linux/drivers/net/ethernet/intel/ice/ice_lib.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11
  12/**
  13 * ice_vsi_type_str - maps VSI type enum to string equivalents
  14 * @vsi_type: VSI type enum
  15 */
  16const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
  17{
  18        switch (vsi_type) {
  19        case ICE_VSI_PF:
  20                return "ICE_VSI_PF";
  21        case ICE_VSI_VF:
  22                return "ICE_VSI_VF";
  23        case ICE_VSI_CTRL:
  24                return "ICE_VSI_CTRL";
  25        case ICE_VSI_LB:
  26                return "ICE_VSI_LB";
  27        default:
  28                return "unknown";
  29        }
  30}
  31
  32/**
  33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  34 * @vsi: the VSI being configured
  35 * @ena: start or stop the Rx rings
  36 *
  37 * First enable/disable all of the Rx rings, flush any remaining writes, and
  38 * then verify that they have all been enabled/disabled successfully. This will
  39 * let all of the register writes complete when enabling/disabling the Rx rings
  40 * before waiting for the change in hardware to complete.
  41 */
  42static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
  43{
  44        int ret = 0;
  45        u16 i;
  46
  47        for (i = 0; i < vsi->num_rxq; i++)
  48                ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  49
  50        ice_flush(&vsi->back->hw);
  51
  52        for (i = 0; i < vsi->num_rxq; i++) {
  53                ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  54                if (ret)
  55                        break;
  56        }
  57
  58        return ret;
  59}
  60
  61/**
  62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  63 * @vsi: VSI pointer
  64 *
  65 * On error: returns error code (negative)
  66 * On success: returns 0
  67 */
  68static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  69{
  70        struct ice_pf *pf = vsi->back;
  71        struct device *dev;
  72
  73        dev = ice_pf_to_dev(pf);
  74
  75        /* allocate memory for both Tx and Rx ring pointers */
  76        vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  77                                     sizeof(*vsi->tx_rings), GFP_KERNEL);
  78        if (!vsi->tx_rings)
  79                return -ENOMEM;
  80
  81        vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  82                                     sizeof(*vsi->rx_rings), GFP_KERNEL);
  83        if (!vsi->rx_rings)
  84                goto err_rings;
  85
  86        /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
  87        vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
  88                                    sizeof(*vsi->txq_map), GFP_KERNEL);
  89
  90        if (!vsi->txq_map)
  91                goto err_txq_map;
  92
  93        vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
  94                                    sizeof(*vsi->rxq_map), GFP_KERNEL);
  95        if (!vsi->rxq_map)
  96                goto err_rxq_map;
  97
  98        /* There is no need to allocate q_vectors for a loopback VSI. */
  99        if (vsi->type == ICE_VSI_LB)
 100                return 0;
 101
 102        /* allocate memory for q_vector pointers */
 103        vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 104                                      sizeof(*vsi->q_vectors), GFP_KERNEL);
 105        if (!vsi->q_vectors)
 106                goto err_vectors;
 107
 108        vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 109        if (!vsi->af_xdp_zc_qps)
 110                goto err_zc_qps;
 111
 112        return 0;
 113
 114err_zc_qps:
 115        devm_kfree(dev, vsi->q_vectors);
 116err_vectors:
 117        devm_kfree(dev, vsi->rxq_map);
 118err_rxq_map:
 119        devm_kfree(dev, vsi->txq_map);
 120err_txq_map:
 121        devm_kfree(dev, vsi->rx_rings);
 122err_rings:
 123        devm_kfree(dev, vsi->tx_rings);
 124        return -ENOMEM;
 125}
 126
 127/**
 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 129 * @vsi: the VSI being configured
 130 */
 131static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 132{
 133        switch (vsi->type) {
 134        case ICE_VSI_PF:
 135        case ICE_VSI_CTRL:
 136        case ICE_VSI_LB:
 137                /* a user could change the values of num_[tr]x_desc using
 138                 * ethtool -G so we should keep those values instead of
 139                 * overwriting them with the defaults.
 140                 */
 141                if (!vsi->num_rx_desc)
 142                        vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 143                if (!vsi->num_tx_desc)
 144                        vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 145                break;
 146        default:
 147                dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 148                        vsi->type);
 149                break;
 150        }
 151}
 152
 153/**
 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 155 * @vsi: the VSI being configured
 156 * @vf_id: ID of the VF being configured
 157 *
 158 * Return 0 on success and a negative value on error
 159 */
 160static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 161{
 162        struct ice_pf *pf = vsi->back;
 163        struct ice_vf *vf = NULL;
 164
 165        if (vsi->type == ICE_VSI_VF)
 166                vsi->vf_id = vf_id;
 167        else
 168                vsi->vf_id = ICE_INVAL_VFID;
 169
 170        switch (vsi->type) {
 171        case ICE_VSI_PF:
 172                if (vsi->req_txq) {
 173                        vsi->alloc_txq = vsi->req_txq;
 174                        vsi->num_txq = vsi->req_txq;
 175                } else {
 176                        vsi->alloc_txq = min3(pf->num_lan_msix,
 177                                              ice_get_avail_txq_count(pf),
 178                                              (u16)num_online_cpus());
 179                }
 180
 181                pf->num_lan_tx = vsi->alloc_txq;
 182
 183                /* only 1 Rx queue unless RSS is enabled */
 184                if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 185                        vsi->alloc_rxq = 1;
 186                } else {
 187                        if (vsi->req_rxq) {
 188                                vsi->alloc_rxq = vsi->req_rxq;
 189                                vsi->num_rxq = vsi->req_rxq;
 190                        } else {
 191                                vsi->alloc_rxq = min3(pf->num_lan_msix,
 192                                                      ice_get_avail_rxq_count(pf),
 193                                                      (u16)num_online_cpus());
 194                        }
 195                }
 196
 197                pf->num_lan_rx = vsi->alloc_rxq;
 198
 199                vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 200                                           max_t(int, vsi->alloc_rxq,
 201                                                 vsi->alloc_txq));
 202                break;
 203        case ICE_VSI_VF:
 204                vf = &pf->vf[vsi->vf_id];
 205                if (vf->num_req_qs)
 206                        vf->num_vf_qs = vf->num_req_qs;
 207                vsi->alloc_txq = vf->num_vf_qs;
 208                vsi->alloc_rxq = vf->num_vf_qs;
 209                /* pf->num_msix_per_vf includes (VF miscellaneous vector +
 210                 * data queue interrupts). Since vsi->num_q_vectors is number
 211                 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 212                 * original vector count
 213                 */
 214                vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
 215                break;
 216        case ICE_VSI_CTRL:
 217                vsi->alloc_txq = 1;
 218                vsi->alloc_rxq = 1;
 219                vsi->num_q_vectors = 1;
 220                break;
 221        case ICE_VSI_LB:
 222                vsi->alloc_txq = 1;
 223                vsi->alloc_rxq = 1;
 224                break;
 225        default:
 226                dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
 227                break;
 228        }
 229
 230        ice_vsi_set_num_desc(vsi);
 231}
 232
 233/**
 234 * ice_get_free_slot - get the next non-NULL location index in array
 235 * @array: array to search
 236 * @size: size of the array
 237 * @curr: last known occupied index to be used as a search hint
 238 *
 239 * void * is being used to keep the functionality generic. This lets us use this
 240 * function on any array of pointers.
 241 */
 242static int ice_get_free_slot(void *array, int size, int curr)
 243{
 244        int **tmp_array = (int **)array;
 245        int next;
 246
 247        if (curr < (size - 1) && !tmp_array[curr + 1]) {
 248                next = curr + 1;
 249        } else {
 250                int i = 0;
 251
 252                while ((i < size) && (tmp_array[i]))
 253                        i++;
 254                if (i == size)
 255                        next = ICE_NO_VSI;
 256                else
 257                        next = i;
 258        }
 259        return next;
 260}
 261
 262/**
 263 * ice_vsi_delete - delete a VSI from the switch
 264 * @vsi: pointer to VSI being removed
 265 */
 266static void ice_vsi_delete(struct ice_vsi *vsi)
 267{
 268        struct ice_pf *pf = vsi->back;
 269        struct ice_vsi_ctx *ctxt;
 270        enum ice_status status;
 271
 272        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 273        if (!ctxt)
 274                return;
 275
 276        if (vsi->type == ICE_VSI_VF)
 277                ctxt->vf_num = vsi->vf_id;
 278        ctxt->vsi_num = vsi->vsi_num;
 279
 280        memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 281
 282        status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 283        if (status)
 284                dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
 285                        vsi->vsi_num, ice_stat_str(status));
 286
 287        kfree(ctxt);
 288}
 289
 290/**
 291 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 292 * @vsi: pointer to VSI being cleared
 293 */
 294static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 295{
 296        struct ice_pf *pf = vsi->back;
 297        struct device *dev;
 298
 299        dev = ice_pf_to_dev(pf);
 300
 301        if (vsi->af_xdp_zc_qps) {
 302                bitmap_free(vsi->af_xdp_zc_qps);
 303                vsi->af_xdp_zc_qps = NULL;
 304        }
 305        /* free the ring and vector containers */
 306        if (vsi->q_vectors) {
 307                devm_kfree(dev, vsi->q_vectors);
 308                vsi->q_vectors = NULL;
 309        }
 310        if (vsi->tx_rings) {
 311                devm_kfree(dev, vsi->tx_rings);
 312                vsi->tx_rings = NULL;
 313        }
 314        if (vsi->rx_rings) {
 315                devm_kfree(dev, vsi->rx_rings);
 316                vsi->rx_rings = NULL;
 317        }
 318        if (vsi->txq_map) {
 319                devm_kfree(dev, vsi->txq_map);
 320                vsi->txq_map = NULL;
 321        }
 322        if (vsi->rxq_map) {
 323                devm_kfree(dev, vsi->rxq_map);
 324                vsi->rxq_map = NULL;
 325        }
 326}
 327
 328/**
 329 * ice_vsi_clear - clean up and deallocate the provided VSI
 330 * @vsi: pointer to VSI being cleared
 331 *
 332 * This deallocates the VSI's queue resources, removes it from the PF's
 333 * VSI array if necessary, and deallocates the VSI
 334 *
 335 * Returns 0 on success, negative on failure
 336 */
 337static int ice_vsi_clear(struct ice_vsi *vsi)
 338{
 339        struct ice_pf *pf = NULL;
 340        struct device *dev;
 341
 342        if (!vsi)
 343                return 0;
 344
 345        if (!vsi->back)
 346                return -EINVAL;
 347
 348        pf = vsi->back;
 349        dev = ice_pf_to_dev(pf);
 350
 351        if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 352                dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 353                return -EINVAL;
 354        }
 355
 356        mutex_lock(&pf->sw_mutex);
 357        /* updates the PF for this cleared VSI */
 358
 359        pf->vsi[vsi->idx] = NULL;
 360        if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
 361                pf->next_vsi = vsi->idx;
 362        if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL &&
 363            vsi->vf_id != ICE_INVAL_VFID)
 364                pf->next_vsi = vsi->idx;
 365
 366        ice_vsi_free_arrays(vsi);
 367        mutex_unlock(&pf->sw_mutex);
 368        devm_kfree(dev, vsi);
 369
 370        return 0;
 371}
 372
 373/**
 374 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 375 * @irq: interrupt number
 376 * @data: pointer to a q_vector
 377 */
 378static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 379{
 380        struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 381
 382        if (!q_vector->tx.ring)
 383                return IRQ_HANDLED;
 384
 385#define FDIR_RX_DESC_CLEAN_BUDGET 64
 386        ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
 387        ice_clean_ctrl_tx_irq(q_vector->tx.ring);
 388
 389        return IRQ_HANDLED;
 390}
 391
 392/**
 393 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 394 * @irq: interrupt number
 395 * @data: pointer to a q_vector
 396 */
 397static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 398{
 399        struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 400
 401        if (!q_vector->tx.ring && !q_vector->rx.ring)
 402                return IRQ_HANDLED;
 403
 404        q_vector->total_events++;
 405
 406        napi_schedule(&q_vector->napi);
 407
 408        return IRQ_HANDLED;
 409}
 410
 411/**
 412 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 413 * @pf: board private structure
 414 * @vsi_type: type of VSI
 415 * @vf_id: ID of the VF being configured
 416 *
 417 * returns a pointer to a VSI on success, NULL on failure.
