linux/drivers/net/ethernet/intel/ice/ice_sriov.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sriov.h"
   6
   7/**
   8 * ice_aq_send_msg_to_vf
   9 * @hw: pointer to the hardware structure
  10 * @vfid: VF ID to send msg
  11 * @v_opcode: opcodes for VF-PF communication
  12 * @v_retval: return error code
  13 * @msg: pointer to the msg buffer
  14 * @msglen: msg length
  15 * @cd: pointer to command details
  16 *
  17 * Send message to VF driver (0x0802) using mailbox
  18 * queue and asynchronously sending message via
  19 * ice_sq_send_cmd() function
  20 */
  21enum ice_status
  22ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval,
  23                      u8 *msg, u16 msglen, struct ice_sq_cd *cd)
  24{
  25        struct ice_aqc_pf_vf_msg *cmd;
  26        struct ice_aq_desc desc;
  27
  28        ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf);
  29
  30        cmd = &desc.params.virt;
  31        cmd->id = cpu_to_le32(vfid);
  32
  33        desc.cookie_high = cpu_to_le32(v_opcode);
  34        desc.cookie_low = cpu_to_le32(v_retval);
  35
  36        if (msglen)
  37                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
  38
  39        return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd);
  40}
  41
  42/**
  43 * ice_conv_link_speed_to_virtchnl
  44 * @adv_link_support: determines the format of the returned link speed
  45 * @link_speed: variable containing the link_speed to be converted
  46 *
  47 * Convert link speed supported by HW to link speed supported by virtchnl.
  48 * If adv_link_support is true, then return link speed in Mbps. Else return
  49 * link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller
  50 * needs to cast back to an enum virtchnl_link_speed in the case where
  51 * adv_link_support is false, but when adv_link_support is true the caller can
  52 * expect the speed in Mbps.
  53 */
  54u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed)
  55{
  56        u32 speed;
  57
  58        if (adv_link_support)
  59                switch (link_speed) {
  60                case ICE_AQ_LINK_SPEED_10MB:
  61                        speed = ICE_LINK_SPEED_10MBPS;
  62                        break;
  63                case ICE_AQ_LINK_SPEED_100MB:
  64                        speed = ICE_LINK_SPEED_100MBPS;
  65                        break;
  66                case ICE_AQ_LINK_SPEED_1000MB:
  67                        speed = ICE_LINK_SPEED_1000MBPS;
  68                        break;
  69                case ICE_AQ_LINK_SPEED_2500MB:
  70                        speed = ICE_LINK_SPEED_2500MBPS;
  71                        break;
  72                case ICE_AQ_LINK_SPEED_5GB:
  73                        speed = ICE_LINK_SPEED_5000MBPS;
  74                        break;
  75                case ICE_AQ_LINK_SPEED_10GB:
  76                        speed = ICE_LINK_SPEED_10000MBPS;
  77                        break;
  78                case ICE_AQ_LINK_SPEED_20GB:
  79                        speed = ICE_LINK_SPEED_20000MBPS;
  80                        break;
  81                case ICE_AQ_LINK_SPEED_25GB:
  82                        speed = ICE_LINK_SPEED_25000MBPS;
  83                        break;
  84                case ICE_AQ_LINK_SPEED_40GB:
  85                        speed = ICE_LINK_SPEED_40000MBPS;
  86                        break;
  87                case ICE_AQ_LINK_SPEED_50GB:
  88                        speed = ICE_LINK_SPEED_50000MBPS;
  89                        break;
  90                case ICE_AQ_LINK_SPEED_100GB:
  91                        speed = ICE_LINK_SPEED_100000MBPS;
  92                        break;
  93                default:
  94                        speed = ICE_LINK_SPEED_UNKNOWN;
  95                        break;
  96                }
  97        else
  98                /* Virtchnl speeds are not defined for every speed supported in
