linux/drivers/net/ethernet/intel/ice/ice_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
  16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
  17 * ice tracepoint functions. This must be done exactly once across the
  18 * ice driver.
  19 */
  20#define CREATE_TRACE_POINTS
  21#include "ice_trace.h"
  22
  23#define DRV_SUMMARY     "Intel(R) Ethernet Connection E800 Series Linux Driver"
  24static const char ice_driver_string[] = DRV_SUMMARY;
  25static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  26
  27/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  28#define ICE_DDP_PKG_PATH        "intel/ice/ddp/"
  29#define ICE_DDP_PKG_FILE        ICE_DDP_PKG_PATH "ice.pkg"
  30
  31MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  32MODULE_DESCRIPTION(DRV_SUMMARY);
  33MODULE_LICENSE("GPL v2");
  34MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  35
  36static int debug = -1;
  37module_param(debug, int, 0644);
  38#ifndef CONFIG_DYNAMIC_DEBUG
  39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  40#else
  41MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  42#endif /* !CONFIG_DYNAMIC_DEBUG */
  43
  44static DEFINE_IDA(ice_aux_ida);
  45
  46static struct workqueue_struct *ice_wq;
  47static const struct net_device_ops ice_netdev_safe_mode_ops;
  48static const struct net_device_ops ice_netdev_ops;
  49static int ice_vsi_open(struct ice_vsi *vsi);
  50
  51static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  52
  53static void ice_vsi_release_all(struct ice_pf *pf);
  54
  55bool netif_is_ice(struct net_device *dev)
  56{
  57        return dev && (dev->netdev_ops == &ice_netdev_ops);
  58}
  59
  60/**
  61 * ice_get_tx_pending - returns number of Tx descriptors not processed
  62 * @ring: the ring of descriptors
  63 */
  64static u16 ice_get_tx_pending(struct ice_ring *ring)
  65{
  66        u16 head, tail;
  67
  68        head = ring->next_to_clean;
  69        tail = ring->next_to_use;
  70
  71        if (head != tail)
  72                return (head < tail) ?
  73                        tail - head : (tail + ring->count - head);
  74        return 0;
  75}
  76
  77/**
  78 * ice_check_for_hang_subtask - check for and recover hung queues
  79 * @pf: pointer to PF struct
  80 */
  81static void ice_check_for_hang_subtask(struct ice_pf *pf)
  82{
  83        struct ice_vsi *vsi = NULL;
  84        struct ice_hw *hw;
  85        unsigned int i;
  86        int packets;
  87        u32 v;
  88
  89        ice_for_each_vsi(pf, v)
  90                if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  91                        vsi = pf->vsi[v];
  92                        break;
  93                }
  94
  95        if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
  96                return;
  97
  98        if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  99                return;
 100
 101        hw = &vsi->back->hw;
 102
 103        for (i = 0; i < vsi->num_txq; i++) {
 104                struct ice_ring *tx_ring = vsi->tx_rings[i];
 105
 106                if (tx_ring && tx_ring->desc) {
 107                        /* If packet counter has not changed the queue is
 108                         * likely stalled, so force an interrupt for this
 109                         * queue.
 110                         *
 111                         * prev_pkt would be negative if there was no
 112                         * pending work.
 113                         */
 114                        packets = tx_ring->stats.pkts & INT_MAX;
 115                        if (tx_ring->tx_stats.prev_pkt == packets) {
 116                                /* Trigger sw interrupt to revive the queue */
 117                                ice_trigger_sw_intr(hw, tx_ring->q_vector);
 118                                continue;
 119                        }
 120
 121                        /* Memory barrier between read of packet count and call
 122                         * to ice_get_tx_pending()
 123                         */
 124                        smp_rmb();
 125                        tx_ring->tx_stats.prev_pkt =
 126                            ice_get_tx_pending(tx_ring) ? packets : -1;
 127                }
 128        }
 129}
 130
 131/**
 132 * ice_init_mac_fltr - Set initial MAC filters
 133 * @pf: board private structure
 134 *
 135 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 136 * address and broadcast address. If an error is encountered, netdevice will be
 137 * unregistered.
 138 */
 139static int ice_init_mac_fltr(struct ice_pf *pf)
 140{
 141        enum ice_status status;
 142        struct ice_vsi *vsi;
 143        u8 *perm_addr;
 144
 145        vsi = ice_get_main_vsi(pf);
 146        if (!vsi)
 147                return -EINVAL;
 148
 149        perm_addr = vsi->port_info->mac.perm_addr;
 150        status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 151        if (status)
 152                return -EIO;
 153
 154        return 0;
 155}
 156
 157/**
 158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 159 * @netdev: the net device on which the sync is happening
 160 * @addr: MAC address to sync
 161 *
 162 * This is a callback function which is called by the in kernel device sync
 163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 165 * MAC filters from the hardware.
 166 */
 167static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 168{
 169        struct ice_netdev_priv *np = netdev_priv(netdev);
 170        struct ice_vsi *vsi = np->vsi;
 171
 172        if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 173                                     ICE_FWD_TO_VSI))
 174                return -EINVAL;
 175
 176        return 0;
 177}
 178
 179/**
 180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 181 * @netdev: the net device on which the unsync is happening
 182 * @addr: MAC address to unsync
 183 *
 184 * This is a callback function which is called by the in kernel device unsync
 185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 187 * delete the MAC filters from the hardware.
 188 */
 189static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 190{
 191        struct ice_netdev_priv *np = netdev_priv(netdev);
 192        struct ice_vsi *vsi = np->vsi;
 193
 194        /* Under some circumstances, we might receive a request to delete our
 195         * own device address from our uc list. Because we store the device
 196         * address in the VSI's MAC filter list, we need to ignore such
 197         * requests and not delete our device address from this list.
 198         */
 199        if (ether_addr_equal(addr, netdev->dev_addr))
 200                return 0;
 201
 202        if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 203                                     ICE_FWD_TO_VSI))
 204                return -EINVAL;
 205
 206        return 0;
 207}
 208
 209/**
 210 * ice_vsi_fltr_changed - check if filter state changed
 211 * @vsi: VSI to be checked
 212 *
 213 * returns true if filter state has changed, false otherwise.
 214 */
 215static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 216{
 217        return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
 218               test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
 219               test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 220}
 221
 222/**
 223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 224 * @vsi: the VSI being configured
 225 * @promisc_m: mask of promiscuous config bits
 226 * @set_promisc: enable or disable promisc flag request
 227 *
 228 */
 229static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 230{
 231        struct ice_hw *hw = &vsi->back->hw;
 232        enum ice_status status = 0;
 233
 234        if (vsi->type != ICE_VSI_PF)
 235                return 0;
 236
 237        if (vsi->num_vlan > 1) {
 238                status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 239                                                  set_promisc);
 240        } else {
 241                if (set_promisc)
 242                        status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 243                                                     0);
 244                else
 245                        status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 246                                                       0);
 247        }
 248
 249        if (status)
 250                return -EIO;
 251
 252        return 0;
 253}
 254
 255/**
 256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 257 * @vsi: ptr to the VSI
 258 *
 259 * Push any outstanding VSI filter changes through the AdminQ.
 260 */
 261static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 262{
 263        struct device *dev = ice_pf_to_dev(vsi->back);
 264        struct net_device *netdev = vsi->netdev;
 265        bool promisc_forced_on = false;
 266        struct ice_pf *pf = vsi->back;
 267        struct ice_hw *hw = &pf->hw;
 268        enum ice_status status = 0;
 269        u32 changed_flags = 0;
 270        u8 promisc_m;
 271        int err = 0;
 272
 273        if (!vsi->netdev)
 274                return -EINVAL;
 275
 276        while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
 277                usleep_range(1000, 2000);
 278
 279        changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 280        vsi->current_netdev_flags = vsi->netdev->flags;
 281
 282        INIT_LIST_HEAD(&vsi->tmp_sync_list);
 283        INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 284
 285        if (ice_vsi_fltr_changed(vsi)) {
 286                clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 287                clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 288                clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 289
 290                /* grab the netdev's addr_list_lock */
 291                netif_addr_lock_bh(netdev);
 292                __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 293                              ice_add_mac_to_unsync_list);
 294                __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 295                              ice_add_mac_to_unsync_list);
 296                /* our temp lists are populated. release lock */
 297                netif_addr_unlock_bh(netdev);
 298        }
 299
 300        /* Remove MAC addresses in the unsync list */
 301        status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 302        ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 303        if (status) {
 304                netdev_err(netdev, "Failed to delete MAC filters\n");
 305                /* if we failed because of alloc failures, just bail */
 306                if (status == ICE_ERR_NO_MEMORY) {
 307                        err = -ENOMEM;
 308                        goto out;
 309                }
 310        }
 311
 312        /* Add MAC addresses in the sync list */
 313        status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 314        ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 315        /* If filter is added successfully or already exists, do not go into
 316         * 'if' condition and report it as error. Instead continue processing
 317         * rest of the function.
 318         */
 319        if (status && status != ICE_ERR_ALREADY_EXISTS) {
 320                netdev_err(netdev, "Failed to add MAC filters\n");
 321                /* If there is no more space for new umac filters, VSI
 322                 * should go into promiscuous mode. There should be some
 323                 * space reserved for promiscuous filters.
 324                 */
 325                if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 326                    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
 327                                      vsi->state)) {
 328                        promisc_forced_on = true;
 329                        netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 330                                    vsi->vsi_num);
 331                } else {
 332                        err = -EIO;
 333                        goto out;
 334                }
 335        }
 336        /* check for changes in promiscuous modes */
 337        if (changed_flags & IFF_ALLMULTI) {
 338                if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 339                        if (vsi->num_vlan > 1)
 340                                promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 341                        else
 342                                promisc_m = ICE_MCAST_PROMISC_BITS;
 343
 344                        err = ice_cfg_promisc(vsi, promisc_m, true);
 345                        if (err) {
 346                                netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 347                                           vsi->vsi_num);
 348                                vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 349                                goto out_promisc;
 350                        }
 351                } else {
 352                        /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 353                        if (vsi->num_vlan > 1)
 354                                promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 355                        else
 356                                promisc_m = ICE_MCAST_PROMISC_BITS;
 357
 358                        err = ice_cfg_promisc(vsi, promisc_m, false);
 359                        if (err) {
 360                                netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 361                                           vsi->vsi_num);
 362                                vsi->current_netdev_flags |= IFF_ALLMULTI;
 363                                goto out_promisc;
 364                        }
 365                }
 366        }
 367
 368        if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 369            test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
 370                clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 371                if (vsi->current_netdev_flags & IFF_PROMISC) {
 372                        /* Apply Rx filter rule to get traffic from wire */
 373                        if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 374                                err = ice_set_dflt_vsi(pf->first_sw, vsi);
 375                                if (err && err != -EEXIST) {
 376                                        netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 377                                                   err, vsi->vsi_num);
 378                                        vsi->current_netdev_flags &=
 379                                                ~IFF_PROMISC;
 380                                        goto out_promisc;
 381                                }
 382                                ice_cfg_vlan_pruning(vsi, false, false);
 383                        }
 384                } else {
 385                        /* Clear Rx filter to remove traffic from wire */
 386                        if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 387                                err = ice_clear_dflt_vsi(pf->first_sw);
 388                                if (err) {
 389                                        netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 390                                                   err, vsi->vsi_num);
 391                                        vsi->current_netdev_flags |=
 392                                                IFF_PROMISC;
 393                                        goto out_promisc;
 394                                }
 395                                if (vsi->num_vlan > 1)
 396                                        ice_cfg_vlan_pruning(vsi, true, false);
 397                        }
 398                }
 399        }
 400        goto exit;
 401
 402out_promisc:
 403        set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 404        goto exit;
 405out:
 406        /* if something went wrong then set the changed flag so we try again */
 407        set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 408        set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 409exit:
 410        clear_bit(ICE_CFG_BUSY, vsi->state);
 411        return err;
 412}
 413
 414/**
 415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 416 * @pf: board private structure
 417 */
 418static void ice_sync_fltr_subtask(struct ice_pf *pf)
 419{
 420        int v;
 421
 422        if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 423                return;
 424
 425        clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 426
 427        ice_for_each_vsi(pf, v)
 428                if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 429                    ice_vsi_sync_fltr(pf->vsi[v])) {
 430                        /* come back and try again later */
 431                        set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 432                        break;
 433                }
 434}
 435
 436/**
 437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 438 * @pf: the PF
 439 * @locked: is the rtnl_lock already held
 440 */
 441static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 442{
 443        int node;
 444        int v;
 445
 446        ice_for_each_vsi(pf, v)
 447                if (pf->vsi[v])
 448                        ice_dis_vsi(pf->vsi[v], locked);
 449
 450        for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
 451                pf->pf_agg_node[node].num_vsis = 0;
 452
 453        for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
 454                pf->vf_agg_node[node].num_vsis = 0;
 455}
 456
 457/**
 458 * ice_prepare_for_reset - prep for the core to reset
 459 * @pf: board private structure
 460 *
 461 * Inform or close all dependent features in prep for reset.
 462 */
 463static void
 464ice_prepare_for_reset(struct ice_pf *pf)
 465{
 466        struct ice_hw *hw = &pf->hw;
 467        unsigned int i;
 468
 469        /* already prepared for reset */
 470        if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
 471                return;
 472
 473        ice_unplug_aux_dev(pf);
 474
 475        /* Notify VFs of impending reset */
 476        if (ice_check_sq_alive(hw, &hw->mailboxq))
 477                ice_vc_notify_reset(pf);
 478
 479        /* Disable VFs until reset is completed */
 480        ice_for_each_vf(pf, i)
 481                ice_set_vf_state_qs_dis(&pf->vf[i]);
 482
 483        /* clear SW filtering DB */
 484        ice_clear_hw_tbls(hw);
 485        /* disable the VSIs and their queues that are not already DOWN */
 486        ice_pf_dis_all_vsi(pf, false);
 487
 488        if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
 489                ice_ptp_release(pf);
 490
 491        if (hw->port_info)
 492                ice_sched_clear_port(hw->port_info);
 493
 494        ice_shutdown_all_ctrlq(hw);
 495
 496        set_bit(ICE_PREPARED_FOR_RESET, pf->state);
 497}
 498
 499/**
 500 * ice_do_reset - Initiate one of many types of resets
 501 * @pf: board private structure
 502 * @reset_type: reset type requested
 503 * before this function was called.
 504 */
 505static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 506{
 507        struct device *dev = ice_pf_to_dev(pf);
 508        struct ice_hw *hw = &pf->hw;
 509
 510        dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 511
 512        ice_prepare_for_reset(pf);
 513
 514        /* trigger the reset */
 515        if (ice_reset(hw, reset_type)) {
 516                dev_err(dev, "reset %d failed\n", reset_type);
 517                set_bit(ICE_RESET_FAILED, pf->state);
 518                clear_bit(ICE_RESET_OICR_RECV, pf->state);
 519                clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 520                clear_bit(ICE_PFR_REQ, pf->state);
 521                clear_bit(ICE_CORER_REQ, pf->state);
 522                clear_bit(ICE_GLOBR_REQ, pf->state);
 523                wake_up(&pf->reset_wait_queue);
 524                return;
 525        }
 526
 527        /* PFR is a bit of a special case because it doesn't result in an OICR
 528         * interrupt. So for PFR, rebuild after the reset and clear the reset-
 529         * associated state bits.
 530         */
 531        if (reset_type == ICE_RESET_PFR) {
 532                pf->pfr_count++;
 533                ice_rebuild(pf, reset_type);
 534                clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 535                clear_bit(ICE_PFR_REQ, pf->state);
 536                wake_up(&pf->reset_wait_queue);
 537                ice_reset_all_vfs(pf, true);
 538        }
 539}
 540
 541/**
 542 * ice_reset_subtask - Set up for resetting the device and driver
 543 * @pf: board private structure
 544 */
 545static void ice_reset_subtask(struct ice_pf *pf)
 546{
 547        enum ice_reset_req reset_type = ICE_RESET_INVAL;
 548
 549        /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 550         * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 551         * of reset is pending and sets bits in pf->state indicating the reset
 552         * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
 553         * prepare for pending reset if not already (for PF software-initiated
 554         * global resets the software should already be prepared for it as
 555         * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
 556         * by firmware or software on other PFs, that bit is not set so prepare
 557         * for the reset now), poll for reset done, rebuild and return.
 558         */
 559        if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
 560                /* Perform the largest reset requested */
 561                if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
 562                        reset_type = ICE_RESET_CORER;
 563                if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
 564                        reset_type = ICE_RESET_GLOBR;
 565                if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
 566                        reset_type = ICE_RESET_EMPR;
 567                /* return if no valid reset type requested */
 568                if (reset_type == ICE_RESET_INVAL)
 569                        return;
 570                ice_prepare_for_reset(pf);
 571
 572                /* make sure we are ready to rebuild */
 573                if (ice_check_reset(&pf->hw)) {
 574                        set_bit(ICE_RESET_FAILED, pf->state);
 575                } else {
 576                        /* done with reset. start rebuild */
 577                        pf->hw.reset_ongoing = false;
 578                        ice_rebuild(pf, reset_type);
 579                        /* clear bit to resume normal operations, but
 580                         * ICE_NEEDS_RESTART bit is set in case rebuild failed
 581                         */
 582                        clear_bit(ICE_RESET_OICR_RECV, pf->state);
 583                        clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 584                        clear_bit(ICE_PFR_REQ, pf->state);
 585                        clear_bit(ICE_CORER_REQ, pf->state);
 586                        clear_bit(ICE_GLOBR_REQ, pf->state);
 587                        wake_up(&pf->reset_wait_queue);
 588                        ice_reset_all_vfs(pf, true);
 589                }
 590
 591                return;
 592        }
 593
 594        /* No pending resets to finish processing. Check for new resets */
 595        if (test_bit(ICE_PFR_REQ, pf->state))
 596                reset_type = ICE_RESET_PFR;
 597        if (test_bit(ICE_CORER_REQ, pf->state))
 598                reset_type = ICE_RESET_CORER;
 599        if (test_bit(ICE_GLOBR_REQ, pf->state))
 600                reset_type = ICE_RESET_GLOBR;
 601        /* If no valid reset type requested just return */
 602        if (reset_type == ICE_RESET_INVAL)
 603                return;
 604
 605        /* reset if not already down or busy */
 606        if (!test_bit(ICE_DOWN, pf->state) &&
 607            !test_bit(ICE_CFG_BUSY, pf->state)) {
 608                ice_do_reset(pf, reset_type);
 609        }
 610}
 611
 612/**
 613 * ice_print_topo_conflict - print topology conflict message
 614 * @vsi: the VSI whose topology status is being checked
 615 */
 616static void ice_print_topo_conflict(struct ice_vsi *vsi)
 617{
 618        switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 619        case ICE_AQ_LINK_TOPO_CONFLICT:
 620        case ICE_AQ_LINK_MEDIA_CONFLICT:
 621        case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 622        case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 623        case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 624                netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
 625                break;
 626        case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 627                netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 628                break;
 629        default:
 630                break;
 631        }
 632}
 633
 634/**
 635 * ice_print_link_msg - print link up or down message
 636 * @vsi: the VSI whose link status is being queried
 637 * @isup: boolean for if the link is now up or down
 638 */
 639void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 640{
 641        struct ice_aqc_get_phy_caps_data *caps;
 642        const char *an_advertised;
 643        enum ice_status status;
 644        const char *fec_req;
 645        const char *speed;
 646        const char *fec;
 647        const char *fc;
 648        const char *an;
 649
 650        if (!vsi)
 651                return;
 652
 653        if (vsi->current_isup == isup)
 654                return;
 655
 656        vsi->current_isup = isup;
 657
 658        if (!isup) {
 659                netdev_info(vsi->netdev, "NIC Link is Down\n");
 660                return;
 661        }
 662
 663        switch (vsi->port_info->phy.link_info.link_speed) {
 664        case ICE_AQ_LINK_SPEED_100GB:
 665                speed = "100 G";
 666                break;
 667        case ICE_AQ_LINK_SPEED_50GB:
 668                speed = "50 G";
 669                break;
 670        case ICE_AQ_LINK_SPEED_40GB:
 671                speed = "40 G";
 672                break;
 673        case ICE_AQ_LINK_SPEED_25GB:
 674                speed = "25 G";
 675                break;
 676        case ICE_AQ_LINK_SPEED_20GB:
 677                speed = "20 G";
 678                break;
 679        case ICE_AQ_LINK_SPEED_10GB:
 680                speed = "10 G";
 681                break;
 682        case ICE_AQ_LINK_SPEED_5GB:
 683                speed = "5 G";
 684                break;
 685        case ICE_AQ_LINK_SPEED_2500MB:
 686                speed = "2.5 G";
 687                break;
 688        case ICE_AQ_LINK_SPEED_1000MB:
 689                speed = "1 G";
 690                break;
 691        case ICE_AQ_LINK_SPEED_100MB:
 692                speed = "100 M";
 693                break;
 694        default:
 695                speed = "Unknown ";
 696                break;
 697        }
 698
 699        switch (vsi->port_info->fc.current_mode) {
 700        case ICE_FC_FULL:
 701                fc = "Rx/Tx";
 702                break;
 703        case ICE_FC_TX_PAUSE:
 704                fc = "Tx";
 705                break;
 706        case ICE_FC_RX_PAUSE:
 707                fc = "Rx";
 708                break;
 709        case ICE_FC_NONE:
 710                fc = "None";
 711                break;
 712        default:
 713                fc = "Unknown";
 714                break;
 715        }
 716
 717        /* Get FEC mode based on negotiated link info */
 718        switch (vsi->port_info->phy.link_info.fec_info) {
 719        case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 720        case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 721                fec = "RS-FEC";
 722                break;
 723        case ICE_AQ_LINK_25G_KR_FEC_EN:
 724                fec = "FC-FEC/BASE-R";
 725                break;
 726        default:
 727                fec = "NONE";
 728                break;
 729        }
 730
 731        /* check if autoneg completed, might be false due to not supported */
 732        if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 733                an = "True";
 734        else
 735                an = "False";
 736
 737        /* Get FEC mode requested based on PHY caps last SW configuration */
 738        caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 739        if (!caps) {
 740                fec_req = "Unknown";
 741                an_advertised = "Unknown";
 742                goto done;
 743        }
 744
 745        status = ice_aq_get_phy_caps(vsi->port_info, false,
 746                                     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
 747        if (status)
 748                netdev_info(vsi->netdev, "Get phy capability failed.\n");
 749
 750        an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 751
 752        if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 753            caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 754                fec_req = "RS-FEC";
 755        else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 756                 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 757                fec_req = "FC-FEC/BASE-R";
 758        else
 759                fec_req = "NONE";
 760
 761        kfree(caps);
 762
 763done:
 764        netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 765                    speed, fec_req, fec, an_advertised, an, fc);
 766        ice_print_topo_conflict(vsi);
 767}
 768
 769/**
 770 * ice_vsi_link_event - update the VSI's netdev
 771 * @vsi: the VSI on which the link event occurred
 772 * @link_up: whether or not the VSI needs to be set up or down
 773 */
 774static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 775{
 776        if (!vsi)
 777                return;
 778
 779        if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
 780                return;
 781
 782        if (vsi->type == ICE_VSI_PF) {
 783                if (link_up == netif_carrier_ok(vsi->netdev))
 784                        return;
 785
 786                if (link_up) {
 787                        netif_carrier_on(vsi->netdev);
 788                        netif_tx_wake_all_queues(vsi->netdev);
 789                } else {
 790                        netif_carrier_off(vsi->netdev);
 791                        netif_tx_stop_all_queues(vsi->netdev);
 792                }
 793        }
 794}
 795
 796/**
 797 * ice_set_dflt_mib - send a default config MIB to the FW
 798 * @pf: private PF struct
 799 *
 800 * This function sends a default configuration MIB to the FW.
 801 *
 802 * If this function errors out at any point, the driver is still able to
 803 * function.  The main impact is that LFC may not operate as expected.
 804 * Therefore an error state in this function should be treated with a DBG
 805 * message and continue on with driver rebuild/reenable.
 806 */
 807static void ice_set_dflt_mib(struct ice_pf *pf)
 808{
 809        struct device *dev = ice_pf_to_dev(pf);
 810        u8 mib_type, *buf, *lldpmib = NULL;
 811        u16 len, typelen, offset = 0;
 812        struct ice_lldp_org_tlv *tlv;
 813        struct ice_hw *hw = &pf->hw;
 814        u32 ouisubtype;
 815
 816        mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 817        lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 818        if (!lldpmib) {
 819                dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 820                        __func__);
 821                return;
 822        }
 823
 824        /* Add ETS CFG TLV */
 825        tlv = (struct ice_lldp_org_tlv *)lldpmib;
 826        typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 827                   ICE_IEEE_ETS_TLV_LEN);
 828        tlv->typelen = htons(typelen);
 829        ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 830                      ICE_IEEE_SUBTYPE_ETS_CFG);
 831        tlv->ouisubtype = htonl(ouisubtype);
 832
 833        buf = tlv->tlvinfo;
 834        buf[0] = 0;
 835
 836        /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 837         * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 838         * Octets 13 - 20 are TSA values - leave as zeros
 839         */
 840        buf[5] = 0x64;
 841        len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 842        offset += len + 2;
 843        tlv = (struct ice_lldp_org_tlv *)
 844                ((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846        /* Add ETS REC TLV */
 847        buf = tlv->tlvinfo;
 848        tlv->typelen = htons(typelen);
 849
 850        ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 851                      ICE_IEEE_SUBTYPE_ETS_REC);
 852        tlv->ouisubtype = htonl(ouisubtype);
 853
 854        /* First octet of buf is reserved
 855         * Octets 1 - 4 map UP to TC - all UPs map to zero
 856         * Octets 5 - 12 are BW values - set TC 0 to 100%.
 857         * Octets 13 - 20 are TSA value - leave as zeros
 858         */
 859        buf[5] = 0x64;
 860        offset += len + 2;
 861        tlv = (struct ice_lldp_org_tlv *)
 862                ((char *)tlv + sizeof(tlv->typelen) + len);
 863
 864        /* Add PFC CFG TLV */
 865        typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 866                   ICE_IEEE_PFC_TLV_LEN);
 867        tlv->typelen = htons(typelen);
 868
 869        ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 870                      ICE_IEEE_SUBTYPE_PFC_CFG);
 871        tlv->ouisubtype = htonl(ouisubtype);
 872
 873        /* Octet 1 left as all zeros - PFC disabled */
 874        buf[0] = 0x08;
 875        len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 876        offset += len + 2;
 877
 878        if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 879                dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 880
 881        kfree(lldpmib);
 882}
 883
 884/**
 885 * ice_check_module_power
 886 * @pf: pointer to PF struct
 887 * @link_cfg_err: bitmap from the link info structure
 888 *
 889 * check module power level returned by a previous call to aq_get_link_info
 890 * and print error messages if module power level is not supported
 891 */
 892static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
 893{
 894        /* if module power level is supported, clear the flag */
 895        if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
 896                              ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
 897                clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 898                return;
 899        }
 900
 901        /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
 902         * above block didn't clear this bit, there's nothing to do
 903         */
 904        if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
 905                return;
 906
 907        if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
 908                dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
 909                set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 910        } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
 911                dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
 912                set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 913        }
 914}
 915
 916/**
 917 * ice_link_event - process the link event
 918 * @pf: PF that the link event is associated with
 919 * @pi: port_info for the port that the link event is associated with
 920 * @link_up: true if the physical link is up and false if it is down
 921 * @link_speed: current link speed received from the link event
 922 *
 923 * Returns 0 on success and negative on failure
 924 */
 925static int
 926ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 927               u16 link_speed)
 928{
 929        struct device *dev = ice_pf_to_dev(pf);
 930        struct ice_phy_info *phy_info;
 931        enum ice_status status;
 932        struct ice_vsi *vsi;
 933        u16 old_link_speed;
 934        bool old_link;
 935
 936        phy_info = &pi->phy;
 937        phy_info->link_info_old = phy_info->link_info;
 938
 939        old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 940        old_link_speed = phy_info->link_info_old.link_speed;
 941
 942        /* update the link info structures and re-enable link events,
 943         * don't bail on failure due to other book keeping needed
 944         */
 945        status = ice_update_link_info(pi);
 946        if (status)
 947                dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
 948                        pi->lport, ice_stat_str(status),
 949                        ice_aq_str(pi->hw->adminq.sq_last_status));
 950
 951        ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
 952
 953        /* Check if the link state is up after updating link info, and treat
 954         * this event as an UP event since the link is actually UP now.