 418 */
 419static struct ice_vsi *
 420ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
 421{
 422        struct device *dev = ice_pf_to_dev(pf);
 423        struct ice_vsi *vsi = NULL;
 424
 425        /* Need to protect the allocation of the VSIs at the PF level */
 426        mutex_lock(&pf->sw_mutex);
 427
 428        /* If we have already allocated our maximum number of VSIs,
 429         * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 430         * is available to be populated
 431         */
 432        if (pf->next_vsi == ICE_NO_VSI) {
 433                dev_dbg(dev, "out of VSI slots!\n");
 434                goto unlock_pf;
 435        }
 436
 437        vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 438        if (!vsi)
 439                goto unlock_pf;
 440
 441        vsi->type = vsi_type;
 442        vsi->back = pf;
 443        set_bit(ICE_VSI_DOWN, vsi->state);
 444
 445        if (vsi_type == ICE_VSI_VF)
 446                ice_vsi_set_num_qs(vsi, vf_id);
 447        else
 448                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 449
 450        switch (vsi->type) {
 451        case ICE_VSI_PF:
 452                if (ice_vsi_alloc_arrays(vsi))
 453                        goto err_rings;
 454
 455                /* Setup default MSIX irq handler for VSI */
 456                vsi->irq_handler = ice_msix_clean_rings;
 457                break;
 458        case ICE_VSI_CTRL:
 459                if (ice_vsi_alloc_arrays(vsi))
 460                        goto err_rings;
 461
 462                /* Setup ctrl VSI MSIX irq handler */
 463                vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 464                break;
 465        case ICE_VSI_VF:
 466                if (ice_vsi_alloc_arrays(vsi))
 467                        goto err_rings;
 468                break;
 469        case ICE_VSI_LB:
 470                if (ice_vsi_alloc_arrays(vsi))
 471                        goto err_rings;
 472                break;
 473        default:
 474                dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
 475                goto unlock_pf;
 476        }
 477
 478        if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) {
 479                /* Use the last VSI slot as the index for PF control VSI */
 480                vsi->idx = pf->num_alloc_vsi - 1;
 481                pf->ctrl_vsi_idx = vsi->idx;
 482                pf->vsi[vsi->idx] = vsi;
 483        } else {
 484                /* fill slot and make note of the index */
 485                vsi->idx = pf->next_vsi;
 486                pf->vsi[pf->next_vsi] = vsi;
 487
 488                /* prepare pf->next_vsi for next use */
 489                pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 490                                                 pf->next_vsi);
 491        }
 492
 493        if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID)
 494                pf->vf[vf_id].ctrl_vsi_idx = vsi->idx;
 495        goto unlock_pf;
 496
 497err_rings:
 498        devm_kfree(dev, vsi);
 499        vsi = NULL;
 500unlock_pf:
 501        mutex_unlock(&pf->sw_mutex);
 502        return vsi;
 503}
 504
 505/**
 506 * ice_alloc_fd_res - Allocate FD resource for a VSI
 507 * @vsi: pointer to the ice_vsi
 508 *
 509 * This allocates the FD resources
 510 *
 511 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 512 */
 513static int ice_alloc_fd_res(struct ice_vsi *vsi)
 514{
 515        struct ice_pf *pf = vsi->back;
 516        u32 g_val, b_val;
 517
 518        /* Flow Director filters are only allocated/assigned to the PF VSI which
 519         * passes the traffic. The CTRL VSI is only used to add/delete filters
 520         * so we don't allocate resources to it
 521         */
 522
 523        /* FD filters from guaranteed pool per VSI */
 524        g_val = pf->hw.func_caps.fd_fltr_guar;
 525        if (!g_val)
 526                return -EPERM;
 527
 528        /* FD filters from best effort pool */
 529        b_val = pf->hw.func_caps.fd_fltr_best_effort;
 530        if (!b_val)
 531                return -EPERM;
 532
 533        if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF))
 534                return -EPERM;
 535
 536        if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 537                return -EPERM;
 538
 539        vsi->num_gfltr = g_val / pf->num_alloc_vsi;
 540
 541        /* each VSI gets same "best_effort" quota */
 542        vsi->num_bfltr = b_val;
 543
 544        if (vsi->type == ICE_VSI_VF) {
 545                vsi->num_gfltr = 0;
 546
 547                /* each VSI gets same "best_effort" quota */
 548                vsi->num_bfltr = b_val;
 549        }
 550
 551        return 0;
 552}
 553
 554/**
 555 * ice_vsi_get_qs - Assign queues from PF to VSI
 556 * @vsi: the VSI to assign queues to
 557 *
 558 * Returns 0 on success and a negative value on error
 559 */
 560static int ice_vsi_get_qs(struct ice_vsi *vsi)
 561{
 562        struct ice_pf *pf = vsi->back;
 563        struct ice_qs_cfg tx_qs_cfg = {
 564                .qs_mutex = &pf->avail_q_mutex,
 565                .pf_map = pf->avail_txqs,
 566                .pf_map_size = pf->max_pf_txqs,
 567                .q_count = vsi->alloc_txq,
 568                .scatter_count = ICE_MAX_SCATTER_TXQS,
 569                .vsi_map = vsi->txq_map,
 570                .vsi_map_offset = 0,
 571                .mapping_mode = ICE_VSI_MAP_CONTIG
 572        };
 573        struct ice_qs_cfg rx_qs_cfg = {
 574                .qs_mutex = &pf->avail_q_mutex,
 575                .pf_map = pf->avail_rxqs,
 576                .pf_map_size = pf->max_pf_rxqs,
 577                .q_count = vsi->alloc_rxq,
 578                .scatter_count = ICE_MAX_SCATTER_RXQS,
 579                .vsi_map = vsi->rxq_map,
 580                .vsi_map_offset = 0,
 581                .mapping_mode = ICE_VSI_MAP_CONTIG
 582        };
 583        int ret;
 584
 585        ret = __ice_vsi_get_qs(&tx_qs_cfg);
 586        if (ret)
 587                return ret;
 588        vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 589
 590        ret = __ice_vsi_get_qs(&rx_qs_cfg);
 591        if (ret)
 592                return ret;
 593        vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 594
 595        return 0;
 596}
 597
 598/**
 599 * ice_vsi_put_qs - Release queues from VSI to PF
 600 * @vsi: the VSI that is going to release queues
 601 */
 602static void ice_vsi_put_qs(struct ice_vsi *vsi)
 603{
 604        struct ice_pf *pf = vsi->back;
 605        int i;
 606
 607        mutex_lock(&pf->avail_q_mutex);
 608
 609        for (i = 0; i < vsi->alloc_txq; i++) {
 610                clear_bit(vsi->txq_map[i], pf->avail_txqs);
 611                vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 612        }
 613
 614        for (i = 0; i < vsi->alloc_rxq; i++) {
 615                clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 616                vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 617        }
 618
 619        mutex_unlock(&pf->avail_q_mutex);
 620}
 621
 622/**
 623 * ice_is_safe_mode
 624 * @pf: pointer to the PF struct
 625 *
 626 * returns true if driver is in safe mode, false otherwise
 627 */
 628bool ice_is_safe_mode(struct ice_pf *pf)
 629{
 630        return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 631}
 632
 633/**
 634 * ice_is_aux_ena
 635 * @pf: pointer to the PF struct
 636 *
 637 * returns true if AUX devices/drivers are supported, false otherwise
 638 */
 639bool ice_is_aux_ena(struct ice_pf *pf)
 640{
 641        return test_bit(ICE_FLAG_AUX_ENA, pf->flags);
 642}
 643
 644/**
 645 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 646 * @vsi: the VSI being cleaned up
 647 *
 648 * This function deletes RSS input set for all flows that were configured
 649 * for this VSI
 650 */
 651static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 652{
 653        struct ice_pf *pf = vsi->back;
 654        enum ice_status status;
 655
 656        if (ice_is_safe_mode(pf))
 657                return;
 658
 659        status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 660        if (status)
 661                dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
 662                        vsi->vsi_num, ice_stat_str(status));
 663}
 664
 665/**
 666 * ice_rss_clean - Delete RSS related VSI structures and configuration
 667 * @vsi: the VSI being removed
 668 */
 669static void ice_rss_clean(struct ice_vsi *vsi)
 670{
 671        struct ice_pf *pf = vsi->back;
 672        struct device *dev;
 673
 674        dev = ice_pf_to_dev(pf);
 675
 676        if (vsi->rss_hkey_user)
 677                devm_kfree(dev, vsi->rss_hkey_user);
 678        if (vsi->rss_lut_user)
 679                devm_kfree(dev, vsi->rss_lut_user);
 680
 681        ice_vsi_clean_rss_flow_fld(vsi);
 682        /* remove RSS replay list */
 683        if (!ice_is_safe_mode(pf))
 684                ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 685}
 686
 687/**
 688 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 689 * @vsi: the VSI being configured
 690 */
 691static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 692{
 693        struct ice_hw_common_caps *cap;
 694        struct ice_pf *pf = vsi->back;
 695
 696        if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 697                vsi->rss_size = 1;
 698                return;
 699        }
 700
 701        cap = &pf->hw.func_caps.common_cap;
 702        switch (vsi->type) {
 703        case ICE_VSI_PF:
 704                /* PF VSI will inherit RSS instance of PF */
 705                vsi->rss_table_size = (u16)cap->rss_table_size;
 706                vsi->rss_size = min_t(u16, num_online_cpus(),
 707                                      BIT(cap->rss_table_entry_width));
 708                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 709                break;
 710        case ICE_VSI_VF:
 711                /* VF VSI will get a small RSS table.
 712                 * For VSI_LUT, LUT size should be set to 64 bytes.
 713                 */
 714                vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 715                vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 716                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 717                break;
 718        case ICE_VSI_LB:
 719                break;
 720        default:
 721                dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 722                        ice_vsi_type_str(vsi->type));
 723                break;
 724        }
 725}
 726
 727/**
 728 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 729 * @ctxt: the VSI context being set
 730 *
 731 * This initializes a default VSI context for all sections except the Queues.
 732 */
 733static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 734{
 735        u32 table = 0;
 736
 737        memset(&ctxt->info, 0, sizeof(ctxt->info));
 738        /* VSI's should be allocated from shared pool */
 739        ctxt->alloc_from_pool = true;
 740        /* Src pruning enabled by default */
 741        ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 742        /* Traffic from VSI can be sent to LAN */
 743        ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 744        /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 745         * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 746         * packets untagged/tagged.
 747         */
 748        ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 749                                  ICE_AQ_VSI_VLAN_MODE_M) >>
 750                                 ICE_AQ_VSI_VLAN_MODE_S);
 751        /* Have 1:1 UP mapping for both ingress/egress tables */
 752        table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 753        table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 754        table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 755        table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 756        table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 757        table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 758        table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 759        table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 760        ctxt->info.ingress_table = cpu_to_le32(table);
 761        ctxt->info.egress_table = cpu_to_le32(table);
 762        /* Have 1:1 UP mapping for outer to inner UP table */
 763        ctxt->info.outer_up_table = cpu_to_le32(table);
 764        /* No Outer tag support outer_tag_flags remains to zero */
 765}
 766
 767/**
 768 * ice_vsi_setup_q_map - Setup a VSI queue map
 769 * @vsi: the VSI being configured
 770 * @ctxt: VSI context structure
 771 */
 772static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 773{
 774        u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
 775        u16 num_txq_per_tc, num_rxq_per_tc;
 776        u16 qcount_tx = vsi->alloc_txq;
 777        u16 qcount_rx = vsi->alloc_rxq;
 778        bool ena_tc0 = false;
 779        u8 netdev_tc = 0;
 780        int i;
 781
 782        /* at least TC0 should be enabled by default */
 783        if (vsi->tc_cfg.numtc) {
 784                if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 785                        ena_tc0 = true;
 786        } else {
 787                ena_tc0 = true;
 788        }
 789
 790        if (ena_tc0) {
 791                vsi->tc_cfg.numtc++;
 792                vsi->tc_cfg.ena_tc |= 1;
 793        }
 794
 795        num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
 796        if (!num_rxq_per_tc)
 797                num_rxq_per_tc = 1;
 798        num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
 799        if (!num_txq_per_tc)
 800                num_txq_per_tc = 1;
 801
 802        /* find the (rounded up) power-of-2 of qcount */
 803        pow = (u16)order_base_2(num_rxq_per_tc);
 804
 805        /* TC mapping is a function of the number of Rx queues assigned to the
 806         * VSI for each traffic class and the offset of these queues.
 807         * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 808         * queues allocated to TC0. No:of queues is a power-of-2.
 809         *
 810         * If TC is not enabled, the queue offset is set to 0, and allocate one
 811         * queue, this way, traffic for the given TC will be sent to the default
 812         * queue.
 813         *
 814         * Setup number and offset of Rx queues for all TCs for the VSI
 815         */
 816        ice_for_each_traffic_class(i) {
 817                if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 818                        /* TC is not enabled */
 819                        vsi->tc_cfg.tc_info[i].qoffset = 0;
 820                        vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 821                        vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 822                        vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 823                        ctxt->info.tc_mapping[i] = 0;
 824                        continue;
 825                }
 826
 827                /* TC is enabled */
 828                vsi->tc_cfg.tc_info[i].qoffset = offset;
 829                vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
 830                vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
 831                vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 832
 833                qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 834                        ICE_AQ_VSI_TC_Q_OFFSET_M) |
 835                        ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 836                         ICE_AQ_VSI_TC_Q_NUM_M);
 837                offset += num_rxq_per_tc;
 838                tx_count += num_txq_per_tc;
 839                ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 840        }
 841
 842        /* if offset is non-zero, means it is calculated correctly based on
 843         * enabled TCs for a given VSI otherwise qcount_rx will always
 844         * be correct and non-zero because it is based off - VSI's
 845         * allocated Rx queues which is at least 1 (hence qcount_tx will be
 846         * at least 1)
 847         */
 848        if (offset)
 849                vsi->num_rxq = offset;
 850        else
 851                vsi->num_rxq = num_rxq_per_tc;
 852
 853        vsi->num_txq = tx_count;
 854
 855        if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 856                dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 857                /* since there is a chance that num_rxq could have been changed
 858                 * in the above for loop, make num_txq equal to num_rxq.