  99                 * the hardware. To maintain compatibility with older AVF
 100                 * drivers, while reporting the speed the new speed values are
 101                 * resolved to the closest known virtchnl speeds
 102                 */
 103                switch (link_speed) {
 104                case ICE_AQ_LINK_SPEED_10MB:
 105                case ICE_AQ_LINK_SPEED_100MB:
 106                        speed = (u32)VIRTCHNL_LINK_SPEED_100MB;
 107                        break;
 108                case ICE_AQ_LINK_SPEED_1000MB:
 109                case ICE_AQ_LINK_SPEED_2500MB:
 110                case ICE_AQ_LINK_SPEED_5GB:
 111                        speed = (u32)VIRTCHNL_LINK_SPEED_1GB;
 112                        break;
 113                case ICE_AQ_LINK_SPEED_10GB:
 114                        speed = (u32)VIRTCHNL_LINK_SPEED_10GB;
 115                        break;
 116                case ICE_AQ_LINK_SPEED_20GB:
 117                        speed = (u32)VIRTCHNL_LINK_SPEED_20GB;
 118                        break;
 119                case ICE_AQ_LINK_SPEED_25GB:
 120                        speed = (u32)VIRTCHNL_LINK_SPEED_25GB;
 121                        break;
 122                case ICE_AQ_LINK_SPEED_40GB:
 123                case ICE_AQ_LINK_SPEED_50GB:
 124                case ICE_AQ_LINK_SPEED_100GB:
 125                        speed = (u32)VIRTCHNL_LINK_SPEED_40GB;
 126                        break;
 127                default:
 128                        speed = (u32)VIRTCHNL_LINK_SPEED_UNKNOWN;
 129                        break;
 130                }
 131
 132        return speed;
 133}
 134
 135/* The mailbox overflow detection algorithm helps to check if there
 136 * is a possibility of a malicious VF transmitting too many MBX messages to the
 137 * PF.
 138 * 1. The mailbox snapshot structure, ice_mbx_snapshot, is initialized during
 139 * driver initialization in ice_init_hw() using ice_mbx_init_snapshot().
 140 * The struct ice_mbx_snapshot helps to track and traverse a static window of
 141 * messages within the mailbox queue while looking for a malicious VF.
 142 *
 143 * 2. When the caller starts processing its mailbox queue in response to an
 144 * interrupt, the structure ice_mbx_snapshot is expected to be cleared before
 145 * the algorithm can be run for the first time for that interrupt. This can be
 146 * done via ice_mbx_reset_snapshot().
 147 *
 148 * 3. For every message read by the caller from the MBX Queue, the caller must
 149 * call the detection algorithm's entry function ice_mbx_vf_state_handler().
 150 * Before every call to ice_mbx_vf_state_handler() the struct ice_mbx_data is
 151 * filled as it is required to be passed to the algorithm.
 152 *
 153 * 4. Every time a message is read from the MBX queue, a VFId is received which
 154 * is passed to the state handler. The boolean output is_malvf of the state
 155 * handler ice_mbx_vf_state_handler() serves as an indicator to the caller
 156 * whether this VF is malicious or not.
 157 *
 158 * 5. When a VF is identified to be malicious, the caller can send a message
 159 * to the system administrator. The caller can invoke ice_mbx_report_malvf()
 160 * to help determine if a malicious VF is to be reported or not. This function
 161 * requires the caller to maintain a global bitmap to track all malicious VFs
 162 * and pass that to ice_mbx_report_malvf() along with the VFID which was identified
 163 * to be malicious by ice_mbx_vf_state_handler().
 164 *
 165 * 6. The global bitmap maintained by PF can be cleared completely if PF is in
 166 * reset or the bit corresponding to a VF can be cleared if that VF is in reset.
 167 * When a VF is shut down and brought back up, we assume that the new VF
 168 * brought up is not malicious and hence report it if found malicious.
 169 *
 170 * 7. The function ice_mbx_reset_snapshot() is called to reset the information
 171 * in ice_mbx_snapshot for every new mailbox interrupt handled.
