linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
  33#include <linux/bpf.h>
  34#include <linux/bpf_trace.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/etherdevice.h>
  37#ifdef CONFIG_IGB_DCA
  38#include <linux/dca.h>
  39#endif
  40#include <linux/i2c.h>
  41#include "igb.h"
  42
  43enum queue_mode {
  44        QUEUE_MODE_STRICT_PRIORITY,
  45        QUEUE_MODE_STREAM_RESERVATION,
  46};
  47
  48enum tx_queue_prio {
  49        TX_QUEUE_PRIO_HIGH,
  50        TX_QUEUE_PRIO_LOW,
  51};
  52
  53char igb_driver_name[] = "igb";
  54static const char igb_driver_string[] =
  55                                "Intel(R) Gigabit Ethernet Network Driver";
  56static const char igb_copyright[] =
  57                                "Copyright (c) 2007-2014 Intel Corporation.";
  58
  59static const struct e1000_info *igb_info_tbl[] = {
  60        [board_82575] = &e1000_82575_info,
  61};
  62
  63static const struct pci_device_id igb_pci_tbl[] = {
  64        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  65        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  66        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  67        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  68        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  69        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  70        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  71        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  72        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  73        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  74        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  75        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  99        /* required last entry */
 100        {0, }
 101};
 102
 103MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 104
 105static int igb_setup_all_tx_resources(struct igb_adapter *);
 106static int igb_setup_all_rx_resources(struct igb_adapter *);
 107static void igb_free_all_tx_resources(struct igb_adapter *);
 108static void igb_free_all_rx_resources(struct igb_adapter *);
 109static void igb_setup_mrqc(struct igb_adapter *);
 110static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 111static void igb_remove(struct pci_dev *pdev);
 112static int igb_sw_init(struct igb_adapter *);
 113int igb_open(struct net_device *);
 114int igb_close(struct net_device *);
 115static void igb_configure(struct igb_adapter *);
 116static void igb_configure_tx(struct igb_adapter *);
 117static void igb_configure_rx(struct igb_adapter *);
 118static void igb_clean_all_tx_rings(struct igb_adapter *);
 119static void igb_clean_all_rx_rings(struct igb_adapter *);
 120static void igb_clean_tx_ring(struct igb_ring *);
 121static void igb_clean_rx_ring(struct igb_ring *);
 122static void igb_set_rx_mode(struct net_device *);
 123static void igb_update_phy_info(struct timer_list *);
 124static void igb_watchdog(struct timer_list *);
 125static void igb_watchdog_task(struct work_struct *);
 126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 127static void igb_get_stats64(struct net_device *dev,
 128                            struct rtnl_link_stats64 *stats);
 129static int igb_change_mtu(struct net_device *, int);
 130static int igb_set_mac(struct net_device *, void *);
 131static void igb_set_uta(struct igb_adapter *adapter, bool set);
 132static irqreturn_t igb_intr(int irq, void *);
 133static irqreturn_t igb_intr_msi(int irq, void *);
 134static irqreturn_t igb_msix_other(int irq, void *);
 135static irqreturn_t igb_msix_ring(int irq, void *);
 136#ifdef CONFIG_IGB_DCA
 137static void igb_update_dca(struct igb_q_vector *);
 138static void igb_setup_dca(struct igb_adapter *);
 139#endif /* CONFIG_IGB_DCA */
 140static int igb_poll(struct napi_struct *, int);
 141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 142static int igb_clean_rx_irq(struct igb_q_vector *, int);
 143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
 145static void igb_reset_task(struct work_struct *);
 146static void igb_vlan_mode(struct net_device *netdev,
 147                          netdev_features_t features);
 148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 150static void igb_restore_vlan(struct igb_adapter *);
 151static void igb_rar_set_index(struct igb_adapter *, u32);
 152static void igb_ping_all_vfs(struct igb_adapter *);
 153static void igb_msg_task(struct igb_adapter *);
 154static void igb_vmm_control(struct igb_adapter *);
 155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 156static void igb_flush_mac_table(struct igb_adapter *);
 157static int igb_available_rars(struct igb_adapter *, u8);
 158static void igb_set_default_mac_filter(struct igb_adapter *);
 159static int igb_uc_sync(struct net_device *, const unsigned char *);
 160static int igb_uc_unsync(struct net_device *, const unsigned char *);