 859                 */
 860                vsi->num_txq = vsi->num_rxq;
 861        }
 862
 863        /* Rx queue mapping */
 864        ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 865        /* q_mapping buffer holds the info for the first queue allocated for
 866         * this VSI in the PF space and also the number of queues associated
 867         * with this VSI.
 868         */
 869        ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 870        ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 871}
 872
 873/**
 874 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
 875 * @ctxt: the VSI context being set
 876 * @vsi: the VSI being configured
 877 */
 878static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 879{
 880        u8 dflt_q_group, dflt_q_prio;
 881        u16 dflt_q, report_q, val;
 882
 883        if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
 884            vsi->type != ICE_VSI_VF)
 885                return;
 886
 887        val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
 888        ctxt->info.valid_sections |= cpu_to_le16(val);
 889        dflt_q = 0;
 890        dflt_q_group = 0;
 891        report_q = 0;
 892        dflt_q_prio = 0;
 893
 894        /* enable flow director filtering/programming */
 895        val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
 896        ctxt->info.fd_options = cpu_to_le16(val);
 897        /* max of allocated flow director filters */
 898        ctxt->info.max_fd_fltr_dedicated =
 899                        cpu_to_le16(vsi->num_gfltr);
 900        /* max of shared flow director filters any VSI may program */
 901        ctxt->info.max_fd_fltr_shared =
 902                        cpu_to_le16(vsi->num_bfltr);
 903        /* default queue index within the VSI of the default FD */
 904        val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
 905               ICE_AQ_VSI_FD_DEF_Q_M);
 906        /* target queue or queue group to the FD filter */
 907        val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
 908                ICE_AQ_VSI_FD_DEF_GRP_M);
 909        ctxt->info.fd_def_q = cpu_to_le16(val);
 910        /* queue index on which FD filter completion is reported */
 911        val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
 912               ICE_AQ_VSI_FD_REPORT_Q_M);
 913        /* priority of the default qindex action */
 914        val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
 915                ICE_AQ_VSI_FD_DEF_PRIORITY_M);
 916        ctxt->info.fd_report_opt = cpu_to_le16(val);
 917}
 918
 919/**
 920 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 921 * @ctxt: the VSI context being set
 922 * @vsi: the VSI being configured
 923 */
 924static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 925{
 926        u8 lut_type, hash_type;
 927        struct device *dev;
 928        struct ice_pf *pf;
 929
 930        pf = vsi->back;
 931        dev = ice_pf_to_dev(pf);
 932
 933        switch (vsi->type) {
 934        case ICE_VSI_PF:
 935                /* PF VSI will inherit RSS instance of PF */
 936                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 937                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 938                break;
 939        case ICE_VSI_VF:
 940                /* VF VSI will gets a small RSS table which is a VSI LUT type */
 941                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 942                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 943                break;
 944        default:
 945                dev_dbg(dev, "Unsupported VSI type %s\n",
 946                        ice_vsi_type_str(vsi->type));
 947                return;
 948        }
 949
 950        ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
 951                                ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
 952                                ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
 953                                 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 954}
 955
 956/**
 957 * ice_vsi_init - Create and initialize a VSI
 958 * @vsi: the VSI being configured
 959 * @init_vsi: is this call creating a VSI
 960 *
 961 * This initializes a VSI context depending on the VSI type to be added and
 962 * passes it down to the add_vsi aq command to create a new VSI.
 963 */
 964static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
 965{
 966        struct ice_pf *pf = vsi->back;
 967        struct ice_hw *hw = &pf->hw;
 968        struct ice_vsi_ctx *ctxt;
 969        struct device *dev;
 970        int ret = 0;
 971
 972        dev = ice_pf_to_dev(pf);
 973        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 974        if (!ctxt)
 975                return -ENOMEM;
 976
 977        switch (vsi->type) {
 978        case ICE_VSI_CTRL:
 979        case ICE_VSI_LB:
 980        case ICE_VSI_PF:
 981                ctxt->flags = ICE_AQ_VSI_TYPE_PF;
 982                break;
 983        case ICE_VSI_VF:
 984                ctxt->flags = ICE_AQ_VSI_TYPE_VF;
 985                /* VF number here is the absolute VF number (0-255) */
 986                ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
 987                break;
 988        default:
 989                ret = -ENODEV;
 990                goto out;
 991        }
 992
 993        ice_set_dflt_vsi_ctx(ctxt);
 994        if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
 995                ice_set_fd_vsi_ctx(ctxt, vsi);
 996        /* if the switch is in VEB mode, allow VSI loopback */
 997        if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
 998                ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
 999
1000        /* Set LUT type and HASH type if RSS is enabled */
1001        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1002            vsi->type != ICE_VSI_CTRL) {
1003                ice_set_rss_vsi_ctx(ctxt, vsi);
1004                /* if updating VSI context, make sure to set valid_section:
1005                 * to indicate which section of VSI context being updated
1006                 */
1007                if (!init_vsi)
1008                        ctxt->info.valid_sections |=
1009                                cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1010        }
1011
1012        ctxt->info.sw_id = vsi->port_info->sw_id;
1013        ice_vsi_setup_q_map(vsi, ctxt);
1014        if (!init_vsi) /* means VSI being updated */
1015                /* must to indicate which section of VSI context are
1016                 * being modified
1017                 */
1018                ctxt->info.valid_sections |=
1019                        cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1020
1021        /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1022         * respectively
1023         */
1024        if (vsi->type == ICE_VSI_VF) {
1025                ctxt->info.valid_sections |=
1026                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1027                if (pf->vf[vsi->vf_id].spoofchk) {
1028                        ctxt->info.sec_flags |=
1029                                ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1030                                (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1031                                 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1032                } else {
1033                        ctxt->info.sec_flags &=
1034                                ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1035                                  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1036                                   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1037                }
1038        }
1039
1040        /* Allow control frames out of main VSI */
1041        if (vsi->type == ICE_VSI_PF) {
1042                ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1043                ctxt->info.valid_sections |=
1044                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1045        }
1046
1047        if (init_vsi) {
1048                ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1049                if (ret) {
1050                        dev_err(dev, "Add VSI failed, err %d\n", ret);
1051                        ret = -EIO;
1052                        goto out;
1053                }
1054        } else {
1055                ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1056                if (ret) {
1057                        dev_err(dev, "Update VSI failed, err %d\n", ret);
1058                        ret = -EIO;
1059                        goto out;
1060                }
1061        }
1062
1063        /* keep context for update VSI operations */
1064        vsi->info = ctxt->info;
1065
1066        /* record VSI number returned */
1067        vsi->vsi_num = ctxt->vsi_num;
1068
1069out:
1070        kfree(ctxt);
1071        return ret;
1072}
1073
1074/**
1075 * ice_free_res - free a block of resources
1076 * @res: pointer to the resource
1077 * @index: starting index previously returned by ice_get_res
1078 * @id: identifier to track owner
1079 *
1080 * Returns number of resources freed
1081 */
1082int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1083{
1084        int count = 0;
1085        int i;
1086
1087        if (!res || index >= res->end)
1088                return -EINVAL;
1089
1090        id |= ICE_RES_VALID_BIT;
1091        for (i = index; i < res->end && res->list[i] == id; i++) {
1092                res->list[i] = 0;
1093                count++;
1094        }
1095
1096        return count;
1097}
1098
1099/**
1100 * ice_search_res - Search the tracker for a block of resources
1101 * @res: pointer to the resource
1102 * @needed: size of the block needed
1103 * @id: identifier to track owner
1104 *
1105 * Returns the base item index of the block, or -ENOMEM for error
1106 */
1107static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1108{
1109        u16 start = 0, end = 0;
1110
1111        if (needed > res->end)
1112                return -ENOMEM;
1113
1114        id |= ICE_RES_VALID_BIT;
1115
1116        do {
1117                /* skip already allocated entries */
1118                if (res->list[end++] & ICE_RES_VALID_BIT) {
1119                        start = end;
1120                        if ((start + needed) > res->end)
1121                                break;
1122                }
1123
1124                if (end == (start + needed)) {
1125                        int i = start;
1126
1127                        /* there was enough, so assign it to the requestor */
1128                        while (i != end)
1129                                res->list[i++] = id;
1130
1131                        return start;
1132                }
1133        } while (end < res->end);
1134
1135        return -ENOMEM;
1136}
1137
1138/**
1139 * ice_get_free_res_count - Get free count from a resource tracker
1140 * @res: Resource tracker instance
1141 */
1142static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1143{
1144        u16 i, count = 0;
1145
1146        for (i = 0; i < res->end; i++)
1147                if (!(res->list[i] & ICE_RES_VALID_BIT))
1148                        count++;
1149
1150        return count;
1151}
1152
1153/**
1154 * ice_get_res - get a block of resources
1155 * @pf: board private structure
1156 * @res: pointer to the resource
1157 * @needed: size of the block needed
1158 * @id: identifier to track owner
1159 *
1160 * Returns the base item index of the block, or negative for error
1161 */
1162int
1163ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1164{
1165        if (!res || !pf)
1166                return -EINVAL;
1167
1168        if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1169                dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1170                        needed, res->num_entries, id);
1171                return -EINVAL;
1172        }
1173
1174        return ice_search_res(res, needed, id);
1175}
1176
1177/**
1178 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1179 * @vsi: ptr to the VSI
1180 *
1181 * This should only be called after ice_vsi_alloc() which allocates the
1182 * corresponding SW VSI structure and initializes num_queue_pairs for the
1183 * newly allocated VSI.
1184 *
1185 * Returns 0 on success or negative on failure
1186 */
1187static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1188{
1189        struct ice_pf *pf = vsi->back;
1190        struct device *dev;
1191        u16 num_q_vectors;
1192        int base;
1193
1194        dev = ice_pf_to_dev(pf);
1195        /* SRIOV doesn't grab irq_tracker entries for each VSI */
1196        if (vsi->type == ICE_VSI_VF)
1197                return 0;
1198
1199        if (vsi->base_vector) {
1200                dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1201                        vsi->vsi_num, vsi->base_vector);
1202                return -EEXIST;
1203        }
1204
1205        num_q_vectors = vsi->num_q_vectors;
1206        /* reserve slots from OS requested IRQs */
1207        if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
1208                int i;
1209
1210                ice_for_each_vf(pf, i) {
1211                        struct ice_vf *vf = &pf->vf[i];
1212
1213                        if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1214                                base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1215                                break;
1216                        }
1217                }
1218                if (i == pf->num_alloc_vfs)
1219                        base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1220                                           ICE_RES_VF_CTRL_VEC_ID);
1221        } else {
1222                base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1223                                   vsi->idx);
1224        }
1225
1226        if (base < 0) {
1227                dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1228                        ice_get_free_res_count(pf->irq_tracker),
1229                        ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1230                return -ENOENT;
1231        }
1232        vsi->base_vector = (u16)base;
1233        pf->num_avail_sw_msix -= num_q_vectors;
1234
1235        return 0;
1236}
1237
1238/**
1239 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1240 * @vsi: the VSI having rings deallocated
1241 */
1242static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1243{
1244        int i;
1245
1246        /* Avoid stale references by clearing map from vector to ring */
1247        if (vsi->q_vectors) {
1248                ice_for_each_q_vector(vsi, i) {
1249                        struct ice_q_vector *q_vector = vsi->q_vectors[i];
1250
1251                        if (q_vector) {
1252                                q_vector->tx.ring = NULL;
1253                                q_vector->rx.ring = NULL;
1254                        }
1255                }
1256        }
1257
1258        if (vsi->tx_rings) {
1259                for (i = 0; i < vsi->alloc_txq; i++) {
1260                        if (vsi->tx_rings[i]) {
1261                                kfree_rcu(vsi->tx_rings[i], rcu);
1262                                WRITE_ONCE(vsi->tx_rings[i], NULL);
1263                        }
1264                }
1265        }
1266        if (vsi->rx_rings) {
1267                for (i = 0; i < vsi->alloc_rxq; i++) {
1268                        if (vsi->rx_rings[i]) {
1269                                kfree_rcu(vsi->rx_rings[i], rcu);
1270                                WRITE_ONCE(vsi->rx_rings[i], NULL);
1271                        }
1272                }
1273        }
1274}
1275
1276/**
1277 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1278 * @vsi: VSI which is having rings allocated
1279 */
1280static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1281{
1282        struct ice_pf *pf = vsi->back;
1283        struct device *dev;
1284        u16 i;
1285
1286        dev = ice_pf_to_dev(pf);
1287        /* Allocate Tx rings */
1288        for (i = 0; i < vsi->alloc_txq; i++) {
1289                struct ice_ring *ring;
1290
1291                /* allocate with kzalloc(), free with kfree_rcu() */
1292                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1293
1294                if (!ring)
1295                        goto err_out;
1296
1297                ring->q_index = i;
1298                ring->reg_idx = vsi->txq_map[i];
1299                ring->ring_active = false;
1300                ring->vsi = vsi;
1301                ring->tx_tstamps = &pf->ptp.port.tx;
1302                ring->dev = dev;
1303                ring->count = vsi->num_tx_desc;
1304                WRITE_ONCE(vsi->tx_rings[i], ring);
1305        }
1306
1307        /* Allocate Rx rings */
1308        for (i = 0; i < vsi->alloc_rxq; i++) {
1309                struct ice_ring *ring;
1310
1311                /* allocate with kzalloc(), free with kfree_rcu() */
1312                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1313                if (!ring)
1314                        goto err_out;
1315
1316                ring->q_index = i;
1317                ring->reg_idx = vsi->rxq_map[i];
1318                ring->ring_active = false;
1319                ring->vsi = vsi;
1320                ring->netdev = vsi->netdev;
1321                ring->dev = dev;
1322                ring->count = vsi->num_rx_desc;
1323                WRITE_ONCE(vsi->rx_rings[i], ring);
1324        }
1325
1326        return 0;
1327
1328err_out:
1329        ice_vsi_clear_rings(vsi);
1330        return -ENOMEM;
1331}
1332
1333/**
1334 * ice_vsi_manage_rss_lut - disable/enable RSS
1335 * @vsi: the VSI being changed
1336 * @ena: boolean value indicating if this is an enable or disable request
1337 *
1338 * In the event of disable request for RSS, this function will zero out RSS
1339 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1340 * LUT.