 955         */
 956        if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 957                link_up = true;
 958
 959        vsi = ice_get_main_vsi(pf);
 960        if (!vsi || !vsi->port_info)
 961                return -EINVAL;
 962
 963        /* turn off PHY if media was removed */
 964        if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 965            !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 966                set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 967                ice_set_link(vsi, false);
 968        }
 969
 970        /* if the old link up/down and speed is the same as the new */
 971        if (link_up == old_link && link_speed == old_link_speed)
 972                return 0;
 973
 974        if (ice_is_dcb_active(pf)) {
 975                if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 976                        ice_dcb_rebuild(pf);
 977        } else {
 978                if (link_up)
 979                        ice_set_dflt_mib(pf);
 980        }
 981        ice_vsi_link_event(vsi, link_up);
 982        ice_print_link_msg(vsi, link_up);
 983
 984        ice_vc_notify_link_state(pf);
 985
 986        return 0;
 987}
 988
 989/**
 990 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 991 * @pf: board private structure
 992 */
 993static void ice_watchdog_subtask(struct ice_pf *pf)
 994{
 995        int i;
 996
 997        /* if interface is down do nothing */
 998        if (test_bit(ICE_DOWN, pf->state) ||
 999            test_bit(ICE_CFG_BUSY, pf->state))
1000                return;
1001
1002        /* make sure we don't do these things too often */
1003        if (time_before(jiffies,
1004                        pf->serv_tmr_prev + pf->serv_tmr_period))
1005                return;
1006
1007        pf->serv_tmr_prev = jiffies;
1008
1009        /* Update the stats for active netdevs so the network stack
1010         * can look at updated numbers whenever it cares to
1011         */
1012        ice_update_pf_stats(pf);
1013        ice_for_each_vsi(pf, i)
1014                if (pf->vsi[i] && pf->vsi[i]->netdev)
1015                        ice_update_vsi_stats(pf->vsi[i]);
1016}
1017
1018/**
1019 * ice_init_link_events - enable/initialize link events
1020 * @pi: pointer to the port_info instance
1021 *
1022 * Returns -EIO on failure, 0 on success
1023 */
1024static int ice_init_link_events(struct ice_port_info *pi)
1025{
1026        u16 mask;
1027
1028        mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1029                       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1030
1031        if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1032                dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1033                        pi->lport);
1034                return -EIO;
1035        }
1036
1037        if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1038                dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1039                        pi->lport);
1040                return -EIO;
1041        }
1042
1043        return 0;
1044}
1045
1046/**
1047 * ice_handle_link_event - handle link event via ARQ
1048 * @pf: PF that the link event is associated with
1049 * @event: event structure containing link status info
1050 */
1051static int
1052ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1053{
1054        struct ice_aqc_get_link_status_data *link_data;
1055        struct ice_port_info *port_info;
1056        int status;
1057
1058        link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1059        port_info = pf->hw.port_info;
1060        if (!port_info)
1061                return -EINVAL;
1062
1063        status = ice_link_event(pf, port_info,
1064                                !!(link_data->link_info & ICE_AQ_LINK_UP),
1065                                le16_to_cpu(link_data->link_speed));
1066        if (status)
1067                dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1068                        status);
1069
1070        return status;
1071}
1072
1073enum ice_aq_task_state {
1074        ICE_AQ_TASK_WAITING = 0,
1075        ICE_AQ_TASK_COMPLETE,
1076        ICE_AQ_TASK_CANCELED,
1077};
1078
1079struct ice_aq_task {
1080        struct hlist_node entry;
1081
1082        u16 opcode;
1083        struct ice_rq_event_info *event;
1084        enum ice_aq_task_state state;
1085};
1086
1087/**
1088 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1089 * @pf: pointer to the PF private structure
1090 * @opcode: the opcode to wait for
1091 * @timeout: how long to wait, in jiffies
1092 * @event: storage for the event info
1093 *
1094 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1095 * current thread will be put to sleep until the specified event occurs or
1096 * until the given timeout is reached.
1097 *
1098 * To obtain only the descriptor contents, pass an event without an allocated
1099 * msg_buf. If the complete data buffer is desired, allocate the
1100 * event->msg_buf with enough space ahead of time.
1101 *
1102 * Returns: zero on success, or a negative error code on failure.
1103 */
1104int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1105                          struct ice_rq_event_info *event)
1106{
1107        struct device *dev = ice_pf_to_dev(pf);
1108        struct ice_aq_task *task;
1109        unsigned long start;
1110        long ret;
1111        int err;
1112
1113        task = kzalloc(sizeof(*task), GFP_KERNEL);
1114        if (!task)
1115                return -ENOMEM;
1116
1117        INIT_HLIST_NODE(&task->entry);
1118        task->opcode = opcode;
1119        task->event = event;
1120        task->state = ICE_AQ_TASK_WAITING;
1121
1122        spin_lock_bh(&pf->aq_wait_lock);
1123        hlist_add_head(&task->entry, &pf->aq_wait_list);
1124        spin_unlock_bh(&pf->aq_wait_lock);
1125
1126        start = jiffies;
1127
1128        ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1129                                               timeout);
1130        switch (task->state) {
1131        case ICE_AQ_TASK_WAITING:
1132                err = ret < 0 ? ret : -ETIMEDOUT;
1133                break;
1134        case ICE_AQ_TASK_CANCELED:
1135                err = ret < 0 ? ret : -ECANCELED;
1136                break;
1137        case ICE_AQ_TASK_COMPLETE:
1138                err = ret < 0 ? ret : 0;
1139                break;
1140        default:
1141                WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1142                err = -EINVAL;
1143                break;
1144        }
1145
1146        dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1147                jiffies_to_msecs(jiffies - start),
1148                jiffies_to_msecs(timeout),
1149                opcode);
1150
1151        spin_lock_bh(&pf->aq_wait_lock);
1152        hlist_del(&task->entry);
1153        spin_unlock_bh(&pf->aq_wait_lock);
1154        kfree(task);
1155
1156        return err;
1157}
1158
1159/**
1160 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1161 * @pf: pointer to the PF private structure
1162 * @opcode: the opcode of the event
1163 * @event: the event to check
1164 *
1165 * Loops over the current list of pending threads waiting for an AdminQ event.
1166 * For each matching task, copy the contents of the event into the task
1167 * structure and wake up the thread.
1168 *
1169 * If multiple threads wait for the same opcode, they will all be woken up.
1170 *
1171 * Note that event->msg_buf will only be duplicated if the event has a buffer
1172 * with enough space already allocated. Otherwise, only the descriptor and
1173 * message length will be copied.
1174 *
1175 * Returns: true if an event was found, false otherwise
1176 */
1177static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1178                                struct ice_rq_event_info *event)
1179{
1180        struct ice_aq_task *task;
1181        bool found = false;
1182
1183        spin_lock_bh(&pf->aq_wait_lock);
1184        hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1185                if (task->state || task->opcode != opcode)
1186                        continue;
1187
1188                memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1189                task->event->msg_len = event->msg_len;
1190
1191                /* Only copy the data buffer if a destination was set */
1192                if (task->event->msg_buf &&
1193                    task->event->buf_len > event->buf_len) {
1194                        memcpy(task->event->msg_buf, event->msg_buf,
1195                               event->buf_len);
1196                        task->event->buf_len = event->buf_len;
1197                }
1198
1199                task->state = ICE_AQ_TASK_COMPLETE;
1200                found = true;
1201        }
1202        spin_unlock_bh(&pf->aq_wait_lock);
1203
1204        if (found)
1205                wake_up(&pf->aq_wait_queue);
1206}
1207
1208/**
1209 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1210 * @pf: the PF private structure
1211 *
1212 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1213 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1214 */
1215static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1216{
1217        struct ice_aq_task *task;
1218
1219        spin_lock_bh(&pf->aq_wait_lock);
1220        hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1221                task->state = ICE_AQ_TASK_CANCELED;
1222        spin_unlock_bh(&pf->aq_wait_lock);
1223
1224        wake_up(&pf->aq_wait_queue);
1225}
1226
1227/**
1228 * __ice_clean_ctrlq - helper function to clean controlq rings
1229 * @pf: ptr to struct ice_pf
1230 * @q_type: specific Control queue type
1231 */
1232static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1233{
1234        struct device *dev = ice_pf_to_dev(pf);
1235        struct ice_rq_event_info event;
1236        struct ice_hw *hw = &pf->hw;
1237        struct ice_ctl_q_info *cq;
1238        u16 pending, i = 0;
1239        const char *qtype;
1240        u32 oldval, val;
1241
1242        /* Do not clean control queue if/when PF reset fails */
1243        if (test_bit(ICE_RESET_FAILED, pf->state))
1244                return 0;
1245
1246        switch (q_type) {
1247        case ICE_CTL_Q_ADMIN:
1248                cq = &hw->adminq;
1249                qtype = "Admin";
1250                break;
1251        case ICE_CTL_Q_SB:
1252                cq = &hw->sbq;
1253                qtype = "Sideband";
1254                break;
1255        case ICE_CTL_Q_MAILBOX:
1256                cq = &hw->mailboxq;
1257                qtype = "Mailbox";
1258                /* we are going to try to detect a malicious VF, so set the
1259                 * state to begin detection
1260                 */
1261                hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1262                break;
1263        default:
1264                dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1265                return 0;
1266        }
1267
1268        /* check for error indications - PF_xx_AxQLEN register layout for
1269         * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1270         */
1271        val = rd32(hw, cq->rq.len);
1272        if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1273                   PF_FW_ARQLEN_ARQCRIT_M)) {
1274                oldval = val;
1275                if (val & PF_FW_ARQLEN_ARQVFE_M)
1276                        dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1277                                qtype);
1278                if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1279                        dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1280                                qtype);
1281                }
1282                if (val & PF_FW_ARQLEN_ARQCRIT_M)
1283                        dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1284                                qtype);
1285                val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1286                         PF_FW_ARQLEN_ARQCRIT_M);
1287                if (oldval != val)
1288                        wr32(hw, cq->rq.len, val);
1289        }
1290
1291        val = rd32(hw, cq->sq.len);
1292        if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1293                   PF_FW_ATQLEN_ATQCRIT_M)) {
1294                oldval = val;
1295                if (val & PF_FW_ATQLEN_ATQVFE_M)
1296                        dev_dbg(dev, "%s Send Queue VF Error detected\n",
1297                                qtype);
1298                if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1299                        dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1300                                qtype);
1301                }
1302                if (val & PF_FW_ATQLEN_ATQCRIT_M)
1303                        dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1304                                qtype);
1305                val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1306                         PF_FW_ATQLEN_ATQCRIT_M);
1307                if (oldval != val)
1308                        wr32(hw, cq->sq.len, val);
1309        }
1310
1311        event.buf_len = cq->rq_buf_size;
1312        event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1313        if (!event.msg_buf)
1314                return 0;
1315
1316        do {
1317                enum ice_status ret;
1318                u16 opcode;
1319
1320                ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1321                if (ret == ICE_ERR_AQ_NO_WORK)
1322                        break;
1323                if (ret) {
1324                        dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1325                                ice_stat_str(ret));
1326                        break;
1327                }
1328
1329                opcode = le16_to_cpu(event.desc.opcode);
1330
1331                /* Notify any thread that might be waiting for this event */
1332                ice_aq_check_events(pf, opcode, &event);
1333
1334                switch (opcode) {
1335                case ice_aqc_opc_get_link_status:
1336                        if (ice_handle_link_event(pf, &event))
1337                                dev_err(dev, "Could not handle link event\n");
1338                        break;
1339                case ice_aqc_opc_event_lan_overflow:
1340                        ice_vf_lan_overflow_event(pf, &event);
1341                        break;
1342                case ice_mbx_opc_send_msg_to_pf:
1343                        if (!ice_is_malicious_vf(pf, &event, i, pending))
1344                                ice_vc_process_vf_msg(pf, &event);
1345                        break;
1346                case ice_aqc_opc_fw_logging:
1347                        ice_output_fw_log(hw, &event.desc, event.msg_buf);
1348                        break;
1349                case ice_aqc_opc_lldp_set_mib_change:
1350                        ice_dcb_process_lldp_set_mib_change(pf, &event);
1351                        break;
1352                default:
1353                        dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1354                                qtype, opcode);
1355                        break;
1356                }
1357        } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1358
1359        kfree(event.msg_buf);
1360
1361        return pending && (i == ICE_DFLT_IRQ_WORK);
1362}
1363
1364/**
1365 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1366 * @hw: pointer to hardware info
1367 * @cq: control queue information
1368 *
1369 * returns true if there are pending messages in a queue, false if there aren't
1370 */
1371static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1372{
1373        u16 ntu;
1374
1375        ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1376        return cq->rq.next_to_clean != ntu;
1377}
1378
1379/**
1380 * ice_clean_adminq_subtask - clean the AdminQ rings
1381 * @pf: board private structure
1382 */
1383static void ice_clean_adminq_subtask(struct ice_pf *pf)
1384{
1385        struct ice_hw *hw = &pf->hw;
1386
1387        if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1388                return;
1389
1390        if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1391                return;
1392
1393        clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1394
1395        /* There might be a situation where new messages arrive to a control
1396         * queue between processing the last message and clearing the
1397         * EVENT_PENDING bit. So before exiting, check queue head again (using
1398         * ice_ctrlq_pending) and process new messages if any.
1399         */
1400        if (ice_ctrlq_pending(hw, &hw->adminq))
1401                __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1402
1403        ice_flush(hw);
1404}
1405
1406/**
1407 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1408 * @pf: board private structure
1409 */
1410static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1411{
1412        struct ice_hw *hw = &pf->hw;
1413
1414        if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1415                return;
1416
1417        if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1418                return;
1419
1420        clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1421
1422        if (ice_ctrlq_pending(hw, &hw->mailboxq))
1423                __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1424
1425        ice_flush(hw);
1426}
1427
1428/**
1429 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1430 * @pf: board private structure
1431 */
1432static void ice_clean_sbq_subtask(struct ice_pf *pf)
1433{
1434        struct ice_hw *hw = &pf->hw;
1435
1436        /* Nothing to do here if sideband queue is not supported */
1437        if (!ice_is_sbq_supported(hw)) {
1438                clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1439                return;
1440        }
1441
1442        if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1443                return;
1444
1445        if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1446                return;
1447
1448        clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1449
1450        if (ice_ctrlq_pending(hw, &hw->sbq))
1451                __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1452
1453        ice_flush(hw);
1454}
1455
1456/**
1457 * ice_service_task_schedule - schedule the service task to wake up
1458 * @pf: board private structure
1459 *
1460 * If not already scheduled, this puts the task into the work queue.
1461 */
1462void ice_service_task_schedule(struct ice_pf *pf)
1463{
1464        if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1465            !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1466            !test_bit(ICE_NEEDS_RESTART, pf->state))
1467                queue_work(ice_wq, &pf->serv_task);
1468}
1469
1470/**
1471 * ice_service_task_complete - finish up the service task
1472 * @pf: board private structure
1473 */
1474static void ice_service_task_complete(struct ice_pf *pf)
1475{
1476        WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1477
1478        /* force memory (pf->state) to sync before next service task */
1479        smp_mb__before_atomic();
1480        clear_bit(ICE_SERVICE_SCHED, pf->state);
1481}
1482
1483/**
1484 * ice_service_task_stop - stop service task and cancel works
1485 * @pf: board private structure
1486 *
1487 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1488 * 1 otherwise.
1489 */
1490static int ice_service_task_stop(struct ice_pf *pf)
1491{
1492        int ret;
1493
1494        ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1495
1496        if (pf->serv_tmr.function)
1497                del_timer_sync(&pf->serv_tmr);
1498        if (pf->serv_task.func)
1499                cancel_work_sync(&pf->serv_task);
1500
1501        clear_bit(ICE_SERVICE_SCHED, pf->state);
1502        return ret;
1503}
1504
1505/**
1506 * ice_service_task_restart - restart service task and schedule works
1507 * @pf: board private structure
1508 *
1509 * This function is needed for suspend and resume works (e.g WoL scenario)
1510 */
1511static void ice_service_task_restart(struct ice_pf *pf)
1512{
1513        clear_bit(ICE_SERVICE_DIS, pf->state);
1514        ice_service_task_schedule(pf);
1515}
1516
1517/**
1518 * ice_service_timer - timer callback to schedule service task
1519 * @t: pointer to timer_list
1520 */
1521static void ice_service_timer(struct timer_list *t)
1522{
1523        struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1524
1525        mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1526        ice_service_task_schedule(pf);
1527}
1528
1529/**
1530 * ice_handle_mdd_event - handle malicious driver detect event
1531 * @pf: pointer to the PF structure
1532 *
1533 * Called from service task. OICR interrupt handler indicates MDD event.
1534 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1535 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1536 * disable the queue, the PF can be configured to reset the VF using ethtool
1537 * private flag mdd-auto-reset-vf.
1538 */
1539static void ice_handle_mdd_event(struct ice_pf *pf)
1540{
1541        struct device *dev = ice_pf_to_dev(pf);
1542        struct ice_hw *hw = &pf->hw;
1543        unsigned int i;
1544        u32 reg;
1545
1546        if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1547                /* Since the VF MDD event logging is rate limited, check if
1548                 * there are pending MDD events.
1549                 */
1550                ice_print_vfs_mdd_events(pf);
1551                return;
1552        }
1553
1554        /* find what triggered an MDD event */
1555        reg = rd32(hw, GL_MDET_TX_PQM);
1556        if (reg & GL_MDET_TX_PQM_VALID_M) {
1557                u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1558                                GL_MDET_TX_PQM_PF_NUM_S;
1559                u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1560                                GL_MDET_TX_PQM_VF_NUM_S;
1561                u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1562                                GL_MDET_TX_PQM_MAL_TYPE_S;
1563                u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1564                                GL_MDET_TX_PQM_QNUM_S);
1565
1566                if (netif_msg_tx_err(pf))
1567                        dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1568                                 event, queue, pf_num, vf_num);
1569                wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1570        }
1571
1572        reg = rd32(hw, GL_MDET_TX_TCLAN);
1573        if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1574                u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1575                                GL_MDET_TX_TCLAN_PF_NUM_S;
1576                u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1577                                GL_MDET_TX_TCLAN_VF_NUM_S;
1578                u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1579                                GL_MDET_TX_TCLAN_MAL_TYPE_S;
1580                u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1581                                GL_MDET_TX_TCLAN_QNUM_S);
1582
1583                if (netif_msg_tx_err(pf))
1584                        dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1585                                 event, queue, pf_num, vf_num);
1586                wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1587        }
1588
1589        reg = rd32(hw, GL_MDET_RX);
1590        if (reg & GL_MDET_RX_VALID_M) {
1591                u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1592                                GL_MDET_RX_PF_NUM_S;
1593                u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1594                                GL_MDET_RX_VF_NUM_S;
1595                u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1596                                GL_MDET_RX_MAL_TYPE_S;
1597                u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1598                                GL_MDET_RX_QNUM_S);
1599
1600                if (netif_msg_rx_err(pf))
1601                        dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1602                                 event, queue, pf_num, vf_num);
1603                wr32(hw, GL_MDET_RX, 0xffffffff);
1604        }
1605
1606        /* check to see if this PF caused an MDD event */
1607        reg = rd32(hw, PF_MDET_TX_PQM);
1608        if (reg & PF_MDET_TX_PQM_VALID_M) {
1609                wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1610                if (netif_msg_tx_err(pf))
1611                        dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1612        }
1613
1614        reg = rd32(hw, PF_MDET_TX_TCLAN);
1615        if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1616                wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1617                if (netif_msg_tx_err(pf))
1618                        dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1619        }
1620
1621        reg = rd32(hw, PF_MDET_RX);
1622        if (reg & PF_MDET_RX_VALID_M) {
1623                wr32(hw, PF_MDET_RX, 0xFFFF);
1624                if (netif_msg_rx_err(pf))
1625                        dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1626        }
1627
1628        /* Check to see if one of the VFs caused an MDD event, and then
1629         * increment counters and set print pending
1630         */
1631        ice_for_each_vf(pf, i) {
1632                struct ice_vf *vf = &pf->vf[i];
1633
1634                reg = rd32(hw, VP_MDET_TX_PQM(i));
1635                if (reg & VP_MDET_TX_PQM_VALID_M) {
1636                        wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1637                        vf->mdd_tx_events.count++;
1638                        set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1639                        if (netif_msg_tx_err(pf))
1640                                dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1641                                         i);
1642                }
1643
1644                reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1645                if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1646                        wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1647                        vf->mdd_tx_events.count++;
1648                        set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1649                        if (netif_msg_tx_err(pf))
1650                                dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1651                                         i);
1652                }
1653
1654                reg = rd32(hw, VP_MDET_TX_TDPU(i));
1655                if (reg & VP_MDET_TX_TDPU_VALID_M) {
1656                        wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1657                        vf->mdd_tx_events.count++;
1658                        set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1659                        if (netif_msg_tx_err(pf))
1660                                dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1661                                         i);
1662                }
1663
1664                reg = rd32(hw, VP_MDET_RX(i));
1665                if (reg & VP_MDET_RX_VALID_M) {
1666                        wr32(hw, VP_MDET_RX(i), 0xFFFF);
1667                        vf->mdd_rx_events.count++;
1668                        set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1669                        if (netif_msg_rx_err(pf))
1670                                dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1671                                         i);
1672
1673                        /* Since the queue is disabled on VF Rx MDD events, the
1674                         * PF can be configured to reset the VF through ethtool
1675                         * private flag mdd-auto-reset-vf.
1676                         */
1677                        if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1678                                /* VF MDD event counters will be cleared by
1679                                 * reset, so print the event prior to reset.
1680                                 */
1681                                ice_print_vf_rx_mdd_event(vf);
1682                                ice_reset_vf(&pf->vf[i], false);
1683                        }
1684                }
1685        }
1686
1687        ice_print_vfs_mdd_events(pf);
1688}
1689
1690/**
1691 * ice_force_phys_link_state - Force the physical link state
1692 * @vsi: VSI to force the physical link state to up/down
1693 * @link_up: true/false indicates to set the physical link to up/down
1694 *
1695 * Force the physical link state by getting the current PHY capabilities from
1696 * hardware and setting the PHY config based on the determined capabilities. If
1697 * link changes a link event will be triggered because both the Enable Automatic
1698 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1699 *
1700 * Returns 0 on success, negative on failure
1701 */
1702static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1703{
1704        struct ice_aqc_get_phy_caps_data *pcaps;
1705        struct ice_aqc_set_phy_cfg_data *cfg;
1706        struct ice_port_info *pi;
1707        struct device *dev;
1708        int retcode;
1709
1710        if (!vsi || !vsi->port_info || !vsi->back)
1711                return -EINVAL;
1712        if (vsi->type != ICE_VSI_PF)
1713                return 0;
1714
1715        dev = ice_pf_to_dev(vsi->back);
1716
1717        pi = vsi->port_info;
1718
1719        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1720        if (!pcaps)
1721                return -ENOMEM;
1722
1723        retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1724                                      NULL);
1725        if (retcode) {
1726                dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1727                        vsi->vsi_num, retcode);
1728                retcode = -EIO;
1729                goto out;
1730        }
1731
1732        /* No change in link */
1733        if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1734            link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1735                goto out;
1736
1737        /* Use the current user PHY configuration. The current user PHY
1738         * configuration is initialized during probe from PHY capabilities
1739         * software mode, and updated on set PHY configuration.
1740         */
1741        cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1742        if (!cfg) {
1743                retcode = -ENOMEM;
1744                goto out;
1745        }
1746
1747        cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1748        if (link_up)
1749                cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1750        else
1751                cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1752
1753        retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1754        if (retcode) {
1755                dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1756                        vsi->vsi_num, retcode);
1757                retcode = -EIO;
1758        }
1759
1760        kfree(cfg);
1761out:
1762        kfree(pcaps);
1763        return retcode;
1764}
1765
1766/**
1767 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1768 * @pi: port info structure
1769 *
1770 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1771 */
1772static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1773{
1774        struct ice_aqc_get_phy_caps_data *pcaps;
1775        struct ice_pf *pf = pi->hw->back;
1776        enum ice_status status;
1777        int err = 0;
1778
1779        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1780        if (!pcaps)
1781                return -ENOMEM;
1782
1783        status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1784                                     NULL);
1785
1786        if (status) {
1787                dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1788                err = -EIO;
1789                goto out;
1790        }
1791
1792        pf->nvm_phy_type_hi = pcaps->phy_type_high;
1793        pf->nvm_phy_type_lo = pcaps->phy_type_low;
1794
1795out:
1796        kfree(pcaps);
1797        return err;
1798}
1799
1800/**
1801 * ice_init_link_dflt_override - Initialize link default override
1802 * @pi: port info structure
1803 *
1804 * Initialize link default override and PHY total port shutdown during probe
1805 */
1806static void ice_init_link_dflt_override(struct ice_port_info *pi)
1807{
1808        struct ice_link_default_override_tlv *ldo;
1809        struct ice_pf *pf = pi->hw->back;
1810
1811        ldo = &pf->link_dflt_override;
1812        if (ice_get_link_default_override(ldo, pi))
1813                return;
1814
1815        if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1816                return;
1817
1818        /* Enable Total Port Shutdown (override/replace link-down-on-close
1819         * ethtool private flag) for ports with Port Disable bit set.
1820         */
1821        set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1822        set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1823}
1824
1825/**
1826 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1827 * @pi: port info structure
1828 *
1829 * If default override is enabled, initialize the user PHY cfg speed and FEC
1830 * settings using the default override mask from the NVM.
1831 *
1832 * The PHY should only be configured with the default override settings the
1833 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1834 * is used to indicate that the user PHY cfg default override is initialized
1835 * and the PHY has not been configured with the default override settings. The
1836 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1837 * configured.
1838 *
1839 * This function should be called only if the FW doesn't support default
1840 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1841 */
1842static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1843{
1844        struct ice_link_default_override_tlv *ldo;
1845        struct ice_aqc_set_phy_cfg_data *cfg;
1846        struct ice_phy_info *phy = &pi->phy;
1847        struct ice_pf *pf = pi->hw->back;
1848
1849        ldo = &pf->link_dflt_override;
1850
1851        /* If link default override is enabled, use to mask NVM PHY capabilities
1852         * for speed and FEC default configuration.