 161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 164                               int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 167                                   bool setting);
 168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 169                                bool setting);
 170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 171                                 struct ifla_vf_info *ivi);
 172static void igb_check_vf_rate_limit(struct igb_adapter *);
 173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 175
 176#ifdef CONFIG_PCI_IOV
 177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 178static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 179static int igb_disable_sriov(struct pci_dev *dev);
 180static int igb_pci_disable_sriov(struct pci_dev *dev);
 181#endif
 182
 183static int igb_suspend(struct device *);
 184static int igb_resume(struct device *);
 185static int igb_runtime_suspend(struct device *dev);
 186static int igb_runtime_resume(struct device *dev);
 187static int igb_runtime_idle(struct device *dev);
 188static const struct dev_pm_ops igb_pm_ops = {
 189        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 190        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 191                        igb_runtime_idle)
 192};
 193static void igb_shutdown(struct pci_dev *);
 194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 195#ifdef CONFIG_IGB_DCA
 196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 197static struct notifier_block dca_notifier = {
 198        .notifier_call  = igb_notify_dca,
 199        .next           = NULL,
 200        .priority       = 0
 201};
 202#endif
 203#ifdef CONFIG_PCI_IOV
 204static unsigned int max_vfs;
 205module_param(max_vfs, uint, 0);
 206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 207#endif /* CONFIG_PCI_IOV */
 208
 209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 210                     pci_channel_state_t);
 211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 212static void igb_io_resume(struct pci_dev *);
 213
 214static const struct pci_error_handlers igb_err_handler = {
 215        .error_detected = igb_io_error_detected,
 216        .slot_reset = igb_io_slot_reset,
 217        .resume = igb_io_resume,
 218};
 219
 220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 221
 222static struct pci_driver igb_driver = {
 223        .name     = igb_driver_name,
 224        .id_table = igb_pci_tbl,
 225        .probe    = igb_probe,
 226        .remove   = igb_remove,
 227#ifdef CONFIG_PM
 228        .driver.pm = &igb_pm_ops,
 229#endif
 230        .shutdown = igb_shutdown,
 231        .sriov_configure = igb_pci_sriov_configure,
 232        .err_handler = &igb_err_handler
 233};
 234
 235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 237MODULE_LICENSE("GPL v2");
 238
 239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 240static int debug = -1;
 241module_param(debug, int, 0);
 242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 243
 244struct igb_reg_info {
 245        u32 ofs;
 246        char *name;
 247};
 248
 249static const struct igb_reg_info igb_reg_info_tbl[] = {
 250
 251        /* General Registers */
 252        {E1000_CTRL, "CTRL"},
 253        {E1000_STATUS, "STATUS"},
 254        {E1000_CTRL_EXT, "CTRL_EXT"},
 255
 256        /* Interrupt Registers */
 257        {E1000_ICR, "ICR"},
 258
 259        /* RX Registers */
 260        {E1000_RCTL, "RCTL"},
 261        {E1000_RDLEN(0), "RDLEN"},
 262        {E1000_RDH(0), "RDH"},
 263        {E1000_RDT(0), "RDT"},
 264        {E1000_RXDCTL(0), "RXDCTL"},
 265        {E1000_RDBAL(0), "RDBAL"},
 266        {E1000_RDBAH(0), "RDBAH"},
 267
 268        /* TX Registers */
 269        {E1000_TCTL, "TCTL"},
 270        {E1000_TDBAL(0), "TDBAL"},
 271        {E1000_TDBAH(0), "TDBAH"},
 272        {E1000_TDLEN(0), "TDLEN"},
 273        {E1000_TDH(0), "TDH"},
 274        {E1000_TDT(0), "TDT"},
 275        {E1000_TXDCTL(0), "TXDCTL"},
 276        {E1000_TDFH, "TDFH"},
 277        {E1000_TDFT, "TDFT"},
 278        {E1000_TDFHS, "TDFHS"},
 279        {E1000_TDFPC, "TDFPC"},
 280
 281        /* List Terminator */
 282        {}
 283};
 284
 285/* igb_regdump - register printout routine */
 286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 287{
 288        int n = 0;
 289        char rname[16];
 290        u32 regs[8];
 291
 292        switch (reginfo->ofs) {
 293        case E1000_RDLEN(0):
 294                for (n = 0; n < 4; n++)
 295                        regs[n] = rd32(E1000_RDLEN(n));
 296                break;
 297        case E1000_RDH(0):
 298                for (n = 0; n < 4; n++)
 299                        regs[n] = rd32(E1000_RDH(n));
 300                break;
 301        case E1000_RDT(0):
 302                for (n = 0; n < 4; n++)
 303                        regs[n] = rd32(E1000_RDT(n));
 304                break;
 305        case E1000_RXDCTL(0):
 306                for (n = 0; n < 4; n++)