1341 */
1342void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1343{
1344        u8 *lut;
1345
1346        lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1347        if (!lut)
1348                return;
1349
1350        if (ena) {
1351                if (vsi->rss_lut_user)
1352                        memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1353                else
1354                        ice_fill_rss_lut(lut, vsi->rss_table_size,
1355                                         vsi->rss_size);
1356        }
1357
1358        ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1359        kfree(lut);
1360}
1361
1362/**
1363 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1364 * @vsi: VSI to be configured
1365 */
1366static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1367{
1368        struct ice_pf *pf = vsi->back;
1369        struct device *dev;
1370        u8 *lut, *key;
1371        int err;
1372
1373        dev = ice_pf_to_dev(pf);
1374        vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1375
1376        lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1377        if (!lut)
1378                return -ENOMEM;
1379
1380        if (vsi->rss_lut_user)
1381                memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1382        else
1383                ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1384
1385        err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1386        if (err) {
1387                dev_err(dev, "set_rss_lut failed, error %d\n", err);
1388                goto ice_vsi_cfg_rss_exit;
1389        }
1390
1391        key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1392        if (!key) {
1393                err = -ENOMEM;
1394                goto ice_vsi_cfg_rss_exit;
1395        }
1396
1397        if (vsi->rss_hkey_user)
1398                memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1399        else
1400                netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1401
1402        err = ice_set_rss_key(vsi, key);
1403        if (err)
1404                dev_err(dev, "set_rss_key failed, error %d\n", err);
1405
1406        kfree(key);
1407ice_vsi_cfg_rss_exit:
1408        kfree(lut);
1409        return err;
1410}
1411
1412/**
1413 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1414 * @vsi: VSI to be configured
1415 *
1416 * This function will only be called during the VF VSI setup. Upon successful
1417 * completion of package download, this function will configure default RSS
1418 * input sets for VF VSI.
1419 */
1420static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1421{
1422        struct ice_pf *pf = vsi->back;
1423        enum ice_status status;
1424        struct device *dev;
1425
1426        dev = ice_pf_to_dev(pf);
1427        if (ice_is_safe_mode(pf)) {
1428                dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1429                        vsi->vsi_num);
1430                return;
1431        }
1432
1433        status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1434        if (status)
1435                dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1436                        vsi->vsi_num, ice_stat_str(status));
1437}
1438
1439/**
1440 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1441 * @vsi: VSI to be configured
1442 *
1443 * This function will only be called after successful download package call
1444 * during initialization of PF. Since the downloaded package will erase the
1445 * RSS section, this function will configure RSS input sets for different
1446 * flow types. The last profile added has the highest priority, therefore 2
1447 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1448 * (i.e. IPv4 src/dst TCP src/dst port).
1449 */
1450static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1451{
1452        u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1453        struct ice_pf *pf = vsi->back;
1454        struct ice_hw *hw = &pf->hw;
1455        enum ice_status status;
1456        struct device *dev;
1457
1458        dev = ice_pf_to_dev(pf);
1459        if (ice_is_safe_mode(pf)) {
1460                dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1461                        vsi_num);
1462                return;
1463        }
1464        /* configure RSS for IPv4 with input set IP src/dst */
1465        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1466                                 ICE_FLOW_SEG_HDR_IPV4);
1467        if (status)
1468                dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1469                        vsi_num, ice_stat_str(status));
1470
1471        /* configure RSS for IPv6 with input set IPv6 src/dst */
1472        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1473                                 ICE_FLOW_SEG_HDR_IPV6);
1474        if (status)
1475                dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1476                        vsi_num, ice_stat_str(status));
1477
1478        /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1479        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1480                                 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1481        if (status)
1482                dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1483                        vsi_num, ice_stat_str(status));
1484
1485        /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1486        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1487                                 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1488        if (status)
1489                dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1490                        vsi_num, ice_stat_str(status));
1491
1492        /* configure RSS for sctp4 with input set IP src/dst */
1493        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1494                                 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1495        if (status)
1496                dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1497                        vsi_num, ice_stat_str(status));
1498
1499        /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1500        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1501                                 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1502        if (status)
1503                dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1504                        vsi_num, ice_stat_str(status));
1505
1506        /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1507        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1508                                 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1509        if (status)
1510                dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1511                        vsi_num, ice_stat_str(status));
1512
1513        /* configure RSS for sctp6 with input set IPv6 src/dst */
1514        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1515                                 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1516        if (status)
1517                dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1518                        vsi_num, ice_stat_str(status));
1519}
1520
1521/**
1522 * ice_pf_state_is_nominal - checks the PF for nominal state
1523 * @pf: pointer to PF to check
1524 *
1525 * Check the PF's state for a collection of bits that would indicate
1526 * the PF is in a state that would inhibit normal operation for
1527 * driver functionality.
1528 *
1529 * Returns true if PF is in a nominal state, false otherwise
1530 */
1531bool ice_pf_state_is_nominal(struct ice_pf *pf)
1532{
1533        DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1534
1535        if (!pf)
1536                return false;
1537
1538        bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1539        if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1540                return false;
1541
1542        return true;
1543}
1544
1545/**
1546 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1547 * @vsi: the VSI to be updated
1548 */
1549void ice_update_eth_stats(struct ice_vsi *vsi)
1550{
1551        struct ice_eth_stats *prev_es, *cur_es;
1552        struct ice_hw *hw = &vsi->back->hw;
1553        u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1554
1555        prev_es = &vsi->eth_stats_prev;
1556        cur_es = &vsi->eth_stats;
1557
1558        ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1559                          &prev_es->rx_bytes, &cur_es->rx_bytes);
1560
1561        ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1562                          &prev_es->rx_unicast, &cur_es->rx_unicast);
1563
1564        ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1565                          &prev_es->rx_multicast, &cur_es->rx_multicast);
1566
1567        ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1568                          &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1569
1570        ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1571                          &prev_es->rx_discards, &cur_es->rx_discards);
1572
1573        ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1574                          &prev_es->tx_bytes, &cur_es->tx_bytes);
1575
1576        ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1577                          &prev_es->tx_unicast, &cur_es->tx_unicast);
1578
1579        ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1580                          &prev_es->tx_multicast, &cur_es->tx_multicast);
1581
1582        ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1583                          &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1584
1585        ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1586                          &prev_es->tx_errors, &cur_es->tx_errors);
1587
1588        vsi->stat_offsets_loaded = true;
1589}
1590
1591/**
1592 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1593 * @vsi: the VSI being configured
1594 * @vid: VLAN ID to be added
1595 * @action: filter action to be performed on match
1596 */
1597int
1598ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1599{
1600        struct ice_pf *pf = vsi->back;
1601        struct device *dev;
1602        int err = 0;
1603
1604        dev = ice_pf_to_dev(pf);
1605
1606        if (!ice_fltr_add_vlan(vsi, vid, action)) {
1607                vsi->num_vlan++;
1608        } else {
1609                err = -ENODEV;
1610                dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1611                        vsi->vsi_num);
1612        }
1613
1614        return err;
1615}
1616
1617/**
1618 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1619 * @vsi: the VSI being configured
1620 * @vid: VLAN ID to be removed
1621 *
1622 * Returns 0 on success and negative on failure
1623 */
1624int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1625{
1626        struct ice_pf *pf = vsi->back;
1627        enum ice_status status;
1628        struct device *dev;
1629        int err = 0;
1630
1631        dev = ice_pf_to_dev(pf);
1632
1633        status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1634        if (!status) {
1635                vsi->num_vlan--;
1636        } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1637                dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1638                        vid, vsi->vsi_num, ice_stat_str(status));
1639        } else {
1640                dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1641                        vid, vsi->vsi_num, ice_stat_str(status));
1642                err = -EIO;
1643        }
1644
1645        return err;
1646}
1647
1648/**
1649 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1650 * @vsi: VSI
1651 */
1652void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1653{
1654        if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1655                vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1656                vsi->rx_buf_len = ICE_RXBUF_2048;
1657#if (PAGE_SIZE < 8192)
1658        } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1659                   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1660                vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1661                vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1662#endif
1663        } else {
1664                vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1665#if (PAGE_SIZE < 8192)
1666                vsi->rx_buf_len = ICE_RXBUF_3072;
1667#else
1668                vsi->rx_buf_len = ICE_RXBUF_2048;
1669#endif
1670        }
1671}
1672
1673/**
1674 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1675 * @hw: HW pointer
1676 * @pf_q: index of the Rx queue in the PF's queue space
1677 * @rxdid: flexible descriptor RXDID
1678 * @prio: priority for the RXDID for this queue
1679 * @ena_ts: true to enable timestamp and false to disable timestamp
1680 */
1681void
1682ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1683                        bool ena_ts)
1684{
1685        int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1686
1687        /* clear any previous values */
1688        regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1689                    QRXFLXP_CNTXT_RXDID_PRIO_M |
1690                    QRXFLXP_CNTXT_TS_M);
1691
1692        regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1693                QRXFLXP_CNTXT_RXDID_IDX_M;
1694
1695        regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1696                QRXFLXP_CNTXT_RXDID_PRIO_M;
1697
1698        if (ena_ts)
1699                /* Enable TimeSync on this queue */
1700                regval |= QRXFLXP_CNTXT_TS_M;
1701
1702        wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1703}
1704
1705int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1706{
1707        if (q_idx >= vsi->num_rxq)
1708                return -EINVAL;
1709
1710        return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1711}
1712
1713int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx)
1714{
1715        struct ice_aqc_add_tx_qgrp *qg_buf;
1716        int err;
1717
1718        if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1719                return -EINVAL;
1720
1721        qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1722        if (!qg_buf)
1723                return -ENOMEM;
1724
1725        qg_buf->num_txqs = 1;
1726
1727        err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1728        kfree(qg_buf);
1729        return err;
1730}
1731
1732/**
1733 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1734 * @vsi: the VSI being configured
1735 *
1736 * Return 0 on success and a negative value on error
1737 * Configure the Rx VSI for operation.
1738 */
1739int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1740{
1741        u16 i;
1742
1743        if (vsi->type == ICE_VSI_VF)
1744                goto setup_rings;
1745
1746        ice_vsi_cfg_frame_size(vsi);
1747setup_rings:
1748        /* set up individual rings */
1749        ice_for_each_rxq(vsi, i) {
1750                int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1751
1752                if (err)
1753                        return err;
1754        }
1755
1756        return 0;
1757}
1758
1759/**
1760 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1761 * @vsi: the VSI being configured
1762 * @rings: Tx ring array to be configured
1763 * @count: number of Tx ring array elements
1764 *
1765 * Return 0 on success and a negative value on error
1766 * Configure the Tx VSI for operation.
1767 */
1768static int
1769ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1770{
1771        struct ice_aqc_add_tx_qgrp *qg_buf;
1772        u16 q_idx = 0;
1773        int err = 0;
1774
1775        qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1776        if (!qg_buf)
1777                return -ENOMEM;
1778
1779        qg_buf->num_txqs = 1;
1780
1781        for (q_idx = 0; q_idx < count; q_idx++) {
1782                err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1783                if (err)
1784                        goto err_cfg_txqs;
1785        }
1786
1787err_cfg_txqs:
1788        kfree(qg_buf);
1789        return err;
1790}
1791
1792/**
1793 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1794 * @vsi: the VSI being configured
1795 *
1796 * Return 0 on success and a negative value on error
1797 * Configure the Tx VSI for operation.
1798 */
1799int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1800{
1801        return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1802}
1803
1804/**
1805 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1806 * @vsi: the VSI being configured
1807 *
1808 * Return 0 on success and a negative value on error
1809 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1810 */
1811int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1812{
1813        int ret;
1814        int i;
1815
1816        ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1817        if (ret)
1818                return ret;
1819
1820        for (i = 0; i < vsi->num_xdp_txq; i++)
1821                vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1822
1823        return ret;
1824}
1825
1826/**
1827 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1828 * @intrl: interrupt rate limit in usecs
1829 * @gran: interrupt rate limit granularity in usecs
1830 *
1831 * This function converts a decimal interrupt rate limit in usecs to the format
1832 * expected by firmware.
