
2857         * count reaches 0, loading the configuration from NVM will
2858         * leave the PHY in a bad state possibly resulting in no link.
2859         */
2860        if (loop == 0)
2861                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2862
2863        /* Clear the Init Done bit for the next init event */
2864        data = er32(STATUS);
2865        data &= ~E1000_STATUS_LAN_INIT_DONE;
2866        ew32(STATUS, data);
2867}
2868
2869/**
2870 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2871 *  @hw: pointer to the HW structure
2872 **/
2873static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2874{
2875        s32 ret_val = 0;
2876        u16 reg;
2877
2878        if (hw->phy.ops.check_reset_block(hw))
2879                return 0;
2880
2881        /* Allow time for h/w to get to quiescent state after reset */
2882        usleep_range(10000, 11000);
2883
2884        /* Perform any necessary post-reset workarounds */
2885        switch (hw->mac.type) {
2886        case e1000_pchlan:
2887                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2888                if (ret_val)
2889                        return ret_val;
2890                break;
2891        case e1000_pch2lan:
2892                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2893                if (ret_val)
2894                        return ret_val;
2895                break;
2896        default:
2897                break;
2898        }
2899
2900        /* Clear the host wakeup bit after lcd reset */
2901        if (hw->mac.type >= e1000_pchlan) {
2902                e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2903                reg &= ~BM_WUC_HOST_WU_BIT;
2904                e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2905        }
2906
2907        /* Configure the LCD with the extended configuration region in NVM */
2908        ret_val = e1000_sw_lcd_config_ich8lan(hw);
2909        if (ret_val)
2910                return ret_val;
2911
2912        /* Configure the LCD with the OEM bits in NVM */
2913        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2914
2915        if (hw->mac.type == e1000_pch2lan) {
2916                /* Ungate automatic PHY configuration on non-managed 82579 */
2917                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2918                        usleep_range(10000, 11000);
2919                        e1000_gate_hw_phy_config_ich8lan(hw, false);
2920                }
2921
2922                /* Set EEE LPI Update Timer to 200usec */
2923                ret_val = hw->phy.ops.acquire(hw);
2924                if (ret_val)
2925                        return ret_val;
2926                ret_val = e1000_write_emi_reg_locked(hw,
2927                                                     I82579_LPI_UPDATE_TIMER,
2928                                                     0x1387);
2929                hw->phy.ops.release(hw);
2930        }
2931
2932        return ret_val;
2933}
2934
2935/**
2936 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2937 *  @hw: pointer to the HW structure
2938 *
2939 *  Resets the PHY
2940 *  This is a function pointer entry point called by drivers
2941 *  or other shared routines.
2942 **/
2943static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2944{
2945        s32 ret_val = 0;
2946
2947        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2948        if ((hw->mac.type == e1000_pch2lan) &&
2949            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2950                e1000_gate_hw_phy_config_ich8lan(hw, true);
2951
2952        ret_val = e1000e_phy_hw_reset_generic(hw);
2953        if (ret_val)
2954                return ret_val;
2955
2956        return e1000_post_phy_reset_ich8lan(hw);
2957}
2958
2959/**
2960 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2961 *  @hw: pointer to the HW structure
2962 *  @active: true to enable LPLU, false to disable
2963 *
2964 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2965 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2966 *  the phy speed. This function will manually set the LPLU bit and restart
2967 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2968 *  since it configures the same bit.
2969 **/
2970static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2971{
2972        s32 ret_val;
2973        u16 oem_reg;
2974
2975        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2976        if (ret_val)
2977                return ret_val;
2978
2979        if (active)
2980                oem_reg |= HV_OEM_BITS_LPLU;
2981        else
2982                oem_reg &= ~HV_OEM_BITS_LPLU;
2983
2984        if (!hw->phy.ops.check_reset_block(hw))
2985                oem_reg |= HV_OEM_BITS_RESTART_AN;
2986
2987        return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2988}
2989
2990/**
2991 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2992 *  @hw: pointer to the HW structure
2993 *  @active: true to enable LPLU, false to disable
2994 *
2995 *  Sets the LPLU D0 state according to the active flag.  When
2996 *  activating LPLU this function also disables smart speed
2997 *  and vice versa.  LPLU will not be activated unless the
2998 *  device autonegotiation advertisement meets standards of
2999 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3000 *  This is a function pointer entry point only called by
3001 *  PHY setup routines.
3002 **/
3003static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3004{
3005        struct e1000_phy_info *phy = &hw->phy;
3006        u32 phy_ctrl;
3007        s32 ret_val = 0;
3008        u16 data;
3009
3010        if (phy->type == e1000_phy_ife)
3011                return 0;
3012
3013        phy_ctrl = er32(PHY_CTRL);
3014
3015        if (active) {
3016                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3017                ew32(PHY_CTRL, phy_ctrl);
3018
3019                if (phy->type != e1000_phy_igp_3)
3020                        return 0;
3021
3022                /* Call gig speed drop workaround on LPLU before accessing
3023                 * any PHY registers
3024                 */
3025                if (hw->mac.type == e1000_ich8lan)
3026                        e1000e_gig_downshift_workaround_ich8lan(hw);
3027
3028                /* When LPLU is enabled, we should disable SmartSpeed */
3029                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3030                if (ret_val)
3031                        return ret_val;
3032                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3033                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3034                if (ret_val)
3035                        return ret_val;
3036        } else {
3037                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3038                ew32(PHY_CTRL, phy_ctrl);
3039
3040                if (phy->type != e1000_phy_igp_3)
3041                        return 0;
3042
3043                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3044                 * during Dx states where the power conservation is most
3045                 * important.  During driver activity we should enable
3046                 * SmartSpeed, so performance is maintained.
3047                 */
3048                if (phy->smart_speed == e1000_smart_speed_on) {
3049                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3050                                           &data);
3051                        if (ret_val)
3052                                return ret_val;
3053
3054                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3055                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056                                           data);
3057                        if (ret_val)
3058                                return ret_val;
3059                } else if (phy->smart_speed == e1000_smart_speed_off) {
3060                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061                                           &data);
3062                        if (ret_val)
3063                                return ret_val;
3064
3065                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3066                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067                                           data);
3068                        if (ret_val)
3069                                return ret_val;
3070                }
3071        }
3072
3073        return 0;
3074}
3075
3076/**
3077 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3078 *  @hw: pointer to the HW structure
3079 *  @active: true to enable LPLU, false to disable
3080 *
3081 *  Sets the LPLU D3 state according to the active flag.  When
3082 *  activating LPLU this function also disables smart speed
3083 *  and vice versa.  LPLU will not be activated unless the
3084 *  device autonegotiation advertisement meets standards of
3085 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3086 *  This is a function pointer entry point only called by
3087 *  PHY setup routines.
3088 **/
3089static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3090{
3091        struct e1000_phy_info *phy = &hw->phy;
3092        u32 phy_ctrl;
3093        s32 ret_val = 0;
3094        u16 data;
3095
3096        phy_ctrl = er32(PHY_CTRL);
3097
3098        if (!active) {
3099                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3100                ew32(PHY_CTRL, phy_ctrl);
3101
3102                if (phy->type != e1000_phy_igp_3)
3103                        return 0;
3104
3105                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3106                 * during Dx states where the power conservation is most
3107                 * important.  During driver activity we should enable
3108                 * SmartSpeed, so performance is maintained.
3109                 */
3110                if (phy->smart_speed == e1000_smart_speed_on) {
3111                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3112                                           &data);
3113                        if (ret_val)
3114                                return ret_val;
3115
3116                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3117                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118                                           data);
3119                        if (ret_val)
3120                                return ret_val;
3121                } else if (phy->smart_speed == e1000_smart_speed_off) {
3122                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123                                           &data);
3124                        if (ret_val)
3125                                return ret_val;
3126
3127                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3128                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129                                           data);
3130                        if (ret_val)
3131                                return ret_val;
3132                }
3133        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3134                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3135                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3136                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3137                ew32(PHY_CTRL, phy_ctrl);
3138
3139                if (phy->type != e1000_phy_igp_3)
3140                        return 0;
3141
3142                /* Call gig speed drop workaround on LPLU before accessing
3143                 * any PHY registers
3144                 */
3145                if (hw->mac.type == e1000_ich8lan)
3146                        e1000e_gig_downshift_workaround_ich8lan(hw);
3147
3148                /* When LPLU is enabled, we should disable SmartSpeed */
3149                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3150                if (ret_val)
3151                        return ret_val;
3152
3153                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3154                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3155        }
3156
3157        return ret_val;
3158}
3159
3160/**
3161 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3162 *  @hw: pointer to the HW structure
3163 *  @bank:  pointer to the variable that returns the active bank
3164 *
3165 *  Reads signature byte from the NVM using the flash access registers.
3166 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3167 **/
3168static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3169{
3170        u32 eecd;
3171        struct e1000_nvm_info *nvm = &hw->nvm;
3172        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3173        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3174        u32 nvm_dword = 0;
3175        u8 sig_byte = 0;
3176        s32 ret_val;
3177
3178        switch (hw->mac.type) {
3179        case e1000_pch_spt:
3180        case e1000_pch_cnp:
3181        case e1000_pch_tgp:
3182        case e1000_pch_adp:
3183        case e1000_pch_mtp:
3184        case e1000_pch_lnp:
3185                bank1_offset = nvm->flash_bank_size;
3186                act_offset = E1000_ICH_NVM_SIG_WORD;
3187
3188                /* set bank to 0 in case flash read fails */
3189                *bank = 0;
3190
3191                /* Check bank 0 */
3192                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3193                                                         &nvm_dword);
3194                if (ret_val)
3195                        return ret_val;
3196                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3197                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3198                    E1000_ICH_NVM_SIG_VALUE) {
3199                        *bank = 0;
3200                        return 0;
3201                }
3202
3203                /* Check bank 1 */
3204                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3205                                                         bank1_offset,
3206                                                         &nvm_dword);
3207                if (ret_val)
3208                        return ret_val;
3209                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3210                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3211                    E1000_ICH_NVM_SIG_VALUE) {
3212                        *bank = 1;
3213                        return 0;
3214                }
3215
3216                e_dbg("ERROR: No valid NVM bank present\n");
3217                return -E1000_ERR_NVM;
3218        case e1000_ich8lan:
3219        case e1000_ich9lan:
3220                eecd = er32(EECD);
3221                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3222                    E1000_EECD_SEC1VAL_VALID_MASK) {
3223                        if (eecd & E1000_EECD_SEC1VAL)
3224                                *bank = 1;
3225                        else
3226                                *bank = 0;
3227
3228                        return 0;
3229                }
3230                e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3231                fallthrough;
3232        default:
3233                /* set bank to 0 in case flash read fails */
3234                *bank = 0;
3235
3236                /* Check bank 0 */
3237                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3238                                                        &sig_byte);
3239                if (ret_val)
3240                        return ret_val;
3241                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242                    E1000_ICH_NVM_SIG_VALUE) {
3243                        *bank = 0;
3244                        return 0;
3245                }
3246
3247                /* Check bank 1 */
3248                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3249                                                        bank1_offset,
3250                                                        &sig_byte);
3251                if (ret_val)
3252                        return ret_val;
3253                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254                    E1000_ICH_NVM_SIG_VALUE) {
3255                        *bank = 1;
3256                        return 0;
3257                }
3258
3259                e_dbg("ERROR: No valid NVM bank present\n");
3260                return -E1000_ERR_NVM;
3261        }
3262}
3263
3264/**
3265 *  e1000_read_nvm_spt - NVM access for SPT
3266 *  @hw: pointer to the HW structure
3267 *  @offset: The offset (in bytes) of the word(s) to read.
3268 *  @words: Size of data to read in words.
3269 *  @data: pointer to the word(s) to read at offset.