 307                        regs[n] = rd32(E1000_RXDCTL(n));
 308                break;
 309        case E1000_RDBAL(0):
 310                for (n = 0; n < 4; n++)
 311                        regs[n] = rd32(E1000_RDBAL(n));
 312                break;
 313        case E1000_RDBAH(0):
 314                for (n = 0; n < 4; n++)
 315                        regs[n] = rd32(E1000_RDBAH(n));
 316                break;
 317        case E1000_TDBAL(0):
 318                for (n = 0; n < 4; n++)
 319                        regs[n] = rd32(E1000_TDBAL(n));
 320                break;
 321        case E1000_TDBAH(0):
 322                for (n = 0; n < 4; n++)
 323                        regs[n] = rd32(E1000_TDBAH(n));
 324                break;
 325        case E1000_TDLEN(0):
 326                for (n = 0; n < 4; n++)
 327                        regs[n] = rd32(E1000_TDLEN(n));
 328                break;
 329        case E1000_TDH(0):
 330                for (n = 0; n < 4; n++)
 331                        regs[n] = rd32(E1000_TDH(n));
 332                break;
 333        case E1000_TDT(0):
 334                for (n = 0; n < 4; n++)
 335                        regs[n] = rd32(E1000_TDT(n));
 336                break;
 337        case E1000_TXDCTL(0):
 338                for (n = 0; n < 4; n++)
 339                        regs[n] = rd32(E1000_TXDCTL(n));
 340                break;
 341        default:
 342                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 343                return;
 344        }
 345
 346        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 347        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 348                regs[2], regs[3]);
 349}
 350
 351/* igb_dump - Print registers, Tx-rings and Rx-rings */
 352static void igb_dump(struct igb_adapter *adapter)
 353{
 354        struct net_device *netdev = adapter->netdev;
 355        struct e1000_hw *hw = &adapter->hw;
 356        struct igb_reg_info *reginfo;
 357        struct igb_ring *tx_ring;
 358        union e1000_adv_tx_desc *tx_desc;
 359        struct my_u0 { __le64 a; __le64 b; } *u0;
 360        struct igb_ring *rx_ring;
 361        union e1000_adv_rx_desc *rx_desc;
 362        u32 staterr;
 363        u16 i, n;
 364
 365        if (!netif_msg_hw(adapter))
 366                return;
 367
 368        /* Print netdevice Info */
 369        if (netdev) {
 370                dev_info(&adapter->pdev->dev, "Net device Info\n");
 371                pr_info("Device Name     state            trans_start\n");
 372                pr_info("%-15s %016lX %016lX\n", netdev->name,
 373                        netdev->state, dev_trans_start(netdev));
 374        }
 375
 376        /* Print Registers */
 377        dev_info(&adapter->pdev->dev, "Register Dump\n");
 378        pr_info(" Register Name   Value\n");
 379        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 380             reginfo->name; reginfo++) {
 381                igb_regdump(hw, reginfo);
 382        }
 383
 384        /* Print TX Ring Summary */
 385        if (!netdev || !netif_running(netdev))
 386                goto exit;
 387
 388        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 389        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 390        for (n = 0; n < adapter->num_tx_queues; n++) {
 391                struct igb_tx_buffer *buffer_info;
 392                tx_ring = adapter->tx_ring[n];
 393                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 394                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 395                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 396                        (u64)dma_unmap_addr(buffer_info, dma),
 397                        dma_unmap_len(buffer_info, len),
 398                        buffer_info->next_to_watch,
 399                        (u64)buffer_info->time_stamp);
 400        }
 401
 402        /* Print TX Rings */
 403        if (!netif_msg_tx_done(adapter))
 404                goto rx_ring_summary;
 405
 406        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 407
 408        /* Transmit Descriptor Formats
 409         *
 410         * Advanced Transmit Descriptor
 411         *   +--------------------------------------------------------------+
 412         * 0 |         Buffer Address [63:0]                                |
 413         *   +--------------------------------------------------------------+
 414         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 415         *   +--------------------------------------------------------------+
 416         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 417         */
 418
 419        for (n = 0; n < adapter->num_tx_queues; n++) {
 420                tx_ring = adapter->tx_ring[n];
 421                pr_info("------------------------------------\n");