1833 */
1834static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1835{
1836        u32 val = intrl / gran;
1837
1838        if (val)
1839                return val | GLINT_RATE_INTRL_ENA_M;
1840        return 0;
1841}
1842
1843/**
1844 * ice_write_intrl - write throttle rate limit to interrupt specific register
1845 * @q_vector: pointer to interrupt specific structure
1846 * @intrl: throttle rate limit in microseconds to write
1847 */
1848void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1849{
1850        struct ice_hw *hw = &q_vector->vsi->back->hw;
1851
1852        wr32(hw, GLINT_RATE(q_vector->reg_idx),
1853             ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1854}
1855
1856/**
1857 * __ice_write_itr - write throttle rate to register
1858 * @q_vector: pointer to interrupt data structure
1859 * @rc: pointer to ring container
1860 * @itr: throttle rate in microseconds to write
1861 */
1862static void __ice_write_itr(struct ice_q_vector *q_vector,
1863                            struct ice_ring_container *rc, u16 itr)
1864{
1865        struct ice_hw *hw = &q_vector->vsi->back->hw;
1866
1867        wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1868             ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1869}
1870
1871/**
1872 * ice_write_itr - write throttle rate to queue specific register
1873 * @rc: pointer to ring container
1874 * @itr: throttle rate in microseconds to write
1875 */
1876void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1877{
1878        struct ice_q_vector *q_vector;
1879
1880        if (!rc->ring)
1881                return;
1882
1883        q_vector = rc->ring->q_vector;
1884
1885        __ice_write_itr(q_vector, rc, itr);
1886}
1887
1888/**
1889 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1890 * @vsi: the VSI being configured
1891 *
1892 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1893 * for the VF VSI.
1894 */
1895void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1896{
1897        struct ice_pf *pf = vsi->back;
1898        struct ice_hw *hw = &pf->hw;
1899        u16 txq = 0, rxq = 0;
1900        int i, q;
1901
1902        for (i = 0; i < vsi->num_q_vectors; i++) {
1903                struct ice_q_vector *q_vector = vsi->q_vectors[i];
1904                u16 reg_idx = q_vector->reg_idx;
1905
1906                ice_cfg_itr(hw, q_vector);
1907
1908                /* Both Transmit Queue Interrupt Cause Control register
1909                 * and Receive Queue Interrupt Cause control register
1910                 * expects MSIX_INDX field to be the vector index
1911                 * within the function space and not the absolute
1912                 * vector index across PF or across device.
1913                 * For SR-IOV VF VSIs queue vector index always starts
1914                 * with 1 since first vector index(0) is used for OICR
1915                 * in VF space. Since VMDq and other PF VSIs are within
1916                 * the PF function space, use the vector index that is
1917                 * tracked for this PF.
1918                 */
1919                for (q = 0; q < q_vector->num_ring_tx; q++) {
1920                        ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1921                                              q_vector->tx.itr_idx);
1922                        txq++;
1923                }
1924
1925                for (q = 0; q < q_vector->num_ring_rx; q++) {
1926                        ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1927                                              q_vector->rx.itr_idx);
1928                        rxq++;
1929                }
1930        }
1931}
1932
1933/**
1934 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1935 * @vsi: the VSI being changed
1936 */
1937int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1938{
1939        struct ice_hw *hw = &vsi->back->hw;
1940        struct ice_vsi_ctx *ctxt;
1941        enum ice_status status;
1942        int ret = 0;
1943
1944        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1945        if (!ctxt)
1946                return -ENOMEM;
1947
1948        /* Here we are configuring the VSI to let the driver add VLAN tags by
1949         * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1950         * insertion happens in the Tx hot path, in ice_tx_map.
1951         */
1952        ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1953
1954        /* Preserve existing VLAN strip setting */
1955        ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1956                                  ICE_AQ_VSI_VLAN_EMOD_M);
1957
1958        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1959
1960        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1961        if (status) {
1962                dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1963                        ice_stat_str(status),
1964                        ice_aq_str(hw->adminq.sq_last_status));
1965                ret = -EIO;
1966                goto out;
1967        }
1968
1969        vsi->info.vlan_flags = ctxt->info.vlan_flags;
1970out:
1971        kfree(ctxt);
1972        return ret;
1973}
1974
1975/**
1976 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1977 * @vsi: the VSI being changed
1978 * @ena: boolean value indicating if this is a enable or disable request
1979 */
1980int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1981{
1982        struct ice_hw *hw = &vsi->back->hw;
1983        struct ice_vsi_ctx *ctxt;
1984        enum ice_status status;
1985        int ret = 0;
1986
1987        /* do not allow modifying VLAN stripping when a port VLAN is configured
1988         * on this VSI
1989         */
1990        if (vsi->info.pvid)
1991                return 0;
1992
1993        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1994        if (!ctxt)
1995                return -ENOMEM;
1996
1997        /* Here we are configuring what the VSI should do with the VLAN tag in
1998         * the Rx packet. We can either leave the tag in the packet or put it in
1999         * the Rx descriptor.
2000         */
2001        if (ena)
2002                /* Strip VLAN tag from Rx packet and put it in the desc */
2003                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2004        else
2005                /* Disable stripping. Leave tag in packet */
2006                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2007
2008        /* Allow all packets untagged/tagged */
2009        ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2010
2011        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2012
2013        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2014        if (status) {
2015                dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
2016                        ena, ice_stat_str(status),
2017                        ice_aq_str(hw->adminq.sq_last_status));
2018                ret = -EIO;
2019                goto out;
2020        }
2021
2022        vsi->info.vlan_flags = ctxt->info.vlan_flags;
2023out:
2024        kfree(ctxt);
2025        return ret;
2026}
2027
2028/**
2029 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2030 * @vsi: the VSI whose rings are to be enabled
2031 *
2032 * Returns 0 on success and a negative value on error
2033 */
2034int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2035{
2036        return ice_vsi_ctrl_all_rx_rings(vsi, true);
2037}
2038
2039/**
2040 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2041 * @vsi: the VSI whose rings are to be disabled
2042 *
2043 * Returns 0 on success and a negative value on error
2044 */
2045int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2046{
2047        return ice_vsi_ctrl_all_rx_rings(vsi, false);
2048}
2049
2050/**
2051 * ice_vsi_stop_tx_rings - Disable Tx rings
2052 * @vsi: the VSI being configured
2053 * @rst_src: reset source
2054 * @rel_vmvf_num: Relative ID of VF/VM
2055 * @rings: Tx ring array to be stopped
2056 * @count: number of Tx ring array elements
2057 */
2058static int
2059ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2060                      u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
2061{
2062        u16 q_idx;
2063
2064        if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2065                return -EINVAL;
2066
2067        for (q_idx = 0; q_idx < count; q_idx++) {
2068                struct ice_txq_meta txq_meta = { };
2069                int status;
2070
2071                if (!rings || !rings[q_idx])
2072                        return -EINVAL;
2073
2074                ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2075                status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2076                                              rings[q_idx], &txq_meta);
2077
2078                if (status)
2079                        return status;
2080        }
2081
2082        return 0;
2083}
2084
2085/**
2086 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2087 * @vsi: the VSI being configured
2088 * @rst_src: reset source
2089 * @rel_vmvf_num: Relative ID of VF/VM
2090 */
2091int
2092ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2093                          u16 rel_vmvf_num)
2094{
2095        return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2096}
2097
2098/**
2099 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2100 * @vsi: the VSI being configured
2101 */
2102int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2103{
2104        return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2105}
2106
2107/**
2108 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2109 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2110 *
2111 * returns true if Rx VLAN pruning is enabled and false otherwise.
2112 */
2113bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2114{
2115        if (!vsi)
2116                return false;
2117
2118        return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2119}
2120
2121/**
2122 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2123 * @vsi: VSI to enable or disable VLAN pruning on
2124 * @ena: set to true to enable VLAN pruning and false to disable it
2125 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2126 *
2127 * returns 0 if VSI is updated, negative otherwise
2128 */
2129int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2130{
2131        struct ice_vsi_ctx *ctxt;
2132        struct ice_pf *pf;
2133        int status;
2134
2135        if (!vsi)
2136                return -EINVAL;
2137
2138        /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2139         * mode. VLAN pruning will be enabled when the interface exits
2140         * promiscuous mode if any VLAN filters are active.
2141         */
2142        if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2143                return 0;
2144
2145        pf = vsi->back;
2146        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2147        if (!ctxt)
2148                return -ENOMEM;
2149
2150        ctxt->info = vsi->info;
2151
2152        if (ena)
2153                ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2154        else
2155                ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2156
2157        if (!vlan_promisc)
2158                ctxt->info.valid_sections =
2159                        cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2160
2161        status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2162        if (status) {
2163                netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2164                           ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2165                           ice_stat_str(status),
2166                           ice_aq_str(pf->hw.adminq.sq_last_status));
2167                goto err_out;
2168        }
2169
2170        vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2171
2172        kfree(ctxt);
2173        return 0;
2174
2175err_out:
2176        kfree(ctxt);
2177        return -EIO;
2178}
2179
2180static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2181{
2182        struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2183
2184        vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2185        vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2186}
2187
2188/**
2189 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2190 * @vsi: VSI to set the q_vectors register index on
2191 */
2192static int
2193ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2194{
2195        u16 i;
2196
2197        if (!vsi || !vsi->q_vectors)
2198                return -EINVAL;
2199
2200        ice_for_each_q_vector(vsi, i) {
2201                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2202
2203                if (!q_vector) {
2204                        dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2205                                i, vsi->vsi_num);
2206                        goto clear_reg_idx;
2207                }
2208
2209                if (vsi->type == ICE_VSI_VF) {
2210                        struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2211
2212                        q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2213                } else {
2214                        q_vector->reg_idx =
2215                                q_vector->v_idx + vsi->base_vector;
2216                }
2217        }
2218
2219        return 0;
2220
2221clear_reg_idx:
2222        ice_for_each_q_vector(vsi, i) {
2223                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2224
2225                if (q_vector)
2226                        q_vector->reg_idx = 0;
2227        }
2228
2229        return -EINVAL;
2230}
2231
2232/**
2233 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2234 * @vsi: the VSI being configured
2235 * @tx: bool to determine Tx or Rx rule
2236 * @create: bool to determine create or remove Rule
2237 */
2238void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2239{
2240        enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2241                                    enum ice_sw_fwd_act_type act);
2242        struct ice_pf *pf = vsi->back;
2243        enum ice_status status;
2244        struct device *dev;
2245
2246        dev = ice_pf_to_dev(pf);
2247        eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2248
2249        if (tx) {
2250                status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2251                                  ICE_DROP_PACKET);
2252        } else {
2253                if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2254                        status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2255                                                          create);
2256                } else {
2257                        status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2258                                          ICE_FWD_TO_VSI);
2259                }
2260        }
2261
2262        if (status)
2263                dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2264                        create ? "adding" : "removing", tx ? "TX" : "RX",
2265                        vsi->vsi_num, ice_stat_str(status));
2266}
2267
2268/**
2269 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2270 * @vsi: pointer to the VSI
2271 *
2272 * This function will allocate new scheduler aggregator now if needed and will
2273 * move specified VSI into it.
2274 */
2275static void ice_set_agg_vsi(struct ice_vsi *vsi)
2276{
2277        struct device *dev = ice_pf_to_dev(vsi->back);
2278        struct ice_agg_node *agg_node_iter = NULL;
2279        u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2280        struct ice_agg_node *agg_node = NULL;
2281        int node_offset, max_agg_nodes = 0;
2282        struct ice_port_info *port_info;
2283        struct ice_pf *pf = vsi->back;
2284        u32 agg_node_id_start = 0;
2285        enum ice_status status;
2286
2287        /* create (as needed) scheduler aggregator node and move VSI into
2288         * corresponding aggregator node
2289         * - PF aggregator node to contains VSIs of type _PF and _CTRL
2290         * - VF aggregator nodes will contain VF VSI
2291         */
2292        port_info = pf->hw.port_info;
2293        if (!port_info)
2294                return;
2295
2296        switch (vsi->type) {
2297        case ICE_VSI_CTRL:
2298        case ICE_VSI_LB:
2299        case ICE_VSI_PF:
2300                max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2301                agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2302                agg_node_iter = &pf->pf_agg_node[0];
2303                break;
2304        case ICE_VSI_VF:
2305                /* user can create 'n' VFs on a given PF, but since max children
2306                 * per aggregator node can be only 64. Following code handles
2307                 * aggregator(s) for VF VSIs, either selects a agg_node which
2308                 * was already created provided num_vsis < 64, otherwise
2309                 * select next available node, which will be created
2310                 */
2311                max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2312                agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2313                agg_node_iter = &pf->vf_agg_node[0];
2314                break;
2315        default:
2316                /* other VSI type, handle later if needed */
2317                dev_dbg(dev, "unexpected VSI type %s\n",
2318                        ice_vsi_type_str(vsi->type));
2319                return;
2320        }
2321
2322        /* find the appropriate aggregator node */
2323        for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2324                /* see if we can find space in previously created
2325                 * node if num_vsis < 64, otherwise skip
2326                 */
2327                if (agg_node_iter->num_vsis &&
2328                    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2329                        agg_node_iter++;
2330                        continue;
2331                }
2332
2333                if (agg_node_iter->valid &&
2334                    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2335                        agg_id = agg_node_iter->agg_id;
2336                        agg_node = agg_node_iter;
2337                        break;
2338                }
2339
2340                /* find unclaimed agg_id */
2341                if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2342                        agg_id = node_offset + agg_node_id_start;
2343                        agg_node = agg_node_iter;
2344                        break;
2345                }
2346                /* move to next agg_node */
2347                agg_node_iter++;
2348        }
2349
2350        if (!agg_node)
2351                return;
2352
2353        /* if selected aggregator node was not created, create it */
2354        if (!agg_node->valid) {
2355                status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2356                                     (u8)vsi->tc_cfg.ena_tc);
2357                if (status) {
2358                        dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2359                                agg_id);
2360                        return;
2361                }
2362                /* aggregator node is created, store the neeeded info */
2363                agg_node->valid = true;
2364                agg_node->agg_id = agg_id;
2365        }
2366
2367        /* move VSI to corresponding aggregator node */
2368        status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2369                                     (u8)vsi->tc_cfg.ena_tc);
2370        if (status) {
2371                dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2372                        vsi->idx, agg_id);
2373                return;
2374        }
2375
2376        /* keep active children count for aggregator node */
2377        agg_node->num_vsis++;
2378
2379        /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2380         * to aggregator node
2381         */
2382        vsi->agg_node = agg_node;
2383        dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2384                vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2385                vsi->agg_node->num_vsis);
2386}
2387
2388/**
2389 * ice_vsi_setup - Set up a VSI by a given type
2390 * @pf: board private structure
2391 * @pi: pointer to the port_info instance
2392 * @vsi_type: VSI type
2393 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2394 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2395 *         fill-in ICE_INVAL_VFID as input.