3270 *
3271 *  Reads a word(s) from the NVM
3272 **/
3273static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3274                              u16 *data)
3275{
3276        struct e1000_nvm_info *nvm = &hw->nvm;
3277        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3278        u32 act_offset;
3279        s32 ret_val = 0;
3280        u32 bank = 0;
3281        u32 dword = 0;
3282        u16 offset_to_read;
3283        u16 i;
3284
3285        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3286            (words == 0)) {
3287                e_dbg("nvm parameter(s) out of bounds\n");
3288                ret_val = -E1000_ERR_NVM;
3289                goto out;
3290        }
3291
3292        nvm->ops.acquire(hw);
3293
3294        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3295        if (ret_val) {
3296                e_dbg("Could not detect valid bank, assuming bank 0\n");
3297                bank = 0;
3298        }
3299
3300        act_offset = (bank) ? nvm->flash_bank_size : 0;
3301        act_offset += offset;
3302
3303        ret_val = 0;
3304
3305        for (i = 0; i < words; i += 2) {
3306                if (words - i == 1) {
3307                        if (dev_spec->shadow_ram[offset + i].modified) {
3308                                data[i] =
3309                                    dev_spec->shadow_ram[offset + i].value;
3310                        } else {
3311                                offset_to_read = act_offset + i -
3312                                    ((act_offset + i) % 2);
3313                                ret_val =
3314                                  e1000_read_flash_dword_ich8lan(hw,
3315                                                                 offset_to_read,
3316                                                                 &dword);
3317                                if (ret_val)
3318                                        break;
3319                                if ((act_offset + i) % 2 == 0)
3320                                        data[i] = (u16)(dword & 0xFFFF);
3321                                else
3322                                        data[i] = (u16)((dword >> 16) & 0xFFFF);
3323                        }
3324                } else {
3325                        offset_to_read = act_offset + i;
3326                        if (!(dev_spec->shadow_ram[offset + i].modified) ||
3327                            !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3328                                ret_val =
3329                                  e1000_read_flash_dword_ich8lan(hw,
3330                                                                 offset_to_read,
3331                                                                 &dword);
3332                                if (ret_val)
3333                                        break;
3334                        }
3335                        if (dev_spec->shadow_ram[offset + i].modified)
3336                                data[i] =
3337                                    dev_spec->shadow_ram[offset + i].value;
3338                        else
3339                                data[i] = (u16)(dword & 0xFFFF);
3340                        if (dev_spec->shadow_ram[offset + i].modified)
3341                                data[i + 1] =
3342                                    dev_spec->shadow_ram[offset + i + 1].value;
3343                        else
3344                                data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3345                }
3346        }
3347
3348        nvm->ops.release(hw);
3349
3350out:
3351        if (ret_val)
3352                e_dbg("NVM read error: %d\n", ret_val);
3353
3354        return ret_val;
3355}
3356
3357/**
3358 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3359 *  @hw: pointer to the HW structure
3360 *  @offset: The offset (in bytes) of the word(s) to read.
3361 *  @words: Size of data to read in words
3362 *  @data: Pointer to the word(s) to read at offset.
3363 *
3364 *  Reads a word(s) from the NVM using the flash access registers.
3365 **/
3366static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3367                                  u16 *data)
3368{
3369        struct e1000_nvm_info *nvm = &hw->nvm;
3370        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3371        u32 act_offset;
3372        s32 ret_val = 0;
3373        u32 bank = 0;
3374        u16 i, word;
3375
3376        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3377            (words == 0)) {
3378                e_dbg("nvm parameter(s) out of bounds\n");
3379                ret_val = -E1000_ERR_NVM;
3380                goto out;
3381        }
3382
3383        nvm->ops.acquire(hw);
3384
3385        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3386        if (ret_val) {
3387                e_dbg("Could not detect valid bank, assuming bank 0\n");
3388                bank = 0;
3389        }
3390
3391        act_offset = (bank) ? nvm->flash_bank_size : 0;
3392        act_offset += offset;
3393
3394        ret_val = 0;
3395        for (i = 0; i < words; i++) {
3396                if (dev_spec->shadow_ram[offset + i].modified) {
3397                        data[i] = dev_spec->shadow_ram[offset + i].value;
3398                } else {
3399                        ret_val = e1000_read_flash_word_ich8lan(hw,
3400                                                                act_offset + i,
3401                                                                &word);
3402                        if (ret_val)
3403                                break;
3404                        data[i] = word;
3405                }
3406        }
3407
3408        nvm->ops.release(hw);
3409
3410out:
3411        if (ret_val)
3412                e_dbg("NVM read error: %d\n", ret_val);
3413
3414        return ret_val;
3415}
3416
3417/**
3418 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3419 *  @hw: pointer to the HW structure
3420 *
3421 *  This function does initial flash setup so that a new read/write/erase cycle
3422 *  can be started.
3423 **/
3424static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3425{
3426        union ich8_hws_flash_status hsfsts;
3427        s32 ret_val = -E1000_ERR_NVM;
3428
3429        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3430
3431        /* Check if the flash descriptor is valid */
3432        if (!hsfsts.hsf_status.fldesvalid) {
3433                e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3434                return -E1000_ERR_NVM;
3435        }
3436
3437        /* Clear FCERR and DAEL in hw status by writing 1 */
3438        hsfsts.hsf_status.flcerr = 1;
3439        hsfsts.hsf_status.dael = 1;
3440        if (hw->mac.type >= e1000_pch_spt)
3441                ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3442        else
3443                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3444
3445        /* Either we should have a hardware SPI cycle in progress
3446         * bit to check against, in order to start a new cycle or
3447         * FDONE bit should be changed in the hardware so that it
3448         * is 1 after hardware reset, which can then be used as an
3449         * indication whether a cycle is in progress or has been
3450         * completed.
3451         */
3452
3453        if (!hsfsts.hsf_status.flcinprog) {
3454                /* There is no cycle running at present,
3455                 * so we can start a cycle.
3456                 * Begin by setting Flash Cycle Done.
3457                 */
3458                hsfsts.hsf_status.flcdone = 1;
3459                if (hw->mac.type >= e1000_pch_spt)
3460                        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3461                else
3462                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3463                ret_val = 0;
3464        } else {
3465                s32 i;
3466
3467                /* Otherwise poll for sometime so the current
3468                 * cycle has a chance to end before giving up.
3469                 */
3470                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3471                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3472                        if (!hsfsts.hsf_status.flcinprog) {
3473                                ret_val = 0;
3474                                break;
3475                        }
3476                        udelay(1);
3477                }
3478                if (!ret_val) {
3479                        /* Successful in waiting for previous cycle to timeout,
3480                         * now set the Flash Cycle Done.
3481                         */
3482                        hsfsts.hsf_status.flcdone = 1;
3483                        if (hw->mac.type >= e1000_pch_spt)
3484                                ew32flash(ICH_FLASH_HSFSTS,
3485                                          hsfsts.regval & 0xFFFF);
3486                        else
3487                                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3488                } else {
3489                        e_dbg("Flash controller busy, cannot get access\n");
3490                }
3491        }
3492
3493        return ret_val;
3494}
3495
3496/**
3497 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3498 *  @hw: pointer to the HW structure
3499 *  @timeout: maximum time to wait for completion
3500 *
3501 *  This function starts a flash cycle and waits for its completion.
3502 **/
3503static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3504{
3505        union ich8_hws_flash_ctrl hsflctl;
3506        union ich8_hws_flash_status hsfsts;
3507        u32 i = 0;
3508
3509        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3510        if (hw->mac.type >= e1000_pch_spt)
3511                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3512        else
3513                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3514        hsflctl.hsf_ctrl.flcgo = 1;
3515
3516        if (hw->mac.type >= e1000_pch_spt)
3517                ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3518        else
3519                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3520
3521        /* wait till FDONE bit is set to 1 */
3522        do {
3523                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3524                if (hsfsts.hsf_status.flcdone)
3525                        break;
3526                udelay(1);
3527        } while (i++ < timeout);
3528
3529        if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3530                return 0;
3531
3532        return -E1000_ERR_NVM;
3533}
3534
3535/**
3536 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3537 *  @hw: pointer to the HW structure
3538 *  @offset: offset to data location
3539 *  @data: pointer to the location for storing the data
3540 *
3541 *  Reads the flash dword at offset into data.  Offset is converted
3542 *  to bytes before read.
3543 **/
3544static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3545                                          u32 *data)
3546{
3547        /* Must convert word offset into bytes. */
3548        offset <<= 1;
3549        return e1000_read_flash_data32_ich8lan(hw, offset, data);
3550}
3551
3552/**
3553 *  e1000_read_flash_word_ich8lan - Read word from flash
3554 *  @hw: pointer to the HW structure
3555 *  @offset: offset to data location
3556 *  @data: pointer to the location for storing the data
3557 *
3558 *  Reads the flash word at offset into data.  Offset is converted
3559 *  to bytes before read.
3560 **/
3561static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3562                                         u16 *data)
3563{
3564        /* Must convert offset into bytes. */
3565        offset <<= 1;
3566
3567        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3568}
3569
3570/**
3571 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3572 *  @hw: pointer to the HW structure
3573 *  @offset: The offset of the byte to read.
3574 *  @data: Pointer to a byte to store the value read.
3575 *
3576 *  Reads a single byte from the NVM using the flash access registers.
3577 **/
3578static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3579                                         u8 *data)
3580{
3581        s32 ret_val;
3582        u16 word = 0;
3583
3584        /* In SPT, only 32 bits access is supported,
3585         * so this function should not be called.
3586         */
3587        if (hw->mac.type >= e1000_pch_spt)
3588                return -E1000_ERR_NVM;
3589        else
3590                ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3591
3592        if (ret_val)
3593                return ret_val;
3594
3595        *data = (u8)word;
3596
3597        return 0;
3598}
3599
3600/**
3601 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3602 *  @hw: pointer to the HW structure
3603 *  @offset: The offset (in bytes) of the byte or word to read.
3604 *  @size: Size of data to read, 1=byte 2=word
3605 *  @data: Pointer to the word to store the value read.
3606 *
3607 *  Reads a byte or word from the NVM using the flash access registers.
3608 **/
3609static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3610                                         u8 size, u16 *data)
3611{
3612        union ich8_hws_flash_status hsfsts;
3613        union ich8_hws_flash_ctrl hsflctl;
3614        u32 flash_linear_addr;
3615        u32 flash_data = 0;
3616        s32 ret_val = -E1000_ERR_NVM;
3617        u8 count = 0;
3618
3619        if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3620                return -E1000_ERR_NVM;
3621
3622        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3623                             hw->nvm.flash_base_addr);
3624
3625        do {
3626                udelay(1);
3627                /* Steps */
3628                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3629                if (ret_val)
3630                        break;
3631
3632                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3633                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3634                hsflctl.hsf_ctrl.fldbcount = size - 1;
3635                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3636                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3637
3638                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3639
3640                ret_val =
3641                    e1000_flash_cycle_ich8lan(hw,
3642                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3643
3644                /* Check if FCERR is set to 1, if set to 1, clear it
3645                 * and try the whole sequence a few more times, else
3646                 * read in (shift in) the Flash Data0, the order is
3647                 * least significant byte first msb to lsb
3648                 */
3649                if (!ret_val) {
3650                        flash_data = er32flash(ICH_FLASH_FDATA0);
3651                        if (size == 1)
3652                                *data = (u8)(flash_data & 0x000000FF);
3653                        else if (size == 2)
3654                                *data = (u16)(flash_data & 0x0000FFFF);
3655                        break;
3656                } else {
3657                        /* If we've gotten here, then things are probably
3658                         * completely hosed, but if the error condition is
3659                         * detected, it won't hurt to give it another try...
3660                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3661                         */
3662                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3663                        if (hsfsts.hsf_status.flcerr) {
3664                                /* Repeat for some time before giving up. */
3665                                continue;
3666                        } else if (!hsfsts.hsf_status.flcdone) {
3667                                e_dbg("Timeout error - flash cycle did not complete.\n");
3668                                break;
3669                        }
3670                }
3671        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3672
3673        return ret_val;
3674}
3675
3676/**
3677 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3678 *  @hw: pointer to the HW structure
3679 *  @offset: The offset (in bytes) of the dword to read.
3680 *  @data: Pointer to the dword to store the value read.
3681 *
3682 *  Reads a byte or word from the NVM using the flash access registers.
3683 **/
3684
3685static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3686                                           u32 *data)
3687{
3688        union ich8_hws_flash_status hsfsts;
3689        union ich8_hws_flash_ctrl hsflctl;
3690        u32 flash_linear_addr;
3691        s32 ret_val = -E1000_ERR_NVM;
3692        u8 count = 0;
3693
3694        if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3695                return -E1000_ERR_NVM;
3696        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3697                             hw->nvm.flash_base_addr);
3698
3699        do {
3700                udelay(1);
3701                /* Steps */
3702                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3703                if (ret_val)
3704                        break;
3705                /* In SPT, This register is in Lan memory space, not flash.