 422                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 423                pr_info("------------------------------------\n");
 424                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 425
 426                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 427                        const char *next_desc;
 428                        struct igb_tx_buffer *buffer_info;
 429                        tx_desc = IGB_TX_DESC(tx_ring, i);
 430                        buffer_info = &tx_ring->tx_buffer_info[i];
 431                        u0 = (struct my_u0 *)tx_desc;
 432                        if (i == tx_ring->next_to_use &&
 433                            i == tx_ring->next_to_clean)
 434                                next_desc = " NTC/U";
 435                        else if (i == tx_ring->next_to_use)
 436                                next_desc = " NTU";
 437                        else if (i == tx_ring->next_to_clean)
 438                                next_desc = " NTC";
 439                        else
 440                                next_desc = "";
 441
 442                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 443                                i, le64_to_cpu(u0->a),
 444                                le64_to_cpu(u0->b),
 445                                (u64)dma_unmap_addr(buffer_info, dma),
 446                                dma_unmap_len(buffer_info, len),
 447                                buffer_info->next_to_watch,
 448                                (u64)buffer_info->time_stamp,
 449                                buffer_info->skb, next_desc);
 450
 451                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 452                                print_hex_dump(KERN_INFO, "",
 453                                        DUMP_PREFIX_ADDRESS,
 454                                        16, 1, buffer_info->skb->data,
 455                                        dma_unmap_len(buffer_info, len),
 456                                        true);
 457                }
 458        }
 459
 460        /* Print RX Rings Summary */
 461rx_ring_summary:
 462        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 463        pr_info("Queue [NTU] [NTC]\n");
 464        for (n = 0; n < adapter->num_rx_queues; n++) {
 465                rx_ring = adapter->rx_ring[n];
 466                pr_info(" %5d %5X %5X\n",
 467                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 468        }
 469
 470        /* Print RX Rings */
 471        if (!netif_msg_rx_status(adapter))
 472                goto exit;
 473
 474        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 475
 476        /* Advanced Receive Descriptor (Read) Format
 477         *    63                                           1        0
 478         *    +-----------------------------------------------------+
 479         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 480         *    +----------------------------------------------+------+
 481         *  8 |       Header Buffer Address [63:1]           |  DD  |
 482         *    +-----------------------------------------------------+
 483         *
 484         *
 485         * Advanced Receive Descriptor (Write-Back) Format
 486         *
 487         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 488         *   +------------------------------------------------------+
 489         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 490         *   | Checksum   Ident  |   |           |    | Type | Type |
 491         *   +------------------------------------------------------+
 492         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 493         *   +------------------------------------------------------+
 494         *   63       48 47    32 31            20 19               0
 495         */
 496
 497        for (n = 0; n < adapter->num_rx_queues; n++) {
 498                rx_ring = adapter->rx_ring[n];
 499                pr_info("------------------------------------\n");
 500                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 501                pr_info("------------------------------------\n");
 502                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 503                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 504
 505                for (i = 0; i < rx_ring->count; i++) {
 506                        const char *next_desc;
 507                        struct igb_rx_buffer *buffer_info;
 508                        buffer_info = &rx_ring->rx_buffer_info[i];
 509                        rx_desc = IGB_RX_DESC(rx_ring, i);
 510                        u0 = (struct my_u0 *)rx_desc;
 511                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 512
 513                        if (i == rx_ring->next_to_use)
 514                                next_desc = " NTU";
 515                        else if (i == rx_ring->next_to_clean)
 516                                next_desc = " NTC";