2396 *
2397 * This allocates the sw VSI structure and its queue resources.
2398 *
2399 * Returns pointer to the successfully allocated and configured VSI sw struct on
2400 * success, NULL on failure.
2401 */
2402struct ice_vsi *
2403ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2404              enum ice_vsi_type vsi_type, u16 vf_id)
2405{
2406        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2407        struct device *dev = ice_pf_to_dev(pf);
2408        enum ice_status status;
2409        struct ice_vsi *vsi;
2410        int ret, i;
2411
2412        if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2413                vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2414        else
2415                vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2416
2417        if (!vsi) {
2418                dev_err(dev, "could not allocate VSI\n");
2419                return NULL;
2420        }
2421
2422        vsi->port_info = pi;
2423        vsi->vsw = pf->first_sw;
2424        if (vsi->type == ICE_VSI_PF)
2425                vsi->ethtype = ETH_P_PAUSE;
2426
2427        if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL)
2428                vsi->vf_id = vf_id;
2429
2430        ice_alloc_fd_res(vsi);
2431
2432        if (ice_vsi_get_qs(vsi)) {
2433                dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2434                        vsi->idx);
2435                goto unroll_vsi_alloc;
2436        }
2437
2438        /* set RSS capabilities */
2439        ice_vsi_set_rss_params(vsi);
2440
2441        /* set TC configuration */
2442        ice_vsi_set_tc_cfg(vsi);
2443
2444        /* create the VSI */
2445        ret = ice_vsi_init(vsi, true);
2446        if (ret)
2447                goto unroll_get_qs;
2448
2449        switch (vsi->type) {
2450        case ICE_VSI_CTRL:
2451        case ICE_VSI_PF:
2452                ret = ice_vsi_alloc_q_vectors(vsi);
2453                if (ret)
2454                        goto unroll_vsi_init;
2455
2456                ret = ice_vsi_setup_vector_base(vsi);
2457                if (ret)
2458                        goto unroll_alloc_q_vector;
2459
2460                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2461                if (ret)
2462                        goto unroll_vector_base;
2463
2464                ret = ice_vsi_alloc_rings(vsi);
2465                if (ret)
2466                        goto unroll_vector_base;
2467
2468                /* Always add VLAN ID 0 switch rule by default. This is needed
2469                 * in order to allow all untagged and 0 tagged priority traffic
2470                 * if Rx VLAN pruning is enabled. Also there are cases where we
2471                 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2472                 * so this handles those cases (i.e. adding the PF to a bridge
2473                 * without the 8021q module loaded).
2474                 */
2475                ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2476                if (ret)
2477                        goto unroll_clear_rings;
2478
2479                ice_vsi_map_rings_to_vectors(vsi);
2480
2481                /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2482                if (vsi->type != ICE_VSI_CTRL)
2483                        /* Do not exit if configuring RSS had an issue, at
2484                         * least receive traffic on first queue. Hence no
2485                         * need to capture return value
2486                         */
2487                        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2488                                ice_vsi_cfg_rss_lut_key(vsi);
2489                                ice_vsi_set_rss_flow_fld(vsi);
2490                        }
2491                ice_init_arfs(vsi);
2492                break;
2493        case ICE_VSI_VF:
2494                /* VF driver will take care of creating netdev for this type and
2495                 * map queues to vectors through Virtchnl, PF driver only
2496                 * creates a VSI and corresponding structures for bookkeeping
2497                 * purpose
2498                 */
2499                ret = ice_vsi_alloc_q_vectors(vsi);
2500                if (ret)
2501                        goto unroll_vsi_init;
2502
2503                ret = ice_vsi_alloc_rings(vsi);
2504                if (ret)
2505                        goto unroll_alloc_q_vector;
2506
2507                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2508                if (ret)
2509                        goto unroll_vector_base;
2510
2511                /* Do not exit if configuring RSS had an issue, at least
2512                 * receive traffic on first queue. Hence no need to capture
2513                 * return value
2514                 */
2515                if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2516                        ice_vsi_cfg_rss_lut_key(vsi);
2517                        ice_vsi_set_vf_rss_flow_fld(vsi);
2518                }
2519                break;
2520        case ICE_VSI_LB:
2521                ret = ice_vsi_alloc_rings(vsi);
2522                if (ret)
2523                        goto unroll_vsi_init;
2524                break;
2525        default:
2526                /* clean up the resources and exit */
2527                goto unroll_vsi_init;
2528        }
2529
2530        /* configure VSI nodes based on number of queues and TC's */
2531        for (i = 0; i < vsi->tc_cfg.numtc; i++)
2532                max_txqs[i] = vsi->alloc_txq;
2533
2534        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2535                                 max_txqs);
2536        if (status) {
2537                dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2538                        vsi->vsi_num, ice_stat_str(status));
2539                goto unroll_clear_rings;
2540        }
2541
2542        /* Add switch rule to drop all Tx Flow Control Frames, of look up
2543         * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2544         * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2545         * The rule is added once for PF VSI in order to create appropriate
2546         * recipe, since VSI/VSI list is ignored with drop action...
2547         * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2548         * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2549         * settings in the HW.
2550         */
2551        if (!ice_is_safe_mode(pf))
2552                if (vsi->type == ICE_VSI_PF) {
2553                        ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2554                                         ICE_DROP_PACKET);
2555                        ice_cfg_sw_lldp(vsi, true, true);
2556                }
2557
2558        if (!vsi->agg_node)
2559                ice_set_agg_vsi(vsi);
2560        return vsi;
2561
2562unroll_clear_rings:
2563        ice_vsi_clear_rings(vsi);
2564unroll_vector_base:
2565        /* reclaim SW interrupts back to the common pool */
2566        ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2567        pf->num_avail_sw_msix += vsi->num_q_vectors;
2568unroll_alloc_q_vector:
2569        ice_vsi_free_q_vectors(vsi);
2570unroll_vsi_init:
2571        ice_vsi_delete(vsi);
2572unroll_get_qs:
2573        ice_vsi_put_qs(vsi);
2574unroll_vsi_alloc:
2575        if (vsi_type == ICE_VSI_VF)
2576                ice_enable_lag(pf->lag);
2577        ice_vsi_clear(vsi);
2578
2579        return NULL;
2580}
2581
2582/**
2583 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2584 * @vsi: the VSI being cleaned up
2585 */
2586static void ice_vsi_release_msix(struct ice_vsi *vsi)
2587{
2588        struct ice_pf *pf = vsi->back;
2589        struct ice_hw *hw = &pf->hw;
2590        u32 txq = 0;
2591        u32 rxq = 0;
2592        int i, q;
2593
2594        for (i = 0; i < vsi->num_q_vectors; i++) {
2595                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2596
2597                ice_write_intrl(q_vector, 0);
2598                for (q = 0; q < q_vector->num_ring_tx; q++) {
2599                        ice_write_itr(&q_vector->tx, 0);
2600                        wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2601                        if (ice_is_xdp_ena_vsi(vsi)) {
2602                                u32 xdp_txq = txq + vsi->num_xdp_txq;
2603
2604                                wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2605                        }
2606                        txq++;
2607                }
2608
2609                for (q = 0; q < q_vector->num_ring_rx; q++) {
2610                        ice_write_itr(&q_vector->rx, 0);
2611                        wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2612                        rxq++;
2613                }
2614        }
2615
2616        ice_flush(hw);
2617}
2618
2619/**
2620 * ice_vsi_free_irq - Free the IRQ association with the OS
2621 * @vsi: the VSI being configured
2622 */
2623void ice_vsi_free_irq(struct ice_vsi *vsi)
2624{
2625        struct ice_pf *pf = vsi->back;
2626        int base = vsi->base_vector;
2627        int i;
2628
2629        if (!vsi->q_vectors || !vsi->irqs_ready)
2630                return;
2631
2632        ice_vsi_release_msix(vsi);
2633        if (vsi->type == ICE_VSI_VF)
2634                return;
2635
2636        vsi->irqs_ready = false;
2637        ice_for_each_q_vector(vsi, i) {
2638                u16 vector = i + base;
2639                int irq_num;
2640
2641                irq_num = pf->msix_entries[vector].vector;
2642
2643                /* free only the irqs that were actually requested */
2644                if (!vsi->q_vectors[i] ||
2645                    !(vsi->q_vectors[i]->num_ring_tx ||
2646                      vsi->q_vectors[i]->num_ring_rx))
2647                        continue;
2648
2649                /* clear the affinity notifier in the IRQ descriptor */
2650                irq_set_affinity_notifier(irq_num, NULL);
2651
2652                /* clear the affinity_mask in the IRQ descriptor */
2653                irq_set_affinity_hint(irq_num, NULL);
2654                synchronize_irq(irq_num);
2655                devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2656        }
2657}
2658
2659/**
2660 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2661 * @vsi: the VSI having resources freed
2662 */
2663void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2664{
2665        int i;
2666
2667        if (!vsi->tx_rings)
2668                return;
2669
2670        ice_for_each_txq(vsi, i)
2671                if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2672                        ice_free_tx_ring(vsi->tx_rings[i]);
2673}
2674
2675/**
2676 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2677 * @vsi: the VSI having resources freed
2678 */
2679void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2680{
2681        int i;
2682
2683        if (!vsi->rx_rings)
2684                return;
2685
2686        ice_for_each_rxq(vsi, i)
2687                if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2688                        ice_free_rx_ring(vsi->rx_rings[i]);
2689}
2690
2691/**
2692 * ice_vsi_close - Shut down a VSI
2693 * @vsi: the VSI being shut down
2694 */
2695void ice_vsi_close(struct ice_vsi *vsi)
2696{
2697        if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2698                ice_down(vsi);
2699
2700        ice_vsi_free_irq(vsi);
2701        ice_vsi_free_tx_rings(vsi);
2702        ice_vsi_free_rx_rings(vsi);
2703}
2704
2705/**
2706 * ice_ena_vsi - resume a VSI
2707 * @vsi: the VSI being resume
2708 * @locked: is the rtnl_lock already held
2709 */
2710int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2711{
2712        int err = 0;
2713
2714        if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2715                return 0;
2716
2717        clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2718
2719        if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2720                if (netif_running(vsi->netdev)) {
2721                        if (!locked)
2722                                rtnl_lock();
2723
2724                        err = ice_open_internal(vsi->netdev);
2725
2726                        if (!locked)
2727                                rtnl_unlock();
2728                }
2729        } else if (vsi->type == ICE_VSI_CTRL) {
2730                err = ice_vsi_open_ctrl(vsi);
2731        }
2732
2733        return err;
2734}
2735
2736/**
2737 * ice_dis_vsi - pause a VSI
2738 * @vsi: the VSI being paused
2739 * @locked: is the rtnl_lock already held
2740 */
2741void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2742{
2743        if (test_bit(ICE_VSI_DOWN, vsi->state))
2744                return;
2745
2746        set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2747
2748        if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2749                if (netif_running(vsi->netdev)) {
2750                        if (!locked)
2751                                rtnl_lock();
2752
2753                        ice_vsi_close(vsi);
2754
2755                        if (!locked)
2756                                rtnl_unlock();
2757                } else {
2758                        ice_vsi_close(vsi);
2759                }
2760        } else if (vsi->type == ICE_VSI_CTRL) {
2761                ice_vsi_close(vsi);
2762        }
2763}
2764
2765/**
2766 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2767 * @vsi: the VSI being un-configured
2768 */
2769void ice_vsi_dis_irq(struct ice_vsi *vsi)
2770{
2771        int base = vsi->base_vector;
2772        struct ice_pf *pf = vsi->back;
2773        struct ice_hw *hw = &pf->hw;
2774        u32 val;
2775        int i;
2776
2777        /* disable interrupt causation from each queue */
2778        if (vsi->tx_rings) {
2779                ice_for_each_txq(vsi, i) {
2780                        if (vsi->tx_rings[i]) {
2781                                u16 reg;
2782
2783                                reg = vsi->tx_rings[i]->reg_idx;
2784                                val = rd32(hw, QINT_TQCTL(reg));
2785                                val &= ~QINT_TQCTL_CAUSE_ENA_M;
2786                                wr32(hw, QINT_TQCTL(reg), val);
2787                        }
2788                }
2789        }
2790
2791        if (vsi->rx_rings) {
2792                ice_for_each_rxq(vsi, i) {
2793                        if (vsi->rx_rings[i]) {
2794                                u16 reg;
2795
2796                                reg = vsi->rx_rings[i]->reg_idx;
2797                                val = rd32(hw, QINT_RQCTL(reg));
2798                                val &= ~QINT_RQCTL_CAUSE_ENA_M;
2799                                wr32(hw, QINT_RQCTL(reg), val);
2800                        }
2801                }
2802        }
2803
2804        /* disable each interrupt */
2805        ice_for_each_q_vector(vsi, i) {
2806                if (!vsi->q_vectors[i])
2807                        continue;
2808                wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2809        }
2810
2811        ice_flush(hw);
2812
2813        /* don't call synchronize_irq() for VF's from the host */
2814        if (vsi->type == ICE_VSI_VF)
2815                return;
2816
2817        ice_for_each_q_vector(vsi, i)
2818                synchronize_irq(pf->msix_entries[i + base].vector);
2819}
2820
2821/**
2822 * ice_napi_del - Remove NAPI handler for the VSI
2823 * @vsi: VSI for which NAPI handler is to be removed
2824 */
2825void ice_napi_del(struct ice_vsi *vsi)
2826{
2827        int v_idx;
2828
2829        if (!vsi->netdev)
2830                return;
2831
2832        ice_for_each_q_vector(vsi, v_idx)
2833                netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2834}
2835
2836/**
2837 * ice_vsi_release - Delete a VSI and free its resources
2838 * @vsi: the VSI being removed
2839 *
2840 * Returns 0 on success or < 0 on error
2841 */
2842int ice_vsi_release(struct ice_vsi *vsi)
2843{
2844        enum ice_status err;
2845        struct ice_pf *pf;
2846
2847        if (!vsi->back)
2848                return -ENODEV;
2849        pf = vsi->back;
2850
2851        /* do not unregister while driver is in the reset recovery pending
2852         * state. Since reset/rebuild happens through PF service task workqueue,
2853         * it's not a good idea to unregister netdev that is associated to the
2854         * PF that is running the work queue items currently. This is done to
2855         * avoid check_flush_dependency() warning on this wq
2856         */
2857        if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2858            (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2859                unregister_netdev(vsi->netdev);
2860                clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2861        }
2862
2863        ice_devlink_destroy_port(vsi);
2864
2865        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2866                ice_rss_clean(vsi);
2867
2868        /* Disable VSI and free resources */
2869        if (vsi->type != ICE_VSI_LB)
2870                ice_vsi_dis_irq(vsi);
2871        ice_vsi_close(vsi);
2872
2873        /* SR-IOV determines needed MSIX resources all at once instead of per
2874         * VSI since when VFs are spawned we know how many VFs there are and how
2875         * many interrupts each VF needs. SR-IOV MSIX resources are also
2876         * cleared in the same manner.