1853         */
1854        cfg = &phy->curr_user_phy_cfg;
1855
1856        if (ldo->phy_type_low || ldo->phy_type_high) {
1857                cfg->phy_type_low = pf->nvm_phy_type_lo &
1858                                    cpu_to_le64(ldo->phy_type_low);
1859                cfg->phy_type_high = pf->nvm_phy_type_hi &
1860                                     cpu_to_le64(ldo->phy_type_high);
1861        }
1862        cfg->link_fec_opt = ldo->fec_options;
1863        phy->curr_user_fec_req = ICE_FEC_AUTO;
1864
1865        set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1866}
1867
1868/**
1869 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1870 * @pi: port info structure
1871 *
1872 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1873 * mode to default. The PHY defaults are from get PHY capabilities topology
1874 * with media so call when media is first available. An error is returned if
1875 * called when media is not available. The PHY initialization completed state is
1876 * set here.
1877 *
1878 * These configurations are used when setting PHY
1879 * configuration. The user PHY configuration is updated on set PHY
1880 * configuration. Returns 0 on success, negative on failure
1881 */
1882static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1883{
1884        struct ice_aqc_get_phy_caps_data *pcaps;
1885        struct ice_phy_info *phy = &pi->phy;
1886        struct ice_pf *pf = pi->hw->back;
1887        enum ice_status status;
1888        int err = 0;
1889
1890        if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1891                return -EIO;
1892
1893        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1894        if (!pcaps)
1895                return -ENOMEM;
1896
1897        if (ice_fw_supports_report_dflt_cfg(pi->hw))
1898                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1899                                             pcaps, NULL);
1900        else
1901                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1902                                             pcaps, NULL);
1903        if (status) {
1904                dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1905                err = -EIO;
1906                goto err_out;
1907        }
1908
1909        ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1910
1911        /* check if lenient mode is supported and enabled */
1912        if (ice_fw_supports_link_override(pi->hw) &&
1913            !(pcaps->module_compliance_enforcement &
1914              ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1915                set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1916
1917                /* if the FW supports default PHY configuration mode, then the driver
1918                 * does not have to apply link override settings. If not,
1919                 * initialize user PHY configuration with link override values
1920                 */
1921                if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1922                    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1923                        ice_init_phy_cfg_dflt_override(pi);
1924                        goto out;
1925                }
1926        }
1927
1928        /* if link default override is not enabled, set user flow control and
1929         * FEC settings based on what get_phy_caps returned
1930         */
1931        phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1932                                                      pcaps->link_fec_options);
1933        phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1934
1935out:
1936        phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1937        set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1938err_out:
1939        kfree(pcaps);
1940        return err;
1941}
1942
1943/**
1944 * ice_configure_phy - configure PHY
1945 * @vsi: VSI of PHY
1946 *
1947 * Set the PHY configuration. If the current PHY configuration is the same as
1948 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1949 * configure the based get PHY capabilities for topology with media.
1950 */
1951static int ice_configure_phy(struct ice_vsi *vsi)
1952{
1953        struct device *dev = ice_pf_to_dev(vsi->back);
1954        struct ice_port_info *pi = vsi->port_info;
1955        struct ice_aqc_get_phy_caps_data *pcaps;
1956        struct ice_aqc_set_phy_cfg_data *cfg;
1957        struct ice_phy_info *phy = &pi->phy;
1958        struct ice_pf *pf = vsi->back;
1959        enum ice_status status;
1960        int err = 0;
1961
1962        /* Ensure we have media as we cannot configure a medialess port */
1963        if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1964                return -EPERM;
1965
1966        ice_print_topo_conflict(vsi);
1967
1968        if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1969                return -EPERM;
1970
1971        if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1972                return ice_force_phys_link_state(vsi, true);
1973
1974        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1975        if (!pcaps)
1976                return -ENOMEM;
1977
1978        /* Get current PHY config */
1979        status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1980                                     NULL);
1981        if (status) {
1982                dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1983                        vsi->vsi_num, ice_stat_str(status));
1984                err = -EIO;
1985                goto done;
1986        }
1987
1988        /* If PHY enable link is configured and configuration has not changed,
1989         * there's nothing to do
1990         */
1991        if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1992            ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1993                goto done;
1994
1995        /* Use PHY topology as baseline for configuration */
1996        memset(pcaps, 0, sizeof(*pcaps));
1997        if (ice_fw_supports_report_dflt_cfg(pi->hw))
1998                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1999                                             pcaps, NULL);
2000        else
2001                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2002                                             pcaps, NULL);
2003        if (status) {
2004                dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2005                        vsi->vsi_num, ice_stat_str(status));
2006                err = -EIO;
2007                goto done;
2008        }
2009
2010        cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2011        if (!cfg) {
2012                err = -ENOMEM;
2013                goto done;
2014        }
2015
2016        ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2017
2018        /* Speed - If default override pending, use curr_user_phy_cfg set in
2019         * ice_init_phy_user_cfg_ldo.
2020         */
2021        if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2022                               vsi->back->state)) {
2023                cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2024                cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2025        } else {
2026                u64 phy_low = 0, phy_high = 0;
2027
2028                ice_update_phy_type(&phy_low, &phy_high,
2029                                    pi->phy.curr_user_speed_req);
2030                cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2031                cfg->phy_type_high = pcaps->phy_type_high &
2032                                     cpu_to_le64(phy_high);
2033        }
2034
2035        /* Can't provide what was requested; use PHY capabilities */
2036        if (!cfg->phy_type_low && !cfg->phy_type_high) {
2037                cfg->phy_type_low = pcaps->phy_type_low;
2038                cfg->phy_type_high = pcaps->phy_type_high;
2039        }
2040
2041        /* FEC */
2042        ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2043
2044        /* Can't provide what was requested; use PHY capabilities */
2045        if (cfg->link_fec_opt !=
2046            (cfg->link_fec_opt & pcaps->link_fec_options)) {
2047                cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2048                cfg->link_fec_opt = pcaps->link_fec_options;
2049        }
2050
2051        /* Flow Control - always supported; no need to check against
2052         * capabilities
2053         */
2054        ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2055
2056        /* Enable link and link update */
2057        cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2058
2059        status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2060        if (status) {
2061                dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2062                        vsi->vsi_num, ice_stat_str(status));
2063                err = -EIO;
2064        }
2065
2066        kfree(cfg);
2067done:
2068        kfree(pcaps);
2069        return err;
2070}
2071
2072/**
2073 * ice_check_media_subtask - Check for media
2074 * @pf: pointer to PF struct
2075 *
2076 * If media is available, then initialize PHY user configuration if it is not
2077 * been, and configure the PHY if the interface is up.
2078 */
2079static void ice_check_media_subtask(struct ice_pf *pf)
2080{
2081        struct ice_port_info *pi;
2082        struct ice_vsi *vsi;
2083        int err;
2084
2085        /* No need to check for media if it's already present */
2086        if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2087                return;
2088
2089        vsi = ice_get_main_vsi(pf);
2090        if (!vsi)
2091                return;
2092
2093        /* Refresh link info and check if media is present */
2094        pi = vsi->port_info;
2095        err = ice_update_link_info(pi);
2096        if (err)
2097                return;
2098
2099        ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2100
2101        if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2102                if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2103                        ice_init_phy_user_cfg(pi);
2104
2105                /* PHY settings are reset on media insertion, reconfigure
2106                 * PHY to preserve settings.
2107                 */
2108                if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2109                    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2110                        return;
2111
2112                err = ice_configure_phy(vsi);
2113                if (!err)
2114                        clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2115
2116                /* A Link Status Event will be generated; the event handler
2117                 * will complete bringing the interface up
2118                 */
2119        }
2120}
2121
2122/**
2123 * ice_service_task - manage and run subtasks
2124 * @work: pointer to work_struct contained by the PF struct
2125 */
2126static void ice_service_task(struct work_struct *work)
2127{
2128        struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2129        unsigned long start_time = jiffies;
2130
2131        /* subtasks */
2132
2133        /* process reset requests first */
2134        ice_reset_subtask(pf);
2135
2136        /* bail if a reset/recovery cycle is pending or rebuild failed */
2137        if (ice_is_reset_in_progress(pf->state) ||
2138            test_bit(ICE_SUSPENDED, pf->state) ||
2139            test_bit(ICE_NEEDS_RESTART, pf->state)) {
2140                ice_service_task_complete(pf);
2141                return;
2142        }
2143
2144        ice_clean_adminq_subtask(pf);
2145        ice_check_media_subtask(pf);
2146        ice_check_for_hang_subtask(pf);
2147        ice_sync_fltr_subtask(pf);
2148        ice_handle_mdd_event(pf);
2149        ice_watchdog_subtask(pf);
2150
2151        if (ice_is_safe_mode(pf)) {
2152                ice_service_task_complete(pf);
2153                return;
2154        }
2155
2156        ice_process_vflr_event(pf);
2157        ice_clean_mailboxq_subtask(pf);
2158        ice_clean_sbq_subtask(pf);
2159        ice_sync_arfs_fltrs(pf);
2160        ice_flush_fdir_ctx(pf);
2161
2162        /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2163        ice_service_task_complete(pf);
2164
2165        /* If the tasks have taken longer than one service timer period
2166         * or there is more work to be done, reset the service timer to
2167         * schedule the service task now.
2168         */
2169        if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2170            test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2171            test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2172            test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2173            test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2174            test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2175            test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2176                mod_timer(&pf->serv_tmr, jiffies);
2177}
2178
2179/**
2180 * ice_set_ctrlq_len - helper function to set controlq length
2181 * @hw: pointer to the HW instance
2182 */
2183static void ice_set_ctrlq_len(struct ice_hw *hw)
2184{
2185        hw->adminq.num_rq_entries = ICE_AQ_LEN;
2186        hw->adminq.num_sq_entries = ICE_AQ_LEN;
2187        hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2188        hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2189        hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2190        hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2191        hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2192        hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2193        hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2194        hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2195        hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2196        hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2197}
2198
2199/**
2200 * ice_schedule_reset - schedule a reset
2201 * @pf: board private structure
2202 * @reset: reset being requested
2203 */
2204int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2205{
2206        struct device *dev = ice_pf_to_dev(pf);
2207
2208        /* bail out if earlier reset has failed */
2209        if (test_bit(ICE_RESET_FAILED, pf->state)) {
2210                dev_dbg(dev, "earlier reset has failed\n");
2211                return -EIO;
2212        }
2213        /* bail if reset/recovery already in progress */
2214        if (ice_is_reset_in_progress(pf->state)) {
2215                dev_dbg(dev, "Reset already in progress\n");
2216                return -EBUSY;
2217        }
2218
2219        ice_unplug_aux_dev(pf);
2220
2221        switch (reset) {
2222        case ICE_RESET_PFR:
2223                set_bit(ICE_PFR_REQ, pf->state);
2224                break;
2225        case ICE_RESET_CORER:
2226                set_bit(ICE_CORER_REQ, pf->state);
2227                break;
2228        case ICE_RESET_GLOBR:
2229                set_bit(ICE_GLOBR_REQ, pf->state);
2230                break;
2231        default:
2232                return -EINVAL;
2233        }
2234
2235        ice_service_task_schedule(pf);
2236        return 0;
2237}
2238
2239/**
2240 * ice_irq_affinity_notify - Callback for affinity changes
2241 * @notify: context as to what irq was changed
2242 * @mask: the new affinity mask
2243 *
2244 * This is a callback function used by the irq_set_affinity_notifier function
2245 * so that we may register to receive changes to the irq affinity masks.
2246 */
2247static void
2248ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2249                        const cpumask_t *mask)
2250{
2251        struct ice_q_vector *q_vector =
2252                container_of(notify, struct ice_q_vector, affinity_notify);
2253
2254        cpumask_copy(&q_vector->affinity_mask, mask);
2255}
2256
2257/**
2258 * ice_irq_affinity_release - Callback for affinity notifier release
2259 * @ref: internal core kernel usage
2260 *
2261 * This is a callback function used by the irq_set_affinity_notifier function
2262 * to inform the current notification subscriber that they will no longer
2263 * receive notifications.
2264 */
2265static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2266
2267/**
2268 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2269 * @vsi: the VSI being configured
2270 */
2271static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2272{
2273        struct ice_hw *hw = &vsi->back->hw;
2274        int i;
2275
2276        ice_for_each_q_vector(vsi, i)
2277                ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2278
2279        ice_flush(hw);
2280        return 0;
2281}
2282
2283/**
2284 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2285 * @vsi: the VSI being configured
2286 * @basename: name for the vector
2287 */
2288static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2289{
2290        int q_vectors = vsi->num_q_vectors;
2291        struct ice_pf *pf = vsi->back;
2292        int base = vsi->base_vector;
2293        struct device *dev;
2294        int rx_int_idx = 0;
2295        int tx_int_idx = 0;
2296        int vector, err;
2297        int irq_num;
2298
2299        dev = ice_pf_to_dev(pf);
2300        for (vector = 0; vector < q_vectors; vector++) {
2301                struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2302
2303                irq_num = pf->msix_entries[base + vector].vector;
2304
2305                if (q_vector->tx.ring && q_vector->rx.ring) {
2306                        snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2307                                 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2308                        tx_int_idx++;
2309                } else if (q_vector->rx.ring) {
2310                        snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2311                                 "%s-%s-%d", basename, "rx", rx_int_idx++);
2312                } else if (q_vector->tx.ring) {
2313                        snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2314                                 "%s-%s-%d", basename, "tx", tx_int_idx++);
2315                } else {
2316                        /* skip this unused q_vector */
2317                        continue;
2318                }
2319                if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2320                        err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2321                                               IRQF_SHARED, q_vector->name,
2322                                               q_vector);
2323                else
2324                        err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2325                                               0, q_vector->name, q_vector);
2326                if (err) {
2327                        netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2328                                   err);
2329                        goto free_q_irqs;
2330                }
2331
2332                /* register for affinity change notifications */
2333                if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2334                        struct irq_affinity_notify *affinity_notify;
2335
2336                        affinity_notify = &q_vector->affinity_notify;
2337                        affinity_notify->notify = ice_irq_affinity_notify;
2338                        affinity_notify->release = ice_irq_affinity_release;
2339                        irq_set_affinity_notifier(irq_num, affinity_notify);
2340                }
2341
2342                /* assign the mask for this irq */
2343                irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2344        }
2345
2346        vsi->irqs_ready = true;
2347        return 0;
2348
2349free_q_irqs:
2350        while (vector) {
2351                vector--;
2352                irq_num = pf->msix_entries[base + vector].vector;
2353                if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2354                        irq_set_affinity_notifier(irq_num, NULL);
2355                irq_set_affinity_hint(irq_num, NULL);
2356                devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2357        }
2358        return err;
2359}
2360
2361/**
2362 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2363 * @vsi: VSI to setup Tx rings used by XDP
2364 *
2365 * Return 0 on success and negative value on error
2366 */
2367static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2368{
2369        struct device *dev = ice_pf_to_dev(vsi->back);
2370        int i;
2371
2372        for (i = 0; i < vsi->num_xdp_txq; i++) {
2373                u16 xdp_q_idx = vsi->alloc_txq + i;
2374                struct ice_ring *xdp_ring;
2375
2376                xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2377
2378                if (!xdp_ring)
2379                        goto free_xdp_rings;
2380
2381                xdp_ring->q_index = xdp_q_idx;
2382                xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2383                xdp_ring->ring_active = false;
2384                xdp_ring->vsi = vsi;
2385                xdp_ring->netdev = NULL;
2386                xdp_ring->dev = dev;
2387                xdp_ring->count = vsi->num_tx_desc;
2388                WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2389                if (ice_setup_tx_ring(xdp_ring))
2390                        goto free_xdp_rings;
2391                ice_set_ring_xdp(xdp_ring);
2392                xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2393        }
2394
2395        return 0;
2396
2397free_xdp_rings:
2398        for (; i >= 0; i--)
2399                if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2400                        ice_free_tx_ring(vsi->xdp_rings[i]);
2401        return -ENOMEM;
2402}
2403
2404/**
2405 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2406 * @vsi: VSI to set the bpf prog on
2407 * @prog: the bpf prog pointer
2408 */
2409static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2410{
2411        struct bpf_prog *old_prog;
2412        int i;
2413
2414        old_prog = xchg(&vsi->xdp_prog, prog);
2415        if (old_prog)
2416                bpf_prog_put(old_prog);
2417
2418        ice_for_each_rxq(vsi, i)
2419                WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2420}
2421
2422/**
2423 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2424 * @vsi: VSI to bring up Tx rings used by XDP
2425 * @prog: bpf program that will be assigned to VSI
2426 *
2427 * Return 0 on success and negative value on error
2428 */
2429int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2430{
2431        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432        int xdp_rings_rem = vsi->num_xdp_txq;
2433        struct ice_pf *pf = vsi->back;
2434        struct ice_qs_cfg xdp_qs_cfg = {
2435                .qs_mutex = &pf->avail_q_mutex,
2436                .pf_map = pf->avail_txqs,
2437                .pf_map_size = pf->max_pf_txqs,
2438                .q_count = vsi->num_xdp_txq,
2439                .scatter_count = ICE_MAX_SCATTER_TXQS,
2440                .vsi_map = vsi->txq_map,
2441                .vsi_map_offset = vsi->alloc_txq,
2442                .mapping_mode = ICE_VSI_MAP_CONTIG
2443        };
2444        enum ice_status status;
2445        struct device *dev;
2446        int i, v_idx;
2447
2448        dev = ice_pf_to_dev(pf);
2449        vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2450                                      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2451        if (!vsi->xdp_rings)
2452                return -ENOMEM;
2453
2454        vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2455        if (__ice_vsi_get_qs(&xdp_qs_cfg))
2456                goto err_map_xdp;
2457
2458        if (ice_xdp_alloc_setup_rings(vsi))
2459                goto clear_xdp_rings;
2460
2461        /* follow the logic from ice_vsi_map_rings_to_vectors */
2462        ice_for_each_q_vector(vsi, v_idx) {
2463                struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2464                int xdp_rings_per_v, q_id, q_base;
2465
2466                xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2467                                               vsi->num_q_vectors - v_idx);
2468                q_base = vsi->num_xdp_txq - xdp_rings_rem;
2469
2470                for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2471                        struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2472
2473                        xdp_ring->q_vector = q_vector;
2474                        xdp_ring->next = q_vector->tx.ring;
2475                        q_vector->tx.ring = xdp_ring;
2476                }
2477                xdp_rings_rem -= xdp_rings_per_v;
2478        }
2479
2480        /* omit the scheduler update if in reset path; XDP queues will be
2481         * taken into account at the end of ice_vsi_rebuild, where
2482         * ice_cfg_vsi_lan is being called
2483         */
2484        if (ice_is_reset_in_progress(pf->state))
2485                return 0;
2486
2487        /* tell the Tx scheduler that right now we have
2488         * additional queues
2489         */
2490        for (i = 0; i < vsi->tc_cfg.numtc; i++)
2491                max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2492
2493        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2494                                 max_txqs);
2495        if (status) {
2496                dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2497                        ice_stat_str(status));
2498                goto clear_xdp_rings;
2499        }
2500        ice_vsi_assign_bpf_prog(vsi, prog);
2501
2502        return 0;
2503clear_xdp_rings:
2504        for (i = 0; i < vsi->num_xdp_txq; i++)
2505                if (vsi->xdp_rings[i]) {
2506                        kfree_rcu(vsi->xdp_rings[i], rcu);
2507                        vsi->xdp_rings[i] = NULL;
2508                }
2509
2510err_map_xdp:
2511        mutex_lock(&pf->avail_q_mutex);
2512        for (i = 0; i < vsi->num_xdp_txq; i++) {
2513                clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2514                vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2515        }
2516        mutex_unlock(&pf->avail_q_mutex);
2517
2518        devm_kfree(dev, vsi->xdp_rings);
2519        return -ENOMEM;
2520}
2521
2522/**
2523 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2524 * @vsi: VSI to remove XDP rings
2525 *
2526 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2527 * resources
2528 */
2529int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2530{
2531        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2532        struct ice_pf *pf = vsi->back;
2533        int i, v_idx;
2534
2535        /* q_vectors are freed in reset path so there's no point in detaching
2536         * rings; in case of rebuild being triggered not from reset bits
2537         * in pf->state won't be set, so additionally check first q_vector
2538         * against NULL
2539         */
2540        if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2541                goto free_qmap;
2542
2543        ice_for_each_q_vector(vsi, v_idx) {
2544                struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2545                struct ice_ring *ring;
2546
2547                ice_for_each_ring(ring, q_vector->tx)
2548                        if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2549                                break;
2550
2551                /* restore the value of last node prior to XDP setup */
2552                q_vector->tx.ring = ring;
2553        }
2554
2555free_qmap:
2556        mutex_lock(&pf->avail_q_mutex);
2557        for (i = 0; i < vsi->num_xdp_txq; i++) {
2558                clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2559                vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2560        }
2561        mutex_unlock(&pf->avail_q_mutex);
2562
2563        for (i = 0; i < vsi->num_xdp_txq; i++)
2564                if (vsi->xdp_rings[i]) {
2565                        if (vsi->xdp_rings[i]->desc)
2566                                ice_free_tx_ring(vsi->xdp_rings[i]);
2567                        kfree_rcu(vsi->xdp_rings[i], rcu);
2568                        vsi->xdp_rings[i] = NULL;
2569                }
2570
2571        devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2572        vsi->xdp_rings = NULL;
2573
2574        if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2575                return 0;
2576
2577        ice_vsi_assign_bpf_prog(vsi, NULL);
2578
2579        /* notify Tx scheduler that we destroyed XDP queues and bring
2580         * back the old number of child nodes
2581         */
2582        for (i = 0; i < vsi->tc_cfg.numtc; i++)
2583                max_txqs[i] = vsi->num_txq;
2584
2585        /* change number of XDP Tx queues to 0 */
2586        vsi->num_xdp_txq = 0;
2587
2588        return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2589                               max_txqs);
2590}
2591
2592/**
2593 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2594 * @vsi: VSI to schedule napi on
2595 */
2596static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2597{
2598        int i;
2599
2600        ice_for_each_rxq(vsi, i) {
2601                struct ice_ring *rx_ring = vsi->rx_rings[i];
2602
2603                if (rx_ring->xsk_pool)
2604                        napi_schedule(&rx_ring->q_vector->napi);
2605        }
2606}
2607
2608/**
2609 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2610 * @vsi: VSI to setup XDP for
2611 * @prog: XDP program
2612 * @extack: netlink extended ack
2613 */
2614static int
2615ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2616                   struct netlink_ext_ack *extack)
2617{
2618        int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2619        bool if_running = netif_running(vsi->netdev);
2620        int ret = 0, xdp_ring_err = 0;
2621
2622        if (frame_size > vsi->rx_buf_len) {
2623                NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2624                return -EOPNOTSUPP;
2625        }
2626
2627        /* need to stop netdev while setting up the program for Rx rings */
2628        if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2629                ret = ice_down(vsi);
2630                if (ret) {
2631                        NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2632                        return ret;
2633                }
2634        }
2635
2636        if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2637                vsi->num_xdp_txq = vsi->alloc_rxq;
2638                xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2639                if (xdp_ring_err)
2640                        NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2641        } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2642                xdp_ring_err = ice_destroy_xdp_rings(vsi);
2643                if (xdp_ring_err)
2644                        NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2645        } else {
2646                ice_vsi_assign_bpf_prog(vsi, prog);
2647        }
2648
2649        if (if_running)
2650                ret = ice_up(vsi);
2651
2652        if (!ret && prog)
2653                ice_vsi_rx_napi_schedule(vsi);
2654
2655        return (ret || xdp_ring_err) ? -ENOMEM : 0;
2656}
2657
2658/**
2659 * ice_xdp_safe_mode - XDP handler for safe mode
2660 * @dev: netdevice
2661 * @xdp: XDP command
2662 */
2663static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2664                             struct netdev_bpf *xdp)
2665{
2666        NL_SET_ERR_MSG_MOD(xdp->extack,
2667                           "Please provide working DDP firmware package in order to use XDP\n"
2668                           "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2669        return -EOPNOTSUPP;
2670}
2671
2672/**
2673 * ice_xdp - implements XDP handler
2674 * @dev: netdevice
2675 * @xdp: XDP command
2676 */
2677static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2678{
2679        struct ice_netdev_priv *np = netdev_priv(dev);
2680        struct ice_vsi *vsi = np->vsi;
2681
2682        if (vsi->type != ICE_VSI_PF) {
2683                NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2684                return -EINVAL;
2685        }
2686
2687        switch (xdp->command) {
2688        case XDP_SETUP_PROG:
2689                return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2690        case XDP_SETUP_XSK_POOL:
2691                return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2692                                          xdp->xsk.queue_id);
2693        default:
2694                return -EINVAL;
2695        }
2696}
2697
2698/**
2699 * ice_ena_misc_vector - enable the non-queue interrupts
2700 * @pf: board private structure
2701 */
2702static void ice_ena_misc_vector(struct ice_pf *pf)
2703{
2704        struct ice_hw *hw = &pf->hw;
2705        u32 val;
2706
2707        /* Disable anti-spoof detection interrupt to prevent spurious event
2708         * interrupts during a function reset. Anti-spoof functionally is
2709         * still supported.
2710         */
2711        val = rd32(hw, GL_MDCK_TX_TDPU);
2712        val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2713        wr32(hw, GL_MDCK_TX_TDPU, val);
2714
2715        /* clear things first */
2716        wr32(hw, PFINT_OICR_ENA, 0);    /* disable all */
2717        rd32(hw, PFINT_OICR);           /* read to clear */
2718
2719        val = (PFINT_OICR_ECC_ERR_M |
2720               PFINT_OICR_MAL_DETECT_M |
2721               PFINT_OICR_GRST_M |
2722               PFINT_OICR_PCI_EXCEPTION_M |
2723               PFINT_OICR_VFLR_M |
2724               PFINT_OICR_HMC_ERR_M |
2725               PFINT_OICR_PE_PUSH_M |
2726               PFINT_OICR_PE_CRITERR_M);
2727
2728        wr32(hw, PFINT_OICR_ENA, val);
2729
2730        /* SW_ITR_IDX = 0, but don't change INTENA */
2731        wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2732             GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2733}
2734
2735/**
2736 * ice_misc_intr - misc interrupt handler
2737 * @irq: interrupt number
2738 * @data: pointer to a q_vector
2739 */
2740static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2741{
2742        struct ice_pf *pf = (struct ice_pf *)data;
2743        struct ice_hw *hw = &pf->hw;
2744        irqreturn_t ret = IRQ_NONE;
2745        struct device *dev;
2746        u32 oicr, ena_mask;
2747
2748        dev = ice_pf_to_dev(pf);
2749        set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2750        set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2751        set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2752
2753        oicr = rd32(hw, PFINT_OICR);
2754        ena_mask = rd32(hw, PFINT_OICR_ENA);
2755
2756        if (oicr & PFINT_OICR_SWINT_M) {
2757                ena_mask &= ~PFINT_OICR_SWINT_M;
2758                pf->sw_int_count++;
2759        }
2760
2761        if (oicr & PFINT_OICR_MAL_DETECT_M) {
2762                ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2763                set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2764        }
2765        if (oicr & PFINT_OICR_VFLR_M) {
2766                /* disable any further VFLR event notifications */
2767                if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2768                        u32 reg = rd32(hw, PFINT_OICR_ENA);
2769
2770                        reg &= ~PFINT_OICR_VFLR_M;
2771                        wr32(hw, PFINT_OICR_ENA, reg);
2772                } else {
2773                        ena_mask &= ~PFINT_OICR_VFLR_M;
2774                        set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2775                }
2776        }
2777
2778        if (oicr & PFINT_OICR_GRST_M) {
2779                u32 reset;
2780
2781                /* we have a reset warning */
2782                ena_mask &= ~PFINT_OICR_GRST_M;
2783                reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2784                        GLGEN_RSTAT_RESET_TYPE_S;
2785
2786                if (reset == ICE_RESET_CORER)
2787                        pf->corer_count++;
2788                else if (reset == ICE_RESET_GLOBR)
2789                        pf->globr_count++;
2790                else if (reset == ICE_RESET_EMPR)
2791                        pf->empr_count++;
2792                else
2793                        dev_dbg(dev, "Invalid reset type %d\n", reset);
2794
2795                /* If a reset cycle isn't already in progress, we set a bit in
2796                 * pf->state so that the service task can start a reset/rebuild.