 517                        else
 518                                next_desc = "";
 519
 520                        if (staterr & E1000_RXD_STAT_DD) {
 521                                /* Descriptor Done */
 522                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 523                                        "RWB", i,
 524                                        le64_to_cpu(u0->a),
 525                                        le64_to_cpu(u0->b),
 526                                        next_desc);
 527                        } else {
 528                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 529                                        "R  ", i,
 530                                        le64_to_cpu(u0->a),
 531                                        le64_to_cpu(u0->b),
 532                                        (u64)buffer_info->dma,
 533                                        next_desc);
 534
 535                                if (netif_msg_pktdata(adapter) &&
 536                                    buffer_info->dma && buffer_info->page) {
 537                                        print_hex_dump(KERN_INFO, "",
 538                                          DUMP_PREFIX_ADDRESS,
 539                                          16, 1,
 540                                          page_address(buffer_info->page) +
 541                                                      buffer_info->page_offset,
 542                                          igb_rx_bufsz(rx_ring), true);
 543                                }
 544                        }
 545                }
 546        }
 547
 548exit:
 549        return;
 550}
 551
 552/**
 553 *  igb_get_i2c_data - Reads the I2C SDA data bit
 554 *  @data: opaque pointer to adapter struct
 555 *
 556 *  Returns the I2C data bit value
 557 **/
 558static int igb_get_i2c_data(void *data)
 559{
 560        struct igb_adapter *adapter = (struct igb_adapter *)data;
 561        struct e1000_hw *hw = &adapter->hw;
 562        s32 i2cctl = rd32(E1000_I2CPARAMS);
 563
 564        return !!(i2cctl & E1000_I2C_DATA_IN);
 565}
 566
 567/**
 568 *  igb_set_i2c_data - Sets the I2C data bit
 569 *  @data: pointer to hardware structure
 570 *  @state: I2C data value (0 or 1) to set
 571 *
 572 *  Sets the I2C data bit
 573 **/
 574static void igb_set_i2c_data(void *data, int state)
 575{
 576        struct igb_adapter *adapter = (struct igb_adapter *)data;
 577        struct e1000_hw *hw = &adapter->hw;
 578        s32 i2cctl = rd32(E1000_I2CPARAMS);
 579
 580        if (state)
 581                i2cctl |= E1000_I2C_DATA_OUT;
 582        else
 583                i2cctl &= ~E1000_I2C_DATA_OUT;
 584
 585        i2cctl &= ~E1000_I2C_DATA_OE_N;
 586        i2cctl |= E1000_I2C_CLK_OE_N;
 587        wr32(E1000_I2CPARAMS, i2cctl);
 588        wrfl();
 589
 590}
 591
 592/**
 593 *  igb_set_i2c_clk - Sets the I2C SCL clock
 594 *  @data: pointer to hardware structure
 595 *  @state: state to set clock
 596 *
 597 *  Sets the I2C clock line to state
 598 **/
 599static void igb_set_i2c_clk(void *data, int state)
 600{
 601        struct igb_adapter *adapter = (struct igb_adapter *)data;
 602        struct e1000_hw *hw = &adapter->hw;
 603        s32 i2cctl = rd32(E1000_I2CPARAMS);
 604
 605        if (state) {
 606                i2cctl |= E1000_I2C_CLK_OUT;
 607                i2cctl &= ~E1000_I2C_CLK_OE_N;
 608        } else {
 609                i2cctl &= ~E1000_I2C_CLK_OUT;
 610                i2cctl &= ~E1000_I2C_CLK_OE_N;
 611        }
 612        wr32(E1000_I2CPARAMS, i2cctl);
 613        wrfl();
 614}
 615
 616/**
 617 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 618 *  @data: pointer to hardware structure
 619 *
 620 *  Gets the I2C clock state
 621 **/
 622static int igb_get_i2c_clk(void *data)
 623{
 624        struct igb_adapter *adapter = (struct igb_adapter *)data;
 625        struct e1000_hw *hw = &adapter->hw;
 626        s32 i2cctl = rd32(E1000_I2CPARAMS);
 627
 628        return !!(i2cctl & E1000_I2C_CLK_IN);
 629}
 630
 631static const struct i2c_algo_bit_data igb_i2c_algo = {
 632        .setsda         = igb_set_i2c_data,
 633        .setscl         = igb_set_i2c_clk,
 634        .getsda         = igb_get_i2c_data,
 635        .getscl         = igb_get_i2c_clk,
 636        .udelay         = 5,
 637        .timeout        = 20,
 638};
 639
 640/**
 641 *  igb_get_hw_dev - return device
 642 *  @hw: pointer to hardware structure
 643 *
 644 *  used by hardware layer to print debugging information
 645 **/
 646struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 647{
 648        struct igb_adapter *adapter = hw->back;
 649        return adapter->netdev;
 650}
 651
 652/**
 653 *  igb_init_module - Driver Registration Routine
 654 *
 655 *  igb_init_module is the first routine called when the driver is
 656 *  loaded. All it does is register with the PCI subsystem.