2877         */
2878        if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
2879                int i;
2880
2881                ice_for_each_vf(pf, i) {
2882                        struct ice_vf *vf = &pf->vf[i];
2883
2884                        if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI)
2885                                break;
2886                }
2887                if (i == pf->num_alloc_vfs) {
2888                        /* No other VFs left that have control VSI, reclaim SW
2889                         * interrupts back to the common pool
2890                         */
2891                        ice_free_res(pf->irq_tracker, vsi->base_vector,
2892                                     ICE_RES_VF_CTRL_VEC_ID);
2893                        pf->num_avail_sw_msix += vsi->num_q_vectors;
2894                }
2895        } else if (vsi->type != ICE_VSI_VF) {
2896                /* reclaim SW interrupts back to the common pool */
2897                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2898                pf->num_avail_sw_msix += vsi->num_q_vectors;
2899        }
2900
2901        if (!ice_is_safe_mode(pf)) {
2902                if (vsi->type == ICE_VSI_PF) {
2903                        ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2904                                            ICE_DROP_PACKET);
2905                        ice_cfg_sw_lldp(vsi, true, false);
2906                        /* The Rx rule will only exist to remove if the LLDP FW
2907                         * engine is currently stopped
2908                         */
2909                        if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2910                                ice_cfg_sw_lldp(vsi, false, false);
2911                }
2912        }
2913
2914        ice_fltr_remove_all(vsi);
2915        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2916        err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2917        if (err)
2918                dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2919                        vsi->vsi_num, err);
2920        ice_vsi_delete(vsi);
2921        ice_vsi_free_q_vectors(vsi);
2922
2923        if (vsi->netdev) {
2924                if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
2925                        unregister_netdev(vsi->netdev);
2926                        clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2927                }
2928                if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
2929                        free_netdev(vsi->netdev);
2930                        vsi->netdev = NULL;
2931                        clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
2932                }
2933        }
2934
2935        if (vsi->type == ICE_VSI_VF &&
2936            vsi->agg_node && vsi->agg_node->valid)
2937                vsi->agg_node->num_vsis--;
2938        ice_vsi_clear_rings(vsi);
2939
2940        ice_vsi_put_qs(vsi);
2941
2942        /* retain SW VSI data structure since it is needed to unregister and
2943         * free VSI netdev when PF is not in reset recovery pending state,\
2944         * for ex: during rmmod.
2945         */
2946        if (!ice_is_reset_in_progress(pf->state))
2947                ice_vsi_clear(vsi);
2948
2949        return 0;
2950}
2951
2952/**
2953 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2954 * @vsi: VSI connected with q_vectors
2955 * @coalesce: array of struct with stored coalesce
2956 *
2957 * Returns array size.
2958 */
2959static int
2960ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2961                             struct ice_coalesce_stored *coalesce)
2962{
2963        int i;
2964
2965        ice_for_each_q_vector(vsi, i) {
2966                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2967
2968                coalesce[i].itr_tx = q_vector->tx.itr_setting;
2969                coalesce[i].itr_rx = q_vector->rx.itr_setting;
2970                coalesce[i].intrl = q_vector->intrl;
2971
2972                if (i < vsi->num_txq)
2973                        coalesce[i].tx_valid = true;
2974                if (i < vsi->num_rxq)
2975                        coalesce[i].rx_valid = true;
2976        }
2977
2978        return vsi->num_q_vectors;
2979}
2980
2981/**
2982 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2983 * @vsi: VSI connected with q_vectors
2984 * @coalesce: pointer to array of struct with stored coalesce
2985 * @size: size of coalesce array
2986 *
2987 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2988 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2989 * to default value.
2990 */
2991static void
2992ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2993                             struct ice_coalesce_stored *coalesce, int size)
2994{
2995        struct ice_ring_container *rc;
2996        int i;
2997
2998        if ((size && !coalesce) || !vsi)
2999                return;
3000
3001        /* There are a couple of cases that have to be handled here:
3002         *   1. The case where the number of queue vectors stays the same, but
3003         *      the number of Tx or Rx rings changes (the first for loop)
3004         *   2. The case where the number of queue vectors increased (the
3005         *      second for loop)
3006         */
3007        for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3008                /* There are 2 cases to handle here and they are the same for
3009                 * both Tx and Rx:
3010                 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3011                 *   and the loop variable is less than the number of rings
3012                 *   allocated, then write the previous values
3013                 *
3014                 *   if the entry was not valid previously, but the number of
3015                 *   rings is less than are allocated (this means the number of
3016                 *   rings increased from previously), then write out the
3017                 *   values in the first element
3018                 *
3019                 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3020                 *   as there is no harm because the dynamic algorithm
3021                 *   will just overwrite.
3022                 */
3023                if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3024                        rc = &vsi->q_vectors[i]->rx;
3025                        rc->itr_setting = coalesce[i].itr_rx;
3026                        ice_write_itr(rc, rc->itr_setting);
3027                } else if (i < vsi->alloc_rxq) {
3028                        rc = &vsi->q_vectors[i]->rx;
3029                        rc->itr_setting = coalesce[0].itr_rx;
3030                        ice_write_itr(rc, rc->itr_setting);
3031                }
3032
3033                if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3034                        rc = &vsi->q_vectors[i]->tx;
3035                        rc->itr_setting = coalesce[i].itr_tx;
3036                        ice_write_itr(rc, rc->itr_setting);
3037                } else if (i < vsi->alloc_txq) {
3038                        rc = &vsi->q_vectors[i]->tx;
3039                        rc->itr_setting = coalesce[0].itr_tx;
3040                        ice_write_itr(rc, rc->itr_setting);
3041                }
3042
3043                vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3044                ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl);
3045        }
3046
3047        /* the number of queue vectors increased so write whatever is in
3048         * the first element
3049         */
3050        for (; i < vsi->num_q_vectors; i++) {
3051                /* transmit */
3052                rc = &vsi->q_vectors[i]->tx;
3053                rc->itr_setting = coalesce[0].itr_tx;
3054                ice_write_itr(rc, rc->itr_setting);
3055
3056                /* receive */
3057                rc = &vsi->q_vectors[i]->rx;
3058                rc->itr_setting = coalesce[0].itr_rx;
3059                ice_write_itr(rc, rc->itr_setting);
3060
3061                vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3062                ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl);
3063        }
3064}
3065
3066/**
3067 * ice_vsi_rebuild - Rebuild VSI after reset
3068 * @vsi: VSI to be rebuild
3069 * @init_vsi: is this an initialization or a reconfigure of the VSI
3070 *
3071 * Returns 0 on success and negative value on failure
3072 */
3073int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3074{
3075        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3076        struct ice_coalesce_stored *coalesce;
3077        int prev_num_q_vectors = 0;
3078        struct ice_vf *vf = NULL;
3079        enum ice_vsi_type vtype;
3080        enum ice_status status;
3081        struct ice_pf *pf;
3082        int ret, i;
3083
3084        if (!vsi)
3085                return -EINVAL;
3086
3087        pf = vsi->back;
3088        vtype = vsi->type;
3089        if (vtype == ICE_VSI_VF)
3090                vf = &pf->vf[vsi->vf_id];
3091
3092        coalesce = kcalloc(vsi->num_q_vectors,
3093                           sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3094        if (!coalesce)
3095                return -ENOMEM;
3096
3097        prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3098
3099        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3100        ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3101        if (ret)
3102                dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3103                        vsi->vsi_num, ret);
3104        ice_vsi_free_q_vectors(vsi);
3105
3106        /* SR-IOV determines needed MSIX resources all at once instead of per
3107         * VSI since when VFs are spawned we know how many VFs there are and how
3108         * many interrupts each VF needs. SR-IOV MSIX resources are also
3109         * cleared in the same manner.