3706                 * Therefore, only 32 bit access is supported
3707                 */
3708                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3709
3710                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3711                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3712                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3713                /* In SPT, This register is in Lan memory space, not flash.
3714                 * Therefore, only 32 bit access is supported
3715                 */
3716                ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3717                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3718
3719                ret_val =
3720                   e1000_flash_cycle_ich8lan(hw,
3721                                             ICH_FLASH_READ_COMMAND_TIMEOUT);
3722
3723                /* Check if FCERR is set to 1, if set to 1, clear it
3724                 * and try the whole sequence a few more times, else
3725                 * read in (shift in) the Flash Data0, the order is
3726                 * least significant byte first msb to lsb
3727                 */
3728                if (!ret_val) {
3729                        *data = er32flash(ICH_FLASH_FDATA0);
3730                        break;
3731                } else {
3732                        /* If we've gotten here, then things are probably
3733                         * completely hosed, but if the error condition is
3734                         * detected, it won't hurt to give it another try...
3735                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3736                         */
3737                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3738                        if (hsfsts.hsf_status.flcerr) {
3739                                /* Repeat for some time before giving up. */
3740                                continue;
3741                        } else if (!hsfsts.hsf_status.flcdone) {
3742                                e_dbg("Timeout error - flash cycle did not complete.\n");
3743                                break;
3744                        }
3745                }
3746        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3747
3748        return ret_val;
3749}
3750
3751/**
3752 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3753 *  @hw: pointer to the HW structure
3754 *  @offset: The offset (in bytes) of the word(s) to write.
3755 *  @words: Size of data to write in words
3756 *  @data: Pointer to the word(s) to write at offset.
3757 *
3758 *  Writes a byte or word to the NVM using the flash access registers.
3759 **/
3760static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3761                                   u16 *data)
3762{
3763        struct e1000_nvm_info *nvm = &hw->nvm;
3764        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3765        u16 i;
3766
3767        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3768            (words == 0)) {
3769                e_dbg("nvm parameter(s) out of bounds\n");
3770                return -E1000_ERR_NVM;
3771        }
3772
3773        nvm->ops.acquire(hw);
3774
3775        for (i = 0; i < words; i++) {
3776                dev_spec->shadow_ram[offset + i].modified = true;
3777                dev_spec->shadow_ram[offset + i].value = data[i];
3778        }
3779
3780        nvm->ops.release(hw);
3781
3782        return 0;
3783}
3784
3785/**
3786 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3787 *  @hw: pointer to the HW structure
3788 *
3789 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3790 *  which writes the checksum to the shadow ram.  The changes in the shadow
3791 *  ram are then committed to the EEPROM by processing each bank at a time
3792 *  checking for the modified bit and writing only the pending changes.
3793 *  After a successful commit, the shadow ram is cleared and is ready for
3794 *  future writes.
3795 **/
3796static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3797{
3798        struct e1000_nvm_info *nvm = &hw->nvm;
3799        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3800        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3801        s32 ret_val;
3802        u32 dword = 0;
3803
3804        ret_val = e1000e_update_nvm_checksum_generic(hw);
3805        if (ret_val)
3806                goto out;
3807
3808        if (nvm->type != e1000_nvm_flash_sw)
3809                goto out;
3810
3811        nvm->ops.acquire(hw);
3812
3813        /* We're writing to the opposite bank so if we're on bank 1,
3814         * write to bank 0 etc.  We also need to erase the segment that
3815         * is going to be written
3816         */
3817        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3818        if (ret_val) {
3819                e_dbg("Could not detect valid bank, assuming bank 0\n");
3820                bank = 0;
3821        }
3822
3823        if (bank == 0) {
3824                new_bank_offset = nvm->flash_bank_size;
3825                old_bank_offset = 0;
3826                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3827                if (ret_val)
3828                        goto release;
3829        } else {
3830                old_bank_offset = nvm->flash_bank_size;
3831                new_bank_offset = 0;
3832                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3833                if (ret_val)
3834                        goto release;
3835        }
3836        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3837                /* Determine whether to write the value stored
3838                 * in the other NVM bank or a modified value stored
3839                 * in the shadow RAM
3840                 */
3841                ret_val = e1000_read_flash_dword_ich8lan(hw,
3842                                                         i + old_bank_offset,
3843                                                         &dword);
3844
3845                if (dev_spec->shadow_ram[i].modified) {
3846                        dword &= 0xffff0000;
3847                        dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3848                }
3849                if (dev_spec->shadow_ram[i + 1].modified) {
3850                        dword &= 0x0000ffff;
3851                        dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3852                                  << 16);
3853                }
3854                if (ret_val)
3855                        break;
3856
3857                /* If the word is 0x13, then make sure the signature bits
3858                 * (15:14) are 11b until the commit has completed.
3859                 * This will allow us to write 10b which indicates the
3860                 * signature is valid.  We want to do this after the write
3861                 * has completed so that we don't mark the segment valid
3862                 * while the write is still in progress
3863                 */
3864                if (i == E1000_ICH_NVM_SIG_WORD - 1)
3865                        dword |= E1000_ICH_NVM_SIG_MASK << 16;
3866
3867                /* Convert offset to bytes. */
3868                act_offset = (i + new_bank_offset) << 1;
3869
3870                usleep_range(100, 200);
3871
3872                /* Write the data to the new bank. Offset in words */
3873                act_offset = i + new_bank_offset;
3874                ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3875                                                                dword);
3876                if (ret_val)
3877                        break;
3878        }
3879
3880        /* Don't bother writing the segment valid bits if sector
3881         * programming failed.
3882         */
3883        if (ret_val) {
3884                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3885                e_dbg("Flash commit failed.\n");
3886                goto release;
3887        }
3888
3889        /* Finally validate the new segment by setting bit 15:14
3890         * to 10b in word 0x13 , this can be done without an
3891         * erase as well since these bits are 11 to start with
3892         * and we need to change bit 14 to 0b
3893         */
3894        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3895
3896        /*offset in words but we read dword */
3897        --act_offset;
3898        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3899
3900        if (ret_val)
3901                goto release;
3902
3903        dword &= 0xBFFFFFFF;
3904        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3905
3906        if (ret_val)
3907                goto release;
3908
3909        /* offset in words but we read dword */
3910        act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3911        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3912
3913        if (ret_val)
3914                goto release;
3915
3916        dword &= 0x00FFFFFF;
3917        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3918
3919        if (ret_val)
3920                goto release;
3921
3922        /* Great!  Everything worked, we can now clear the cached entries. */
3923        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3924                dev_spec->shadow_ram[i].modified = false;
3925                dev_spec->shadow_ram[i].value = 0xFFFF;
3926        }
3927
3928release:
3929        nvm->ops.release(hw);
3930
3931        /* Reload the EEPROM, or else modifications will not appear
3932         * until after the next adapter reset.
3933         */
3934        if (!ret_val) {
3935                nvm->ops.reload(hw);
3936                usleep_range(10000, 11000);
3937        }
3938
3939out:
3940        if (ret_val)
3941                e_dbg("NVM update error: %d\n", ret_val);
3942
3943        return ret_val;
3944}
3945
3946/**
3947 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3948 *  @hw: pointer to the HW structure
3949 *
3950 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3951 *  which writes the checksum to the shadow ram.  The changes in the shadow
3952 *  ram are then committed to the EEPROM by processing each bank at a time
3953 *  checking for the modified bit and writing only the pending changes.
3954 *  After a successful commit, the shadow ram is cleared and is ready for
3955 *  future writes.
3956 **/
3957static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3958{
3959        struct e1000_nvm_info *nvm = &hw->nvm;
3960        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3961        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3962        s32 ret_val;
3963        u16 data = 0;
3964
3965        ret_val = e1000e_update_nvm_checksum_generic(hw);
3966        if (ret_val)
3967                goto out;
3968
3969        if (nvm->type != e1000_nvm_flash_sw)
3970                goto out;
3971
3972        nvm->ops.acquire(hw);
3973
3974        /* We're writing to the opposite bank so if we're on bank 1,
3975         * write to bank 0 etc.  We also need to erase the segment that
3976         * is going to be written
3977         */
3978        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3979        if (ret_val) {
3980                e_dbg("Could not detect valid bank, assuming bank 0\n");
3981                bank = 0;
3982        }
3983
3984        if (bank == 0) {
3985                new_bank_offset = nvm->flash_bank_size;
3986                old_bank_offset = 0;
3987                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3988                if (ret_val)
3989                        goto release;
3990        } else {
3991                old_bank_offset = nvm->flash_bank_size;
3992                new_bank_offset = 0;
3993                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3994                if (ret_val)
3995                        goto release;
3996        }
3997        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3998                if (dev_spec->shadow_ram[i].modified) {
3999                        data = dev_spec->shadow_ram[i].value;
4000                } else {
4001                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
4002                                                                old_bank_offset,
4003                                                                &data);
4004                        if (ret_val)
4005                                break;
4006                }
4007
4008                /* If the word is 0x13, then make sure the signature bits
4009                 * (15:14) are 11b until the commit has completed.
4010                 * This will allow us to write 10b which indicates the
4011                 * signature is valid.  We want to do this after the write
4012                 * has completed so that we don't mark the segment valid
4013                 * while the write is still in progress
4014                 */
4015                if (i == E1000_ICH_NVM_SIG_WORD)
4016                        data |= E1000_ICH_NVM_SIG_MASK;
4017
4018                /* Convert offset to bytes. */
4019                act_offset = (i + new_bank_offset) << 1;
4020
4021                usleep_range(100, 200);
4022                /* Write the bytes to the new bank. */
4023                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4024                                                               act_offset,
4025                                                               (u8)data);
4026                if (ret_val)
4027                        break;
4028
4029                usleep_range(100, 200);
4030                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4031                                                               act_offset + 1,
4032                                                               (u8)(data >> 8));
4033                if (ret_val)
4034                        break;
4035        }
4036
4037        /* Don't bother writing the segment valid bits if sector
4038         * programming failed.
4039         */
4040        if (ret_val) {
4041                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4042                e_dbg("Flash commit failed.\n");
4043                goto release;
4044        }
4045
4046        /* Finally validate the new segment by setting bit 15:14
4047         * to 10b in word 0x13 , this can be done without an
4048         * erase as well since these bits are 11 to start with
4049         * and we need to change bit 14 to 0b
4050         */
4051        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4052        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4053        if (ret_val)
4054                goto release;
4055
4056        data &= 0xBFFF;
4057        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4058                                                       act_offset * 2 + 1,
4059                                                       (u8)(data >> 8));
4060        if (ret_val)
4061                goto release;
4062
4063        /* And invalidate the previously valid segment by setting
4064         * its signature word (0x13) high_byte to 0b. This can be
4065         * done without an erase because flash erase sets all bits
4066         * to 1's. We can write 1's to 0's without an erase
4067         */
4068        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4069        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4070        if (ret_val)
4071                goto release;
4072
4073        /* Great!  Everything worked, we can now clear the cached entries. */
4074        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4075                dev_spec->shadow_ram[i].modified = false;
4076                dev_spec->shadow_ram[i].value = 0xFFFF;
4077        }
4078
4079release:
4080        nvm->ops.release(hw);
4081
4082        /* Reload the EEPROM, or else modifications will not appear
4083         * until after the next adapter reset.
4084         */
4085        if (!ret_val) {
4086                nvm->ops.reload(hw);
4087                usleep_range(10000, 11000);
4088        }
4089
4090out:
4091        if (ret_val)
4092                e_dbg("NVM update error: %d\n", ret_val);
4093
4094        return ret_val;
4095}
4096
4097/**
4098 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4099 *  @hw: pointer to the HW structure
4100 *
4101 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4102 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4103 *  calculated, in which case we need to calculate the checksum and set bit 6.
4104 **/
4105static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4106{
4107        s32 ret_val;
4108        u16 data;
4109        u16 word;
4110        u16 valid_csum_mask;
4111
4112        /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4113         * the checksum needs to be fixed.  This bit is an indication that
4114         * the NVM was prepared by OEM software and did not calculate
4115         * the checksum...a likely scenario.