 657 **/
 658static int __init igb_init_module(void)
 659{
 660        int ret;
 661
 662        pr_info("%s\n", igb_driver_string);
 663        pr_info("%s\n", igb_copyright);
 664
 665#ifdef CONFIG_IGB_DCA
 666        dca_register_notify(&dca_notifier);
 667#endif
 668        ret = pci_register_driver(&igb_driver);
 669        return ret;
 670}
 671
 672module_init(igb_init_module);
 673
 674/**
 675 *  igb_exit_module - Driver Exit Cleanup Routine
 676 *
 677 *  igb_exit_module is called just before the driver is removed
 678 *  from memory.
 679 **/
 680static void __exit igb_exit_module(void)
 681{
 682#ifdef CONFIG_IGB_DCA
 683        dca_unregister_notify(&dca_notifier);
 684#endif
 685        pci_unregister_driver(&igb_driver);
 686}
 687
 688module_exit(igb_exit_module);
 689
 690#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 691/**
 692 *  igb_cache_ring_register - Descriptor ring to register mapping
 693 *  @adapter: board private structure to initialize
 694 *
 695 *  Once we know the feature-set enabled for the device, we'll cache
 696 *  the register offset the descriptor ring is assigned to.
 697 **/
 698static void igb_cache_ring_register(struct igb_adapter *adapter)
 699{
 700        int i = 0, j = 0;
 701        u32 rbase_offset = adapter->vfs_allocated_count;
 702
 703        switch (adapter->hw.mac.type) {
 704        case e1000_82576:
 705                /* The queues are allocated for virtualization such that VF 0
 706                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 707                 * In order to avoid collision we start at the first free queue
 708                 * and continue consuming queues in the same sequence
 709                 */
 710                if (adapter->vfs_allocated_count) {
 711                        for (; i < adapter->rss_queues; i++)
 712                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 713                                                               Q_IDX_82576(i);
 714                }
 715                fallthrough;
 716        case e1000_82575:
 717        case e1000_82580:
 718        case e1000_i350:
 719        case e1000_i354:
 720        case e1000_i210:
 721        case e1000_i211:
 722        default:
 723                for (; i < adapter->num_rx_queues; i++)
 724                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 725                for (; j < adapter->num_tx_queues; j++)
 726                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 727                break;
 728        }
 729}
 730
 731u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 732{
 733        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 734        u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 735        u32 value = 0;
 736
 737        if (E1000_REMOVED(hw_addr))
 738                return ~value;
 739
 740        value = readl(&hw_addr[reg]);
 741
 742        /* reads should not return all F's */
 743        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 744                struct net_device *netdev = igb->netdev;
 745                hw->hw_addr = NULL;
 746                netdev_err(netdev, "PCIe link lost\n");
 747                WARN(pci_device_is_present(igb->pdev),
 748                     "igb: Failed to read reg 0x%x!\n", reg);
 749        }
 750
 751        return value;
 752}
 753
 754/**
 755 *  igb_write_ivar - configure ivar for given MSI-X vector
 756 *  @hw: pointer to the HW structure
 757 *  @msix_vector: vector number we are allocating to a given ring
 758 *  @index: row index of IVAR register to write within IVAR table
 759 *  @offset: column offset of in IVAR, should be multiple of 8
 760 *
 761 *  This function is intended to handle the writing of the IVAR register
 762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 763 *  each containing an cause allocation for an Rx and Tx ring, and a
 764 *  variable number of rows depending on the number of queues supported.
 765 **/
 766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 767                           int index, int offset)
 768{
 769        u32 ivar = array_rd32(E1000_IVAR0, index);
 770
 771        /* clear any bits that are currently set */
 772        ivar &= ~((u32)0xFF << offset);
 773
 774        /* write vector and valid bit */
 775        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 776
 777        array_wr32(E1000_IVAR0, index, ivar);
 778}
 779
 780#define IGB_N0_QUEUE -1
 781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 782{
 783        struct igb_adapter *adapter = q_vector->adapter;
 784        struct e1000_hw *hw = &adapter->hw;
 785        int rx_queue = IGB_N0_QUEUE;
 786        int tx_queue = IGB_N0_QUEUE;
 787        u32 msixbm = 0;
 788
 789        if (q_vector->rx.ring)
 790                rx_queue = q_vector->rx.ring->reg_idx;
 791        if (q_vector->tx.ring)
 792                tx_queue = q_vector->tx.ring->reg_idx;
 793
 794        switch (hw->mac.type) {
 795        case e1000_82575:
 796                /* The 82575 assigns vectors using a bitmask, which matches the
 797                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 798                 * or more queues to a vector, we write the appropriate bits
 799                 * into the MSIXBM register for that vector.