2797                 */
2798                if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2799                        if (reset == ICE_RESET_CORER)
2800                                set_bit(ICE_CORER_RECV, pf->state);
2801                        else if (reset == ICE_RESET_GLOBR)
2802                                set_bit(ICE_GLOBR_RECV, pf->state);
2803                        else
2804                                set_bit(ICE_EMPR_RECV, pf->state);
2805
2806                        /* There are couple of different bits at play here.
2807                         * hw->reset_ongoing indicates whether the hardware is
2808                         * in reset. This is set to true when a reset interrupt
2809                         * is received and set back to false after the driver
2810                         * has determined that the hardware is out of reset.
2811                         *
2812                         * ICE_RESET_OICR_RECV in pf->state indicates
2813                         * that a post reset rebuild is required before the
2814                         * driver is operational again. This is set above.
2815                         *
2816                         * As this is the start of the reset/rebuild cycle, set
2817                         * both to indicate that.
2818                         */
2819                        hw->reset_ongoing = true;
2820                }
2821        }
2822
2823        if (oicr & PFINT_OICR_TSYN_TX_M) {
2824                ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2825                ice_ptp_process_ts(pf);
2826        }
2827
2828        if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2829                u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2830                u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2831
2832                /* Save EVENTs from GTSYN register */
2833                pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2834                                                     GLTSYN_STAT_EVENT1_M |
2835                                                     GLTSYN_STAT_EVENT2_M);
2836                ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2837                kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2838        }
2839
2840#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2841        if (oicr & ICE_AUX_CRIT_ERR) {
2842                struct iidc_event *event;
2843
2844                ena_mask &= ~ICE_AUX_CRIT_ERR;
2845                event = kzalloc(sizeof(*event), GFP_KERNEL);
2846                if (event) {
2847                        set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2848                        /* report the entire OICR value to AUX driver */
2849                        event->reg = oicr;
2850                        ice_send_event_to_aux(pf, event);
2851                        kfree(event);
2852                }
2853        }
2854
2855        /* Report any remaining unexpected interrupts */
2856        oicr &= ena_mask;
2857        if (oicr) {
2858                dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2859                /* If a critical error is pending there is no choice but to
2860                 * reset the device.
2861                 */
2862                if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
2863                            PFINT_OICR_ECC_ERR_M)) {
2864                        set_bit(ICE_PFR_REQ, pf->state);
2865                        ice_service_task_schedule(pf);
2866                }
2867        }
2868        ret = IRQ_HANDLED;
2869
2870        ice_service_task_schedule(pf);
2871        ice_irq_dynamic_ena(hw, NULL, NULL);
2872
2873        return ret;
2874}
2875
2876/**
2877 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2878 * @hw: pointer to HW structure
2879 */
2880static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2881{
2882        /* disable Admin queue Interrupt causes */
2883        wr32(hw, PFINT_FW_CTL,
2884             rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2885
2886        /* disable Mailbox queue Interrupt causes */
2887        wr32(hw, PFINT_MBX_CTL,
2888             rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2889
2890        wr32(hw, PFINT_SB_CTL,
2891             rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
2892
2893        /* disable Control queue Interrupt causes */
2894        wr32(hw, PFINT_OICR_CTL,
2895             rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2896
2897        ice_flush(hw);
2898}
2899
2900/**
2901 * ice_free_irq_msix_misc - Unroll misc vector setup
2902 * @pf: board private structure
2903 */
2904static void ice_free_irq_msix_misc(struct ice_pf *pf)
2905{
2906        struct ice_hw *hw = &pf->hw;
2907
2908        ice_dis_ctrlq_interrupts(hw);
2909
2910        /* disable OICR interrupt */
2911        wr32(hw, PFINT_OICR_ENA, 0);
2912        ice_flush(hw);
2913
2914        if (pf->msix_entries) {
2915                synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2916                devm_free_irq(ice_pf_to_dev(pf),
2917                              pf->msix_entries[pf->oicr_idx].vector, pf);
2918        }
2919
2920        pf->num_avail_sw_msix += 1;
2921        ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2922}
2923
2924/**
2925 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2926 * @hw: pointer to HW structure
2927 * @reg_idx: HW vector index to associate the control queue interrupts with
2928 */
2929static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2930{
2931        u32 val;
2932
2933        val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2934               PFINT_OICR_CTL_CAUSE_ENA_M);
2935        wr32(hw, PFINT_OICR_CTL, val);
2936
2937        /* enable Admin queue Interrupt causes */
2938        val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2939               PFINT_FW_CTL_CAUSE_ENA_M);
2940        wr32(hw, PFINT_FW_CTL, val);
2941
2942        /* enable Mailbox queue Interrupt causes */
2943        val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2944               PFINT_MBX_CTL_CAUSE_ENA_M);
2945        wr32(hw, PFINT_MBX_CTL, val);
2946
2947        /* This enables Sideband queue Interrupt causes */
2948        val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2949               PFINT_SB_CTL_CAUSE_ENA_M);
2950        wr32(hw, PFINT_SB_CTL, val);
2951
2952        ice_flush(hw);
2953}
2954
2955/**
2956 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2957 * @pf: board private structure
2958 *
2959 * This sets up the handler for MSIX 0, which is used to manage the
2960 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2961 * when in MSI or Legacy interrupt mode.
2962 */
2963static int ice_req_irq_msix_misc(struct ice_pf *pf)
2964{
2965        struct device *dev = ice_pf_to_dev(pf);
2966        struct ice_hw *hw = &pf->hw;
2967        int oicr_idx, err = 0;
2968
2969        if (!pf->int_name[0])
2970                snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2971                         dev_driver_string(dev), dev_name(dev));
2972
2973        /* Do not request IRQ but do enable OICR interrupt since settings are
2974         * lost during reset. Note that this function is called only during
2975         * rebuild path and not while reset is in progress.
2976         */
2977        if (ice_is_reset_in_progress(pf->state))
2978                goto skip_req_irq;
2979
2980        /* reserve one vector in irq_tracker for misc interrupts */
2981        oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2982        if (oicr_idx < 0)
2983                return oicr_idx;
2984
2985        pf->num_avail_sw_msix -= 1;
2986        pf->oicr_idx = (u16)oicr_idx;
2987
2988        err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2989                               ice_misc_intr, 0, pf->int_name, pf);
2990        if (err) {
2991                dev_err(dev, "devm_request_irq for %s failed: %d\n",
2992                        pf->int_name, err);
2993                ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2994                pf->num_avail_sw_msix += 1;
2995                return err;
2996        }
2997
2998skip_req_irq:
2999        ice_ena_misc_vector(pf);
3000
3001        ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3002        wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3003             ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3004
3005        ice_flush(hw);
3006        ice_irq_dynamic_ena(hw, NULL, NULL);
3007
3008        return 0;
3009}
3010
3011/**
3012 * ice_napi_add - register NAPI handler for the VSI
3013 * @vsi: VSI for which NAPI handler is to be registered
3014 *
3015 * This function is only called in the driver's load path. Registering the NAPI
3016 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3017 * reset/rebuild, etc.)
3018 */
3019static void ice_napi_add(struct ice_vsi *vsi)
3020{
3021        int v_idx;
3022
3023        if (!vsi->netdev)
3024                return;
3025
3026        ice_for_each_q_vector(vsi, v_idx)
3027                netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3028                               ice_napi_poll, NAPI_POLL_WEIGHT);
3029}
3030
3031/**
3032 * ice_set_ops - set netdev and ethtools ops for the given netdev
3033 * @netdev: netdev instance
3034 */
3035static void ice_set_ops(struct net_device *netdev)
3036{
3037        struct ice_pf *pf = ice_netdev_to_pf(netdev);
3038
3039        if (ice_is_safe_mode(pf)) {
3040                netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3041                ice_set_ethtool_safe_mode_ops(netdev);
3042                return;
3043        }
3044
3045        netdev->netdev_ops = &ice_netdev_ops;
3046        netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3047        ice_set_ethtool_ops(netdev);
3048}
3049
3050/**
3051 * ice_set_netdev_features - set features for the given netdev
3052 * @netdev: netdev instance
3053 */
3054static void ice_set_netdev_features(struct net_device *netdev)
3055{
3056        struct ice_pf *pf = ice_netdev_to_pf(netdev);
3057        netdev_features_t csumo_features;
3058        netdev_features_t vlano_features;
3059        netdev_features_t dflt_features;
3060        netdev_features_t tso_features;
3061
3062        if (ice_is_safe_mode(pf)) {
3063                /* safe mode */
3064                netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3065                netdev->hw_features = netdev->features;
3066                return;
3067        }
3068
3069        dflt_features = NETIF_F_SG      |
3070                        NETIF_F_HIGHDMA |
3071                        NETIF_F_NTUPLE  |
3072                        NETIF_F_RXHASH;
3073
3074        csumo_features = NETIF_F_RXCSUM   |
3075                         NETIF_F_IP_CSUM  |
3076                         NETIF_F_SCTP_CRC |
3077                         NETIF_F_IPV6_CSUM;
3078
3079        vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3080                         NETIF_F_HW_VLAN_CTAG_TX     |
3081                         NETIF_F_HW_VLAN_CTAG_RX;
3082
3083        tso_features = NETIF_F_TSO                      |
3084                       NETIF_F_TSO_ECN                  |
3085                       NETIF_F_TSO6                     |
3086                       NETIF_F_GSO_GRE                  |
3087                       NETIF_F_GSO_UDP_TUNNEL           |
3088                       NETIF_F_GSO_GRE_CSUM             |
3089                       NETIF_F_GSO_UDP_TUNNEL_CSUM      |
3090                       NETIF_F_GSO_PARTIAL              |
3091                       NETIF_F_GSO_IPXIP4               |
3092                       NETIF_F_GSO_IPXIP6               |
3093                       NETIF_F_GSO_UDP_L4;
3094
3095        netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3096                                        NETIF_F_GSO_GRE_CSUM;
3097        /* set features that user can change */
3098        netdev->hw_features = dflt_features | csumo_features |
3099                              vlano_features | tso_features;
3100
3101        /* add support for HW_CSUM on packets with MPLS header */
3102        netdev->mpls_features =  NETIF_F_HW_CSUM;
3103
3104        /* enable features */
3105        netdev->features |= netdev->hw_features;
3106        /* encap and VLAN devices inherit default, csumo and tso features */
3107        netdev->hw_enc_features |= dflt_features | csumo_features |
3108                                   tso_features;
3109        netdev->vlan_features |= dflt_features | csumo_features |
3110                                 tso_features;
3111}
3112
3113/**
3114 * ice_cfg_netdev - Allocate, configure and register a netdev
3115 * @vsi: the VSI associated with the new netdev
3116 *
3117 * Returns 0 on success, negative value on failure
3118 */
3119static int ice_cfg_netdev(struct ice_vsi *vsi)
3120{
3121        struct ice_netdev_priv *np;
3122        struct net_device *netdev;
3123        u8 mac_addr[ETH_ALEN];
3124
3125        netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3126                                    vsi->alloc_rxq);
3127        if (!netdev)
3128                return -ENOMEM;
3129
3130        set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3131        vsi->netdev = netdev;
3132        np = netdev_priv(netdev);
3133        np->vsi = vsi;
3134
3135        ice_set_netdev_features(netdev);
3136
3137        ice_set_ops(netdev);
3138
3139        if (vsi->type == ICE_VSI_PF) {
3140                SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3141                ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3142                ether_addr_copy(netdev->dev_addr, mac_addr);
3143                ether_addr_copy(netdev->perm_addr, mac_addr);
3144        }
3145
3146        netdev->priv_flags |= IFF_UNICAST_FLT;
3147
3148        /* Setup netdev TC information */
3149        ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3150
3151        /* setup watchdog timeout value to be 5 second */
3152        netdev->watchdog_timeo = 5 * HZ;
3153
3154        netdev->min_mtu = ETH_MIN_MTU;
3155        netdev->max_mtu = ICE_MAX_MTU;
3156
3157        return 0;
3158}
3159
3160/**
3161 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3162 * @lut: Lookup table
3163 * @rss_table_size: Lookup table size
3164 * @rss_size: Range of queue number for hashing
3165 */
3166void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3167{
3168        u16 i;
3169
3170        for (i = 0; i < rss_table_size; i++)
3171                lut[i] = i % rss_size;
3172}
3173
3174/**
3175 * ice_pf_vsi_setup - Set up a PF VSI
3176 * @pf: board private structure
3177 * @pi: pointer to the port_info instance
3178 *
3179 * Returns pointer to the successfully allocated VSI software struct
3180 * on success, otherwise returns NULL on failure.
3181 */
3182static struct ice_vsi *
3183ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3184{
3185        return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3186}
3187
3188/**
3189 * ice_ctrl_vsi_setup - Set up a control VSI
3190 * @pf: board private structure
3191 * @pi: pointer to the port_info instance
3192 *
3193 * Returns pointer to the successfully allocated VSI software struct
3194 * on success, otherwise returns NULL on failure.
3195 */
3196static struct ice_vsi *
3197ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3198{
3199        return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3200}
3201
3202/**
3203 * ice_lb_vsi_setup - Set up a loopback VSI
3204 * @pf: board private structure
3205 * @pi: pointer to the port_info instance
3206 *
3207 * Returns pointer to the successfully allocated VSI software struct
3208 * on success, otherwise returns NULL on failure.
3209 */
3210struct ice_vsi *
3211ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3212{
3213        return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3214}
3215
3216/**
3217 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3218 * @netdev: network interface to be adjusted
3219 * @proto: unused protocol
3220 * @vid: VLAN ID to be added
3221 *
3222 * net_device_ops implementation for adding VLAN IDs
3223 */
3224static int
3225ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3226                    u16 vid)
3227{
3228        struct ice_netdev_priv *np = netdev_priv(netdev);
3229        struct ice_vsi *vsi = np->vsi;
3230        int ret;
3231
3232        /* VLAN 0 is added by default during load/reset */
3233        if (!vid)
3234                return 0;
3235
3236        /* Enable VLAN pruning when a VLAN other than 0 is added */
3237        if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3238                ret = ice_cfg_vlan_pruning(vsi, true, false);
3239                if (ret)
3240                        return ret;
3241        }
3242
3243        /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3244         * packets aren't pruned by the device's internal switch on Rx
3245         */
3246        ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3247        if (!ret)
3248                set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3249
3250        return ret;
3251}
3252
3253/**
3254 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3255 * @netdev: network interface to be adjusted
3256 * @proto: unused protocol
3257 * @vid: VLAN ID to be removed
3258 *
3259 * net_device_ops implementation for removing VLAN IDs
3260 */
3261static int
3262ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3263                     u16 vid)
3264{
3265        struct ice_netdev_priv *np = netdev_priv(netdev);
3266        struct ice_vsi *vsi = np->vsi;
3267        int ret;
3268
3269        /* don't allow removal of VLAN 0 */
3270        if (!vid)
3271                return 0;
3272
3273        /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3274         * information
3275         */
3276        ret = ice_vsi_kill_vlan(vsi, vid);
3277        if (ret)
3278                return ret;
3279
3280        /* Disable pruning when VLAN 0 is the only VLAN rule */
3281        if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3282                ret = ice_cfg_vlan_pruning(vsi, false, false);
3283
3284        set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3285        return ret;
3286}
3287
3288/**
3289 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3290 * @pf: board private structure
3291 *
3292 * Returns 0 on success, negative value on failure
3293 */
3294static int ice_setup_pf_sw(struct ice_pf *pf)
3295{
3296        struct ice_vsi *vsi;
3297        int status = 0;
3298
3299        if (ice_is_reset_in_progress(pf->state))
3300                return -EBUSY;
3301
3302        vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3303        if (!vsi)
3304                return -ENOMEM;
3305
3306        status = ice_cfg_netdev(vsi);
3307        if (status) {
3308                status = -ENODEV;
3309                goto unroll_vsi_setup;
3310        }
3311        /* netdev has to be configured before setting frame size */
3312        ice_vsi_cfg_frame_size(vsi);
3313
3314        /* Setup DCB netlink interface */
3315        ice_dcbnl_setup(vsi);
3316
3317        /* registering the NAPI handler requires both the queues and
3318         * netdev to be created, which are done in ice_pf_vsi_setup()
3319         * and ice_cfg_netdev() respectively
3320         */
3321        ice_napi_add(vsi);
3322
3323        status = ice_set_cpu_rx_rmap(vsi);
3324        if (status) {
3325                dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3326                        vsi->vsi_num, status);
3327                status = -EINVAL;
3328                goto unroll_napi_add;
3329        }
3330        status = ice_init_mac_fltr(pf);
3331        if (status)
3332                goto free_cpu_rx_map;
3333
3334        return status;
3335
3336free_cpu_rx_map:
3337        ice_free_cpu_rx_rmap(vsi);
3338
3339unroll_napi_add:
3340        if (vsi) {
3341                ice_napi_del(vsi);
3342                if (vsi->netdev) {
3343                        clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3344                        free_netdev(vsi->netdev);
3345                        vsi->netdev = NULL;
3346                }
3347        }
3348
3349unroll_vsi_setup:
3350        ice_vsi_release(vsi);
3351        return status;
3352}
3353
3354/**
3355 * ice_get_avail_q_count - Get count of queues in use
3356 * @pf_qmap: bitmap to get queue use count from
3357 * @lock: pointer to a mutex that protects access to pf_qmap
3358 * @size: size of the bitmap
3359 */
3360static u16
3361ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3362{
3363        unsigned long bit;
3364        u16 count = 0;
3365
3366        mutex_lock(lock);
3367        for_each_clear_bit(bit, pf_qmap, size)
3368                count++;
3369        mutex_unlock(lock);
3370
3371        return count;
3372}
3373
3374/**
3375 * ice_get_avail_txq_count - Get count of Tx queues in use
3376 * @pf: pointer to an ice_pf instance
3377 */
3378u16 ice_get_avail_txq_count(struct ice_pf *pf)
3379{
3380        return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3381                                     pf->max_pf_txqs);
3382}
3383
3384/**
3385 * ice_get_avail_rxq_count - Get count of Rx queues in use
3386 * @pf: pointer to an ice_pf instance
3387 */
3388u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3389{
3390        return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3391                                     pf->max_pf_rxqs);
3392}
3393
3394/**
3395 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3396 * @pf: board private structure to initialize
3397 */
3398static void ice_deinit_pf(struct ice_pf *pf)
3399{
3400        ice_service_task_stop(pf);
3401        mutex_destroy(&pf->sw_mutex);
3402        mutex_destroy(&pf->tc_mutex);
3403        mutex_destroy(&pf->avail_q_mutex);
3404
3405        if (pf->avail_txqs) {
3406                bitmap_free(pf->avail_txqs);
3407                pf->avail_txqs = NULL;
3408        }
3409
3410        if (pf->avail_rxqs) {
3411                bitmap_free(pf->avail_rxqs);
3412                pf->avail_rxqs = NULL;
3413        }
3414
3415        if (pf->ptp.clock)
3416                ptp_clock_unregister(pf->ptp.clock);
3417}
3418
3419/**
3420 * ice_set_pf_caps - set PFs capability flags
3421 * @pf: pointer to the PF instance
3422 */
3423static void ice_set_pf_caps(struct ice_pf *pf)
3424{
3425        struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3426
3427        clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3428        clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3429        if (func_caps->common_cap.rdma) {
3430                set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3431                set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3432        }
3433        clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3434        if (func_caps->common_cap.dcb)
3435                set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3436        clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3437        if (func_caps->common_cap.sr_iov_1_1) {
3438                set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3439                pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3440                                              ICE_MAX_VF_COUNT);
3441        }
3442        clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3443        if (func_caps->common_cap.rss_table_size)
3444                set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3445
3446        clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3447        if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3448                u16 unused;
3449
3450                /* ctrl_vsi_idx will be set to a valid value when flow director
3451                 * is setup by ice_init_fdir
3452                 */
3453                pf->ctrl_vsi_idx = ICE_NO_VSI;
3454                set_bit(ICE_FLAG_FD_ENA, pf->flags);
3455                /* force guaranteed filter pool for PF */
3456                ice_alloc_fd_guar_item(&pf->hw, &unused,
3457                                       func_caps->fd_fltr_guar);
3458                /* force shared filter pool for PF */
3459                ice_alloc_fd_shrd_item(&pf->hw, &unused,
3460                                       func_caps->fd_fltr_best_effort);
3461        }
3462
3463        clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3464        if (func_caps->common_cap.ieee_1588)
3465                set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3466
3467        pf->max_pf_txqs = func_caps->common_cap.num_txq;
3468        pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3469}
3470
3471/**
3472 * ice_init_pf - Initialize general software structures (struct ice_pf)
3473 * @pf: board private structure to initialize
3474 */
3475static int ice_init_pf(struct ice_pf *pf)
3476{
3477        ice_set_pf_caps(pf);
3478
3479        mutex_init(&pf->sw_mutex);
3480        mutex_init(&pf->tc_mutex);
3481
3482        INIT_HLIST_HEAD(&pf->aq_wait_list);
3483        spin_lock_init(&pf->aq_wait_lock);
3484        init_waitqueue_head(&pf->aq_wait_queue);
3485
3486        init_waitqueue_head(&pf->reset_wait_queue);
3487
3488        /* setup service timer and periodic service task */
3489        timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3490        pf->serv_tmr_period = HZ;
3491        INIT_WORK(&pf->serv_task, ice_service_task);
3492        clear_bit(ICE_SERVICE_SCHED, pf->state);
3493
3494        mutex_init(&pf->avail_q_mutex);
3495        pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3496        if (!pf->avail_txqs)
3497                return -ENOMEM;
3498
3499        pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3500        if (!pf->avail_rxqs) {
3501                devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3502                pf->avail_txqs = NULL;
3503                return -ENOMEM;
3504        }
3505
3506        return 0;
3507}
3508
3509/**
3510 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3511 * @pf: board private structure
3512 *
3513 * compute the number of MSIX vectors required (v_budget) and request from
3514 * the OS. Return the number of vectors reserved or negative on failure
3515 */
3516static int ice_ena_msix_range(struct ice_pf *pf)
3517{
3518        int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3519        struct device *dev = ice_pf_to_dev(pf);
3520        int needed, err, i;
3521
3522        v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3523        num_cpus = num_online_cpus();
3524
3525        /* reserve for LAN miscellaneous handler */
3526        needed = ICE_MIN_LAN_OICR_MSIX;
3527        if (v_left < needed)
3528                goto no_hw_vecs_left_err;
3529        v_budget += needed;
3530        v_left -= needed;
3531
3532        /* reserve for flow director */
3533        if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3534                needed = ICE_FDIR_MSIX;
3535                if (v_left < needed)
3536                        goto no_hw_vecs_left_err;
3537                v_budget += needed;
3538                v_left -= needed;
3539        }
3540
3541        /* total used for non-traffic vectors */
3542        v_other = v_budget;
3543
3544        /* reserve vectors for LAN traffic */
3545        needed = num_cpus;
3546        if (v_left < needed)
3547                goto no_hw_vecs_left_err;
3548        pf->num_lan_msix = needed;
3549        v_budget += needed;
3550        v_left -= needed;
3551
3552        /* reserve vectors for RDMA auxiliary driver */
3553        if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3554                needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3555                if (v_left < needed)
3556                        goto no_hw_vecs_left_err;
3557                pf->num_rdma_msix = needed;
3558                v_budget += needed;
3559                v_left -= needed;
3560        }
3561
3562        pf->msix_entries = devm_kcalloc(dev, v_budget,
3563                                        sizeof(*pf->msix_entries), GFP_KERNEL);
3564        if (!pf->msix_entries) {
3565                err = -ENOMEM;
3566                goto exit_err;
3567        }
3568
3569        for (i = 0; i < v_budget; i++)
3570                pf->msix_entries[i].entry = i;
3571
3572        /* actually reserve the vectors */
3573        v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3574                                         ICE_MIN_MSIX, v_budget);
3575        if (v_actual < 0) {
3576                dev_err(dev, "unable to reserve MSI-X vectors\n");
3577                err = v_actual;
3578                goto msix_err;
3579        }
3580
3581        if (v_actual < v_budget) {
3582                dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3583                         v_budget, v_actual);
3584
3585                if (v_actual < ICE_MIN_MSIX) {
3586                        /* error if we can't get minimum vectors */
3587                        pci_disable_msix(pf->pdev);
3588                        err = -ERANGE;
3589                        goto msix_err;
3590                } else {
3591                        int v_remain = v_actual - v_other;
3592                        int v_rdma = 0, v_min_rdma = 0;
3593
3594                        if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3595                                /* Need at least 1 interrupt in addition to
3596                                 * AEQ MSIX
3597                                 */
3598                                v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3599                                v_min_rdma = ICE_MIN_RDMA_MSIX;
3600                        }
3601
3602                        if (v_actual == ICE_MIN_MSIX ||
3603                            v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3604                                dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3605                                clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3606
3607                                pf->num_rdma_msix = 0;
3608                                pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3609                        } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3610                                   (v_remain - v_rdma < v_rdma)) {
3611                                /* Support minimum RDMA and give remaining
3612                                 * vectors to LAN MSIX
3613                                 */
3614                                pf->num_rdma_msix = v_min_rdma;
3615                                pf->num_lan_msix = v_remain - v_min_rdma;
3616                        } else {
3617                                /* Split remaining MSIX with RDMA after
3618                                 * accounting for AEQ MSIX
3619                                 */
3620                                pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3621                                                    ICE_RDMA_NUM_AEQ_MSIX;
3622                                pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3623                        }
3624
3625                        dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3626                                   pf->num_lan_msix);
3627
3628                        if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3629                                dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3630                                           pf->num_rdma_msix);
3631                }
3632        }
3633
3634        return v_actual;
3635
3636msix_err:
3637        devm_kfree(dev, pf->msix_entries);
3638        goto exit_err;
3639
3640no_hw_vecs_left_err:
3641        dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3642                needed, v_left);
3643        err = -ERANGE;
3644exit_err:
3645        pf->num_rdma_msix = 0;
3646        pf->num_lan_msix = 0;
3647        return err;
3648}
3649
3650/**
3651 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3652 * @pf: board private structure
3653 */
3654static void ice_dis_msix(struct ice_pf *pf)
3655{
3656        pci_disable_msix(pf->pdev);
3657        devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3658        pf->msix_entries = NULL;
3659}
3660
3661/**
3662 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3663 * @pf: board private structure
3664 */
3665static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3666{
3667        ice_dis_msix(pf);
3668
3669        if (pf->irq_tracker) {
3670                devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3671                pf->irq_tracker = NULL;
3672        }
3673}
3674
3675/**
3676 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3677 * @pf: board private structure to initialize
3678 */
3679static int ice_init_interrupt_scheme(struct ice_pf *pf)
3680{
3681        int vectors;
3682
3683        vectors = ice_ena_msix_range(pf);
3684
3685        if (vectors < 0)
3686                return vectors;
3687
3688        /* set up vector assignment tracking */
3689        pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3690                                       struct_size(pf->irq_tracker, list, vectors),
3691                                       GFP_KERNEL);
3692        if (!pf->irq_tracker) {
3693                ice_dis_msix(pf);
3694                return -ENOMEM;
3695        }
3696
3697        /* populate SW interrupts pool with number of OS granted IRQs. */
3698        pf->num_avail_sw_msix = (u16)vectors;
3699        pf->irq_tracker->num_entries = (u16)vectors;
3700        pf->irq_tracker->end = pf->irq_tracker->num_entries;
3701
3702        return 0;
3703}
3704
3705/**
3706 * ice_is_wol_supported - check if WoL is supported
3707 * @hw: pointer to hardware info
3708 *
3709 * Check if WoL is supported based on the HW configuration.