3110         */
3111        if (vtype != ICE_VSI_VF) {
3112                /* reclaim SW interrupts back to the common pool */
3113                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3114                pf->num_avail_sw_msix += vsi->num_q_vectors;
3115                vsi->base_vector = 0;
3116        }
3117
3118        if (ice_is_xdp_ena_vsi(vsi))
3119                /* return value check can be skipped here, it always returns
3120                 * 0 if reset is in progress
3121                 */
3122                ice_destroy_xdp_rings(vsi);
3123        ice_vsi_put_qs(vsi);
3124        ice_vsi_clear_rings(vsi);
3125        ice_vsi_free_arrays(vsi);
3126        if (vtype == ICE_VSI_VF)
3127                ice_vsi_set_num_qs(vsi, vf->vf_id);
3128        else
3129                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3130
3131        ret = ice_vsi_alloc_arrays(vsi);
3132        if (ret < 0)
3133                goto err_vsi;
3134
3135        ice_vsi_get_qs(vsi);
3136
3137        ice_alloc_fd_res(vsi);
3138        ice_vsi_set_tc_cfg(vsi);
3139
3140        /* Initialize VSI struct elements and create VSI in FW */
3141        ret = ice_vsi_init(vsi, init_vsi);
3142        if (ret < 0)
3143                goto err_vsi;
3144
3145        switch (vtype) {
3146        case ICE_VSI_CTRL:
3147        case ICE_VSI_PF:
3148                ret = ice_vsi_alloc_q_vectors(vsi);
3149                if (ret)
3150                        goto err_rings;
3151
3152                ret = ice_vsi_setup_vector_base(vsi);
3153                if (ret)
3154                        goto err_vectors;
3155
3156                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3157                if (ret)
3158                        goto err_vectors;
3159
3160                ret = ice_vsi_alloc_rings(vsi);
3161                if (ret)
3162                        goto err_vectors;
3163
3164                ice_vsi_map_rings_to_vectors(vsi);
3165                if (ice_is_xdp_ena_vsi(vsi)) {
3166                        vsi->num_xdp_txq = vsi->alloc_rxq;
3167                        ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3168                        if (ret)
3169                                goto err_vectors;
3170                }
3171                /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3172                if (vtype != ICE_VSI_CTRL)
3173                        /* Do not exit if configuring RSS had an issue, at
3174                         * least receive traffic on first queue. Hence no
3175                         * need to capture return value
3176                         */
3177                        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3178                                ice_vsi_cfg_rss_lut_key(vsi);
3179                break;
3180        case ICE_VSI_VF:
3181                ret = ice_vsi_alloc_q_vectors(vsi);
3182                if (ret)
3183                        goto err_rings;
3184
3185                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3186                if (ret)
3187                        goto err_vectors;
3188
3189                ret = ice_vsi_alloc_rings(vsi);
3190                if (ret)
3191                        goto err_vectors;
3192
3193                break;
3194        default:
3195                break;
3196        }
3197
3198        /* configure VSI nodes based on number of queues and TC's */
3199        for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3200                max_txqs[i] = vsi->alloc_txq;
3201
3202                if (ice_is_xdp_ena_vsi(vsi))
3203                        max_txqs[i] += vsi->num_xdp_txq;
3204        }
3205
3206        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3207                                 max_txqs);
3208        if (status) {
3209                dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
3210                        vsi->vsi_num, ice_stat_str(status));
3211                if (init_vsi) {
3212                        ret = -EIO;
3213                        goto err_vectors;
3214                } else {
3215                        return ice_schedule_reset(pf, ICE_RESET_PFR);
3216                }
3217        }
3218        ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3219        kfree(coalesce);
3220
3221        return 0;
3222
3223err_vectors:
3224        ice_vsi_free_q_vectors(vsi);
3225err_rings:
3226        if (vsi->netdev) {
3227                vsi->current_netdev_flags = 0;
3228                unregister_netdev(vsi->netdev);
3229                free_netdev(vsi->netdev);
3230                vsi->netdev = NULL;
3231        }
3232err_vsi:
3233        ice_vsi_clear(vsi);
3234        set_bit(ICE_RESET_FAILED, pf->state);
3235        kfree(coalesce);
3236        return ret;
3237}
3238
3239/**
3240 * ice_is_reset_in_progress - check for a reset in progress
3241 * @state: PF state field
3242 */
3243bool ice_is_reset_in_progress(unsigned long *state)
3244{
3245        return test_bit(ICE_RESET_OICR_RECV, state) ||
3246               test_bit(ICE_PFR_REQ, state) ||
3247               test_bit(ICE_CORER_REQ, state) ||
3248               test_bit(ICE_GLOBR_REQ, state);
3249}
3250
3251/**
3252 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3253 * @pf: pointer to the PF structure
3254 * @timeout: length of time to wait, in jiffies
3255 *
3256 * Wait (sleep) for a short time until the driver finishes cleaning up from
3257 * a device reset. The caller must be able to sleep. Use this to delay
3258 * operations that could fail while the driver is cleaning up after a device
3259 * reset.
3260 *
3261 * Returns 0 on success, -EBUSY if the reset is not finished within the
3262 * timeout, and -ERESTARTSYS if the thread was interrupted.
3263 */
3264int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3265{
3266        long ret;
3267
3268        ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3269                                               !ice_is_reset_in_progress(pf->state),
3270                                               timeout);
3271        if (ret < 0)
3272                return ret;
3273        else if (!ret)
3274                return -EBUSY;
3275        else
3276                return 0;
3277}
3278
3279#ifdef CONFIG_DCB
3280/**
3281 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3282 * @vsi: VSI being configured
3283 * @ctx: the context buffer returned from AQ VSI update command
3284 */
3285static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3286{
3287        vsi->info.mapping_flags = ctx->info.mapping_flags;
3288        memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3289               sizeof(vsi->info.q_mapping));
3290        memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3291               sizeof(vsi->info.tc_mapping));
3292}
3293
3294/**
3295 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3296 * @vsi: VSI to be configured
3297 * @ena_tc: TC bitmap
3298 *
3299 * VSI queues expected to be quiesced before calling this function
3300 */
3301int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3302{
3303        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3304        struct ice_pf *pf = vsi->back;
3305        struct ice_vsi_ctx *ctx;
3306        enum ice_status status;
3307        struct device *dev;
3308        int i, ret = 0;
3309        u8 num_tc = 0;
3310
3311        dev = ice_pf_to_dev(pf);
3312
3313        ice_for_each_traffic_class(i) {
3314                /* build bitmap of enabled TCs */
3315                if (ena_tc & BIT(i))
3316                        num_tc++;
3317                /* populate max_txqs per TC */
3318                max_txqs[i] = vsi->alloc_txq;
3319        }
3320
3321        vsi->tc_cfg.ena_tc = ena_tc;
3322        vsi->tc_cfg.numtc = num_tc;
3323
3324        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3325        if (!ctx)
3326                return -ENOMEM;
3327
3328        ctx->vf_num = 0;
3329        ctx->info = vsi->info;
3330
3331        ice_vsi_setup_q_map(vsi, ctx);
3332
3333        /* must to indicate which section of VSI context are being modified */
3334        ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3335        status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3336        if (status) {
3337                dev_info(dev, "Failed VSI Update\n");
3338                ret = -EIO;
3339                goto out;
3340        }
3341
3342        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3343                                 max_txqs);
3344
3345        if (status) {
3346                dev_err(dev, "VSI %d failed TC config, error %s\n",
3347                        vsi->vsi_num, ice_stat_str(status));
3348                ret = -EIO;
3349                goto out;
3350        }
3351        ice_vsi_update_q_map(vsi, ctx);
3352        vsi->info.valid_sections = 0;
3353
3354        ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3355out:
3356        kfree(ctx);
3357        return ret;
3358}
3359#endif /* CONFIG_DCB */
3360
3361/**
3362 * ice_update_ring_stats - Update ring statistics
3363 * @ring: ring to update
3364 * @pkts: number of processed packets
3365 * @bytes: number of processed bytes
3366 *
3367 * This function assumes that caller has acquired a u64_stats_sync lock.
3368 */
3369static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes)
3370{
3371        ring->stats.bytes += bytes;
3372        ring->stats.pkts += pkts;
3373}
3374
3375/**
3376 * ice_update_tx_ring_stats - Update Tx ring specific counters
3377 * @tx_ring: ring to update
3378 * @pkts: number of processed packets
3379 * @bytes: number of processed bytes
3380 */
3381void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3382{
3383        u64_stats_update_begin(&tx_ring->syncp);
3384        ice_update_ring_stats(tx_ring, pkts, bytes);
3385        u64_stats_update_end(&tx_ring->syncp);
3386}
3387
3388/**
3389 * ice_update_rx_ring_stats - Update Rx ring specific counters
3390 * @rx_ring: ring to update
3391 * @pkts: number of processed packets
3392 * @bytes: number of processed bytes
3393 */
3394void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3395{
3396        u64_stats_update_begin(&rx_ring->syncp);
3397        ice_update_ring_stats(rx_ring, pkts, bytes);
3398        u64_stats_update_end(&rx_ring->syncp);
3399}
3400
3401/**
3402 * ice_status_to_errno - convert from enum ice_status to Linux errno
3403 * @err: ice_status value to convert
3404 */
3405int ice_status_to_errno(enum ice_status err)
3406{
3407        switch (err) {
3408        case ICE_SUCCESS:
3409                return 0;
3410        case ICE_ERR_DOES_NOT_EXIST:
3411                return -ENOENT;
3412        case ICE_ERR_OUT_OF_RANGE:
3413        case ICE_ERR_AQ_ERROR:
3414        case ICE_ERR_AQ_TIMEOUT:
3415        case ICE_ERR_AQ_EMPTY:
3416        case ICE_ERR_AQ_FW_CRITICAL:
3417                return -EIO;
3418        case ICE_ERR_PARAM:
3419        case ICE_ERR_INVAL_SIZE:
3420                return -EINVAL;
3421        case ICE_ERR_NO_MEMORY:
3422                return -ENOMEM;
3423        case ICE_ERR_MAX_LIMIT:
3424                return -EAGAIN;
3425        case ICE_ERR_RESET_ONGOING:
3426                return -EBUSY;
3427        case ICE_ERR_AQ_FULL:
3428                return -ENOSPC;
3429        default:
3430                return -EINVAL;
3431        }
3432}
3433
3434/**
3435 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3436 * @sw: switch to check if its default forwarding VSI is free
3437 *
3438 * Return true if the default forwarding VSI is already being used, else returns
3439 * false signalling that it's available to use.
3440 */
3441bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3442{
3443        return (sw->dflt_vsi && sw->dflt_vsi_ena);
3444}
3445
3446/**
3447 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3448 * @sw: switch for the default forwarding VSI to compare against
3449 * @vsi: VSI to compare against default forwarding VSI
3450 *
3451 * If this VSI passed in is the default forwarding VSI then return true, else
3452 * return false
3453 */
3454bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3455{
3456        return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3457}
3458
3459/**
3460 * ice_set_dflt_vsi - set the default forwarding VSI
3461 * @sw: switch used to assign the default forwarding VSI
3462 * @vsi: VSI getting set as the default forwarding VSI on the switch
3463 *
3464 * If the VSI passed in is already the default VSI and it's enabled just return
3465 * success.
3466 *
3467 * If there is already a default VSI on the switch and it's enabled then return
3468 * -EEXIST since there can only be one default VSI per switch.
3469 *
3470 *  Otherwise try to set the VSI passed in as the switch's default VSI and
3471 *  return the result.
3472 */
3473int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3474{
3475        enum ice_status status;
3476        struct device *dev;
3477
3478        if (!sw || !vsi)
3479                return -EINVAL;
3480
3481        dev = ice_pf_to_dev(vsi->back);
3482
3483        /* the VSI passed in is already the default VSI */
3484        if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3485                dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3486                        vsi->vsi_num);
3487                return 0;
3488        }
3489
3490        /* another VSI is already the default VSI for this switch */
3491        if (ice_is_dflt_vsi_in_use(sw)) {
3492                dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3493                        sw->dflt_vsi->vsi_num);
3494                return -EEXIST;
3495        }
3496
3497        status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3498        if (status) {
3499                dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3500                        vsi->vsi_num, ice_stat_str(status));
3501                return -EIO;
3502        }
3503
3504        sw->dflt_vsi = vsi;
3505        sw->dflt_vsi_ena = true;
3506
3507        return 0;
3508}
3509
3510/**
3511 * ice_clear_dflt_vsi - clear the default forwarding VSI
3512 * @sw: switch used to clear the default VSI
3513 *
3514 * If the switch has no default VSI or it's not enabled then return error.
3515 *
3516 * Otherwise try to clear the default VSI and return the result.
3517 */
3518int ice_clear_dflt_vsi(struct ice_sw *sw)
3519{
3520        struct ice_vsi *dflt_vsi;
3521        enum ice_status status;
3522        struct device *dev;
3523
3524        if (!sw)
3525                return -EINVAL;
3526
3527        dev = ice_pf_to_dev(sw->pf);
3528
3529        dflt_vsi = sw->dflt_vsi;
3530
3531        /* there is no default VSI configured */
3532        if (!ice_is_dflt_vsi_in_use(sw))
3533                return -ENODEV;
3534
3535        status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3536                                  ICE_FLTR_RX);
3537        if (status) {
3538                dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3539                        dflt_vsi->vsi_num, ice_stat_str(status));
3540                return -EIO;
3541        }
3542
3543        sw->dflt_vsi = NULL;
3544        sw->dflt_vsi_ena = false;
3545
3546        return 0;
3547}
3548
3549/**
3550 * ice_set_link - turn on/off physical link
3551 * @vsi: VSI to modify physical link on
3552 * @ena: turn on/off physical link
3553 */
3554int ice_set_link(struct ice_vsi *vsi, bool ena)
3555{
3556        struct device *dev = ice_pf_to_dev(vsi->back);
3557        struct ice_port_info *pi = vsi->port_info;
3558        struct ice_hw *hw = pi->hw;
3559        enum ice_status status;
3560
3561        if (vsi->type != ICE_VSI_PF)
3562                return -EINVAL;
3563
3564        status = ice_aq_set_link_restart_an(pi, ena, NULL);
3565
3566        /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3567         * this is not a fatal error, so print a warning message and return
3568         * a success code. Return an error if FW returns an error code other
3569         * than ICE_AQ_RC_EMODE
3570         */
3571        if (status == ICE_ERR_AQ_ERROR) {
3572                if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3573                        dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n",
3574                                 (ena ? "ON" : "OFF"), ice_stat_str(status),
3575                                 ice_aq_str(hw->adminq.sq_last_status));
3576        } else if (status) {
3577                dev_err(dev, "can't set link to %s, err %s aq_err %s\n",
3578                        (ena ? "ON" : "OFF"), ice_stat_str(status),
3579                        ice_aq_str(hw->adminq.sq_last_status));
3580                return -EIO;
3581        }
3582
3583        return 0;
3584}
3585