4116         */
4117        switch (hw->mac.type) {
4118        case e1000_pch_lpt:
4119        case e1000_pch_spt:
4120        case e1000_pch_cnp:
4121        case e1000_pch_tgp:
4122        case e1000_pch_adp:
4123        case e1000_pch_mtp:
4124        case e1000_pch_lnp:
4125                word = NVM_COMPAT;
4126                valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4127                break;
4128        default:
4129                word = NVM_FUTURE_INIT_WORD1;
4130                valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4131                break;
4132        }
4133
4134        ret_val = e1000_read_nvm(hw, word, 1, &data);
4135        if (ret_val)
4136                return ret_val;
4137
4138        if (!(data & valid_csum_mask)) {
4139                e_dbg("NVM Checksum Invalid\n");
4140
4141                if (hw->mac.type < e1000_pch_cnp) {
4142                        data |= valid_csum_mask;
4143                        ret_val = e1000_write_nvm(hw, word, 1, &data);
4144                        if (ret_val)
4145                                return ret_val;
4146                        ret_val = e1000e_update_nvm_checksum(hw);
4147                        if (ret_val)
4148                                return ret_val;
4149                }
4150        }
4151
4152        return e1000e_validate_nvm_checksum_generic(hw);
4153}
4154
4155/**
4156 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  To prevent malicious write/erase of the NVM, set it to be read-only
4160 *  so that the hardware ignores all write/erase cycles of the NVM via
4161 *  the flash control registers.  The shadow-ram copy of the NVM will
4162 *  still be updated, however any updates to this copy will not stick
4163 *  across driver reloads.
4164 **/
4165void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4166{
4167        struct e1000_nvm_info *nvm = &hw->nvm;
4168        union ich8_flash_protected_range pr0;
4169        union ich8_hws_flash_status hsfsts;
4170        u32 gfpreg;
4171
4172        nvm->ops.acquire(hw);
4173
4174        gfpreg = er32flash(ICH_FLASH_GFPREG);
4175
4176        /* Write-protect GbE Sector of NVM */
4177        pr0.regval = er32flash(ICH_FLASH_PR0);
4178        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4179        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4180        pr0.range.wpe = true;
4181        ew32flash(ICH_FLASH_PR0, pr0.regval);
4182
4183        /* Lock down a subset of GbE Flash Control Registers, e.g.
4184         * PR0 to prevent the write-protection from being lifted.
4185         * Once FLOCKDN is set, the registers protected by it cannot
4186         * be written until FLOCKDN is cleared by a hardware reset.
4187         */
4188        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4189        hsfsts.hsf_status.flockdn = true;
4190        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4191
4192        nvm->ops.release(hw);
4193}
4194
4195/**
4196 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4197 *  @hw: pointer to the HW structure
4198 *  @offset: The offset (in bytes) of the byte/word to read.
4199 *  @size: Size of data to read, 1=byte 2=word
4200 *  @data: The byte(s) to write to the NVM.
4201 *
4202 *  Writes one/two bytes to the NVM using the flash access registers.
4203 **/
4204static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4205                                          u8 size, u16 data)
4206{
4207        union ich8_hws_flash_status hsfsts;
4208        union ich8_hws_flash_ctrl hsflctl;
4209        u32 flash_linear_addr;
4210        u32 flash_data = 0;
4211        s32 ret_val;
4212        u8 count = 0;
4213
4214        if (hw->mac.type >= e1000_pch_spt) {
4215                if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4216                        return -E1000_ERR_NVM;
4217        } else {
4218                if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4219                        return -E1000_ERR_NVM;
4220        }
4221
4222        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4223                             hw->nvm.flash_base_addr);
4224
4225        do {
4226                udelay(1);
4227                /* Steps */
4228                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4229                if (ret_val)
4230                        break;
4231                /* In SPT, This register is in Lan memory space, not
4232                 * flash.  Therefore, only 32 bit access is supported
4233                 */
4234                if (hw->mac.type >= e1000_pch_spt)
4235                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4236                else
4237                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4238
4239                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4240                hsflctl.hsf_ctrl.fldbcount = size - 1;
4241                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4242                /* In SPT, This register is in Lan memory space,
4243                 * not flash.  Therefore, only 32 bit access is
4244                 * supported
4245                 */
4246                if (hw->mac.type >= e1000_pch_spt)
4247                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4248                else
4249                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4250
4251                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4252
4253                if (size == 1)
4254                        flash_data = (u32)data & 0x00FF;
4255                else
4256                        flash_data = (u32)data;
4257
4258                ew32flash(ICH_FLASH_FDATA0, flash_data);
4259
4260                /* check if FCERR is set to 1 , if set to 1, clear it
4261                 * and try the whole sequence a few more times else done
4262                 */
4263                ret_val =
4264                    e1000_flash_cycle_ich8lan(hw,
4265                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4266                if (!ret_val)
4267                        break;
4268
4269                /* If we're here, then things are most likely
4270                 * completely hosed, but if the error condition
4271                 * is detected, it won't hurt to give it another
4272                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4273                 */
4274                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4275                if (hsfsts.hsf_status.flcerr)
4276                        /* Repeat for some time before giving up. */
4277                        continue;
4278                if (!hsfsts.hsf_status.flcdone) {
4279                        e_dbg("Timeout error - flash cycle did not complete.\n");
4280                        break;
4281                }
4282        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4283
4284        return ret_val;
4285}
4286
4287/**
4288*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4289*  @hw: pointer to the HW structure
4290*  @offset: The offset (in bytes) of the dwords to read.
4291*  @data: The 4 bytes to write to the NVM.
4292*
4293*  Writes one/two/four bytes to the NVM using the flash access registers.
4294**/
4295static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4296                                            u32 data)
4297{
4298        union ich8_hws_flash_status hsfsts;
4299        union ich8_hws_flash_ctrl hsflctl;
4300        u32 flash_linear_addr;
4301        s32 ret_val;
4302        u8 count = 0;
4303
4304        if (hw->mac.type >= e1000_pch_spt) {
4305                if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4306                        return -E1000_ERR_NVM;
4307        }
4308        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4309                             hw->nvm.flash_base_addr);
4310        do {
4311                udelay(1);
4312                /* Steps */
4313                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4314                if (ret_val)
4315                        break;
4316
4317                /* In SPT, This register is in Lan memory space, not
4318                 * flash.  Therefore, only 32 bit access is supported
4319                 */
4320                if (hw->mac.type >= e1000_pch_spt)
4321                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4322                            >> 16;
4323                else
4324                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4325
4326                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4327                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4328
4329                /* In SPT, This register is in Lan memory space,
4330                 * not flash.  Therefore, only 32 bit access is
4331                 * supported
4332                 */
4333                if (hw->mac.type >= e1000_pch_spt)
4334                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4335                else
4336                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4337
4338                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4339
4340                ew32flash(ICH_FLASH_FDATA0, data);
4341
4342                /* check if FCERR is set to 1 , if set to 1, clear it
4343                 * and try the whole sequence a few more times else done
4344                 */
4345                ret_val =
4346                   e1000_flash_cycle_ich8lan(hw,
4347                                             ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4348
4349                if (!ret_val)
4350                        break;
4351
4352                /* If we're here, then things are most likely
4353                 * completely hosed, but if the error condition
4354                 * is detected, it won't hurt to give it another
4355                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4356                 */
4357                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4358
4359                if (hsfsts.hsf_status.flcerr)
4360                        /* Repeat for some time before giving up. */
4361                        continue;
4362                if (!hsfsts.hsf_status.flcdone) {
4363                        e_dbg("Timeout error - flash cycle did not complete.\n");
4364                        break;
4365                }
4366        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4367
4368        return ret_val;
4369}
4370
4371/**
4372 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4373 *  @hw: pointer to the HW structure
4374 *  @offset: The index of the byte to read.
4375 *  @data: The byte to write to the NVM.
4376 *
4377 *  Writes a single byte to the NVM using the flash access registers.
4378 **/
4379static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4380                                          u8 data)
4381{
4382        u16 word = (u16)data;
4383
4384        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4385}
4386
4387/**
4388*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4389*  @hw: pointer to the HW structure
4390*  @offset: The offset of the word to write.
4391*  @dword: The dword to write to the NVM.
4392*
4393*  Writes a single dword to the NVM using the flash access registers.
4394*  Goes through a retry algorithm before giving up.
4395**/
4396static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4397                                                 u32 offset, u32 dword)
4398{
4399        s32 ret_val;
4400        u16 program_retries;
4401
4402        /* Must convert word offset into bytes. */
4403        offset <<= 1;
4404        ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4405
4406        if (!ret_val)
4407                return ret_val;
4408        for (program_retries = 0; program_retries < 100; program_retries++) {
4409                e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4410                usleep_range(100, 200);
4411                ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412                if (!ret_val)
4413                        break;
4414        }
4415        if (program_retries == 100)
4416                return -E1000_ERR_NVM;
4417
4418        return 0;
4419}
4420
4421/**
4422 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4423 *  @hw: pointer to the HW structure
4424 *  @offset: The offset of the byte to write.
4425 *  @byte: The byte to write to the NVM.
4426 *
4427 *  Writes a single byte to the NVM using the flash access registers.
4428 *  Goes through a retry algorithm before giving up.
4429 **/
4430static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4431                                                u32 offset, u8 byte)
4432{
4433        s32 ret_val;
4434        u16 program_retries;
4435
4436        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4437        if (!ret_val)
4438                return ret_val;
4439
4440        for (program_retries = 0; program_retries < 100; program_retries++) {
4441                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4442                usleep_range(100, 200);
4443                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444                if (!ret_val)
4445                        break;
4446        }
4447        if (program_retries == 100)
4448                return -E1000_ERR_NVM;
4449
4450        return 0;
4451}
4452
4453/**
4454 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4455 *  @hw: pointer to the HW structure
4456 *  @bank: 0 for first bank, 1 for second bank, etc.
4457 *
4458 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4459 *  bank N is 4096 * N + flash_reg_addr.
4460 **/
4461static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4462{
4463        struct e1000_nvm_info *nvm = &hw->nvm;
4464        union ich8_hws_flash_status hsfsts;
4465        union ich8_hws_flash_ctrl hsflctl;
4466        u32 flash_linear_addr;
4467        /* bank size is in 16bit words - adjust to bytes */
4468        u32 flash_bank_size = nvm->flash_bank_size * 2;
4469        s32 ret_val;
4470        s32 count = 0;
4471        s32 j, iteration, sector_size;
4472
4473        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4474
4475        /* Determine HW Sector size: Read BERASE bits of hw flash status
4476         * register
4477         * 00: The Hw sector is 256 bytes, hence we need to erase 16
4478         *     consecutive sectors.  The start index for the nth Hw sector
4479         *     can be calculated as = bank * 4096 + n * 256
4480         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4481         *     The start index for the nth Hw sector can be calculated
4482         *     as = bank * 4096
4483         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4484         *     (ich9 only, otherwise error condition)
4485         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4486         */
4487        switch (hsfsts.hsf_status.berasesz) {
4488        case 0:
4489                /* Hw sector size 256 */
4490                sector_size = ICH_FLASH_SEG_SIZE_256;
4491                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4492                break;
4493        case 1:
4494                sector_size = ICH_FLASH_SEG_SIZE_4K;
4495                iteration = 1;
4496                break;
4497        case 2:
4498                sector_size = ICH_FLASH_SEG_SIZE_8K;
4499                iteration = 1;
4500                break;
4501        case 3:
4502                sector_size = ICH_FLASH_SEG_SIZE_64K;
4503                iteration = 1;
4504                break;
4505        default:
4506                return -E1000_ERR_NVM;
4507        }
4508
4509        /* Start with the base address, then add the sector offset. */
4510        flash_linear_addr = hw->nvm.flash_base_addr;
4511        flash_linear_addr += (bank) ? flash_bank_size : 0;
4512
4513        for (j = 0; j < iteration; j++) {
4514                do {
4515                        u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4516
4517                        /* Steps */
4518                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
4519                        if (ret_val)
4520                                return ret_val;
4521
4522                        /* Write a value 11 (block Erase) in Flash
4523                         * Cycle field in hw flash control
4524                         */
4525                        if (hw->mac.type >= e1000_pch_spt)
4526                                hsflctl.regval =
4527                                    er32flash(ICH_FLASH_HSFSTS) >> 16;
4528                        else
4529                                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4530
4531                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4532                        if (hw->mac.type >= e1000_pch_spt)
4533                                ew32flash(ICH_FLASH_HSFSTS,
4534                                          hsflctl.regval << 16);
4535                        else
4536                                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4537
4538                        /* Write the last 24 bits of an index within the
4539                         * block into Flash Linear address field in Flash
4540                         * Address.