3710 * Returns true if NVM supports and enables WoL for this port, false otherwise
3711 */
3712bool ice_is_wol_supported(struct ice_hw *hw)
3713{
3714        u16 wol_ctrl;
3715
3716        /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3717         * word) indicates WoL is not supported on the corresponding PF ID.
3718         */
3719        if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3720                return false;
3721
3722        return !(BIT(hw->port_info->lport) & wol_ctrl);
3723}
3724
3725/**
3726 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3727 * @vsi: VSI being changed
3728 * @new_rx: new number of Rx queues
3729 * @new_tx: new number of Tx queues
3730 *
3731 * Only change the number of queues if new_tx, or new_rx is non-0.
3732 *
3733 * Returns 0 on success.
3734 */
3735int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3736{
3737        struct ice_pf *pf = vsi->back;
3738        int err = 0, timeout = 50;
3739
3740        if (!new_rx && !new_tx)
3741                return -EINVAL;
3742
3743        while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3744                timeout--;
3745                if (!timeout)
3746                        return -EBUSY;
3747                usleep_range(1000, 2000);
3748        }
3749
3750        if (new_tx)
3751                vsi->req_txq = (u16)new_tx;
3752        if (new_rx)
3753                vsi->req_rxq = (u16)new_rx;
3754
3755        /* set for the next time the netdev is started */
3756        if (!netif_running(vsi->netdev)) {
3757                ice_vsi_rebuild(vsi, false);
3758                dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3759                goto done;
3760        }
3761
3762        ice_vsi_close(vsi);
3763        ice_vsi_rebuild(vsi, false);
3764        ice_pf_dcb_recfg(pf);
3765        ice_vsi_open(vsi);
3766done:
3767        clear_bit(ICE_CFG_BUSY, pf->state);
3768        return err;
3769}
3770
3771/**
3772 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3773 * @pf: PF to configure
3774 *
3775 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3776 * VSI can still Tx/Rx VLAN tagged packets.
3777 */
3778static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3779{
3780        struct ice_vsi *vsi = ice_get_main_vsi(pf);
3781        struct ice_vsi_ctx *ctxt;
3782        enum ice_status status;
3783        struct ice_hw *hw;
3784
3785        if (!vsi)
3786                return;
3787
3788        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3789        if (!ctxt)
3790                return;
3791
3792        hw = &pf->hw;
3793        ctxt->info = vsi->info;
3794
3795        ctxt->info.valid_sections =
3796                cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3797                            ICE_AQ_VSI_PROP_SECURITY_VALID |
3798                            ICE_AQ_VSI_PROP_SW_VALID);
3799
3800        /* disable VLAN anti-spoof */
3801        ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3802                                  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3803
3804        /* disable VLAN pruning and keep all other settings */
3805        ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3806
3807        /* allow all VLANs on Tx and don't strip on Rx */
3808        ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3809                ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3810
3811        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3812        if (status) {
3813                dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3814                        ice_stat_str(status),
3815                        ice_aq_str(hw->adminq.sq_last_status));
3816        } else {
3817                vsi->info.sec_flags = ctxt->info.sec_flags;
3818                vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3819                vsi->info.vlan_flags = ctxt->info.vlan_flags;
3820        }
3821
3822        kfree(ctxt);
3823}
3824
3825/**
3826 * ice_log_pkg_init - log result of DDP package load
3827 * @hw: pointer to hardware info
3828 * @status: status of package load
3829 */
3830static void
3831ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3832{
3833        struct ice_pf *pf = (struct ice_pf *)hw->back;
3834        struct device *dev = ice_pf_to_dev(pf);
3835
3836        switch (*status) {
3837        case ICE_SUCCESS:
3838                /* The package download AdminQ command returned success because
3839                 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3840                 * already a package loaded on the device.
3841                 */
3842                if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3843                    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3844                    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3845                    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3846                    !memcmp(hw->pkg_name, hw->active_pkg_name,
3847                            sizeof(hw->pkg_name))) {
3848                        if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3849                                dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3850                                         hw->active_pkg_name,
3851                                         hw->active_pkg_ver.major,
3852                                         hw->active_pkg_ver.minor,
3853                                         hw->active_pkg_ver.update,
3854                                         hw->active_pkg_ver.draft);
3855                        else
3856                                dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3857                                         hw->active_pkg_name,
3858                                         hw->active_pkg_ver.major,
3859                                         hw->active_pkg_ver.minor,
3860                                         hw->active_pkg_ver.update,
3861                                         hw->active_pkg_ver.draft);
3862                } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3863                           hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3864                        dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3865                                hw->active_pkg_name,
3866                                hw->active_pkg_ver.major,
3867                                hw->active_pkg_ver.minor,
3868                                ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3869                        *status = ICE_ERR_NOT_SUPPORTED;
3870                } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3871                           hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3872                        dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3873                                 hw->active_pkg_name,
3874                                 hw->active_pkg_ver.major,
3875                                 hw->active_pkg_ver.minor,
3876                                 hw->active_pkg_ver.update,
3877                                 hw->active_pkg_ver.draft,
3878                                 hw->pkg_name,
3879                                 hw->pkg_ver.major,
3880                                 hw->pkg_ver.minor,
3881                                 hw->pkg_ver.update,
3882                                 hw->pkg_ver.draft);
3883                } else {
3884                        dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3885                        *status = ICE_ERR_NOT_SUPPORTED;
3886                }
3887                break;
3888        case ICE_ERR_FW_DDP_MISMATCH:
3889                dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3890                break;
3891        case ICE_ERR_BUF_TOO_SHORT:
3892        case ICE_ERR_CFG:
3893                dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3894                break;
3895        case ICE_ERR_NOT_SUPPORTED:
3896                /* Package File version not supported */
3897                if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3898                    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3899                     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3900                        dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3901                else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3902                         (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3903                          hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3904                        dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3905                                ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3906                break;
3907        case ICE_ERR_AQ_ERROR:
3908                switch (hw->pkg_dwnld_status) {
3909                case ICE_AQ_RC_ENOSEC:
3910                case ICE_AQ_RC_EBADSIG:
3911                        dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3912                        return;
3913                case ICE_AQ_RC_ESVN:
3914                        dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3915                        return;
3916                case ICE_AQ_RC_EBADMAN:
3917                case ICE_AQ_RC_EBADBUF:
3918                        dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3919                        /* poll for reset to complete */
3920                        if (ice_check_reset(hw))
3921                                dev_err(dev, "Error resetting device. Please reload the driver\n");
3922                        return;
3923                default:
3924                        break;
3925                }
3926                fallthrough;
3927        default:
3928                dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3929                        *status);
3930                break;
3931        }
3932}
3933
3934/**
3935 * ice_load_pkg - load/reload the DDP Package file
3936 * @firmware: firmware structure when firmware requested or NULL for reload
3937 * @pf: pointer to the PF instance
3938 *
3939 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3940 * initialize HW tables.
3941 */
3942static void
3943ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3944{
3945        enum ice_status status = ICE_ERR_PARAM;
3946        struct device *dev = ice_pf_to_dev(pf);
3947        struct ice_hw *hw = &pf->hw;
3948
3949        /* Load DDP Package */
3950        if (firmware && !hw->pkg_copy) {
3951                status = ice_copy_and_init_pkg(hw, firmware->data,
3952                                               firmware->size);
3953                ice_log_pkg_init(hw, &status);
3954        } else if (!firmware && hw->pkg_copy) {
3955                /* Reload package during rebuild after CORER/GLOBR reset */
3956                status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3957                ice_log_pkg_init(hw, &status);
3958        } else {
3959                dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3960        }
3961
3962        if (status) {
3963                /* Safe Mode */
3964                clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3965                return;
3966        }
3967
3968        /* Successful download package is the precondition for advanced
3969         * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3970         */
3971        set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3972}
3973
3974/**
3975 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3976 * @pf: pointer to the PF structure
3977 *
3978 * There is no error returned here because the driver should be able to handle
3979 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3980 * specifically with Tx.
3981 */
3982static void ice_verify_cacheline_size(struct ice_pf *pf)
3983{
3984        if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3985                dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3986                         ICE_CACHE_LINE_BYTES);
3987}
3988
3989/**
3990 * ice_send_version - update firmware with driver version
3991 * @pf: PF struct
3992 *
3993 * Returns ICE_SUCCESS on success, else error code
3994 */
3995static enum ice_status ice_send_version(struct ice_pf *pf)
3996{
3997        struct ice_driver_ver dv;
3998
3999        dv.major_ver = 0xff;
4000        dv.minor_ver = 0xff;
4001        dv.build_ver = 0xff;
4002        dv.subbuild_ver = 0;
4003        strscpy((char *)dv.driver_string, UTS_RELEASE,
4004                sizeof(dv.driver_string));
4005        return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4006}
4007
4008/**
4009 * ice_init_fdir - Initialize flow director VSI and configuration
4010 * @pf: pointer to the PF instance
4011 *
4012 * returns 0 on success, negative on error
4013 */
4014static int ice_init_fdir(struct ice_pf *pf)
4015{
4016        struct device *dev = ice_pf_to_dev(pf);
4017        struct ice_vsi *ctrl_vsi;
4018        int err;
4019
4020        /* Side Band Flow Director needs to have a control VSI.
4021         * Allocate it and store it in the PF.
4022         */
4023        ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4024        if (!ctrl_vsi) {
4025                dev_dbg(dev, "could not create control VSI\n");
4026                return -ENOMEM;
4027        }
4028
4029        err = ice_vsi_open_ctrl(ctrl_vsi);
4030        if (err) {
4031                dev_dbg(dev, "could not open control VSI\n");
4032                goto err_vsi_open;
4033        }
4034
4035        mutex_init(&pf->hw.fdir_fltr_lock);
4036
4037        err = ice_fdir_create_dflt_rules(pf);
4038        if (err)
4039                goto err_fdir_rule;
4040
4041        return 0;
4042
4043err_fdir_rule:
4044        ice_fdir_release_flows(&pf->hw);
4045        ice_vsi_close(ctrl_vsi);
4046err_vsi_open:
4047        ice_vsi_release(ctrl_vsi);
4048        if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4049                pf->vsi[pf->ctrl_vsi_idx] = NULL;
4050                pf->ctrl_vsi_idx = ICE_NO_VSI;
4051        }
4052        return err;
4053}
4054
4055/**
4056 * ice_get_opt_fw_name - return optional firmware file name or NULL
4057 * @pf: pointer to the PF instance
4058 */
4059static char *ice_get_opt_fw_name(struct ice_pf *pf)
4060{
4061        /* Optional firmware name same as default with additional dash
4062         * followed by a EUI-64 identifier (PCIe Device Serial Number)
4063         */
4064        struct pci_dev *pdev = pf->pdev;
4065        char *opt_fw_filename;
4066        u64 dsn;
4067
4068        /* Determine the name of the optional file using the DSN (two
4069         * dwords following the start of the DSN Capability).
4070         */
4071        dsn = pci_get_dsn(pdev);
4072        if (!dsn)
4073                return NULL;
4074
4075        opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4076        if (!opt_fw_filename)
4077                return NULL;
4078
4079        snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4080                 ICE_DDP_PKG_PATH, dsn);
4081
4082        return opt_fw_filename;
4083}
4084
4085/**
4086 * ice_request_fw - Device initialization routine
4087 * @pf: pointer to the PF instance
4088 */
4089static void ice_request_fw(struct ice_pf *pf)
4090{
4091        char *opt_fw_filename = ice_get_opt_fw_name(pf);
4092        const struct firmware *firmware = NULL;
4093        struct device *dev = ice_pf_to_dev(pf);
4094        int err = 0;
4095
4096        /* optional device-specific DDP (if present) overrides the default DDP
4097         * package file. kernel logs a debug message if the file doesn't exist,
4098         * and warning messages for other errors.
4099         */
4100        if (opt_fw_filename) {
4101                err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4102                if (err) {
4103                        kfree(opt_fw_filename);
4104                        goto dflt_pkg_load;
4105                }
4106
4107                /* request for firmware was successful. Download to device */
4108                ice_load_pkg(firmware, pf);
4109                kfree(opt_fw_filename);
4110                release_firmware(firmware);
4111                return;
4112        }
4113
4114dflt_pkg_load:
4115        err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4116        if (err) {
4117                dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4118                return;
4119        }
4120
4121        /* request for firmware was successful. Download to device */
4122        ice_load_pkg(firmware, pf);
4123        release_firmware(firmware);
4124}
4125
4126/**
4127 * ice_print_wake_reason - show the wake up cause in the log
4128 * @pf: pointer to the PF struct
4129 */
4130static void ice_print_wake_reason(struct ice_pf *pf)
4131{
4132        u32 wus = pf->wakeup_reason;
4133        const char *wake_str;
4134
4135        /* if no wake event, nothing to print */
4136        if (!wus)
4137                return;
4138
4139        if (wus & PFPM_WUS_LNKC_M)
4140                wake_str = "Link\n";
4141        else if (wus & PFPM_WUS_MAG_M)
4142                wake_str = "Magic Packet\n";
4143        else if (wus & PFPM_WUS_MNG_M)
4144                wake_str = "Management\n";
4145        else if (wus & PFPM_WUS_FW_RST_WK_M)
4146                wake_str = "Firmware Reset\n";
4147        else
4148                wake_str = "Unknown\n";
4149
4150        dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4151}
4152
4153/**
4154 * ice_register_netdev - register netdev and devlink port
4155 * @pf: pointer to the PF struct
4156 */
4157static int ice_register_netdev(struct ice_pf *pf)
4158{
4159        struct ice_vsi *vsi;
4160        int err = 0;
4161
4162        vsi = ice_get_main_vsi(pf);
4163        if (!vsi || !vsi->netdev)
4164                return -EIO;
4165
4166        err = register_netdev(vsi->netdev);
4167        if (err)
4168                goto err_register_netdev;
4169
4170        set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4171        netif_carrier_off(vsi->netdev);
4172        netif_tx_stop_all_queues(vsi->netdev);
4173        err = ice_devlink_create_port(vsi);
4174        if (err)
4175                goto err_devlink_create;
4176
4177        devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
4178
4179        return 0;
4180err_devlink_create:
4181        unregister_netdev(vsi->netdev);
4182        clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4183err_register_netdev:
4184        free_netdev(vsi->netdev);
4185        vsi->netdev = NULL;
4186        clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4187        return err;
4188}
4189
4190/**
4191 * ice_probe - Device initialization routine
4192 * @pdev: PCI device information struct
4193 * @ent: entry in ice_pci_tbl
4194 *
4195 * Returns 0 on success, negative on failure
4196 */
4197static int
4198ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4199{
4200        struct device *dev = &pdev->dev;
4201        struct ice_pf *pf;
4202        struct ice_hw *hw;
4203        int i, err;
4204
4205        if (pdev->is_virtfn) {
4206                dev_err(dev, "can't probe a virtual function\n");
4207                return -EINVAL;
4208        }
4209
4210        /* this driver uses devres, see
4211         * Documentation/driver-api/driver-model/devres.rst
4212         */
4213        err = pcim_enable_device(pdev);
4214        if (err)
4215                return err;
4216
4217        err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4218        if (err) {
4219                dev_err(dev, "BAR0 I/O map error %d\n", err);
4220                return err;
4221        }
4222
4223        pf = ice_allocate_pf(dev);
4224        if (!pf)
4225                return -ENOMEM;
4226
4227        /* initialize Auxiliary index to invalid value */
4228        pf->aux_idx = -1;
4229
4230        /* set up for high or low DMA */
4231        err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4232        if (err)
4233                err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4234        if (err) {
4235                dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4236                return err;
4237        }
4238
4239        pci_enable_pcie_error_reporting(pdev);
4240        pci_set_master(pdev);
4241
4242        pf->pdev = pdev;
4243        pci_set_drvdata(pdev, pf);
4244        set_bit(ICE_DOWN, pf->state);
4245        /* Disable service task until DOWN bit is cleared */
4246        set_bit(ICE_SERVICE_DIS, pf->state);
4247
4248        hw = &pf->hw;
4249        hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4250        pci_save_state(pdev);
4251
4252        hw->back = pf;
4253        hw->vendor_id = pdev->vendor;
4254        hw->device_id = pdev->device;
4255        pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4256        hw->subsystem_vendor_id = pdev->subsystem_vendor;
4257        hw->subsystem_device_id = pdev->subsystem_device;
4258        hw->bus.device = PCI_SLOT(pdev->devfn);
4259        hw->bus.func = PCI_FUNC(pdev->devfn);
4260        ice_set_ctrlq_len(hw);
4261
4262        pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4263
4264        err = ice_devlink_register(pf);
4265        if (err) {
4266                dev_err(dev, "ice_devlink_register failed: %d\n", err);
4267                goto err_exit_unroll;
4268        }
4269
4270#ifndef CONFIG_DYNAMIC_DEBUG
4271        if (debug < -1)
4272                hw->debug_mask = debug;
4273#endif
4274
4275        err = ice_init_hw(hw);
4276        if (err) {
4277                dev_err(dev, "ice_init_hw failed: %d\n", err);
4278                err = -EIO;
4279                goto err_exit_unroll;
4280        }
4281
4282        ice_request_fw(pf);
4283
4284        /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4285         * set in pf->state, which will cause ice_is_safe_mode to return
4286         * true
4287         */
4288        if (ice_is_safe_mode(pf)) {
4289                dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4290                /* we already got function/device capabilities but these don't
4291                 * reflect what the driver needs to do in safe mode. Instead of
4292                 * adding conditional logic everywhere to ignore these
4293                 * device/function capabilities, override them.
4294                 */
4295                ice_set_safe_mode_caps(hw);
4296        }
4297
4298        err = ice_init_pf(pf);
4299        if (err) {
4300                dev_err(dev, "ice_init_pf failed: %d\n", err);
4301                goto err_init_pf_unroll;
4302        }
4303
4304        ice_devlink_init_regions(pf);
4305
4306        pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4307        pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4308        pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4309        pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4310        i = 0;
4311        if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4312                pf->hw.udp_tunnel_nic.tables[i].n_entries =
4313                        pf->hw.tnl.valid_count[TNL_VXLAN];
4314                pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4315                        UDP_TUNNEL_TYPE_VXLAN;
4316                i++;
4317        }
4318        if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4319                pf->hw.udp_tunnel_nic.tables[i].n_entries =
4320                        pf->hw.tnl.valid_count[TNL_GENEVE];
4321                pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4322                        UDP_TUNNEL_TYPE_GENEVE;
4323                i++;
4324        }
4325
4326        pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4327        if (!pf->num_alloc_vsi) {
4328                err = -EIO;
4329                goto err_init_pf_unroll;
4330        }
4331        if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4332                dev_warn(&pf->pdev->dev,
4333                         "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4334                         pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4335                pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4336        }
4337
4338        pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4339                               GFP_KERNEL);
4340        if (!pf->vsi) {
4341                err = -ENOMEM;
4342                goto err_init_pf_unroll;
4343        }
4344
4345        err = ice_init_interrupt_scheme(pf);
4346        if (err) {
4347                dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4348                err = -EIO;
4349                goto err_init_vsi_unroll;
4350        }
4351
4352        /* In case of MSIX we are going to setup the misc vector right here
4353         * to handle admin queue events etc. In case of legacy and MSI
4354         * the misc functionality and queue processing is combined in
4355         * the same vector and that gets setup at open.
4356         */
4357        err = ice_req_irq_msix_misc(pf);
4358        if (err) {
4359                dev_err(dev, "setup of misc vector failed: %d\n", err);
4360                goto err_init_interrupt_unroll;
4361        }
4362
4363        /* create switch struct for the switch element created by FW on boot */
4364        pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4365        if (!pf->first_sw) {
4366                err = -ENOMEM;
4367                goto err_msix_misc_unroll;
4368        }
4369
4370        if (hw->evb_veb)
4371                pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4372        else
4373                pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4374
4375        pf->first_sw->pf = pf;
4376
4377        /* record the sw_id available for later use */
4378        pf->first_sw->sw_id = hw->port_info->sw_id;
4379
4380        err = ice_setup_pf_sw(pf);
4381        if (err) {
4382                dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4383                goto err_alloc_sw_unroll;
4384        }
4385
4386        clear_bit(ICE_SERVICE_DIS, pf->state);
4387
4388        /* tell the firmware we are up */
4389        err = ice_send_version(pf);
4390        if (err) {
4391                dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4392                        UTS_RELEASE, err);
4393                goto err_send_version_unroll;
4394        }
4395
4396        /* since everything is good, start the service timer */
4397        mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4398
4399        err = ice_init_link_events(pf->hw.port_info);
4400        if (err) {
4401                dev_err(dev, "ice_init_link_events failed: %d\n", err);
4402                goto err_send_version_unroll;
4403        }
4404
4405        /* not a fatal error if this fails */
4406        err = ice_init_nvm_phy_type(pf->hw.port_info);
4407        if (err)
4408                dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4409
4410        /* not a fatal error if this fails */
4411        err = ice_update_link_info(pf->hw.port_info);
4412        if (err)
4413                dev_err(dev, "ice_update_link_info failed: %d\n", err);
4414
4415        ice_init_link_dflt_override(pf->hw.port_info);
4416
4417        ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4418
4419        /* if media available, initialize PHY settings */
4420        if (pf->hw.port_info->phy.link_info.link_info &
4421            ICE_AQ_MEDIA_AVAILABLE) {
4422                /* not a fatal error if this fails */
4423                err = ice_init_phy_user_cfg(pf->hw.port_info);
4424                if (err)
4425                        dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4426
4427                if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4428                        struct ice_vsi *vsi = ice_get_main_vsi(pf);
4429
4430                        if (vsi)
4431                                ice_configure_phy(vsi);
4432                }
4433        } else {
4434                set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4435        }
4436
4437        ice_verify_cacheline_size(pf);
4438
4439        /* Save wakeup reason register for later use */
4440        pf->wakeup_reason = rd32(hw, PFPM_WUS);
4441
4442        /* check for a power management event */
4443        ice_print_wake_reason(pf);
4444
4445        /* clear wake status, all bits */
4446        wr32(hw, PFPM_WUS, U32_MAX);
4447
4448        /* Disable WoL at init, wait for user to enable */
4449        device_set_wakeup_enable(dev, false);
4450
4451        if (ice_is_safe_mode(pf)) {
4452                ice_set_safe_mode_vlan_cfg(pf);
4453                goto probe_done;
4454        }
4455
4456        /* initialize DDP driven features */
4457        if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4458                ice_ptp_init(pf);
4459
4460        /* Note: Flow director init failure is non-fatal to load */
4461        if (ice_init_fdir(pf))
4462                dev_err(dev, "could not initialize flow director\n");
4463
4464        /* Note: DCB init failure is non-fatal to load */
4465        if (ice_init_pf_dcb(pf, false)) {
4466                clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4467                clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4468        } else {
4469                ice_cfg_lldp_mib_change(&pf->hw, true);
4470        }
4471
4472        if (ice_init_lag(pf))
4473                dev_warn(dev, "Failed to init link aggregation support\n");
4474
4475        /* print PCI link speed and width */
4476        pcie_print_link_status(pf->pdev);
4477
4478probe_done:
4479        err = ice_register_netdev(pf);
4480        if (err)
4481                goto err_netdev_reg;
4482
4483        /* ready to go, so clear down state bit */
4484        clear_bit(ICE_DOWN, pf->state);
4485        if (ice_is_aux_ena(pf)) {
4486                pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4487                if (pf->aux_idx < 0) {
4488                        dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4489                        err = -ENOMEM;
4490                        goto err_netdev_reg;
4491                }
4492
4493                err = ice_init_rdma(pf);
4494                if (err) {
4495                        dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4496                        err = -EIO;
4497                        goto err_init_aux_unroll;
4498                }
4499        } else {
4500                dev_warn(dev, "RDMA is not supported on this device\n");
4501        }
4502
4503        return 0;
4504
4505err_init_aux_unroll:
4506        pf->adev = NULL;
4507        ida_free(&ice_aux_ida, pf->aux_idx);
4508err_netdev_reg:
4509err_send_version_unroll:
4510        ice_vsi_release_all(pf);
4511err_alloc_sw_unroll:
4512        set_bit(ICE_SERVICE_DIS, pf->state);
4513        set_bit(ICE_DOWN, pf->state);
4514        devm_kfree(dev, pf->first_sw);
4515err_msix_misc_unroll:
4516        ice_free_irq_msix_misc(pf);
4517err_init_interrupt_unroll:
4518        ice_clear_interrupt_scheme(pf);
4519err_init_vsi_unroll:
4520        devm_kfree(dev, pf->vsi);
4521err_init_pf_unroll:
4522        ice_deinit_pf(pf);
4523        ice_devlink_destroy_regions(pf);
4524        ice_deinit_hw(hw);
4525err_exit_unroll:
4526        ice_devlink_unregister(pf);
4527        pci_disable_pcie_error_reporting(pdev);
4528        pci_disable_device(pdev);
4529        return err;
4530}
4531
4532/**
4533 * ice_set_wake - enable or disable Wake on LAN
4534 * @pf: pointer to the PF struct
4535 *
4536 * Simple helper for WoL control
4537 */
4538static void ice_set_wake(struct ice_pf *pf)
4539{
4540        struct ice_hw *hw = &pf->hw;
4541        bool wol = pf->wol_ena;
4542
4543        /* clear wake state, otherwise new wake events won't fire */
4544        wr32(hw, PFPM_WUS, U32_MAX);
4545
4546        /* enable / disable APM wake up, no RMW needed */
4547        wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4548
4549        /* set magic packet filter enabled */
4550        wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4551}
4552
4553/**
4554 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4555 * @pf: pointer to the PF struct
4556 *
4557 * Issue firmware command to enable multicast magic wake, making
4558 * sure that any locally administered address (LAA) is used for
4559 * wake, and that PF reset doesn't undo the LAA.