 172 *
 173 * 8. The memory allocated for variables in ice_mbx_snapshot is de-allocated
 174 * when driver is unloaded.
 175 */
 176#define ICE_RQ_DATA_MASK(rq_data) ((rq_data) & PF_MBX_ARQH_ARQH_M)
 177/* Using the highest value for an unsigned 16-bit value 0xFFFF to indicate that
 178 * the max messages check must be ignored in the algorithm
 179 */
 180#define ICE_IGNORE_MAX_MSG_CNT  0xFFFF
 181
 182/**
 183 * ice_mbx_traverse - Pass through mailbox snapshot
 184 * @hw: pointer to the HW struct
 185 * @new_state: new algorithm state
 186 *
 187 * Traversing the mailbox static snapshot without checking
 188 * for malicious VFs.
 189 */
 190static void
 191ice_mbx_traverse(struct ice_hw *hw,
 192                 enum ice_mbx_snapshot_state *new_state)
 193{
 194        struct ice_mbx_snap_buffer_data *snap_buf;
 195        u32 num_iterations;
 196
 197        snap_buf = &hw->mbx_snapshot.mbx_buf;
 198
 199        /* As mailbox buffer is circular, applying a mask
 200         * on the incremented iteration count.
 201         */
 202        num_iterations = ICE_RQ_DATA_MASK(++snap_buf->num_iterations);
 203
 204        /* Checking either of the below conditions to exit snapshot traversal:
 205         * Condition-1: If the number of iterations in the mailbox is equal to
 206         * the mailbox head which would indicate that we have reached the end
 207         * of the static snapshot.
 208         * Condition-2: If the maximum messages serviced in the mailbox for a
 209         * given interrupt is the highest possible value then there is no need
 210         * to check if the number of messages processed is equal to it. If not
 211         * check if the number of messages processed is greater than or equal
 212         * to the maximum number of mailbox entries serviced in current work item.
 213         */
 214        if (num_iterations == snap_buf->head ||
 215            (snap_buf->max_num_msgs_mbx < ICE_IGNORE_MAX_MSG_CNT &&
 216             ++snap_buf->num_msg_proc >= snap_buf->max_num_msgs_mbx))
 217                *new_state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
 218}
 219
 220/**
 221 * ice_mbx_detect_malvf - Detect malicious VF in snapshot
 222 * @hw: pointer to the HW struct
 223 * @vf_id: relative virtual function ID
 224 * @new_state: new algorithm state
 225 * @is_malvf: boolean output to indicate if VF is malicious
 226 *
 227 * This function tracks the number of asynchronous messages
 228 * sent per VF and marks the VF as malicious if it exceeds
 229 * the permissible number of messages to send.
 230 */
 231static enum ice_status
 232ice_mbx_detect_malvf(struct ice_hw *hw, u16 vf_id,
 233                     enum ice_mbx_snapshot_state *new_state,
 234                     bool *is_malvf)
 235{
 236        struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 237
 238        if (vf_id >= snap->mbx_vf.vfcntr_len)
 239                return ICE_ERR_OUT_OF_RANGE;
 240
 241        /* increment the message count in the VF array */
 242        snap->mbx_vf.vf_cntr[vf_id]++;
 243
 244        if (snap->mbx_vf.vf_cntr[vf_id] >= ICE_ASYNC_VF_MSG_THRESHOLD)
 245                *is_malvf = true;
 246
 247        /* continue to iterate through the mailbox snapshot */
 248        ice_mbx_traverse(hw, new_state);
 249
 250        return 0;
 251}
 252
 253/**
 254 * ice_mbx_reset_snapshot - Reset mailbox snapshot structure
 255 * @snap: pointer to mailbox snapshot structure in the ice_hw struct
 256 *
 257 * Reset the mailbox snapshot structure and clear VF counter array.