4541                         */
4542                        flash_linear_addr += (j * sector_size);
4543                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4544
4545                        ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4546                        if (!ret_val)
4547                                break;
4548
4549                        /* Check if FCERR is set to 1.  If 1,
4550                         * clear it and try the whole sequence
4551                         * a few more times else Done
4552                         */
4553                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4554                        if (hsfsts.hsf_status.flcerr)
4555                                /* repeat for some time before giving up */
4556                                continue;
4557                        else if (!hsfsts.hsf_status.flcdone)
4558                                return ret_val;
4559                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4560        }
4561
4562        return 0;
4563}
4564
4565/**
4566 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4567 *  @hw: pointer to the HW structure
4568 *  @data: Pointer to the LED settings
4569 *
4570 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4571 *  settings is all 0's or F's, set the LED default to a valid LED default
4572 *  setting.
4573 **/
4574static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4575{
4576        s32 ret_val;
4577
4578        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4579        if (ret_val) {
4580                e_dbg("NVM Read Error\n");
4581                return ret_val;
4582        }
4583
4584        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4585                *data = ID_LED_DEFAULT_ICH8LAN;
4586
4587        return 0;
4588}
4589
4590/**
4591 *  e1000_id_led_init_pchlan - store LED configurations
4592 *  @hw: pointer to the HW structure
4593 *
4594 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4595 *  the PHY LED configuration register.
4596 *
4597 *  PCH also does not have an "always on" or "always off" mode which
4598 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4599 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4600 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4601 *  link based on logic in e1000_led_[on|off]_pchlan().
4602 **/
4603static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4604{
4605        struct e1000_mac_info *mac = &hw->mac;
4606        s32 ret_val;
4607        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4608        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4609        u16 data, i, temp, shift;
4610
4611        /* Get default ID LED modes */
4612        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4613        if (ret_val)
4614                return ret_val;
4615
4616        mac->ledctl_default = er32(LEDCTL);
4617        mac->ledctl_mode1 = mac->ledctl_default;
4618        mac->ledctl_mode2 = mac->ledctl_default;
4619
4620        for (i = 0; i < 4; i++) {
4621                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4622                shift = (i * 5);
4623                switch (temp) {
4624                case ID_LED_ON1_DEF2:
4625                case ID_LED_ON1_ON2:
4626                case ID_LED_ON1_OFF2:
4627                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4628                        mac->ledctl_mode1 |= (ledctl_on << shift);
4629                        break;
4630                case ID_LED_OFF1_DEF2:
4631                case ID_LED_OFF1_ON2:
4632                case ID_LED_OFF1_OFF2:
4633                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4634                        mac->ledctl_mode1 |= (ledctl_off << shift);
4635                        break;
4636                default:
4637                        /* Do nothing */
4638                        break;
4639                }
4640                switch (temp) {
4641                case ID_LED_DEF1_ON2:
4642                case ID_LED_ON1_ON2:
4643                case ID_LED_OFF1_ON2:
4644                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4645                        mac->ledctl_mode2 |= (ledctl_on << shift);
4646                        break;
4647                case ID_LED_DEF1_OFF2:
4648                case ID_LED_ON1_OFF2:
4649                case ID_LED_OFF1_OFF2:
4650                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4651                        mac->ledctl_mode2 |= (ledctl_off << shift);
4652                        break;
4653                default:
4654                        /* Do nothing */
4655                        break;
4656                }
4657        }
4658
4659        return 0;
4660}
4661
4662/**
4663 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4664 *  @hw: pointer to the HW structure
4665 *
4666 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4667 *  register, so the bus width is hard coded.
4668 **/
4669static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4670{
4671        struct e1000_bus_info *bus = &hw->bus;
4672        s32 ret_val;
4673
4674        ret_val = e1000e_get_bus_info_pcie(hw);
4675
4676        /* ICH devices are "PCI Express"-ish.  They have
4677         * a configuration space, but do not contain
4678         * PCI Express Capability registers, so bus width
4679         * must be hardcoded.
4680         */
4681        if (bus->width == e1000_bus_width_unknown)
4682                bus->width = e1000_bus_width_pcie_x1;
4683
4684        return ret_val;
4685}
4686
4687/**
4688 *  e1000_reset_hw_ich8lan - Reset the hardware
4689 *  @hw: pointer to the HW structure
4690 *
4691 *  Does a full reset of the hardware which includes a reset of the PHY and
4692 *  MAC.
4693 **/
4694static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4695{
4696        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4697        u16 kum_cfg;
4698        u32 ctrl, reg;
4699        s32 ret_val;
4700
4701        /* Prevent the PCI-E bus from sticking if there is no TLP connection
4702         * on the last TLP read/write transaction when MAC is reset.
4703         */
4704        ret_val = e1000e_disable_pcie_master(hw);
4705        if (ret_val)
4706                e_dbg("PCI-E Master disable polling has failed.\n");
4707
4708        e_dbg("Masking off all interrupts\n");
4709        ew32(IMC, 0xffffffff);
4710
4711        /* Disable the Transmit and Receive units.  Then delay to allow
4712         * any pending transactions to complete before we hit the MAC
4713         * with the global reset.
4714         */
4715        ew32(RCTL, 0);
4716        ew32(TCTL, E1000_TCTL_PSP);
4717        e1e_flush();
4718
4719        usleep_range(10000, 11000);
4720
4721        /* Workaround for ICH8 bit corruption issue in FIFO memory */
4722        if (hw->mac.type == e1000_ich8lan) {
4723                /* Set Tx and Rx buffer allocation to 8k apiece. */
4724                ew32(PBA, E1000_PBA_8K);
4725                /* Set Packet Buffer Size to 16k. */
4726                ew32(PBS, E1000_PBS_16K);
4727        }
4728
4729        if (hw->mac.type == e1000_pchlan) {
4730                /* Save the NVM K1 bit setting */
4731                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4732                if (ret_val)
4733                        return ret_val;
4734
4735                if (kum_cfg & E1000_NVM_K1_ENABLE)
4736                        dev_spec->nvm_k1_enabled = true;
4737                else
4738                        dev_spec->nvm_k1_enabled = false;
4739        }
4740
4741        ctrl = er32(CTRL);
4742
4743        if (!hw->phy.ops.check_reset_block(hw)) {
4744                /* Full-chip reset requires MAC and PHY reset at the same
4745                 * time to make sure the interface between MAC and the
4746                 * external PHY is reset.
4747                 */
4748                ctrl |= E1000_CTRL_PHY_RST;
4749
4750                /* Gate automatic PHY configuration by hardware on
4751                 * non-managed 82579
4752                 */
4753                if ((hw->mac.type == e1000_pch2lan) &&
4754                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4755                        e1000_gate_hw_phy_config_ich8lan(hw, true);
4756        }
4757        ret_val = e1000_acquire_swflag_ich8lan(hw);
4758        e_dbg("Issuing a global reset to ich8lan\n");
4759        ew32(CTRL, (ctrl | E1000_CTRL_RST));
4760        /* cannot issue a flush here because it hangs the hardware */
4761        msleep(20);
4762
4763        /* Set Phy Config Counter to 50msec */
4764        if (hw->mac.type == e1000_pch2lan) {
4765                reg = er32(FEXTNVM3);
4766                reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4767                reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4768                ew32(FEXTNVM3, reg);
4769        }
4770
4771        if (!ret_val)
4772                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4773
4774        if (ctrl & E1000_CTRL_PHY_RST) {
4775                ret_val = hw->phy.ops.get_cfg_done(hw);
4776                if (ret_val)
4777                        return ret_val;
4778
4779                ret_val = e1000_post_phy_reset_ich8lan(hw);
4780                if (ret_val)
4781                        return ret_val;
4782        }
4783
4784        /* For PCH, this write will make sure that any noise
4785         * will be detected as a CRC error and be dropped rather than show up
4786         * as a bad packet to the DMA engine.
4787         */
4788        if (hw->mac.type == e1000_pchlan)
4789                ew32(CRC_OFFSET, 0x65656565);
4790
4791        ew32(IMC, 0xffffffff);
4792        er32(ICR);
4793
4794        reg = er32(KABGTXD);
4795        reg |= E1000_KABGTXD_BGSQLBIAS;
4796        ew32(KABGTXD, reg);
4797
4798        return 0;
4799}
4800
4801/**
4802 *  e1000_init_hw_ich8lan - Initialize the hardware
4803 *  @hw: pointer to the HW structure
4804 *
4805 *  Prepares the hardware for transmit and receive by doing the following:
4806 *   - initialize hardware bits
4807 *   - initialize LED identification
4808 *   - setup receive address registers
4809 *   - setup flow control
4810 *   - setup transmit descriptors
4811 *   - clear statistics
4812 **/
4813static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4814{
4815        struct e1000_mac_info *mac = &hw->mac;
4816        u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4817        s32 ret_val;
4818        u16 i;
4819
4820        e1000_initialize_hw_bits_ich8lan(hw);
4821
4822        /* Initialize identification LED */
4823        ret_val = mac->ops.id_led_init(hw);
4824        /* An error is not fatal and we should not stop init due to this */
4825        if (ret_val)
4826                e_dbg("Error initializing identification LED\n");
4827
4828        /* Setup the receive address. */
4829        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4830
4831        /* Zero out the Multicast HASH table */
4832        e_dbg("Zeroing the MTA\n");
4833        for (i = 0; i < mac->mta_reg_count; i++)
4834                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4835
4836        /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4837         * the ME.  Disable wakeup by clearing the host wakeup bit.
4838         * Reset the phy after disabling host wakeup to reset the Rx buffer.
4839         */
4840        if (hw->phy.type == e1000_phy_82578) {
4841                e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4842                i &= ~BM_WUC_HOST_WU_BIT;
4843                e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4844                ret_val = e1000_phy_hw_reset_ich8lan(hw);
4845                if (ret_val)
4846                        return ret_val;
4847        }
4848
4849        /* Setup link and flow control */
4850        ret_val = mac->ops.setup_link(hw);
4851
4852        /* Set the transmit descriptor write-back policy for both queues */
4853        txdctl = er32(TXDCTL(0));
4854        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4855                  E1000_TXDCTL_FULL_TX_DESC_WB);
4856        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4857                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4858        ew32(TXDCTL(0), txdctl);
4859        txdctl = er32(TXDCTL(1));
4860        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4861                  E1000_TXDCTL_FULL_TX_DESC_WB);
4862        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4863                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4864        ew32(TXDCTL(1), txdctl);
4865
4866        /* ICH8 has opposite polarity of no_snoop bits.
4867         * By default, we should use snoop behavior.
4868         */
4869        if (mac->type == e1000_ich8lan)
4870                snoop = PCIE_ICH8_SNOOP_ALL;
4871        else
4872                snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4873        e1000e_set_pcie_no_snoop(hw, snoop);
4874
4875        /* Enable workaround for packet loss issue on TGP PCH
4876         * Do not gate DMA clock from the modPHY block
4877         */
4878        if (mac->type >= e1000_pch_tgp) {
4879                fflt_dbg = er32(FFLT_DBG);
4880                fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4881                ew32(FFLT_DBG, fflt_dbg);
4882        }
4883
4884        ctrl_ext = er32(CTRL_EXT);
4885        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4886        ew32(CTRL_EXT, ctrl_ext);
4887
4888        /* Clear all of the statistics registers (clear on read).  It is
4889         * important that we do this after we have tried to establish link
4890         * because the symbol error count will increment wildly if there
4891         * is no link.
4892         */
4893        e1000_clear_hw_cntrs_ich8lan(hw);
4894
4895        return ret_val;
4896}
4897
4898/**
4899 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4900 *  @hw: pointer to the HW structure
4901 *
4902 *  Sets/Clears required hardware bits necessary for correctly setting up the
4903 *  hardware for transmit and receive.