4560 */
4561static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4562{
4563        struct device *dev = ice_pf_to_dev(pf);
4564        struct ice_hw *hw = &pf->hw;
4565        enum ice_status status;
4566        u8 mac_addr[ETH_ALEN];
4567        struct ice_vsi *vsi;
4568        u8 flags;
4569
4570        if (!pf->wol_ena)
4571                return;
4572
4573        vsi = ice_get_main_vsi(pf);
4574        if (!vsi)
4575                return;
4576
4577        /* Get current MAC address in case it's an LAA */
4578        if (vsi->netdev)
4579                ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4580        else
4581                ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4582
4583        flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4584                ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4585                ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4586
4587        status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4588        if (status)
4589                dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4590                        ice_stat_str(status),
4591                        ice_aq_str(hw->adminq.sq_last_status));
4592}
4593
4594/**
4595 * ice_remove - Device removal routine
4596 * @pdev: PCI device information struct
4597 */
4598static void ice_remove(struct pci_dev *pdev)
4599{
4600        struct ice_pf *pf = pci_get_drvdata(pdev);
4601        int i;
4602
4603        if (!pf)
4604                return;
4605
4606        for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4607                if (!ice_is_reset_in_progress(pf->state))
4608                        break;
4609                msleep(100);
4610        }
4611
4612        if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4613                set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4614                ice_free_vfs(pf);
4615        }
4616
4617        ice_service_task_stop(pf);
4618
4619        ice_aq_cancel_waiting_tasks(pf);
4620        ice_unplug_aux_dev(pf);
4621        if (pf->aux_idx >= 0)
4622                ida_free(&ice_aux_ida, pf->aux_idx);
4623        set_bit(ICE_DOWN, pf->state);
4624
4625        mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4626        ice_deinit_lag(pf);
4627        if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4628                ice_ptp_release(pf);
4629        if (!ice_is_safe_mode(pf))
4630                ice_remove_arfs(pf);
4631        ice_setup_mc_magic_wake(pf);
4632        ice_vsi_release_all(pf);
4633        ice_set_wake(pf);
4634        ice_free_irq_msix_misc(pf);
4635        ice_for_each_vsi(pf, i) {
4636                if (!pf->vsi[i])
4637                        continue;
4638                ice_vsi_free_q_vectors(pf->vsi[i]);
4639        }
4640        ice_deinit_pf(pf);
4641        ice_devlink_destroy_regions(pf);
4642        ice_deinit_hw(&pf->hw);
4643        ice_devlink_unregister(pf);
4644
4645        /* Issue a PFR as part of the prescribed driver unload flow.  Do not
4646         * do it via ice_schedule_reset() since there is no need to rebuild
4647         * and the service task is already stopped.
4648         */
4649        ice_reset(&pf->hw, ICE_RESET_PFR);
4650        pci_wait_for_pending_transaction(pdev);
4651        ice_clear_interrupt_scheme(pf);
4652        pci_disable_pcie_error_reporting(pdev);
4653        pci_disable_device(pdev);
4654}
4655
4656/**
4657 * ice_shutdown - PCI callback for shutting down device
4658 * @pdev: PCI device information struct
4659 */
4660static void ice_shutdown(struct pci_dev *pdev)
4661{
4662        struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664        ice_remove(pdev);
4665
4666        if (system_state == SYSTEM_POWER_OFF) {
4667                pci_wake_from_d3(pdev, pf->wol_ena);
4668                pci_set_power_state(pdev, PCI_D3hot);
4669        }
4670}
4671
4672#ifdef CONFIG_PM
4673/**
4674 * ice_prepare_for_shutdown - prep for PCI shutdown
4675 * @pf: board private structure
4676 *
4677 * Inform or close all dependent features in prep for PCI device shutdown
4678 */
4679static void ice_prepare_for_shutdown(struct ice_pf *pf)
4680{
4681        struct ice_hw *hw = &pf->hw;
4682        u32 v;
4683
4684        /* Notify VFs of impending reset */
4685        if (ice_check_sq_alive(hw, &hw->mailboxq))
4686                ice_vc_notify_reset(pf);
4687
4688        dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4689
4690        /* disable the VSIs and their queues that are not already DOWN */
4691        ice_pf_dis_all_vsi(pf, false);
4692
4693        ice_for_each_vsi(pf, v)
4694                if (pf->vsi[v])
4695                        pf->vsi[v]->vsi_num = 0;
4696
4697        ice_shutdown_all_ctrlq(hw);
4698}
4699
4700/**
4701 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4702 * @pf: board private structure to reinitialize
4703 *
4704 * This routine reinitialize interrupt scheme that was cleared during
4705 * power management suspend callback.
4706 *
4707 * This should be called during resume routine to re-allocate the q_vectors
4708 * and reacquire interrupts.
4709 */
4710static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4711{
4712        struct device *dev = ice_pf_to_dev(pf);
4713        int ret, v;
4714
4715        /* Since we clear MSIX flag during suspend, we need to
4716         * set it back during resume...
4717         */
4718
4719        ret = ice_init_interrupt_scheme(pf);
4720        if (ret) {
4721                dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4722                return ret;
4723        }
4724
4725        /* Remap vectors and rings, after successful re-init interrupts */
4726        ice_for_each_vsi(pf, v) {
4727                if (!pf->vsi[v])
4728                        continue;
4729
4730                ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4731                if (ret)
4732                        goto err_reinit;
4733                ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4734        }
4735
4736        ret = ice_req_irq_msix_misc(pf);
4737        if (ret) {
4738                dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4739                        ret);
4740                goto err_reinit;
4741        }
4742
4743        return 0;
4744
4745err_reinit:
4746        while (v--)
4747                if (pf->vsi[v])
4748                        ice_vsi_free_q_vectors(pf->vsi[v]);
4749
4750        return ret;
4751}
4752
4753/**
4754 * ice_suspend
4755 * @dev: generic device information structure
4756 *
4757 * Power Management callback to quiesce the device and prepare
4758 * for D3 transition.
4759 */
4760static int __maybe_unused ice_suspend(struct device *dev)
4761{
4762        struct pci_dev *pdev = to_pci_dev(dev);
4763        struct ice_pf *pf;
4764        int disabled, v;
4765
4766        pf = pci_get_drvdata(pdev);
4767
4768        if (!ice_pf_state_is_nominal(pf)) {
4769                dev_err(dev, "Device is not ready, no need to suspend it\n");
4770                return -EBUSY;
4771        }
4772
4773        /* Stop watchdog tasks until resume completion.
4774         * Even though it is most likely that the service task is
4775         * disabled if the device is suspended or down, the service task's
4776         * state is controlled by a different state bit, and we should
4777         * store and honor whatever state that bit is in at this point.
4778         */
4779        disabled = ice_service_task_stop(pf);
4780
4781        ice_unplug_aux_dev(pf);
4782
4783        /* Already suspended?, then there is nothing to do */
4784        if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4785                if (!disabled)
4786                        ice_service_task_restart(pf);
4787                return 0;
4788        }
4789
4790        if (test_bit(ICE_DOWN, pf->state) ||
4791            ice_is_reset_in_progress(pf->state)) {
4792                dev_err(dev, "can't suspend device in reset or already down\n");
4793                if (!disabled)
4794                        ice_service_task_restart(pf);
4795                return 0;
4796        }
4797
4798        ice_setup_mc_magic_wake(pf);
4799
4800        ice_prepare_for_shutdown(pf);
4801
4802        ice_set_wake(pf);
4803
4804        /* Free vectors, clear the interrupt scheme and release IRQs
4805         * for proper hibernation, especially with large number of CPUs.
4806         * Otherwise hibernation might fail when mapping all the vectors back
4807         * to CPU0.
4808         */
4809        ice_free_irq_msix_misc(pf);
4810        ice_for_each_vsi(pf, v) {
4811                if (!pf->vsi[v])
4812                        continue;
4813                ice_vsi_free_q_vectors(pf->vsi[v]);
4814        }
4815        ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4816        ice_clear_interrupt_scheme(pf);
4817
4818        pci_save_state(pdev);
4819        pci_wake_from_d3(pdev, pf->wol_ena);
4820        pci_set_power_state(pdev, PCI_D3hot);
4821        return 0;
4822}
4823
4824/**
4825 * ice_resume - PM callback for waking up from D3
4826 * @dev: generic device information structure
4827 */
4828static int __maybe_unused ice_resume(struct device *dev)
4829{
4830        struct pci_dev *pdev = to_pci_dev(dev);
4831        enum ice_reset_req reset_type;
4832        struct ice_pf *pf;
4833        struct ice_hw *hw;
4834        int ret;
4835
4836        pci_set_power_state(pdev, PCI_D0);
4837        pci_restore_state(pdev);
4838        pci_save_state(pdev);
4839
4840        if (!pci_device_is_present(pdev))
4841                return -ENODEV;
4842
4843        ret = pci_enable_device_mem(pdev);
4844        if (ret) {
4845                dev_err(dev, "Cannot enable device after suspend\n");
4846                return ret;
4847        }
4848
4849        pf = pci_get_drvdata(pdev);
4850        hw = &pf->hw;
4851
4852        pf->wakeup_reason = rd32(hw, PFPM_WUS);
4853        ice_print_wake_reason(pf);
4854
4855        /* We cleared the interrupt scheme when we suspended, so we need to
4856         * restore it now to resume device functionality.
4857         */
4858        ret = ice_reinit_interrupt_scheme(pf);
4859        if (ret)
4860                dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4861
4862        clear_bit(ICE_DOWN, pf->state);
4863        /* Now perform PF reset and rebuild */
4864        reset_type = ICE_RESET_PFR;
4865        /* re-enable service task for reset, but allow reset to schedule it */
4866        clear_bit(ICE_SERVICE_DIS, pf->state);
4867
4868        if (ice_schedule_reset(pf, reset_type))
4869                dev_err(dev, "Reset during resume failed.\n");
4870
4871        clear_bit(ICE_SUSPENDED, pf->state);
4872        ice_service_task_restart(pf);
4873
4874        /* Restart the service task */
4875        mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4876
4877        return 0;
4878}
4879#endif /* CONFIG_PM */
4880
4881/**
4882 * ice_pci_err_detected - warning that PCI error has been detected
4883 * @pdev: PCI device information struct
4884 * @err: the type of PCI error
4885 *
4886 * Called to warn that something happened on the PCI bus and the error handling
4887 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4888 */
4889static pci_ers_result_t
4890ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4891{
4892        struct ice_pf *pf = pci_get_drvdata(pdev);
4893
4894        if (!pf) {
4895                dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4896                        __func__, err);
4897                return PCI_ERS_RESULT_DISCONNECT;
4898        }
4899
4900        if (!test_bit(ICE_SUSPENDED, pf->state)) {
4901                ice_service_task_stop(pf);
4902
4903                if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4904                        set_bit(ICE_PFR_REQ, pf->state);
4905                        ice_prepare_for_reset(pf);
4906                }
4907        }
4908
4909        return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4914 * @pdev: PCI device information struct
4915 *
4916 * Called to determine if the driver can recover from the PCI slot reset by
4917 * using a register read to determine if the device is recoverable.
4918 */
4919static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4920{
4921        struct ice_pf *pf = pci_get_drvdata(pdev);
4922        pci_ers_result_t result;
4923        int err;
4924        u32 reg;
4925
4926        err = pci_enable_device_mem(pdev);
4927        if (err) {
4928                dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4929                        err);
4930                result = PCI_ERS_RESULT_DISCONNECT;
4931        } else {
4932                pci_set_master(pdev);
4933                pci_restore_state(pdev);
4934                pci_save_state(pdev);
4935                pci_wake_from_d3(pdev, false);
4936
4937                /* Check for life */
4938                reg = rd32(&pf->hw, GLGEN_RTRIG);
4939                if (!reg)
4940                        result = PCI_ERS_RESULT_RECOVERED;
4941                else
4942                        result = PCI_ERS_RESULT_DISCONNECT;
4943        }
4944
4945        err = pci_aer_clear_nonfatal_status(pdev);
4946        if (err)
4947                dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4948                        err);
4949                /* non-fatal, continue */
4950
4951        return result;
4952}
4953
4954/**
4955 * ice_pci_err_resume - restart operations after PCI error recovery
4956 * @pdev: PCI device information struct
4957 *
4958 * Called to allow the driver to bring things back up after PCI error and/or
4959 * reset recovery have finished
4960 */
4961static void ice_pci_err_resume(struct pci_dev *pdev)
4962{
4963        struct ice_pf *pf = pci_get_drvdata(pdev);
4964
4965        if (!pf) {
4966                dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4967                        __func__);
4968                return;
4969        }
4970
4971        if (test_bit(ICE_SUSPENDED, pf->state)) {
4972                dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4973                        __func__);
4974                return;
4975        }
4976
4977        ice_restore_all_vfs_msi_state(pdev);
4978
4979        ice_do_reset(pf, ICE_RESET_PFR);
4980        ice_service_task_restart(pf);
4981        mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4982}
4983
4984/**
4985 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4986 * @pdev: PCI device information struct
4987 */
4988static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4989{
4990        struct ice_pf *pf = pci_get_drvdata(pdev);
4991
4992        if (!test_bit(ICE_SUSPENDED, pf->state)) {
4993                ice_service_task_stop(pf);
4994
4995                if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4996                        set_bit(ICE_PFR_REQ, pf->state);
4997                        ice_prepare_for_reset(pf);
4998                }
4999        }
5000}
5001
5002/**
5003 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5004 * @pdev: PCI device information struct
5005 */
5006static void ice_pci_err_reset_done(struct pci_dev *pdev)
5007{
5008        ice_pci_err_resume(pdev);
5009}
5010
5011/* ice_pci_tbl - PCI Device ID Table
5012 *
5013 * Wildcard entries (PCI_ANY_ID) should come last
5014 * Last entry must be all 0s
5015 *
5016 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5017 *   Class, Class Mask, private data (not used) }
5018 */
5019static const struct pci_device_id ice_pci_tbl[] = {
5020        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5021        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5022        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5023        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5024        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5025        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5026        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5027        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5028        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5029        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5030        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5031        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5032        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5033        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5034        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5035        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5036        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5037        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5038        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5039        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5040        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5041        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5042        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5043        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5044        { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5045        /* required last entry */
5046        { 0, }
5047};
5048MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5049
5050static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5051
5052static const struct pci_error_handlers ice_pci_err_handler = {
5053        .error_detected = ice_pci_err_detected,
5054        .slot_reset = ice_pci_err_slot_reset,
5055        .reset_prepare = ice_pci_err_reset_prepare,
5056        .reset_done = ice_pci_err_reset_done,
5057        .resume = ice_pci_err_resume
5058};
5059
5060static struct pci_driver ice_driver = {
5061        .name = KBUILD_MODNAME,
5062        .id_table = ice_pci_tbl,
5063        .probe = ice_probe,
5064        .remove = ice_remove,
5065#ifdef CONFIG_PM
5066        .driver.pm = &ice_pm_ops,
5067#endif /* CONFIG_PM */
5068        .shutdown = ice_shutdown,
5069        .sriov_configure = ice_sriov_configure,
5070        .err_handler = &ice_pci_err_handler
5071};
5072
5073/**
5074 * ice_module_init - Driver registration routine
5075 *
5076 * ice_module_init is the first routine called when the driver is
5077 * loaded. All it does is register with the PCI subsystem.
5078 */
5079static int __init ice_module_init(void)
5080{
5081        int status;
5082
5083        pr_info("%s\n", ice_driver_string);
5084        pr_info("%s\n", ice_copyright);
5085
5086        ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5087        if (!ice_wq) {
5088                pr_err("Failed to create workqueue\n");
5089                return -ENOMEM;
5090        }
5091
5092        status = pci_register_driver(&ice_driver);
5093        if (status) {
5094                pr_err("failed to register PCI driver, err %d\n", status);
5095                destroy_workqueue(ice_wq);
5096        }
5097
5098        return status;
5099}
5100module_init(ice_module_init);
5101
5102/**
5103 * ice_module_exit - Driver exit cleanup routine
5104 *
5105 * ice_module_exit is called just before the driver is removed
5106 * from memory.
5107 */
5108static void __exit ice_module_exit(void)
5109{
5110        pci_unregister_driver(&ice_driver);
5111        destroy_workqueue(ice_wq);
5112        pr_info("module unloaded\n");
5113}
5114module_exit(ice_module_exit);
5115
5116/**
5117 * ice_set_mac_address - NDO callback to set MAC address
5118 * @netdev: network interface device structure
5119 * @pi: pointer to an address structure
5120 *
5121 * Returns 0 on success, negative on failure
5122 */
5123static int ice_set_mac_address(struct net_device *netdev, void *pi)
5124{
5125        struct ice_netdev_priv *np = netdev_priv(netdev);
5126        struct ice_vsi *vsi = np->vsi;
5127        struct ice_pf *pf = vsi->back;
5128        struct ice_hw *hw = &pf->hw;
5129        struct sockaddr *addr = pi;
5130        enum ice_status status;
5131        u8 old_mac[ETH_ALEN];
5132        u8 flags = 0;
5133        int err = 0;
5134        u8 *mac;
5135
5136        mac = (u8 *)addr->sa_data;
5137
5138        if (!is_valid_ether_addr(mac))
5139                return -EADDRNOTAVAIL;
5140
5141        if (ether_addr_equal(netdev->dev_addr, mac)) {
5142                netdev_dbg(netdev, "already using mac %pM\n", mac);
5143                return 0;
5144        }
5145
5146        if (test_bit(ICE_DOWN, pf->state) ||
5147            ice_is_reset_in_progress(pf->state)) {
5148                netdev_err(netdev, "can't set mac %pM. device not ready\n",
5149                           mac);
5150                return -EBUSY;
5151        }
5152
5153        netif_addr_lock_bh(netdev);
5154        ether_addr_copy(old_mac, netdev->dev_addr);
5155        /* change the netdev's MAC address */
5156        memcpy(netdev->dev_addr, mac, netdev->addr_len);
5157        netif_addr_unlock_bh(netdev);
5158
5159        /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5160        status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5161        if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5162                err = -EADDRNOTAVAIL;
5163                goto err_update_filters;
5164        }
5165
5166        /* Add filter for new MAC. If filter exists, return success */
5167        status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5168        if (status == ICE_ERR_ALREADY_EXISTS)
5169                /* Although this MAC filter is already present in hardware it's
5170                 * possible in some cases (e.g. bonding) that dev_addr was
5171                 * modified outside of the driver and needs to be restored back
5172                 * to this value.
5173                 */
5174                netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5175        else if (status)
5176                /* error if the new filter addition failed */
5177                err = -EADDRNOTAVAIL;
5178
5179err_update_filters:
5180        if (err) {
5181                netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5182                           mac);
5183                netif_addr_lock_bh(netdev);
5184                ether_addr_copy(netdev->dev_addr, old_mac);
5185                netif_addr_unlock_bh(netdev);
5186                return err;
5187        }
5188
5189        netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5190                   netdev->dev_addr);
5191
5192        /* write new MAC address to the firmware */
5193        flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5194        status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5195        if (status) {
5196                netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5197                           mac, ice_stat_str(status));
5198        }
5199        return 0;
5200}
5201
5202/**
5203 * ice_set_rx_mode - NDO callback to set the netdev filters
5204 * @netdev: network interface device structure
5205 */
5206static void ice_set_rx_mode(struct net_device *netdev)
5207{
5208        struct ice_netdev_priv *np = netdev_priv(netdev);
5209        struct ice_vsi *vsi = np->vsi;
5210
5211        if (!vsi)
5212                return;
5213
5214        /* Set the flags to synchronize filters
5215         * ndo_set_rx_mode may be triggered even without a change in netdev
5216         * flags
5217         */
5218        set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5219        set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5220        set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5221
5222        /* schedule our worker thread which will take care of
5223         * applying the new filter changes
5224         */
5225        ice_service_task_schedule(vsi->back);
5226}
5227
5228/**
5229 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5230 * @netdev: network interface device structure
5231 * @queue_index: Queue ID
5232 * @maxrate: maximum bandwidth in Mbps
5233 */
5234static int
5235ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5236{
5237        struct ice_netdev_priv *np = netdev_priv(netdev);
5238        struct ice_vsi *vsi = np->vsi;
5239        enum ice_status status;
5240        u16 q_handle;
5241        u8 tc;
5242
5243        /* Validate maxrate requested is within permitted range */
5244        if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5245                netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5246                           maxrate, queue_index);
5247                return -EINVAL;
5248        }
5249
5250        q_handle = vsi->tx_rings[queue_index]->q_handle;
5251        tc = ice_dcb_get_tc(vsi, queue_index);
5252
5253        /* Set BW back to default, when user set maxrate to 0 */
5254        if (!maxrate)
5255                status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5256                                               q_handle, ICE_MAX_BW);
5257        else
5258                status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5259                                          q_handle, ICE_MAX_BW, maxrate * 1000);
5260        if (status) {
5261                netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5262                           ice_stat_str(status));
5263                return -EIO;
5264        }
5265
5266        return 0;
5267}
5268
5269/**
5270 * ice_fdb_add - add an entry to the hardware database
5271 * @ndm: the input from the stack
5272 * @tb: pointer to array of nladdr (unused)
5273 * @dev: the net device pointer
5274 * @addr: the MAC address entry being added
5275 * @vid: VLAN ID
5276 * @flags: instructions from stack about fdb operation
5277 * @extack: netlink extended ack
5278 */
5279static int
5280ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5281            struct net_device *dev, const unsigned char *addr, u16 vid,
5282            u16 flags, struct netlink_ext_ack __always_unused *extack)
5283{
5284        int err;
5285
5286        if (vid) {
5287                netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5288                return -EINVAL;
5289        }
5290        if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5291                netdev_err(dev, "FDB only supports static addresses\n");
5292                return -EINVAL;
5293        }
5294
5295        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5296                err = dev_uc_add_excl(dev, addr);
5297        else if (is_multicast_ether_addr(addr))
5298                err = dev_mc_add_excl(dev, addr);
5299        else
5300                err = -EINVAL;
5301
5302        /* Only return duplicate errors if NLM_F_EXCL is set */
5303        if (err == -EEXIST && !(flags & NLM_F_EXCL))
5304                err = 0;
5305
5306        return err;
5307}
5308
5309/**
5310 * ice_fdb_del - delete an entry from the hardware database
5311 * @ndm: the input from the stack
5312 * @tb: pointer to array of nladdr (unused)
5313 * @dev: the net device pointer
5314 * @addr: the MAC address entry being added
5315 * @vid: VLAN ID
5316 */
5317static int
5318ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5319            struct net_device *dev, const unsigned char *addr,
5320            __always_unused u16 vid)
5321{
5322        int err;
5323
5324        if (ndm->ndm_state & NUD_PERMANENT) {
5325                netdev_err(dev, "FDB only supports static addresses\n");
5326                return -EINVAL;
5327        }
5328
5329        if (is_unicast_ether_addr(addr))
5330                err = dev_uc_del(dev, addr);
5331        else if (is_multicast_ether_addr(addr))
5332                err = dev_mc_del(dev, addr);
5333        else
5334                err = -EINVAL;
5335
5336        return err;
5337}
5338
5339/**
5340 * ice_set_features - set the netdev feature flags
5341 * @netdev: ptr to the netdev being adjusted
5342 * @features: the feature set that the stack is suggesting
5343 */
5344static int
5345ice_set_features(struct net_device *netdev, netdev_features_t features)
5346{
5347        struct ice_netdev_priv *np = netdev_priv(netdev);
5348        struct ice_vsi *vsi = np->vsi;
5349        struct ice_pf *pf = vsi->back;
5350        int ret = 0;
5351
5352        /* Don't set any netdev advanced features with device in Safe Mode */
5353        if (ice_is_safe_mode(vsi->back)) {
5354                dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5355                return ret;
5356        }
5357
5358        /* Do not change setting during reset */
5359        if (ice_is_reset_in_progress(pf->state)) {
5360                dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5361                return -EBUSY;
5362        }
5363
5364        /* Multiple features can be changed in one call so keep features in
5365         * separate if/else statements to guarantee each feature is checked
5366         */
5367        if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5368                ice_vsi_manage_rss_lut(vsi, true);
5369        else if (!(features & NETIF_F_RXHASH) &&
5370                 netdev->features & NETIF_F_RXHASH)
5371                ice_vsi_manage_rss_lut(vsi, false);
5372
5373        if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5374            !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5375                ret = ice_vsi_manage_vlan_stripping(vsi, true);
5376        else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5377                 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5378                ret = ice_vsi_manage_vlan_stripping(vsi, false);
5379
5380        if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5381            !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5382                ret = ice_vsi_manage_vlan_insertion(vsi);
5383        else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5384                 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5385                ret = ice_vsi_manage_vlan_insertion(vsi);
5386
5387        if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5388            !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5389                ret = ice_cfg_vlan_pruning(vsi, true, false);
5390        else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5391                 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5392                ret = ice_cfg_vlan_pruning(vsi, false, false);
5393
5394        if ((features & NETIF_F_NTUPLE) &&
5395            !(netdev->features & NETIF_F_NTUPLE)) {
5396                ice_vsi_manage_fdir(vsi, true);
5397                ice_init_arfs(vsi);
5398        } else if (!(features & NETIF_F_NTUPLE) &&
5399                 (netdev->features & NETIF_F_NTUPLE)) {
5400                ice_vsi_manage_fdir(vsi, false);
5401                ice_clear_arfs(vsi);
5402        }
5403
5404        return ret;
5405}
5406
5407/**
5408 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5409 * @vsi: VSI to setup VLAN properties for
5410 */
5411static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5412{
5413        int ret = 0;
5414
5415        if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5416                ret = ice_vsi_manage_vlan_stripping(vsi, true);
5417        if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5418                ret = ice_vsi_manage_vlan_insertion(vsi);
5419
5420        return ret;
5421}
5422
5423/**
5424 * ice_vsi_cfg - Setup the VSI
5425 * @vsi: the VSI being configured
5426 *
5427 * Return 0 on success and negative value on error
5428 */
5429int ice_vsi_cfg(struct ice_vsi *vsi)
5430{
5431        int err;
5432
5433        if (vsi->netdev) {
5434                ice_set_rx_mode(vsi->netdev);
5435
5436                err = ice_vsi_vlan_setup(vsi);
5437
5438                if (err)
5439                        return err;
5440        }
5441        ice_vsi_cfg_dcb_rings(vsi);
5442
5443        err = ice_vsi_cfg_lan_txqs(vsi);
5444        if (!err && ice_is_xdp_ena_vsi(vsi))
5445                err = ice_vsi_cfg_xdp_txqs(vsi);
5446        if (!err)
5447                err = ice_vsi_cfg_rxqs(vsi);
5448
5449        return err;
5450}
5451
5452/* THEORY OF MODERATION:
5453 * The below code creates custom DIM profiles for use by this driver, because
5454 * the ice driver hardware works differently than the hardware that DIMLIB was
5455 * originally made for. ice hardware doesn't have packet count limits that
5456 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5457 * and this code adds that capability to be used by the driver when it's using
5458 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5459 * for how to "respond" to traffic and interrupts, so this driver uses a
5460 * slightly different set of moderation parameters to get best performance.
5461 */
5462struct ice_dim {
5463        /* the throttle rate for interrupts, basically worst case delay before
5464         * an initial interrupt fires, value is stored in microseconds.
5465         */
5466        u16 itr;
5467        /* the rate limit for interrupts, which can cap a delay from a small
5468         * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5469         * could yield as much as 500,000 interrupts per second, but with a
5470         * 10us rate limit, it limits to 100,000 interrupts per second. Value
5471         * is stored in microseconds.
5472         */
5473        u16 intrl;
5474};
5475
5476/* Make a different profile for Rx that doesn't allow quite so aggressive
5477 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5478 * second. The INTRL/rate parameters here are only useful to cap small ITR
5479 * values, which is why for larger ITR's - like 128, which can only generate
5480 * 8k interrupts per second, there is no point to rate limit and the values
5481 * are set to zero. The rate limit values do affect latency, and so must
5482 * be reasonably small so to not impact latency sensitive tests.