 258 */
 259static void ice_mbx_reset_snapshot(struct ice_mbx_snapshot *snap)
 260{
 261        u32 vfcntr_len;
 262
 263        if (!snap || !snap->mbx_vf.vf_cntr)
 264                return;
 265
 266        /* Clear VF counters. */
 267        vfcntr_len = snap->mbx_vf.vfcntr_len;
 268        if (vfcntr_len)
 269                memset(snap->mbx_vf.vf_cntr, 0,
 270                       (vfcntr_len * sizeof(*snap->mbx_vf.vf_cntr)));
 271
 272        /* Reset mailbox snapshot for a new capture. */
 273        memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
 274        snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
 275}
 276
 277/**
 278 * ice_mbx_vf_state_handler - Handle states of the overflow algorithm
 279 * @hw: pointer to the HW struct
 280 * @mbx_data: pointer to structure containing mailbox data
 281 * @vf_id: relative virtual function (VF) ID
 282 * @is_malvf: boolean output to indicate if VF is malicious
 283 *
 284 * The function serves as an entry point for the malicious VF
 285 * detection algorithm by handling the different states and state
 286 * transitions of the algorithm:
 287 * New snapshot: This state is entered when creating a new static
 288 * snapshot. The data from any previous mailbox snapshot is
 289 * cleared and a new capture of the mailbox head and tail is
 290 * logged. This will be the new static snapshot to detect
 291 * asynchronous messages sent by VFs. On capturing the snapshot
 292 * and depending on whether the number of pending messages in that
 293 * snapshot exceed the watermark value, the state machine enters
 294 * traverse or detect states.
 295 * Traverse: If pending message count is below watermark then iterate
 296 * through the snapshot without any action on VF.
 297 * Detect: If pending message count exceeds watermark traverse
 298 * the static snapshot and look for a malicious VF.
 299 */
 300enum ice_status
 301ice_mbx_vf_state_handler(struct ice_hw *hw,
 302                         struct ice_mbx_data *mbx_data, u16 vf_id,
 303                         bool *is_malvf)
 304{
 305        struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 306        struct ice_mbx_snap_buffer_data *snap_buf;
 307        struct ice_ctl_q_info *cq = &hw->mailboxq;
 308        enum ice_mbx_snapshot_state new_state;
 309        enum ice_status status = 0;
 310
 311        if (!is_malvf || !mbx_data)
 312                return ICE_ERR_BAD_PTR;
 313
 314        /* When entering the mailbox state machine assume that the VF
 315         * is not malicious until detected.
 316         */
 317        *is_malvf = false;
 318
 319         /* Checking if max messages allowed to be processed while servicing current
 320          * interrupt is not less than the defined AVF message threshold.
 321          */
 322        if (mbx_data->max_num_msgs_mbx <= ICE_ASYNC_VF_MSG_THRESHOLD)
 323                return ICE_ERR_INVAL_SIZE;
 324
 325        /* The watermark value should not be lesser than the threshold limit
 326         * set for the number of asynchronous messages a VF can send to mailbox
 327         * nor should it be greater than the maximum number of messages in the
 328         * mailbox serviced in current interrupt.
 329         */
 330        if (mbx_data->async_watermark_val < ICE_ASYNC_VF_MSG_THRESHOLD ||
 331            mbx_data->async_watermark_val > mbx_data->max_num_msgs_mbx)
 332                return ICE_ERR_PARAM;
 333
 334        new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
 335        snap_buf = &snap->mbx_buf;
 336
 337        switch (snap_buf->state) {
 338        case ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT:
 339                /* Clear any previously held data in mailbox snapshot structure. */
 340                ice_mbx_reset_snapshot(snap);
 341
 342                /* Collect the pending ARQ count, number of messages processed and
 343                 * the maximum number of messages allowed to be processed from the
 344                 * Mailbox for current interrupt.