4904 **/
4905static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4906{
4907        u32 reg;
4908
4909        /* Extended Device Control */
4910        reg = er32(CTRL_EXT);
4911        reg |= BIT(22);
4912        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4913        if (hw->mac.type >= e1000_pchlan)
4914                reg |= E1000_CTRL_EXT_PHYPDEN;
4915        ew32(CTRL_EXT, reg);
4916
4917        /* Transmit Descriptor Control 0 */
4918        reg = er32(TXDCTL(0));
4919        reg |= BIT(22);
4920        ew32(TXDCTL(0), reg);
4921
4922        /* Transmit Descriptor Control 1 */
4923        reg = er32(TXDCTL(1));
4924        reg |= BIT(22);
4925        ew32(TXDCTL(1), reg);
4926
4927        /* Transmit Arbitration Control 0 */
4928        reg = er32(TARC(0));
4929        if (hw->mac.type == e1000_ich8lan)
4930                reg |= BIT(28) | BIT(29);
4931        reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4932        ew32(TARC(0), reg);
4933
4934        /* Transmit Arbitration Control 1 */
4935        reg = er32(TARC(1));
4936        if (er32(TCTL) & E1000_TCTL_MULR)
4937                reg &= ~BIT(28);
4938        else
4939                reg |= BIT(28);
4940        reg |= BIT(24) | BIT(26) | BIT(30);
4941        ew32(TARC(1), reg);
4942
4943        /* Device Status */
4944        if (hw->mac.type == e1000_ich8lan) {
4945                reg = er32(STATUS);
4946                reg &= ~BIT(31);
4947                ew32(STATUS, reg);
4948        }
4949
4950        /* work-around descriptor data corruption issue during nfs v2 udp
4951         * traffic, just disable the nfs filtering capability
4952         */
4953        reg = er32(RFCTL);
4954        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4955
4956        /* Disable IPv6 extension header parsing because some malformed
4957         * IPv6 headers can hang the Rx.
4958         */
4959        if (hw->mac.type == e1000_ich8lan)
4960                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4961        ew32(RFCTL, reg);
4962
4963        /* Enable ECC on Lynxpoint */
4964        if (hw->mac.type >= e1000_pch_lpt) {
4965                reg = er32(PBECCSTS);
4966                reg |= E1000_PBECCSTS_ECC_ENABLE;
4967                ew32(PBECCSTS, reg);
4968
4969                reg = er32(CTRL);
4970                reg |= E1000_CTRL_MEHE;
4971                ew32(CTRL, reg);
4972        }
4973}
4974
4975/**
4976 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4977 *  @hw: pointer to the HW structure
4978 *
4979 *  Determines which flow control settings to use, then configures flow
4980 *  control.  Calls the appropriate media-specific link configuration
4981 *  function.  Assuming the adapter has a valid link partner, a valid link
4982 *  should be established.  Assumes the hardware has previously been reset
4983 *  and the transmitter and receiver are not enabled.
4984 **/
4985static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4986{
4987        s32 ret_val;
4988
4989        if (hw->phy.ops.check_reset_block(hw))
4990                return 0;
4991
4992        /* ICH parts do not have a word in the NVM to determine
4993         * the default flow control setting, so we explicitly
4994         * set it to full.
4995         */
4996        if (hw->fc.requested_mode == e1000_fc_default) {
4997                /* Workaround h/w hang when Tx flow control enabled */
4998                if (hw->mac.type == e1000_pchlan)
4999                        hw->fc.requested_mode = e1000_fc_rx_pause;
5000                else
5001                        hw->fc.requested_mode = e1000_fc_full;
5002        }
5003
5004        /* Save off the requested flow control mode for use later.  Depending
5005         * on the link partner's capabilities, we may or may not use this mode.
5006         */
5007        hw->fc.current_mode = hw->fc.requested_mode;
5008
5009        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5010
5011        /* Continue to configure the copper link. */
5012        ret_val = hw->mac.ops.setup_physical_interface(hw);
5013        if (ret_val)
5014                return ret_val;
5015
5016        ew32(FCTTV, hw->fc.pause_time);
5017        if ((hw->phy.type == e1000_phy_82578) ||
5018            (hw->phy.type == e1000_phy_82579) ||
5019            (hw->phy.type == e1000_phy_i217) ||
5020            (hw->phy.type == e1000_phy_82577)) {
5021                ew32(FCRTV_PCH, hw->fc.refresh_time);
5022
5023                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5024                                   hw->fc.pause_time);
5025                if (ret_val)
5026                        return ret_val;
5027        }
5028
5029        return e1000e_set_fc_watermarks(hw);
5030}
5031
5032/**
5033 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5034 *  @hw: pointer to the HW structure
5035 *
5036 *  Configures the kumeran interface to the PHY to wait the appropriate time
5037 *  when polling the PHY, then call the generic setup_copper_link to finish
5038 *  configuring the copper link.
5039 **/
5040static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5041{
5042        u32 ctrl;
5043        s32 ret_val;
5044        u16 reg_data;
5045
5046        ctrl = er32(CTRL);
5047        ctrl |= E1000_CTRL_SLU;
5048        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5049        ew32(CTRL, ctrl);
5050
5051        /* Set the mac to wait the maximum time between each iteration
5052         * and increase the max iterations when polling the phy;
5053         * this fixes erroneous timeouts at 10Mbps.
5054         */
5055        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5056        if (ret_val)
5057                return ret_val;
5058        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5059                                       &reg_data);
5060        if (ret_val)
5061                return ret_val;
5062        reg_data |= 0x3F;
5063        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5064                                        reg_data);
5065        if (ret_val)
5066                return ret_val;
5067
5068        switch (hw->phy.type) {
5069        case e1000_phy_igp_3:
5070                ret_val = e1000e_copper_link_setup_igp(hw);
5071                if (ret_val)
5072                        return ret_val;
5073                break;
5074        case e1000_phy_bm:
5075        case e1000_phy_82578:
5076                ret_val = e1000e_copper_link_setup_m88(hw);
5077                if (ret_val)
5078                        return ret_val;
5079                break;
5080        case e1000_phy_82577:
5081        case e1000_phy_82579:
5082                ret_val = e1000_copper_link_setup_82577(hw);
5083                if (ret_val)
5084                        return ret_val;
5085                break;
5086        case e1000_phy_ife:
5087                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5088                if (ret_val)
5089                        return ret_val;
5090
5091                reg_data &= ~IFE_PMC_AUTO_MDIX;
5092
5093                switch (hw->phy.mdix) {
5094                case 1:
5095                        reg_data &= ~IFE_PMC_FORCE_MDIX;
5096                        break;
5097                case 2:
5098                        reg_data |= IFE_PMC_FORCE_MDIX;
5099                        break;
5100                case 0:
5101                default:
5102                        reg_data |= IFE_PMC_AUTO_MDIX;
5103                        break;
5104                }
5105                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5106                if (ret_val)
5107                        return ret_val;
5108                break;
5109        default:
5110                break;
5111        }
5112
5113        return e1000e_setup_copper_link(hw);
5114}
5115
5116/**
5117 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5118 *  @hw: pointer to the HW structure
5119 *
5120 *  Calls the PHY specific link setup function and then calls the
5121 *  generic setup_copper_link to finish configuring the link for
5122 *  Lynxpoint PCH devices
5123 **/
5124static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5125{
5126        u32 ctrl;
5127        s32 ret_val;
5128
5129        ctrl = er32(CTRL);
5130        ctrl |= E1000_CTRL_SLU;
5131        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5132        ew32(CTRL, ctrl);
5133
5134        ret_val = e1000_copper_link_setup_82577(hw);
5135        if (ret_val)
5136                return ret_val;
5137
5138        return e1000e_setup_copper_link(hw);
5139}
5140
5141/**
5142 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5143 *  @hw: pointer to the HW structure
5144 *  @speed: pointer to store current link speed
5145 *  @duplex: pointer to store the current link duplex
5146 *
5147 *  Calls the generic get_speed_and_duplex to retrieve the current link
5148 *  information and then calls the Kumeran lock loss workaround for links at
5149 *  gigabit speeds.
5150 **/
5151static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5152                                          u16 *duplex)
5153{
5154        s32 ret_val;
5155
5156        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5157        if (ret_val)
5158                return ret_val;
5159
5160        if ((hw->mac.type == e1000_ich8lan) &&
5161            (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5162                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5163        }
5164
5165        return ret_val;
5166}
5167
5168/**
5169 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5170 *  @hw: pointer to the HW structure
5171 *
5172 *  Work-around for 82566 Kumeran PCS lock loss:
5173 *  On link status change (i.e. PCI reset, speed change) and link is up and
5174 *  speed is gigabit-
5175 *    0) if workaround is optionally disabled do nothing
5176 *    1) wait 1ms for Kumeran link to come up
5177 *    2) check Kumeran Diagnostic register PCS lock loss bit
5178 *    3) if not set the link is locked (all is good), otherwise...
5179 *    4) reset the PHY
5180 *    5) repeat up to 10 times
5181 *  Note: this is only called for IGP3 copper when speed is 1gb.
5182 **/
5183static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5184{
5185        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5186        u32 phy_ctrl;
5187        s32 ret_val;
5188        u16 i, data;
5189        bool link;
5190
5191        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5192                return 0;
5193
5194        /* Make sure link is up before proceeding.  If not just return.
5195         * Attempting this while link is negotiating fouled up link
5196         * stability
5197         */
5198        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5199        if (!link)
5200                return 0;
5201
5202        for (i = 0; i < 10; i++) {
5203                /* read once to clear */
5204                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5205                if (ret_val)
5206                        return ret_val;
5207                /* and again to get new status */
5208                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5209                if (ret_val)
5210                        return ret_val;
5211
5212                /* check for PCS lock */
5213                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5214                        return 0;
5215
5216                /* Issue PHY reset */
5217                e1000_phy_hw_reset(hw);
5218                mdelay(5);
5219        }
5220        /* Disable GigE link negotiation */
5221        phy_ctrl = er32(PHY_CTRL);
5222        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5223                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5224        ew32(PHY_CTRL, phy_ctrl);
5225
5226        /* Call gig speed drop workaround on Gig disable before accessing
5227         * any PHY registers
5228         */
5229        e1000e_gig_downshift_workaround_ich8lan(hw);
5230
5231        /* unable to acquire PCS lock */
5232        return -E1000_ERR_PHY;
5233}
5234
5235/**
5236 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5237 *  @hw: pointer to the HW structure
5238 *  @state: boolean value used to set the current Kumeran workaround state
5239 *
5240 *  If ICH8, set the current Kumeran workaround state (enabled - true
5241 *  /disabled - false).
5242 **/
5243void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5244                                                  bool state)
5245{
5246        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5247
5248        if (hw->mac.type != e1000_ich8lan) {
5249                e_dbg("Workaround applies to ICH8 only.\n");
5250                return;
5251        }
5252
5253        dev_spec->kmrn_lock_loss_workaround_enabled = state;
5254}
5255
5256/**
5257 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5258 *  @hw: pointer to the HW structure
5259 *
5260 *  Workaround for 82566 power-down on D3 entry:
5261 *    1) disable gigabit link
5262 *    2) write VR power-down enable
5263 *    3) read it back
5264 *  Continue if successful, else issue LCD reset and repeat
5265 **/
5266void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5267{
5268        u32 reg;
5269        u16 data;
5270        u8 retry = 0;
5271
5272        if (hw->phy.type != e1000_phy_igp_3)
5273                return;
5274
5275        /* Try the workaround twice (if needed) */
5276        do {
5277                /* Disable link */
5278                reg = er32(PHY_CTRL);
5279                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5280                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5281                ew32(PHY_CTRL, reg);
5282
5283                /* Call gig speed drop workaround on Gig disable before
5284                 * accessing any PHY registers
5285                 */
5286                if (hw->mac.type == e1000_ich8lan)
5287                        e1000e_gig_downshift_workaround_ich8lan(hw);
5288
5289                /* Write VR power-down enable */
5290                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5291                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5292                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5293
5294                /* Read it back and test */
5295                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5296                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5297                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5298                        break;
5299
5300                /* Issue PHY reset and repeat at most one more time */
5301                reg = er32(CTRL);
5302                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5303                retry++;
5304        } while (retry);
5305}
5306
5307/**
5308 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5309 *  @hw: pointer to the HW structure
5310 *
5311 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5312 *  LPLU, Gig disable, MDIC PHY reset):
5313 *    1) Set Kumeran Near-end loopback
5314 *    2) Clear Kumeran Near-end loopback
5315 *  Should only be called for ICH8[m] devices with any 1G Phy.