5483 */
5484static const struct ice_dim rx_profile[] = {
5485        {2, 10},
5486        {8, 16},
5487        {32, 0},
5488        {96, 0},
5489        {128, 0}
5490};
5491
5492/* The transmit profile, which has the same sorts of values
5493 * as the previous struct
5494 */
5495static const struct ice_dim tx_profile[] = {
5496        {2, 10},
5497        {8, 16},
5498        {64, 0},
5499        {128, 0},
5500        {256, 0}
5501};
5502
5503static void ice_tx_dim_work(struct work_struct *work)
5504{
5505        struct ice_ring_container *rc;
5506        struct ice_q_vector *q_vector;
5507        struct dim *dim;
5508        u16 itr, intrl;
5509
5510        dim = container_of(work, struct dim, work);
5511        rc = container_of(dim, struct ice_ring_container, dim);
5512        q_vector = container_of(rc, struct ice_q_vector, tx);
5513
5514        if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5515                dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5516
5517        /* look up the values in our local table */
5518        itr = tx_profile[dim->profile_ix].itr;
5519        intrl = tx_profile[dim->profile_ix].intrl;
5520
5521        ice_trace(tx_dim_work, q_vector, dim);
5522        ice_write_itr(rc, itr);
5523        ice_write_intrl(q_vector, intrl);
5524
5525        dim->state = DIM_START_MEASURE;
5526}
5527
5528static void ice_rx_dim_work(struct work_struct *work)
5529{
5530        struct ice_ring_container *rc;
5531        struct ice_q_vector *q_vector;
5532        struct dim *dim;
5533        u16 itr, intrl;
5534
5535        dim = container_of(work, struct dim, work);
5536        rc = container_of(dim, struct ice_ring_container, dim);
5537        q_vector = container_of(rc, struct ice_q_vector, rx);
5538
5539        if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5540                dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5541
5542        /* look up the values in our local table */
5543        itr = rx_profile[dim->profile_ix].itr;
5544        intrl = rx_profile[dim->profile_ix].intrl;
5545
5546        ice_trace(rx_dim_work, q_vector, dim);
5547        ice_write_itr(rc, itr);
5548        ice_write_intrl(q_vector, intrl);
5549
5550        dim->state = DIM_START_MEASURE;
5551}
5552
5553/**
5554 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5555 * @vsi: the VSI being configured
5556 */
5557static void ice_napi_enable_all(struct ice_vsi *vsi)
5558{
5559        int q_idx;
5560
5561        if (!vsi->netdev)
5562                return;
5563
5564        ice_for_each_q_vector(vsi, q_idx) {
5565                struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5566
5567                INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5568                q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5569
5570                INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5571                q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5572
5573                if (q_vector->rx.ring || q_vector->tx.ring)
5574                        napi_enable(&q_vector->napi);
5575        }
5576}
5577
5578/**
5579 * ice_up_complete - Finish the last steps of bringing up a connection
5580 * @vsi: The VSI being configured
5581 *
5582 * Return 0 on success and negative value on error
5583 */
5584static int ice_up_complete(struct ice_vsi *vsi)
5585{
5586        struct ice_pf *pf = vsi->back;
5587        int err;
5588
5589        ice_vsi_cfg_msix(vsi);
5590
5591        /* Enable only Rx rings, Tx rings were enabled by the FW when the
5592         * Tx queue group list was configured and the context bits were
5593         * programmed using ice_vsi_cfg_txqs
5594         */
5595        err = ice_vsi_start_all_rx_rings(vsi);
5596        if (err)
5597                return err;
5598
5599        clear_bit(ICE_VSI_DOWN, vsi->state);
5600        ice_napi_enable_all(vsi);
5601        ice_vsi_ena_irq(vsi);
5602
5603        if (vsi->port_info &&
5604            (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5605            vsi->netdev) {
5606                ice_print_link_msg(vsi, true);
5607                netif_tx_start_all_queues(vsi->netdev);
5608                netif_carrier_on(vsi->netdev);
5609        }
5610
5611        ice_service_task_schedule(pf);
5612
5613        return 0;
5614}
5615
5616/**
5617 * ice_up - Bring the connection back up after being down
5618 * @vsi: VSI being configured
5619 */
5620int ice_up(struct ice_vsi *vsi)
5621{
5622        int err;
5623
5624        err = ice_vsi_cfg(vsi);
5625        if (!err)
5626                err = ice_up_complete(vsi);
5627
5628        return err;
5629}
5630
5631/**
5632 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5633 * @ring: Tx or Rx ring to read stats from
5634 * @pkts: packets stats counter
5635 * @bytes: bytes stats counter
5636 *
5637 * This function fetches stats from the ring considering the atomic operations
5638 * that needs to be performed to read u64 values in 32 bit machine.
5639 */
5640static void
5641ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5642{
5643        unsigned int start;
5644        *pkts = 0;
5645        *bytes = 0;
5646
5647        if (!ring)
5648                return;
5649        do {
5650                start = u64_stats_fetch_begin_irq(&ring->syncp);
5651                *pkts = ring->stats.pkts;
5652                *bytes = ring->stats.bytes;
5653        } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5654}
5655
5656/**
5657 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5658 * @vsi: the VSI to be updated
5659 * @rings: rings to work on
5660 * @count: number of rings
5661 */
5662static void
5663ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5664                             u16 count)
5665{
5666        struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5667        u16 i;
5668
5669        for (i = 0; i < count; i++) {
5670                struct ice_ring *ring;
5671                u64 pkts, bytes;
5672
5673                ring = READ_ONCE(rings[i]);
5674                ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5675                vsi_stats->tx_packets += pkts;
5676                vsi_stats->tx_bytes += bytes;
5677                vsi->tx_restart += ring->tx_stats.restart_q;
5678                vsi->tx_busy += ring->tx_stats.tx_busy;
5679                vsi->tx_linearize += ring->tx_stats.tx_linearize;
5680        }
5681}
5682
5683/**
5684 * ice_update_vsi_ring_stats - Update VSI stats counters
5685 * @vsi: the VSI to be updated
5686 */
5687static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5688{
5689        struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5690        u64 pkts, bytes;
5691        int i;
5692
5693        /* reset netdev stats */
5694        vsi_stats->tx_packets = 0;
5695        vsi_stats->tx_bytes = 0;
5696        vsi_stats->rx_packets = 0;
5697        vsi_stats->rx_bytes = 0;
5698
5699        /* reset non-netdev (extended) stats */
5700        vsi->tx_restart = 0;
5701        vsi->tx_busy = 0;
5702        vsi->tx_linearize = 0;
5703        vsi->rx_buf_failed = 0;
5704        vsi->rx_page_failed = 0;
5705
5706        rcu_read_lock();
5707
5708        /* update Tx rings counters */
5709        ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5710
5711        /* update Rx rings counters */
5712        ice_for_each_rxq(vsi, i) {
5713                struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5714
5715                ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5716                vsi_stats->rx_packets += pkts;
5717                vsi_stats->rx_bytes += bytes;
5718                vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5719                vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5720        }
5721
5722        /* update XDP Tx rings counters */
5723        if (ice_is_xdp_ena_vsi(vsi))
5724                ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5725                                             vsi->num_xdp_txq);
5726
5727        rcu_read_unlock();
5728}
5729
5730/**
5731 * ice_update_vsi_stats - Update VSI stats counters
5732 * @vsi: the VSI to be updated
5733 */
5734void ice_update_vsi_stats(struct ice_vsi *vsi)
5735{
5736        struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5737        struct ice_eth_stats *cur_es = &vsi->eth_stats;
5738        struct ice_pf *pf = vsi->back;
5739
5740        if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5741            test_bit(ICE_CFG_BUSY, pf->state))
5742                return;
5743
5744        /* get stats as recorded by Tx/Rx rings */
5745        ice_update_vsi_ring_stats(vsi);
5746
5747        /* get VSI stats as recorded by the hardware */
5748        ice_update_eth_stats(vsi);
5749
5750        cur_ns->tx_errors = cur_es->tx_errors;
5751        cur_ns->rx_dropped = cur_es->rx_discards;
5752        cur_ns->tx_dropped = cur_es->tx_discards;
5753        cur_ns->multicast = cur_es->rx_multicast;
5754
5755        /* update some more netdev stats if this is main VSI */
5756        if (vsi->type == ICE_VSI_PF) {
5757                cur_ns->rx_crc_errors = pf->stats.crc_errors;
5758                cur_ns->rx_errors = pf->stats.crc_errors +
5759                                    pf->stats.illegal_bytes +
5760                                    pf->stats.rx_len_errors +
5761                                    pf->stats.rx_undersize +
5762                                    pf->hw_csum_rx_error +
5763                                    pf->stats.rx_jabber +
5764                                    pf->stats.rx_fragments +
5765                                    pf->stats.rx_oversize;
5766                cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5767                /* record drops from the port level */
5768                cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5769        }
5770}
5771
5772/**
5773 * ice_update_pf_stats - Update PF port stats counters
5774 * @pf: PF whose stats needs to be updated
5775 */
5776void ice_update_pf_stats(struct ice_pf *pf)
5777{
5778        struct ice_hw_port_stats *prev_ps, *cur_ps;
5779        struct ice_hw *hw = &pf->hw;
5780        u16 fd_ctr_base;
5781        u8 port;
5782
5783        port = hw->port_info->lport;
5784        prev_ps = &pf->stats_prev;
5785        cur_ps = &pf->stats;
5786
5787        ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5788                          &prev_ps->eth.rx_bytes,
5789                          &cur_ps->eth.rx_bytes);
5790
5791        ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5792                          &prev_ps->eth.rx_unicast,
5793                          &cur_ps->eth.rx_unicast);
5794
5795        ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5796                          &prev_ps->eth.rx_multicast,
5797                          &cur_ps->eth.rx_multicast);
5798
5799        ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5800                          &prev_ps->eth.rx_broadcast,
5801                          &cur_ps->eth.rx_broadcast);
5802
5803        ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5804                          &prev_ps->eth.rx_discards,
5805                          &cur_ps->eth.rx_discards);
5806
5807        ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5808                          &prev_ps->eth.tx_bytes,
5809                          &cur_ps->eth.tx_bytes);
5810
5811        ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5812                          &prev_ps->eth.tx_unicast,
5813                          &cur_ps->eth.tx_unicast);
5814
5815        ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5816                          &prev_ps->eth.tx_multicast,
5817                          &cur_ps->eth.tx_multicast);
5818
5819        ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5820                          &prev_ps->eth.tx_broadcast,
5821                          &cur_ps->eth.tx_broadcast);
5822
5823        ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5824                          &prev_ps->tx_dropped_link_down,
5825                          &cur_ps->tx_dropped_link_down);
5826
5827        ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5828                          &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5829
5830        ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5831                          &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5832
5833        ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5834                          &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5835
5836        ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5837                          &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5838
5839        ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5840                          &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5841
5842        ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5843                          &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5844
5845        ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5846                          &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5847
5848        ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5849                          &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5850
5851        ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5852                          &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5853
5854        ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5855                          &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5856
5857        ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5858                          &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5859
5860        ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5861                          &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5862
5863        ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5864                          &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5865
5866        ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5867                          &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5868
5869        fd_ctr_base = hw->fd_ctr_base;
5870
5871        ice_stat_update40(hw,
5872                          GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5873                          pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5874                          &cur_ps->fd_sb_match);
5875        ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5876                          &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5877
5878        ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5879                          &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5880
5881        ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5882                          &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5883
5884        ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5885                          &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5886
5887        ice_update_dcb_stats(pf);
5888
5889        ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5890                          &prev_ps->crc_errors, &cur_ps->crc_errors);
5891
5892        ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5893                          &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5894
5895        ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5896                          &prev_ps->mac_local_faults,
5897                          &cur_ps->mac_local_faults);
5898
5899        ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5900                          &prev_ps->mac_remote_faults,
5901                          &cur_ps->mac_remote_faults);
5902
5903        ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5904                          &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5905
5906        ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5907                          &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5908
5909        ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5910                          &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5911
5912        ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5913                          &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5914
5915        ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5916                          &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5917
5918        cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5919
5920        pf->stat_prev_loaded = true;
5921}
5922
5923/**
5924 * ice_get_stats64 - get statistics for network device structure
5925 * @netdev: network interface device structure
5926 * @stats: main device statistics structure
5927 */
5928static
5929void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5930{
5931        struct ice_netdev_priv *np = netdev_priv(netdev);
5932        struct rtnl_link_stats64 *vsi_stats;
5933        struct ice_vsi *vsi = np->vsi;
5934
5935        vsi_stats = &vsi->net_stats;
5936
5937        if (!vsi->num_txq || !vsi->num_rxq)
5938                return;
5939
5940        /* netdev packet/byte stats come from ring counter. These are obtained
5941         * by summing up ring counters (done by ice_update_vsi_ring_stats).
5942         * But, only call the update routine and read the registers if VSI is
5943         * not down.
5944         */
5945        if (!test_bit(ICE_VSI_DOWN, vsi->state))
5946                ice_update_vsi_ring_stats(vsi);
5947        stats->tx_packets = vsi_stats->tx_packets;
5948        stats->tx_bytes = vsi_stats->tx_bytes;
5949        stats->rx_packets = vsi_stats->rx_packets;
5950        stats->rx_bytes = vsi_stats->rx_bytes;
5951
5952        /* The rest of the stats can be read from the hardware but instead we
5953         * just return values that the watchdog task has already obtained from
5954         * the hardware.
5955         */
5956        stats->multicast = vsi_stats->multicast;
5957        stats->tx_errors = vsi_stats->tx_errors;
5958        stats->tx_dropped = vsi_stats->tx_dropped;
5959        stats->rx_errors = vsi_stats->rx_errors;
5960        stats->rx_dropped = vsi_stats->rx_dropped;
5961        stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5962        stats->rx_length_errors = vsi_stats->rx_length_errors;
5963}
5964
5965/**
5966 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5967 * @vsi: VSI having NAPI disabled
5968 */
5969static void ice_napi_disable_all(struct ice_vsi *vsi)
5970{
5971        int q_idx;
5972
5973        if (!vsi->netdev)
5974                return;
5975
5976        ice_for_each_q_vector(vsi, q_idx) {
5977                struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5978
5979                if (q_vector->rx.ring || q_vector->tx.ring)
5980                        napi_disable(&q_vector->napi);
5981
5982                cancel_work_sync(&q_vector->tx.dim.work);
5983                cancel_work_sync(&q_vector->rx.dim.work);
5984        }
5985}
5986
5987/**
5988 * ice_down - Shutdown the connection
5989 * @vsi: The VSI being stopped
5990 */
5991int ice_down(struct ice_vsi *vsi)
5992{
5993        int i, tx_err, rx_err, link_err = 0;
5994
5995        /* Caller of this function is expected to set the
5996         * vsi->state ICE_DOWN bit
5997         */
5998        if (vsi->netdev) {
5999                netif_carrier_off(vsi->netdev);
6000                netif_tx_disable(vsi->netdev);
6001        }
6002
6003        ice_vsi_dis_irq(vsi);
6004
6005        tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6006        if (tx_err)
6007                netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6008                           vsi->vsi_num, tx_err);
6009        if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6010                tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6011                if (tx_err)
6012                        netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6013                                   vsi->vsi_num, tx_err);
6014        }
6015
6016        rx_err = ice_vsi_stop_all_rx_rings(vsi);
6017        if (rx_err)
6018                netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6019                           vsi->vsi_num, rx_err);
6020
6021        ice_napi_disable_all(vsi);
6022
6023        if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6024                link_err = ice_force_phys_link_state(vsi, false);
6025                if (link_err)
6026                        netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6027                                   vsi->vsi_num, link_err);
6028        }
6029
6030        ice_for_each_txq(vsi, i)
6031                ice_clean_tx_ring(vsi->tx_rings[i]);
6032
6033        ice_for_each_rxq(vsi, i)
6034                ice_clean_rx_ring(vsi->rx_rings[i]);
6035
6036        if (tx_err || rx_err || link_err) {
6037                netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6038                           vsi->vsi_num, vsi->vsw->sw_id);
6039                return -EIO;
6040        }
6041
6042        return 0;
6043}
6044
6045/**
6046 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6047 * @vsi: VSI having resources allocated
6048 *
6049 * Return 0 on success, negative on failure
6050 */
6051int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6052{
6053        int i, err = 0;
6054
6055        if (!vsi->num_txq) {
6056                dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6057                        vsi->vsi_num);
6058                return -EINVAL;
6059        }
6060
6061        ice_for_each_txq(vsi, i) {
6062                struct ice_ring *ring = vsi->tx_rings[i];
6063
6064                if (!ring)
6065                        return -EINVAL;
6066
6067                ring->netdev = vsi->netdev;
6068                err = ice_setup_tx_ring(ring);
6069                if (err)
6070                        break;
6071        }
6072
6073        return err;
6074}
6075
6076/**
6077 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6078 * @vsi: VSI having resources allocated
6079 *
6080 * Return 0 on success, negative on failure
6081 */
6082int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6083{
6084        int i, err = 0;
6085
6086        if (!vsi->num_rxq) {
6087                dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6088                        vsi->vsi_num);
6089                return -EINVAL;
6090        }
6091
6092        ice_for_each_rxq(vsi, i) {
6093                struct ice_ring *ring = vsi->rx_rings[i];
6094
6095                if (!ring)
6096                        return -EINVAL;
6097
6098                ring->netdev = vsi->netdev;
6099                err = ice_setup_rx_ring(ring);
6100                if (err)
6101                        break;
6102        }
6103
6104        return err;
6105}
6106
6107/**
6108 * ice_vsi_open_ctrl - open control VSI for use
6109 * @vsi: the VSI to open
6110 *
6111 * Initialization of the Control VSI
6112 *
6113 * Returns 0 on success, negative value on error
6114 */
6115int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6116{
6117        char int_name[ICE_INT_NAME_STR_LEN];
6118        struct ice_pf *pf = vsi->back;
6119        struct device *dev;
6120        int err;
6121
6122        dev = ice_pf_to_dev(pf);
6123        /* allocate descriptors */
6124        err = ice_vsi_setup_tx_rings(vsi);
6125        if (err)
6126                goto err_setup_tx;
6127
6128        err = ice_vsi_setup_rx_rings(vsi);
6129        if (err)
6130                goto err_setup_rx;
6131
6132        err = ice_vsi_cfg(vsi);
6133        if (err)
6134                goto err_setup_rx;
6135
6136        snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6137                 dev_driver_string(dev), dev_name(dev));
6138        err = ice_vsi_req_irq_msix(vsi, int_name);
6139        if (err)
6140                goto err_setup_rx;
6141
6142        ice_vsi_cfg_msix(vsi);
6143
6144        err = ice_vsi_start_all_rx_rings(vsi);
6145        if (err)
6146                goto err_up_complete;
6147
6148        clear_bit(ICE_VSI_DOWN, vsi->state);
6149        ice_vsi_ena_irq(vsi);
6150
6151        return 0;
6152
6153err_up_complete:
6154        ice_down(vsi);
6155err_setup_rx:
6156        ice_vsi_free_rx_rings(vsi);
6157err_setup_tx:
6158        ice_vsi_free_tx_rings(vsi);
6159
6160        return err;
6161}
6162
6163/**
6164 * ice_vsi_open - Called when a network interface is made active
6165 * @vsi: the VSI to open
6166 *
6167 * Initialization of the VSI
6168 *
6169 * Returns 0 on success, negative value on error
6170 */
6171static int ice_vsi_open(struct ice_vsi *vsi)
6172{
6173        char int_name[ICE_INT_NAME_STR_LEN];
6174        struct ice_pf *pf = vsi->back;
6175        int err;
6176
6177        /* allocate descriptors */
6178        err = ice_vsi_setup_tx_rings(vsi);
6179        if (err)
6180                goto err_setup_tx;
6181
6182        err = ice_vsi_setup_rx_rings(vsi);
6183        if (err)
6184                goto err_setup_rx;
6185
6186        err = ice_vsi_cfg(vsi);
6187        if (err)
6188                goto err_setup_rx;
6189
6190        snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6191                 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6192        err = ice_vsi_req_irq_msix(vsi, int_name);
6193        if (err)
6194                goto err_setup_rx;
6195
6196        /* Notify the stack of the actual queue counts. */
6197        err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6198        if (err)
6199                goto err_set_qs;
6200
6201        err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6202        if (err)
6203                goto err_set_qs;
6204
6205        err = ice_up_complete(vsi);
6206        if (err)
6207                goto err_up_complete;
6208
6209        return 0;
6210
6211err_up_complete:
6212        ice_down(vsi);
6213err_set_qs:
6214        ice_vsi_free_irq(vsi);
6215err_setup_rx:
6216        ice_vsi_free_rx_rings(vsi);
6217err_setup_tx:
6218        ice_vsi_free_tx_rings(vsi);
6219
6220        return err;
6221}
6222
6223/**
6224 * ice_vsi_release_all - Delete all VSIs
6225 * @pf: PF from which all VSIs are being removed
6226 */
6227static void ice_vsi_release_all(struct ice_pf *pf)
6228{
6229        int err, i;
6230
6231        if (!pf->vsi)
6232                return;
6233
6234        ice_for_each_vsi(pf, i) {
6235                if (!pf->vsi[i])
6236                        continue;
6237
6238                err = ice_vsi_release(pf->vsi[i]);
6239                if (err)
6240                        dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6241                                i, err, pf->vsi[i]->vsi_num);
6242        }
6243}
6244
6245/**
6246 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6247 * @pf: pointer to the PF instance
6248 * @type: VSI type to rebuild
6249 *
6250 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6251 */
6252static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6253{
6254        struct device *dev = ice_pf_to_dev(pf);
6255        enum ice_status status;
6256        int i, err;
6257
6258        ice_for_each_vsi(pf, i) {
6259                struct ice_vsi *vsi = pf->vsi[i];
6260
6261                if (!vsi || vsi->type != type)
6262                        continue;
6263
6264                /* rebuild the VSI */
6265                err = ice_vsi_rebuild(vsi, true);
6266                if (err) {
6267                        dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6268                                err, vsi->idx, ice_vsi_type_str(type));
6269                        return err;
6270                }
6271
6272                /* replay filters for the VSI */
6273                status = ice_replay_vsi(&pf->hw, vsi->idx);
6274                if (status) {
6275                        dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6276                                ice_stat_str(status), vsi->idx,
6277                                ice_vsi_type_str(type));
6278                        return -EIO;
6279                }
6280
6281                /* Re-map HW VSI number, using VSI handle that has been
6282                 * previously validated in ice_replay_vsi() call above
6283                 */
6284                vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6285
6286                /* enable the VSI */
6287                err = ice_ena_vsi(vsi, false);
6288                if (err) {
6289                        dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6290                                err, vsi->idx, ice_vsi_type_str(type));
6291                        return err;
6292                }
6293
6294                dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6295                         ice_vsi_type_str(type));
6296        }
6297
6298        return 0;
6299}
6300
6301/**
6302 * ice_update_pf_netdev_link - Update PF netdev link status
6303 * @pf: pointer to the PF instance
6304 */
6305static void ice_update_pf_netdev_link(struct ice_pf *pf)
6306{
6307        bool link_up;
6308        int i;
6309
6310        ice_for_each_vsi(pf, i) {
6311                struct ice_vsi *vsi = pf->vsi[i];
6312
6313                if (!vsi || vsi->type != ICE_VSI_PF)
6314                        return;
6315
6316                ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6317                if (link_up) {
6318                        netif_carrier_on(pf->vsi[i]->netdev);
6319                        netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6320                } else {
6321                        netif_carrier_off(pf->vsi[i]->netdev);
6322                        netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6323                }
6324        }
6325}
6326
6327/**
6328 * ice_rebuild - rebuild after reset
6329 * @pf: PF to rebuild
6330 * @reset_type: type of reset
6331 *
6332 * Do not rebuild VF VSI in this flow because that is already handled via
6333 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6334 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6335 * to reset/rebuild all the VF VSI twice.
6336 */
6337static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6338{
6339        struct device *dev = ice_pf_to_dev(pf);
6340        struct ice_hw *hw = &pf->hw;
6341        enum ice_status ret;
6342        int err;
6343
6344        if (test_bit(ICE_DOWN, pf->state))
6345                goto clear_recovery;
6346
6347        dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6348
6349        ret = ice_init_all_ctrlq(hw);
6350        if (ret) {
6351                dev_err(dev, "control queues init failed %s\n",
6352                        ice_stat_str(ret));
6353                goto err_init_ctrlq;
6354        }
6355
6356        /* if DDP was previously loaded successfully */
6357        if (!ice_is_safe_mode(pf)) {
6358                /* reload the SW DB of filter tables */
6359                if (reset_type == ICE_RESET_PFR)
6360                        ice_fill_blk_tbls(hw);
6361                else
6362                        /* Reload DDP Package after CORER/GLOBR reset */
6363                        ice_load_pkg(NULL, pf);
6364        }
6365
6366        ret = ice_clear_pf_cfg(hw);
6367        if (ret) {
6368                dev_err(dev, "clear PF configuration failed %s\n",
6369                        ice_stat_str(ret));
6370                goto err_init_ctrlq;
6371        }
6372
6373        if (pf->first_sw->dflt_vsi_ena)
6374                dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6375        /* clear the default VSI configuration if it exists */
6376        pf->first_sw->dflt_vsi = NULL;
6377        pf->first_sw->dflt_vsi_ena = false;
6378
6379        ice_clear_pxe_mode(hw);
6380
6381        ret = ice_init_nvm(hw);
6382        if (ret) {
6383                dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6384                goto err_init_ctrlq;
6385        }
6386
6387        ret = ice_get_caps(hw);
6388        if (ret) {
6389                dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6390                goto err_init_ctrlq;
6391        }
6392
6393        ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6394        if (ret) {
6395                dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6396                goto err_init_ctrlq;
6397        }
6398
6399        err = ice_sched_init_port(hw->port_info);
6400        if (err)
6401                goto err_sched_init_port;
6402
6403        /* start misc vector */
6404        err = ice_req_irq_msix_misc(pf);
6405        if (err) {
6406                dev_err(dev, "misc vector setup failed: %d\n", err);
6407                goto err_sched_init_port;
6408        }
6409
6410        if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6411                wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6412                if (!rd32(hw, PFQF_FD_SIZE)) {
6413                        u16 unused, guar, b_effort;
6414
6415                        guar = hw->func_caps.fd_fltr_guar;
6416                        b_effort = hw->func_caps.fd_fltr_best_effort;
6417
6418                        /* force guaranteed filter pool for PF */
6419                        ice_alloc_fd_guar_item(hw, &unused, guar);
6420                        /* force shared filter pool for PF */
6421                        ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6422                }
6423        }
6424
6425        if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6426                ice_dcb_rebuild(pf);
6427
6428        /* If the PF previously had enabled PTP, PTP init needs to happen before
6429         * the VSI rebuild. If not, this causes the PTP link status events to
6430         * fail.