 345                 */
 346                snap_buf->num_pending_arq = mbx_data->num_pending_arq;
 347                snap_buf->num_msg_proc = mbx_data->num_msg_proc;
 348                snap_buf->max_num_msgs_mbx = mbx_data->max_num_msgs_mbx;
 349
 350                /* Capture a new static snapshot of the mailbox by logging the
 351                 * head and tail of snapshot and set num_iterations to the tail
 352                 * value to mark the start of the iteration through the snapshot.
 353                 */
 354                snap_buf->head = ICE_RQ_DATA_MASK(cq->rq.next_to_clean +
 355                                                  mbx_data->num_pending_arq);
 356                snap_buf->tail = ICE_RQ_DATA_MASK(cq->rq.next_to_clean - 1);
 357                snap_buf->num_iterations = snap_buf->tail;
 358
 359                /* Pending ARQ messages returned by ice_clean_rq_elem
 360                 * is the difference between the head and tail of the
 361                 * mailbox queue. Comparing this value against the watermark
 362                 * helps to check if we potentially have malicious VFs.
 363                 */
 364                if (snap_buf->num_pending_arq >=
 365                    mbx_data->async_watermark_val) {
 366                        new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
 367                        status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
 368                } else {
 369                        new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
 370                        ice_mbx_traverse(hw, &new_state);
 371                }
 372                break;
 373
 374        case ICE_MAL_VF_DETECT_STATE_TRAVERSE:
 375                new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
 376                ice_mbx_traverse(hw, &new_state);
 377                break;
 378
 379        case ICE_MAL_VF_DETECT_STATE_DETECT:
 380                new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
 381                status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
 382                break;
 383
 384        default:
 385                new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
 386                status = ICE_ERR_CFG;
 387        }
 388
 389        snap_buf->state = new_state;
 390
 391        return status;
 392}
 393
 394/**
 395 * ice_mbx_report_malvf - Track and note malicious VF
 396 * @hw: pointer to the HW struct
 397 * @all_malvfs: all malicious VFs tracked by PF
 398 * @bitmap_len: length of bitmap in bits
 399 * @vf_id: relative virtual function ID of the malicious VF
 400 * @report_malvf: boolean to indicate if malicious VF must be reported
 401 *
 402 * This function will update a bitmap that keeps track of the malicious
 403 * VFs attached to the PF. A malicious VF must be reported only once if
 404 * discovered between VF resets or loading so the function checks
 405 * the input vf_id against the bitmap to verify if the VF has been
 406 * detected in any previous mailbox iterations.
 407 */
 408enum ice_status
 409ice_mbx_report_malvf(struct ice_hw *hw, unsigned long *all_malvfs,
 410                     u16 bitmap_len, u16 vf_id, bool *report_malvf)
 411{
 412        if (!all_malvfs || !report_malvf)
 413                return ICE_ERR_PARAM;
 414
 415        *report_malvf = false;
 416
 417        if (bitmap_len < hw->mbx_snapshot.mbx_vf.vfcntr_len)
 418                return ICE_ERR_INVAL_SIZE;
 419
 420        if (vf_id >= bitmap_len)
 421                return ICE_ERR_OUT_OF_RANGE;
 422
 423        /* If the vf_id is found in the bitmap set bit and boolean to true */
 424        if (!test_and_set_bit(vf_id, all_malvfs))
 425                *report_malvf = true;
 426
 427        return 0;
 428}
 429
 430/**
 431 * ice_mbx_clear_malvf - Clear VF bitmap and counter for VF ID
 432 * @snap: pointer to the mailbox snapshot structure
 433 * @all_malvfs: all malicious VFs tracked by PF
 434 * @bitmap_len: length of bitmap in bits
 435 * @vf_id: relative virtual function ID of the malicious VF
 436 *
 437 * In case of a VF reset, this function can be called to clear
 438 * the bit corresponding to the VF ID in the bitmap tracking all
 439 * malicious VFs attached to the PF. The function also clears the
 440 * VF counter array at the index of the VF ID. This is to ensure
 441 * that the new VF loaded is not considered malicious before going
 442 * through the overflow detection algorithm.