5316 **/
5317void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5318{
5319        s32 ret_val;
5320        u16 reg_data;
5321
5322        if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5323                return;
5324
5325        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5326                                       &reg_data);
5327        if (ret_val)
5328                return;
5329        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5330        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5331                                        reg_data);
5332        if (ret_val)
5333                return;
5334        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5335        e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5336}
5337
5338/**
5339 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5340 *  @hw: pointer to the HW structure
5341 *
5342 *  During S0 to Sx transition, it is possible the link remains at gig
5343 *  instead of negotiating to a lower speed.  Before going to Sx, set
5344 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5345 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5346 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5347 *  needs to be written.
5348 *  Parts that support (and are linked to a partner which support) EEE in
5349 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5350 *  than 10Mbps w/o EEE.
5351 **/
5352void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5353{
5354        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5355        u32 phy_ctrl;
5356        s32 ret_val;
5357
5358        phy_ctrl = er32(PHY_CTRL);
5359        phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5360
5361        if (hw->phy.type == e1000_phy_i217) {
5362                u16 phy_reg, device_id = hw->adapter->pdev->device;
5363
5364                if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5365                    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5366                    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5367                    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5368                    (hw->mac.type >= e1000_pch_spt)) {
5369                        u32 fextnvm6 = er32(FEXTNVM6);
5370
5371                        ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5372                }
5373
5374                ret_val = hw->phy.ops.acquire(hw);
5375                if (ret_val)
5376                        goto out;
5377
5378                if (!dev_spec->eee_disable) {
5379                        u16 eee_advert;
5380
5381                        ret_val =
5382                            e1000_read_emi_reg_locked(hw,
5383                                                      I217_EEE_ADVERTISEMENT,
5384                                                      &eee_advert);
5385                        if (ret_val)
5386                                goto release;
5387
5388                        /* Disable LPLU if both link partners support 100BaseT
5389                         * EEE and 100Full is advertised on both ends of the
5390                         * link, and enable Auto Enable LPI since there will
5391                         * be no driver to enable LPI while in Sx.
5392                         */
5393                        if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5394                            (dev_spec->eee_lp_ability &
5395                             I82579_EEE_100_SUPPORTED) &&
5396                            (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5397                                phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5398                                              E1000_PHY_CTRL_NOND0A_LPLU);
5399
5400                                /* Set Auto Enable LPI after link up */
5401                                e1e_rphy_locked(hw,
5402                                                I217_LPI_GPIO_CTRL, &phy_reg);
5403                                phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5404                                e1e_wphy_locked(hw,
5405                                                I217_LPI_GPIO_CTRL, phy_reg);
5406                        }
5407                }
5408
5409                /* For i217 Intel Rapid Start Technology support,
5410                 * when the system is going into Sx and no manageability engine
5411                 * is present, the driver must configure proxy to reset only on
5412                 * power good.  LPI (Low Power Idle) state must also reset only
5413                 * on power good, as well as the MTA (Multicast table array).
5414                 * The SMBus release must also be disabled on LCD reset.
5415                 */
5416                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5417                        /* Enable proxy to reset only on power good. */
5418                        e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5419                        phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5420                        e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5421
5422                        /* Set bit enable LPI (EEE) to reset only on
5423                         * power good.
5424                         */
5425                        e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5426                        phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5427                        e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5428
5429                        /* Disable the SMB release on LCD reset. */
5430                        e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5431                        phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5432                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5433                }
5434
5435                /* Enable MTA to reset for Intel Rapid Start Technology
5436                 * Support
5437                 */
5438                e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5439                phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5440                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5441
5442release:
5443                hw->phy.ops.release(hw);
5444        }
5445out:
5446        ew32(PHY_CTRL, phy_ctrl);
5447
5448        if (hw->mac.type == e1000_ich8lan)
5449                e1000e_gig_downshift_workaround_ich8lan(hw);
5450
5451        if (hw->mac.type >= e1000_pchlan) {
5452                e1000_oem_bits_config_ich8lan(hw, false);
5453
5454                /* Reset PHY to activate OEM bits on 82577/8 */
5455                if (hw->mac.type == e1000_pchlan)
5456                        e1000e_phy_hw_reset_generic(hw);
5457
5458                ret_val = hw->phy.ops.acquire(hw);
5459                if (ret_val)
5460                        return;
5461                e1000_write_smbus_addr(hw);
5462                hw->phy.ops.release(hw);
5463        }
5464}
5465
5466/**
5467 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5468 *  @hw: pointer to the HW structure
5469 *
5470 *  During Sx to S0 transitions on non-managed devices or managed devices
5471 *  on which PHY resets are not blocked, if the PHY registers cannot be
5472 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5473 *  the PHY.
5474 *  On i217, setup Intel Rapid Start Technology.
5475 **/
5476void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5477{
5478        s32 ret_val;
5479
5480        if (hw->mac.type < e1000_pch2lan)
5481                return;
5482
5483        ret_val = e1000_init_phy_workarounds_pchlan(hw);
5484        if (ret_val) {
5485                e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5486                return;
5487        }
5488
5489        /* For i217 Intel Rapid Start Technology support when the system
5490         * is transitioning from Sx and no manageability engine is present
5491         * configure SMBus to restore on reset, disable proxy, and enable
5492         * the reset on MTA (Multicast table array).
5493         */
5494        if (hw->phy.type == e1000_phy_i217) {
5495                u16 phy_reg;
5496
5497                ret_val = hw->phy.ops.acquire(hw);
5498                if (ret_val) {
5499                        e_dbg("Failed to setup iRST\n");
5500                        return;
5501                }
5502
5503                /* Clear Auto Enable LPI after link up */
5504                e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5505                phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5506                e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5507
5508                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5509                        /* Restore clear on SMB if no manageability engine
5510                         * is present
5511                         */
5512                        ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5513                        if (ret_val)
5514                                goto release;
5515                        phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5516                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5517
5518                        /* Disable Proxy */
5519                        e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5520                }
5521                /* Enable reset on MTA */
5522                ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5523                if (ret_val)
5524                        goto release;
5525                phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5526                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5527release:
5528                if (ret_val)
5529                        e_dbg("Error %d in resume workarounds\n", ret_val);
5530                hw->phy.ops.release(hw);
5531        }
5532}
5533
5534/**
5535 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5536 *  @hw: pointer to the HW structure
5537 *
5538 *  Return the LED back to the default configuration.
5539 **/
5540static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5541{
5542        if (hw->phy.type == e1000_phy_ife)
5543                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5544
5545        ew32(LEDCTL, hw->mac.ledctl_default);
5546        return 0;
5547}
5548
5549/**
5550 *  e1000_led_on_ich8lan - Turn LEDs on
5551 *  @hw: pointer to the HW structure
5552 *
5553 *  Turn on the LEDs.
5554 **/
5555static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5556{
5557        if (hw->phy.type == e1000_phy_ife)
5558                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5559                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5560
5561        ew32(LEDCTL, hw->mac.ledctl_mode2);
5562        return 0;
5563}
5564
5565/**
5566 *  e1000_led_off_ich8lan - Turn LEDs off
5567 *  @hw: pointer to the HW structure
5568 *
5569 *  Turn off the LEDs.
5570 **/
5571static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5572{
5573        if (hw->phy.type == e1000_phy_ife)
5574                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5575                                (IFE_PSCL_PROBE_MODE |
5576                                 IFE_PSCL_PROBE_LEDS_OFF));
5577
5578        ew32(LEDCTL, hw->mac.ledctl_mode1);
5579        return 0;
5580}
5581
5582/**
5583 *  e1000_setup_led_pchlan - Configures SW controllable LED
5584 *  @hw: pointer to the HW structure
5585 *
5586 *  This prepares the SW controllable LED for use.
5587 **/
5588static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5589{
5590        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5591}
5592
5593/**
5594 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5595 *  @hw: pointer to the HW structure
5596 *
5597 *  Return the LED back to the default configuration.
5598 **/
5599static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5600{
5601        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5602}
5603
5604/**
5605 *  e1000_led_on_pchlan - Turn LEDs on
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Turn on the LEDs.
5609 **/
5610static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5611{
5612        u16 data = (u16)hw->mac.ledctl_mode2;
5613        u32 i, led;
5614
5615        /* If no link, then turn LED on by setting the invert bit
5616         * for each LED that's mode is "link_up" in ledctl_mode2.
5617         */
5618        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5619                for (i = 0; i < 3; i++) {
5620                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5621                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5622                            E1000_LEDCTL_MODE_LINK_UP)
5623                                continue;
5624                        if (led & E1000_PHY_LED0_IVRT)
5625                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5626                        else
5627                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5628                }
5629        }
5630
5631        return e1e_wphy(hw, HV_LED_CONFIG, data);
5632}
5633
5634/**
5635 *  e1000_led_off_pchlan - Turn LEDs off
5636 *  @hw: pointer to the HW structure
5637 *
5638 *  Turn off the LEDs.
5639 **/
5640static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5641{
5642        u16 data = (u16)hw->mac.ledctl_mode1;
5643        u32 i, led;
5644
5645        /* If no link, then turn LED off by clearing the invert bit
5646         * for each LED that's mode is "link_up" in ledctl_mode1.
5647         */
5648        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5649                for (i = 0; i < 3; i++) {
5650                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5651                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5652                            E1000_LEDCTL_MODE_LINK_UP)
5653                                continue;
5654                        if (led & E1000_PHY_LED0_IVRT)
5655                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5656                        else
5657                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5658                }
5659        }
5660
5661        return e1e_wphy(hw, HV_LED_CONFIG, data);
5662}
5663
5664/**
5665 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5666 *  @hw: pointer to the HW structure
5667 *
5668 *  Read appropriate register for the config done bit for completion status
5669 *  and configure the PHY through s/w for EEPROM-less parts.
5670 *
5671 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5672 *  config done bit, so only an error is logged and continues.  If we were
5673 *  to return with error, EEPROM-less silicon would not be able to be reset
5674 *  or change link.
5675 **/
5676static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5677{
5678        s32 ret_val = 0;
5679        u32 bank = 0;
5680        u32 status;
5681
5682        e1000e_get_cfg_done_generic(hw);
5683
5684        /* Wait for indication from h/w that it has completed basic config */
5685        if (hw->mac.type >= e1000_ich10lan) {
5686                e1000_lan_init_done_ich8lan(hw);
5687        } else {
5688                ret_val = e1000e_get_auto_rd_done(hw);
5689                if (ret_val) {
5690                        /* When auto config read does not complete, do not
5691                         * return with an error. This can happen in situations
5692                         * where there is no eeprom and prevents getting link.
5693                         */
5694                        e_dbg("Auto Read Done did not complete\n");
5695                        ret_val = 0;
5696                }
5697        }
5698
5699        /* Clear PHY Reset Asserted bit */
5700        status = er32(STATUS);
5701        if (status & E1000_STATUS_PHYRA)
5702                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5703        else
5704                e_dbg("PHY Reset Asserted not set - needs delay\n");
5705
5706        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5707        if (hw->mac.type <= e1000_ich9lan) {
5708                if (!(er32(EECD) & E1000_EECD_PRES) &&
5709                    (hw->phy.type == e1000_phy_igp_3)) {
5710                        e1000e_phy_init_script_igp3(hw);
5711                }
5712        } else {
5713                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5714                        /* Maybe we should do a basic PHY config */
5715                        e_dbg("EEPROM not present\n");
5716                        ret_val = -E1000_ERR_CONFIG;
5717                }
5718        }
5719
5720        return ret_val;
5721}
5722
5723/**
5724 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5725 * @hw: pointer to the HW structure
5726 *
5727 * In the case of a PHY power down to save power, or to turn off link during a
5728 * driver unload, or wake on lan is not enabled, remove the link.
5729 **/
5730static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5731{
5732        /* If the management interface is not enabled, then power down */
5733        if (!(hw->mac.ops.check_mng_mode(hw) ||
5734              hw->phy.ops.check_reset_block(hw)))
5735                e1000_power_down_phy_copper(hw);
5736}
5737
5738/**
5739 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5740 *  @hw: pointer to the HW structure
5741 *
5742 *  Clears hardware counters specific to the silicon family and calls
5743 *  clear_hw_cntrs_generic to clear all general purpose counters.