6431         */
6432        if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6433                ice_ptp_init(pf);
6434
6435        /* rebuild PF VSI */
6436        err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6437        if (err) {
6438                dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6439                goto err_vsi_rebuild;
6440        }
6441
6442        /* If Flow Director is active */
6443        if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6444                err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6445                if (err) {
6446                        dev_err(dev, "control VSI rebuild failed: %d\n", err);
6447                        goto err_vsi_rebuild;
6448                }
6449
6450                /* replay HW Flow Director recipes */
6451                if (hw->fdir_prof)
6452                        ice_fdir_replay_flows(hw);
6453
6454                /* replay Flow Director filters */
6455                ice_fdir_replay_fltrs(pf);
6456
6457                ice_rebuild_arfs(pf);
6458        }
6459
6460        ice_update_pf_netdev_link(pf);
6461
6462        /* tell the firmware we are up */
6463        ret = ice_send_version(pf);
6464        if (ret) {
6465                dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6466                        ice_stat_str(ret));
6467                goto err_vsi_rebuild;
6468        }
6469
6470        ice_replay_post(hw);
6471
6472        /* if we get here, reset flow is successful */
6473        clear_bit(ICE_RESET_FAILED, pf->state);
6474
6475        ice_plug_aux_dev(pf);
6476        return;
6477
6478err_vsi_rebuild:
6479err_sched_init_port:
6480        ice_sched_cleanup_all(hw);
6481err_init_ctrlq:
6482        ice_shutdown_all_ctrlq(hw);
6483        set_bit(ICE_RESET_FAILED, pf->state);
6484clear_recovery:
6485        /* set this bit in PF state to control service task scheduling */
6486        set_bit(ICE_NEEDS_RESTART, pf->state);
6487        dev_err(dev, "Rebuild failed, unload and reload driver\n");
6488}
6489
6490/**
6491 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6492 * @vsi: Pointer to VSI structure
6493 */
6494static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6495{
6496        if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6497                return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6498        else
6499                return ICE_RXBUF_3072;
6500}
6501
6502/**
6503 * ice_change_mtu - NDO callback to change the MTU
6504 * @netdev: network interface device structure
6505 * @new_mtu: new value for maximum frame size
6506 *
6507 * Returns 0 on success, negative on failure
6508 */
6509static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6510{
6511        struct ice_netdev_priv *np = netdev_priv(netdev);
6512        struct ice_vsi *vsi = np->vsi;
6513        struct ice_pf *pf = vsi->back;
6514        struct iidc_event *event;
6515        u8 count = 0;
6516        int err = 0;
6517
6518        if (new_mtu == (int)netdev->mtu) {
6519                netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6520                return 0;
6521        }
6522
6523        if (ice_is_xdp_ena_vsi(vsi)) {
6524                int frame_size = ice_max_xdp_frame_size(vsi);
6525
6526                if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6527                        netdev_err(netdev, "max MTU for XDP usage is %d\n",
6528                                   frame_size - ICE_ETH_PKT_HDR_PAD);
6529                        return -EINVAL;
6530                }
6531        }
6532
6533        /* if a reset is in progress, wait for some time for it to complete */
6534        do {
6535                if (ice_is_reset_in_progress(pf->state)) {
6536                        count++;
6537                        usleep_range(1000, 2000);
6538                } else {
6539                        break;
6540                }
6541
6542        } while (count < 100);
6543
6544        if (count == 100) {
6545                netdev_err(netdev, "can't change MTU. Device is busy\n");
6546                return -EBUSY;
6547        }
6548
6549        event = kzalloc(sizeof(*event), GFP_KERNEL);
6550        if (!event)
6551                return -ENOMEM;
6552
6553        set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6554        ice_send_event_to_aux(pf, event);
6555        clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6556
6557        netdev->mtu = (unsigned int)new_mtu;
6558
6559        /* if VSI is up, bring it down and then back up */
6560        if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6561                err = ice_down(vsi);
6562                if (err) {
6563                        netdev_err(netdev, "change MTU if_down err %d\n", err);
6564                        goto event_after;
6565                }
6566
6567                err = ice_up(vsi);
6568                if (err) {
6569                        netdev_err(netdev, "change MTU if_up err %d\n", err);
6570                        goto event_after;
6571                }
6572        }
6573
6574        netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6575event_after:
6576        set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6577        ice_send_event_to_aux(pf, event);
6578        kfree(event);
6579
6580        return err;
6581}
6582
6583/**
6584 * ice_eth_ioctl - Access the hwtstamp interface
6585 * @netdev: network interface device structure
6586 * @ifr: interface request data
6587 * @cmd: ioctl command
6588 */
6589static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6590{
6591        struct ice_netdev_priv *np = netdev_priv(netdev);
6592        struct ice_pf *pf = np->vsi->back;
6593
6594        switch (cmd) {
6595        case SIOCGHWTSTAMP:
6596                return ice_ptp_get_ts_config(pf, ifr);
6597        case SIOCSHWTSTAMP:
6598                return ice_ptp_set_ts_config(pf, ifr);
6599        default:
6600                return -EOPNOTSUPP;
6601        }
6602}
6603
6604/**
6605 * ice_aq_str - convert AQ err code to a string
6606 * @aq_err: the AQ error code to convert
6607 */
6608const char *ice_aq_str(enum ice_aq_err aq_err)
6609{
6610        switch (aq_err) {
6611        case ICE_AQ_RC_OK:
6612                return "OK";
6613        case ICE_AQ_RC_EPERM:
6614                return "ICE_AQ_RC_EPERM";
6615        case ICE_AQ_RC_ENOENT:
6616                return "ICE_AQ_RC_ENOENT";
6617        case ICE_AQ_RC_ENOMEM:
6618                return "ICE_AQ_RC_ENOMEM";
6619        case ICE_AQ_RC_EBUSY:
6620                return "ICE_AQ_RC_EBUSY";
6621        case ICE_AQ_RC_EEXIST:
6622                return "ICE_AQ_RC_EEXIST";
6623        case ICE_AQ_RC_EINVAL:
6624                return "ICE_AQ_RC_EINVAL";
6625        case ICE_AQ_RC_ENOSPC:
6626                return "ICE_AQ_RC_ENOSPC";
6627        case ICE_AQ_RC_ENOSYS:
6628                return "ICE_AQ_RC_ENOSYS";
6629        case ICE_AQ_RC_EMODE:
6630                return "ICE_AQ_RC_EMODE";
6631        case ICE_AQ_RC_ENOSEC:
6632                return "ICE_AQ_RC_ENOSEC";
6633        case ICE_AQ_RC_EBADSIG:
6634                return "ICE_AQ_RC_EBADSIG";
6635        case ICE_AQ_RC_ESVN:
6636                return "ICE_AQ_RC_ESVN";
6637        case ICE_AQ_RC_EBADMAN:
6638                return "ICE_AQ_RC_EBADMAN";
6639        case ICE_AQ_RC_EBADBUF:
6640                return "ICE_AQ_RC_EBADBUF";
6641        }
6642
6643        return "ICE_AQ_RC_UNKNOWN";
6644}
6645
6646/**
6647 * ice_stat_str - convert status err code to a string
6648 * @stat_err: the status error code to convert
6649 */
6650const char *ice_stat_str(enum ice_status stat_err)
6651{
6652        switch (stat_err) {
6653        case ICE_SUCCESS:
6654                return "OK";
6655        case ICE_ERR_PARAM:
6656                return "ICE_ERR_PARAM";
6657        case ICE_ERR_NOT_IMPL:
6658                return "ICE_ERR_NOT_IMPL";
6659        case ICE_ERR_NOT_READY:
6660                return "ICE_ERR_NOT_READY";
6661        case ICE_ERR_NOT_SUPPORTED:
6662                return "ICE_ERR_NOT_SUPPORTED";
6663        case ICE_ERR_BAD_PTR:
6664                return "ICE_ERR_BAD_PTR";
6665        case ICE_ERR_INVAL_SIZE:
6666                return "ICE_ERR_INVAL_SIZE";
6667        case ICE_ERR_DEVICE_NOT_SUPPORTED:
6668                return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6669        case ICE_ERR_RESET_FAILED:
6670                return "ICE_ERR_RESET_FAILED";
6671        case ICE_ERR_FW_API_VER:
6672                return "ICE_ERR_FW_API_VER";
6673        case ICE_ERR_NO_MEMORY:
6674                return "ICE_ERR_NO_MEMORY";
6675        case ICE_ERR_CFG:
6676                return "ICE_ERR_CFG";
6677        case ICE_ERR_OUT_OF_RANGE:
6678                return "ICE_ERR_OUT_OF_RANGE";
6679        case ICE_ERR_ALREADY_EXISTS:
6680                return "ICE_ERR_ALREADY_EXISTS";
6681        case ICE_ERR_NVM:
6682                return "ICE_ERR_NVM";
6683        case ICE_ERR_NVM_CHECKSUM:
6684                return "ICE_ERR_NVM_CHECKSUM";
6685        case ICE_ERR_BUF_TOO_SHORT:
6686                return "ICE_ERR_BUF_TOO_SHORT";
6687        case ICE_ERR_NVM_BLANK_MODE:
6688                return "ICE_ERR_NVM_BLANK_MODE";
6689        case ICE_ERR_IN_USE:
6690                return "ICE_ERR_IN_USE";
6691        case ICE_ERR_MAX_LIMIT:
6692                return "ICE_ERR_MAX_LIMIT";
6693        case ICE_ERR_RESET_ONGOING:
6694                return "ICE_ERR_RESET_ONGOING";
6695        case ICE_ERR_HW_TABLE:
6696                return "ICE_ERR_HW_TABLE";
6697        case ICE_ERR_DOES_NOT_EXIST:
6698                return "ICE_ERR_DOES_NOT_EXIST";
6699        case ICE_ERR_FW_DDP_MISMATCH:
6700                return "ICE_ERR_FW_DDP_MISMATCH";
6701        case ICE_ERR_AQ_ERROR:
6702                return "ICE_ERR_AQ_ERROR";
6703        case ICE_ERR_AQ_TIMEOUT:
6704                return "ICE_ERR_AQ_TIMEOUT";
6705        case ICE_ERR_AQ_FULL:
6706                return "ICE_ERR_AQ_FULL";
6707        case ICE_ERR_AQ_NO_WORK:
6708                return "ICE_ERR_AQ_NO_WORK";
6709        case ICE_ERR_AQ_EMPTY:
6710                return "ICE_ERR_AQ_EMPTY";
6711        case ICE_ERR_AQ_FW_CRITICAL:
6712                return "ICE_ERR_AQ_FW_CRITICAL";
6713        }
6714
6715        return "ICE_ERR_UNKNOWN";
6716}
6717
6718/**
6719 * ice_set_rss_lut - Set RSS LUT
6720 * @vsi: Pointer to VSI structure
6721 * @lut: Lookup table
6722 * @lut_size: Lookup table size
6723 *
6724 * Returns 0 on success, negative on failure
6725 */
6726int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6727{
6728        struct ice_aq_get_set_rss_lut_params params = {};
6729        struct ice_hw *hw = &vsi->back->hw;
6730        enum ice_status status;
6731
6732        if (!lut)
6733                return -EINVAL;
6734
6735        params.vsi_handle = vsi->idx;
6736        params.lut_size = lut_size;
6737        params.lut_type = vsi->rss_lut_type;
6738        params.lut = lut;
6739
6740        status = ice_aq_set_rss_lut(hw, &params);
6741        if (status) {
6742                dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6743                        ice_stat_str(status),
6744                        ice_aq_str(hw->adminq.sq_last_status));
6745                return -EIO;
6746        }
6747
6748        return 0;
6749}
6750
6751/**
6752 * ice_set_rss_key - Set RSS key
6753 * @vsi: Pointer to the VSI structure
6754 * @seed: RSS hash seed
6755 *
6756 * Returns 0 on success, negative on failure
6757 */
6758int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6759{
6760        struct ice_hw *hw = &vsi->back->hw;
6761        enum ice_status status;
6762
6763        if (!seed)
6764                return -EINVAL;
6765
6766        status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6767        if (status) {
6768                dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6769                        ice_stat_str(status),
6770                        ice_aq_str(hw->adminq.sq_last_status));
6771                return -EIO;
6772        }
6773
6774        return 0;
6775}
6776
6777/**
6778 * ice_get_rss_lut - Get RSS LUT
6779 * @vsi: Pointer to VSI structure
6780 * @lut: Buffer to store the lookup table entries
6781 * @lut_size: Size of buffer to store the lookup table entries
6782 *
6783 * Returns 0 on success, negative on failure
6784 */
6785int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6786{
6787        struct ice_aq_get_set_rss_lut_params params = {};
6788        struct ice_hw *hw = &vsi->back->hw;
6789        enum ice_status status;
6790
6791        if (!lut)
6792                return -EINVAL;
6793
6794        params.vsi_handle = vsi->idx;
6795        params.lut_size = lut_size;
6796        params.lut_type = vsi->rss_lut_type;
6797        params.lut = lut;
6798
6799        status = ice_aq_get_rss_lut(hw, &params);
6800        if (status) {
6801                dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6802                        ice_stat_str(status),
6803                        ice_aq_str(hw->adminq.sq_last_status));
6804                return -EIO;
6805        }
6806
6807        return 0;
6808}
6809
6810/**
6811 * ice_get_rss_key - Get RSS key
6812 * @vsi: Pointer to VSI structure
6813 * @seed: Buffer to store the key in
6814 *
6815 * Returns 0 on success, negative on failure
6816 */
6817int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6818{
6819        struct ice_hw *hw = &vsi->back->hw;
6820        enum ice_status status;
6821
6822        if (!seed)
6823                return -EINVAL;
6824
6825        status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6826        if (status) {
6827                dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6828                        ice_stat_str(status),
6829                        ice_aq_str(hw->adminq.sq_last_status));
6830                return -EIO;
6831        }
6832
6833        return 0;
6834}
6835
6836/**
6837 * ice_bridge_getlink - Get the hardware bridge mode
6838 * @skb: skb buff
6839 * @pid: process ID
6840 * @seq: RTNL message seq
6841 * @dev: the netdev being configured
6842 * @filter_mask: filter mask passed in
6843 * @nlflags: netlink flags passed in
6844 *
6845 * Return the bridge mode (VEB/VEPA)
6846 */
6847static int
6848ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6849                   struct net_device *dev, u32 filter_mask, int nlflags)
6850{
6851        struct ice_netdev_priv *np = netdev_priv(dev);
6852        struct ice_vsi *vsi = np->vsi;
6853        struct ice_pf *pf = vsi->back;
6854        u16 bmode;
6855
6856        bmode = pf->first_sw->bridge_mode;
6857
6858        return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6859                                       filter_mask, NULL);
6860}
6861
6862/**
6863 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6864 * @vsi: Pointer to VSI structure
6865 * @bmode: Hardware bridge mode (VEB/VEPA)
6866 *
6867 * Returns 0 on success, negative on failure
6868 */
6869static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6870{
6871        struct ice_aqc_vsi_props *vsi_props;
6872        struct ice_hw *hw = &vsi->back->hw;
6873        struct ice_vsi_ctx *ctxt;
6874        enum ice_status status;
6875        int ret = 0;
6876
6877        vsi_props = &vsi->info;
6878
6879        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6880        if (!ctxt)
6881                return -ENOMEM;
6882
6883        ctxt->info = vsi->info;
6884
6885        if (bmode == BRIDGE_MODE_VEB)
6886                /* change from VEPA to VEB mode */
6887                ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6888        else
6889                /* change from VEB to VEPA mode */
6890                ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6891        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6892
6893        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6894        if (status) {
6895                dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6896                        bmode, ice_stat_str(status),
6897                        ice_aq_str(hw->adminq.sq_last_status));
6898                ret = -EIO;
6899                goto out;
6900        }
6901        /* Update sw flags for book keeping */
6902        vsi_props->sw_flags = ctxt->info.sw_flags;
6903
6904out:
6905        kfree(ctxt);
6906        return ret;
6907}
6908
6909/**
6910 * ice_bridge_setlink - Set the hardware bridge mode
6911 * @dev: the netdev being configured
6912 * @nlh: RTNL message
6913 * @flags: bridge setlink flags
6914 * @extack: netlink extended ack
6915 *
6916 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6917 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6918 * not already set for all VSIs connected to this switch. And also update the
6919 * unicast switch filter rules for the corresponding switch of the netdev.
6920 */
6921static int
6922ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6923                   u16 __always_unused flags,
6924                   struct netlink_ext_ack __always_unused *extack)
6925{
6926        struct ice_netdev_priv *np = netdev_priv(dev);
6927        struct ice_pf *pf = np->vsi->back;
6928        struct nlattr *attr, *br_spec;
6929        struct ice_hw *hw = &pf->hw;
6930        enum ice_status status;
6931        struct ice_sw *pf_sw;
6932        int rem, v, err = 0;
6933
6934        pf_sw = pf->first_sw;
6935        /* find the attribute in the netlink message */
6936        br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6937
6938        nla_for_each_nested(attr, br_spec, rem) {
6939                __u16 mode;
6940
6941                if (nla_type(attr) != IFLA_BRIDGE_MODE)
6942                        continue;
6943                mode = nla_get_u16(attr);
6944                if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6945                        return -EINVAL;
6946                /* Continue  if bridge mode is not being flipped */
6947                if (mode == pf_sw->bridge_mode)
6948                        continue;
6949                /* Iterates through the PF VSI list and update the loopback
6950                 * mode of the VSI
6951                 */
6952                ice_for_each_vsi(pf, v) {
6953                        if (!pf->vsi[v])
6954                                continue;
6955                        err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6956                        if (err)
6957                                return err;
6958                }
6959
6960                hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6961                /* Update the unicast switch filter rules for the corresponding
6962                 * switch of the netdev
6963                 */
6964                status = ice_update_sw_rule_bridge_mode(hw);
6965                if (status) {
6966                        netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6967                                   mode, ice_stat_str(status),
6968                                   ice_aq_str(hw->adminq.sq_last_status));
6969                        /* revert hw->evb_veb */
6970                        hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6971                        return -EIO;
6972                }
6973
6974                pf_sw->bridge_mode = mode;
6975        }
6976
6977        return 0;
6978}
6979
6980/**
6981 * ice_tx_timeout - Respond to a Tx Hang
6982 * @netdev: network interface device structure
6983 * @txqueue: Tx queue
6984 */
6985static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6986{
6987        struct ice_netdev_priv *np = netdev_priv(netdev);
6988        struct ice_ring *tx_ring = NULL;
6989        struct ice_vsi *vsi = np->vsi;
6990        struct ice_pf *pf = vsi->back;
6991        u32 i;
6992
6993        pf->tx_timeout_count++;
6994
6995        /* Check if PFC is enabled for the TC to which the queue belongs
6996         * to. If yes then Tx timeout is not caused by a hung queue, no
6997         * need to reset and rebuild
6998         */
6999        if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7000                dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7001                         txqueue);
7002                return;
7003        }
7004
7005        /* now that we have an index, find the tx_ring struct */
7006        for (i = 0; i < vsi->num_txq; i++)
7007                if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7008                        if (txqueue == vsi->tx_rings[i]->q_index) {
7009                                tx_ring = vsi->tx_rings[i];
7010                                break;
7011                        }
7012
7013        /* Reset recovery level if enough time has elapsed after last timeout.
7014         * Also ensure no new reset action happens before next timeout period.
7015         */
7016        if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7017                pf->tx_timeout_recovery_level = 1;
7018        else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7019                                       netdev->watchdog_timeo)))
7020                return;
7021
7022        if (tx_ring) {
7023                struct ice_hw *hw = &pf->hw;
7024                u32 head, val = 0;
7025
7026                head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7027                        QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7028                /* Read interrupt register */
7029                val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7030
7031                netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7032                            vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7033                            head, tx_ring->next_to_use, val);
7034        }
7035
7036        pf->tx_timeout_last_recovery = jiffies;
7037        netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7038                    pf->tx_timeout_recovery_level, txqueue);
7039
7040        switch (pf->tx_timeout_recovery_level) {
7041        case 1:
7042                set_bit(ICE_PFR_REQ, pf->state);
7043                break;
7044        case 2:
7045                set_bit(ICE_CORER_REQ, pf->state);
7046                break;
7047        case 3:
7048                set_bit(ICE_GLOBR_REQ, pf->state);
7049                break;
7050        default:
7051                netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7052                set_bit(ICE_DOWN, pf->state);
7053                set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7054                set_bit(ICE_SERVICE_DIS, pf->state);
7055                break;
7056        }
7057
7058        ice_service_task_schedule(pf);
7059        pf->tx_timeout_recovery_level++;
7060}
7061
7062/**
7063 * ice_open - Called when a network interface becomes active
7064 * @netdev: network interface device structure
7065 *
7066 * The open entry point is called when a network interface is made
7067 * active by the system (IFF_UP). At this point all resources needed
7068 * for transmit and receive operations are allocated, the interrupt
7069 * handler is registered with the OS, the netdev watchdog is enabled,
7070 * and the stack is notified that the interface is ready.
7071 *
7072 * Returns 0 on success, negative value on failure
7073 */
7074int ice_open(struct net_device *netdev)
7075{
7076        struct ice_netdev_priv *np = netdev_priv(netdev);
7077        struct ice_pf *pf = np->vsi->back;
7078
7079        if (ice_is_reset_in_progress(pf->state)) {
7080                netdev_err(netdev, "can't open net device while reset is in progress");
7081                return -EBUSY;
7082        }
7083
7084        return ice_open_internal(netdev);
7085}
7086
7087/**
7088 * ice_open_internal - Called when a network interface becomes active
7089 * @netdev: network interface device structure
7090 *
7091 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7092 * handling routine
7093 *
7094 * Returns 0 on success, negative value on failure
7095 */
7096int ice_open_internal(struct net_device *netdev)
7097{
7098        struct ice_netdev_priv *np = netdev_priv(netdev);
7099        struct ice_vsi *vsi = np->vsi;
7100        struct ice_pf *pf = vsi->back;
7101        struct ice_port_info *pi;
7102        enum ice_status status;
7103        int err;
7104
7105        if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7106                netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7107                return -EIO;
7108        }
7109
7110        netif_carrier_off(netdev);
7111
7112        pi = vsi->port_info;
7113        status = ice_update_link_info(pi);
7114        if (status) {
7115                netdev_err(netdev, "Failed to get link info, error %s\n",
7116                           ice_stat_str(status));
7117                return -EIO;
7118        }
7119
7120        ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7121
7122        /* Set PHY if there is media, otherwise, turn off PHY */
7123        if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7124                clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7125                if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7126                        err = ice_init_phy_user_cfg(pi);
7127                        if (err) {
7128                                netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7129                                           err);
7130                                return err;
7131                        }
7132                }
7133
7134                err = ice_configure_phy(vsi);
7135                if (err) {
7136                        netdev_err(netdev, "Failed to set physical link up, error %d\n",
7137                                   err);
7138                        return err;
7139                }
7140        } else {
7141                set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7142                ice_set_link(vsi, false);
7143        }
7144
7145        err = ice_vsi_open(vsi);
7146        if (err)
7147                netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7148                           vsi->vsi_num, vsi->vsw->sw_id);
7149
7150        /* Update existing tunnels information */
7151        udp_tunnel_get_rx_info(netdev);
7152
7153        return err;
7154}
7155
7156/**
7157 * ice_stop - Disables a network interface
7158 * @netdev: network interface device structure
7159 *
7160 * The stop entry point is called when an interface is de-activated by the OS,
7161 * and the netdevice enters the DOWN state. The hardware is still under the
7162 * driver's control, but the netdev interface is disabled.
7163 *
7164 * Returns success only - not allowed to fail
7165 */
7166int ice_stop(struct net_device *netdev)
7167{
7168        struct ice_netdev_priv *np = netdev_priv(netdev);
7169        struct ice_vsi *vsi = np->vsi;
7170        struct ice_pf *pf = vsi->back;
7171
7172        if (ice_is_reset_in_progress(pf->state)) {
7173                netdev_err(netdev, "can't stop net device while reset is in progress");
7174                return -EBUSY;
7175        }
7176
7177        ice_vsi_close(vsi);
7178
7179        return 0;
7180}
7181
7182/**
7183 * ice_features_check - Validate encapsulated packet conforms to limits
7184 * @skb: skb buffer
7185 * @netdev: This port's netdev
7186 * @features: Offload features that the stack believes apply
7187 */
7188static netdev_features_t
7189ice_features_check(struct sk_buff *skb,
7190                   struct net_device __always_unused *netdev,
7191                   netdev_features_t features)
7192{
7193        size_t len;
7194
7195        /* No point in doing any of this if neither checksum nor GSO are
7196         * being requested for this frame. We can rule out both by just
7197         * checking for CHECKSUM_PARTIAL
7198         */
7199        if (skb->ip_summed != CHECKSUM_PARTIAL)
7200                return features;
7201
7202        /* We cannot support GSO if the MSS is going to be less than
7203         * 64 bytes. If it is then we need to drop support for GSO.
7204         */
7205        if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
7206                features &= ~NETIF_F_GSO_MASK;
7207
7208        len = skb_network_header(skb) - skb->data;
7209        if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7210                goto out_rm_features;
7211
7212        len = skb_transport_header(skb) - skb_network_header(skb);
7213        if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7214                goto out_rm_features;
7215
7216        if (skb->encapsulation) {
7217                len = skb_inner_network_header(skb) - skb_transport_header(skb);
7218                if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7219                        goto out_rm_features;
7220
7221                len = skb_inner_transport_header(skb) -
7222                      skb_inner_network_header(skb);
7223                if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7224                        goto out_rm_features;
7225        }
7226
7227        return features;
7228out_rm_features:
7229        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7230}
7231
7232static const struct net_device_ops ice_netdev_safe_mode_ops = {
7233        .ndo_open = ice_open,
7234        .ndo_stop = ice_stop,
7235        .ndo_start_xmit = ice_start_xmit,
7236        .ndo_set_mac_address = ice_set_mac_address,
7237        .ndo_validate_addr = eth_validate_addr,
7238        .ndo_change_mtu = ice_change_mtu,
7239        .ndo_get_stats64 = ice_get_stats64,
7240        .ndo_tx_timeout = ice_tx_timeout,
7241        .ndo_bpf = ice_xdp_safe_mode,
7242};
7243
7244static const struct net_device_ops ice_netdev_ops = {
7245        .ndo_open = ice_open,
7246        .ndo_stop = ice_stop,
7247        .ndo_start_xmit = ice_start_xmit,
7248        .ndo_features_check = ice_features_check,
7249        .ndo_set_rx_mode = ice_set_rx_mode,
7250        .ndo_set_mac_address = ice_set_mac_address,
7251        .ndo_validate_addr = eth_validate_addr,
7252        .ndo_change_mtu = ice_change_mtu,
7253        .ndo_get_stats64 = ice_get_stats64,
7254        .ndo_set_tx_maxrate = ice_set_tx_maxrate,
7255        .ndo_eth_ioctl = ice_eth_ioctl,
7256        .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7257        .ndo_set_vf_mac = ice_set_vf_mac,
7258        .ndo_get_vf_config = ice_get_vf_cfg,
7259        .ndo_set_vf_trust = ice_set_vf_trust,
7260        .ndo_set_vf_vlan = ice_set_vf_port_vlan,
7261        .ndo_set_vf_link_state = ice_set_vf_link_state,
7262        .ndo_get_vf_stats = ice_get_vf_stats,
7263        .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7264        .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7265        .ndo_set_features = ice_set_features,
7266        .ndo_bridge_getlink = ice_bridge_getlink,
7267        .ndo_bridge_setlink = ice_bridge_setlink,
7268        .ndo_fdb_add = ice_fdb_add,
7269        .ndo_fdb_del = ice_fdb_del,
7270#ifdef CONFIG_RFS_ACCEL
7271        .ndo_rx_flow_steer = ice_rx_flow_steer,
7272#endif
7273        .ndo_tx_timeout = ice_tx_timeout,
7274        .ndo_bpf = ice_xdp,
7275        .ndo_xdp_xmit = ice_xdp_xmit,
7276        .ndo_xsk_wakeup = ice_xsk_wakeup,
7277};
7278