 443 */
 444enum ice_status
 445ice_mbx_clear_malvf(struct ice_mbx_snapshot *snap, unsigned long *all_malvfs,
 446                    u16 bitmap_len, u16 vf_id)
 447{
 448        if (!snap || !all_malvfs)
 449                return ICE_ERR_PARAM;
 450
 451        if (bitmap_len < snap->mbx_vf.vfcntr_len)
 452                return ICE_ERR_INVAL_SIZE;
 453
 454        /* Ensure VF ID value is not larger than bitmap or VF counter length */
 455        if (vf_id >= bitmap_len || vf_id >= snap->mbx_vf.vfcntr_len)
 456                return ICE_ERR_OUT_OF_RANGE;
 457
 458        /* Clear VF ID bit in the bitmap tracking malicious VFs attached to PF */
 459        clear_bit(vf_id, all_malvfs);
 460
 461        /* Clear the VF counter in the mailbox snapshot structure for that VF ID.
 462         * This is to ensure that if a VF is unloaded and a new one brought back
 463         * up with the same VF ID for a snapshot currently in traversal or detect
 464         * state the counter for that VF ID does not increment on top of existing
 465         * values in the mailbox overflow detection algorithm.
 466         */
 467        snap->mbx_vf.vf_cntr[vf_id] = 0;
 468
 469        return 0;
 470}
 471
 472/**
 473 * ice_mbx_init_snapshot - Initialize mailbox snapshot structure
 474 * @hw: pointer to the hardware structure
 475 * @vf_count: number of VFs allocated on a PF
 476 *
 477 * Clear the mailbox snapshot structure and allocate memory
 478 * for the VF counter array based on the number of VFs allocated
 479 * on that PF.
 480 *
 481 * Assumption: This function will assume ice_get_caps() has already been
 482 * called to ensure that the vf_count can be compared against the number
 483 * of VFs supported as defined in the functional capabilities of the device.
 484 */
 485enum ice_status ice_mbx_init_snapshot(struct ice_hw *hw, u16 vf_count)
 486{
 487        struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 488
 489        /* Ensure that the number of VFs allocated is non-zero and
 490         * is not greater than the number of supported VFs defined in
 491         * the functional capabilities of the PF.
 492         */
 493        if (!vf_count || vf_count > hw->func_caps.num_allocd_vfs)
 494                return ICE_ERR_INVAL_SIZE;
 495
 496        snap->mbx_vf.vf_cntr = devm_kcalloc(ice_hw_to_dev(hw), vf_count,
 497                                            sizeof(*snap->mbx_vf.vf_cntr),
 498                                            GFP_KERNEL);
 499        if (!snap->mbx_vf.vf_cntr)
 500                return ICE_ERR_NO_MEMORY;
 501
 502        /* Setting the VF counter length to the number of allocated
 503         * VFs for given PF's functional capabilities.
 504         */
 505        snap->mbx_vf.vfcntr_len = vf_count;
 506
 507        /* Clear mbx_buf in the mailbox snaphot structure and setting the
 508         * mailbox snapshot state to a new capture.
 509         */
 510        memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
 511        snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
 512
 513        return 0;
 514}
 515
 516/**
 517 * ice_mbx_deinit_snapshot - Free mailbox snapshot structure
 518 * @hw: pointer to the hardware structure
 519 *
 520 * Clear the mailbox snapshot structure and free the VF counter array.
 521 */
 522void ice_mbx_deinit_snapshot(struct ice_hw *hw)
 523{
 524        struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 525
 526        /* Free VF counter array and reset VF counter length */
 527        devm_kfree(ice_hw_to_dev(hw), snap->mbx_vf.vf_cntr);
 528        snap->mbx_vf.vfcntr_len = 0;
 529
 530        /* Clear mbx_buf in the mailbox snaphot structure */
 531        memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
 532}
 533