5744 **/
5745static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5746{
5747        u16 phy_data;
5748        s32 ret_val;
5749
5750        e1000e_clear_hw_cntrs_base(hw);
5751
5752        er32(ALGNERRC);
5753        er32(RXERRC);
5754        er32(TNCRS);
5755        er32(CEXTERR);
5756        er32(TSCTC);
5757        er32(TSCTFC);
5758
5759        er32(MGTPRC);
5760        er32(MGTPDC);
5761        er32(MGTPTC);
5762
5763        er32(IAC);
5764        er32(ICRXOC);
5765
5766        /* Clear PHY statistics registers */
5767        if ((hw->phy.type == e1000_phy_82578) ||
5768            (hw->phy.type == e1000_phy_82579) ||
5769            (hw->phy.type == e1000_phy_i217) ||
5770            (hw->phy.type == e1000_phy_82577)) {
5771                ret_val = hw->phy.ops.acquire(hw);
5772                if (ret_val)
5773                        return;
5774                ret_val = hw->phy.ops.set_page(hw,
5775                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
5776                if (ret_val)
5777                        goto release;
5778                hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5779                hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5780                hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5781                hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5782                hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5783                hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5784                hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5785                hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5786                hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5787                hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5788                hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5789                hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5790                hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5791                hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5792release:
5793                hw->phy.ops.release(hw);
5794        }
5795}
5796
5797static const struct e1000_mac_operations ich8_mac_ops = {
5798        /* check_mng_mode dependent on mac type */
5799        .check_for_link         = e1000_check_for_copper_link_ich8lan,
5800        /* cleanup_led dependent on mac type */
5801        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5802        .get_bus_info           = e1000_get_bus_info_ich8lan,
5803        .set_lan_id             = e1000_set_lan_id_single_port,
5804        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5805        /* led_on dependent on mac type */
5806        /* led_off dependent on mac type */
5807        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5808        .reset_hw               = e1000_reset_hw_ich8lan,
5809        .init_hw                = e1000_init_hw_ich8lan,
5810        .setup_link             = e1000_setup_link_ich8lan,
5811        .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5812        /* id_led_init dependent on mac type */
5813        .config_collision_dist  = e1000e_config_collision_dist_generic,
5814        .rar_set                = e1000e_rar_set_generic,
5815        .rar_get_count          = e1000e_rar_get_count_generic,
5816};
5817
5818static const struct e1000_phy_operations ich8_phy_ops = {
5819        .acquire                = e1000_acquire_swflag_ich8lan,
5820        .check_reset_block      = e1000_check_reset_block_ich8lan,
5821        .commit                 = NULL,
5822        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5823        .get_cable_length       = e1000e_get_cable_length_igp_2,
5824        .read_reg               = e1000e_read_phy_reg_igp,
5825        .release                = e1000_release_swflag_ich8lan,
5826        .reset                  = e1000_phy_hw_reset_ich8lan,
5827        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5828        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5829        .write_reg              = e1000e_write_phy_reg_igp,
5830};
5831
5832static const struct e1000_nvm_operations ich8_nvm_ops = {
5833        .acquire                = e1000_acquire_nvm_ich8lan,
5834        .read                   = e1000_read_nvm_ich8lan,
5835        .release                = e1000_release_nvm_ich8lan,
5836        .reload                 = e1000e_reload_nvm_generic,
5837        .update                 = e1000_update_nvm_checksum_ich8lan,
5838        .valid_led_default      = e1000_valid_led_default_ich8lan,
5839        .validate               = e1000_validate_nvm_checksum_ich8lan,
5840        .write                  = e1000_write_nvm_ich8lan,
5841};
5842
5843static const struct e1000_nvm_operations spt_nvm_ops = {
5844        .acquire                = e1000_acquire_nvm_ich8lan,
5845        .release                = e1000_release_nvm_ich8lan,
5846        .read                   = e1000_read_nvm_spt,
5847        .update                 = e1000_update_nvm_checksum_spt,
5848        .reload                 = e1000e_reload_nvm_generic,
5849        .valid_led_default      = e1000_valid_led_default_ich8lan,
5850        .validate               = e1000_validate_nvm_checksum_ich8lan,
5851        .write                  = e1000_write_nvm_ich8lan,
5852};
5853
5854const struct e1000_info e1000_ich8_info = {
5855        .mac                    = e1000_ich8lan,
5856        .flags                  = FLAG_HAS_WOL
5857                                  | FLAG_IS_ICH
5858                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5859                                  | FLAG_HAS_AMT
5860                                  | FLAG_HAS_FLASH
5861                                  | FLAG_APME_IN_WUC,
5862        .pba                    = 8,
5863        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5864        .get_variants           = e1000_get_variants_ich8lan,
5865        .mac_ops                = &ich8_mac_ops,
5866        .phy_ops                = &ich8_phy_ops,
5867        .nvm_ops                = &ich8_nvm_ops,
5868};
5869
5870const struct e1000_info e1000_ich9_info = {
5871        .mac                    = e1000_ich9lan,
5872        .flags                  = FLAG_HAS_JUMBO_FRAMES
5873                                  | FLAG_IS_ICH
5874                                  | FLAG_HAS_WOL
5875                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5876                                  | FLAG_HAS_AMT
5877                                  | FLAG_HAS_FLASH
5878                                  | FLAG_APME_IN_WUC,
5879        .pba                    = 18,
5880        .max_hw_frame_size      = DEFAULT_JUMBO,
5881        .get_variants           = e1000_get_variants_ich8lan,
5882        .mac_ops                = &ich8_mac_ops,
5883        .phy_ops                = &ich8_phy_ops,
5884        .nvm_ops                = &ich8_nvm_ops,
5885};
5886
5887const struct e1000_info e1000_ich10_info = {
5888        .mac                    = e1000_ich10lan,
5889        .flags                  = FLAG_HAS_JUMBO_FRAMES
5890                                  | FLAG_IS_ICH
5891                                  | FLAG_HAS_WOL
5892                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5893                                  | FLAG_HAS_AMT
5894                                  | FLAG_HAS_FLASH
5895                                  | FLAG_APME_IN_WUC,
5896        .pba                    = 18,
5897        .max_hw_frame_size      = DEFAULT_JUMBO,
5898        .get_variants           = e1000_get_variants_ich8lan,
5899        .mac_ops                = &ich8_mac_ops,
5900        .phy_ops                = &ich8_phy_ops,
5901        .nvm_ops                = &ich8_nvm_ops,
5902};
5903
5904const struct e1000_info e1000_pch_info = {
5905        .mac                    = e1000_pchlan,
5906        .flags                  = FLAG_IS_ICH
5907                                  | FLAG_HAS_WOL
5908                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5909                                  | FLAG_HAS_AMT
5910                                  | FLAG_HAS_FLASH
5911                                  | FLAG_HAS_JUMBO_FRAMES
5912                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5913                                  | FLAG_APME_IN_WUC,
5914        .flags2                 = FLAG2_HAS_PHY_STATS,
5915        .pba                    = 26,
5916        .max_hw_frame_size      = 4096,
5917        .get_variants           = e1000_get_variants_ich8lan,
5918        .mac_ops                = &ich8_mac_ops,
5919        .phy_ops                = &ich8_phy_ops,
5920        .nvm_ops                = &ich8_nvm_ops,
5921};
5922
5923const struct e1000_info e1000_pch2_info = {
5924        .mac                    = e1000_pch2lan,
5925        .flags                  = FLAG_IS_ICH
5926                                  | FLAG_HAS_WOL
5927                                  | FLAG_HAS_HW_TIMESTAMP
5928                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5929                                  | FLAG_HAS_AMT
5930                                  | FLAG_HAS_FLASH
5931                                  | FLAG_HAS_JUMBO_FRAMES
5932                                  | FLAG_APME_IN_WUC,
5933        .flags2                 = FLAG2_HAS_PHY_STATS
5934                                  | FLAG2_HAS_EEE
5935                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5936        .pba                    = 26,
5937        .max_hw_frame_size      = 9022,
5938        .get_variants           = e1000_get_variants_ich8lan,
5939        .mac_ops                = &ich8_mac_ops,
5940        .phy_ops                = &ich8_phy_ops,
5941        .nvm_ops                = &ich8_nvm_ops,
5942};
5943
5944const struct e1000_info e1000_pch_lpt_info = {
5945        .mac                    = e1000_pch_lpt,
5946        .flags                  = FLAG_IS_ICH
5947                                  | FLAG_HAS_WOL
5948                                  | FLAG_HAS_HW_TIMESTAMP
5949                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5950                                  | FLAG_HAS_AMT
5951                                  | FLAG_HAS_FLASH
5952                                  | FLAG_HAS_JUMBO_FRAMES
5953                                  | FLAG_APME_IN_WUC,
5954        .flags2                 = FLAG2_HAS_PHY_STATS
5955                                  | FLAG2_HAS_EEE
5956                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5957        .pba                    = 26,
5958        .max_hw_frame_size      = 9022,
5959        .get_variants           = e1000_get_variants_ich8lan,
5960        .mac_ops                = &ich8_mac_ops,
5961        .phy_ops                = &ich8_phy_ops,
5962        .nvm_ops                = &ich8_nvm_ops,
5963};
5964
5965const struct e1000_info e1000_pch_spt_info = {
5966        .mac                    = e1000_pch_spt,
5967        .flags                  = FLAG_IS_ICH
5968                                  | FLAG_HAS_WOL
5969                                  | FLAG_HAS_HW_TIMESTAMP
5970                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5971                                  | FLAG_HAS_AMT
5972                                  | FLAG_HAS_FLASH
5973                                  | FLAG_HAS_JUMBO_FRAMES
5974                                  | FLAG_APME_IN_WUC,
5975        .flags2                 = FLAG2_HAS_PHY_STATS
5976                                  | FLAG2_HAS_EEE,
5977        .pba                    = 26,
5978        .max_hw_frame_size      = 9022,
5979        .get_variants           = e1000_get_variants_ich8lan,
5980        .mac_ops                = &ich8_mac_ops,
5981        .phy_ops                = &ich8_phy_ops,
5982        .nvm_ops                = &spt_nvm_ops,
5983};
5984
5985const struct e1000_info e1000_pch_cnp_info = {
5986        .mac                    = e1000_pch_cnp,
5987        .flags                  = FLAG_IS_ICH
5988                                  | FLAG_HAS_WOL
5989                                  | FLAG_HAS_HW_TIMESTAMP
5990                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5991                                  | FLAG_HAS_AMT
5992                                  | FLAG_HAS_FLASH
5993                                  | FLAG_HAS_JUMBO_FRAMES
5994                                  | FLAG_APME_IN_WUC,
5995        .flags2                 = FLAG2_HAS_PHY_STATS
5996                                  | FLAG2_HAS_EEE,
5997        .pba                    = 26,
5998        .max_hw_frame_size      = 9022,
5999        .get_variants           = e1000_get_variants_ich8lan,
6000        .mac_ops                = &ich8_mac_ops,
6001        .phy_ops                = &ich8_phy_ops,
6002        .nvm_ops                = &spt_nvm_ops,
6003};
6004
6005const struct e1000_info e1000_pch_tgp_info = {
6006        .mac                    = e1000_pch_tgp,
6007        .flags                  = FLAG_IS_ICH
6008                                  | FLAG_HAS_WOL
6009                                  | FLAG_HAS_HW_TIMESTAMP
6010                                  | FLAG_HAS_CTRLEXT_ON_LOAD
6011                                  | FLAG_HAS_AMT
6012                                  | FLAG_HAS_FLASH
6013                                  | FLAG_HAS_JUMBO_FRAMES
6014                                  | FLAG_APME_IN_WUC,
6015        .flags2                 = FLAG2_HAS_PHY_STATS
6016                                  | FLAG2_HAS_EEE,
6017        .pba                    = 26,
6018        .max_hw_frame_size      = 9022,
6019        .get_variants           = e1000_get_variants_ich8lan,
6020        .mac_ops                = &ich8_mac_ops,
6021        .phy_ops                = &ich8_phy_ops,
6022        .nvm_ops                = &spt_nvm_ops,
6023};
6024