 800                 */
 801                if (rx_queue > IGB_N0_QUEUE)
 802                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 803                if (tx_queue > IGB_N0_QUEUE)
 804                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 805                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 806                        msixbm |= E1000_EIMS_OTHER;
 807                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 808                q_vector->eims_value = msixbm;
 809                break;
 810        case e1000_82576:
 811                /* 82576 uses a table that essentially consists of 2 columns
 812                 * with 8 rows.  The ordering is column-major so we use the
 813                 * lower 3 bits as the row index, and the 4th bit as the
 814                 * column offset.
 815                 */
 816                if (rx_queue > IGB_N0_QUEUE)
 817                        igb_write_ivar(hw, msix_vector,
 818                                       rx_queue & 0x7,
 819                                       (rx_queue & 0x8) << 1);
 820                if (tx_queue > IGB_N0_QUEUE)
 821                        igb_write_ivar(hw, msix_vector,
 822                                       tx_queue & 0x7,
 823                                       ((tx_queue & 0x8) << 1) + 8);
 824                q_vector->eims_value = BIT(msix_vector);
 825                break;
 826        case e1000_82580:
 827        case e1000_i350:
 828        case e1000_i354:
 829        case e1000_i210:
 830        case e1000_i211:
 831                /* On 82580 and newer adapters the scheme is similar to 82576
 832                 * however instead of ordering column-major we have things
 833                 * ordered row-major.  So we traverse the table by using
 834                 * bit 0 as the column offset, and the remaining bits as the
 835                 * row index.
 836                 */
 837                if (rx_queue > IGB_N0_QUEUE)
 838                        igb_write_ivar(hw, msix_vector,
 839                                       rx_queue >> 1,
 840                                       (rx_queue & 0x1) << 4);
 841                if (tx_queue > IGB_N0_QUEUE)
 842                        igb_write_ivar(hw, msix_vector,
 843                                       tx_queue >> 1,
 844                                       ((tx_queue & 0x1) << 4) + 8);
 845                q_vector->eims_value = BIT(msix_vector);
 846                break;
 847        default:
 848                BUG();
 849                break;
 850        }
 851
 852        /* add q_vector eims value to global eims_enable_mask */
 853        adapter->eims_enable_mask |= q_vector->eims_value;
 854
 855        /* configure q_vector to set itr on first interrupt */
 856        q_vector->set_itr = 1;
 857}
 858
 859/**
 860 *  igb_configure_msix - Configure MSI-X hardware
 861 *  @adapter: board private structure to initialize
 862 *
 863 *  igb_configure_msix sets up the hardware to properly
 864 *  generate MSI-X interrupts.
 865 **/
 866static void igb_configure_msix(struct igb_adapter *adapter)
 867{
 868        u32 tmp;
 869        int i, vector = 0;
 870        struct e1000_hw *hw = &adapter->hw;
 871
 872        adapter->eims_enable_mask = 0;
 873
 874        /* set vector for other causes, i.e. link changes */
 875        switch (hw->mac.type) {
 876        case e1000_82575:
 877                tmp = rd32(E1000_CTRL_EXT);
 878                /* enable MSI-X PBA support*/
 879                tmp |= E1000_CTRL_EXT_PBA_CLR;
 880
 881                /* Auto-Mask interrupts upon ICR read. */
 882                tmp |= E1000_CTRL_EXT_EIAME;
 883                tmp |= E1000_CTRL_EXT_IRCA;
 884
 885                wr32(E1000_CTRL_EXT, tmp);
 886
 887                /* enable msix_other interrupt */
 888                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 889                adapter->eims_other = E1000_EIMS_OTHER;
 890
 891                break;
 892
 893        case e1000_82576:
 894        case e1000_82580:
 895        case e1000_i350:
 896        case e1000_i354:
 897        case e1000_i210:
 898        case e1000_i211:
 899                /* Turn on MSI-X capability first, or our settings
 900                 * won't stick.  And it will take days to debug.
 901                 */
 902                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 903                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 904                     E1000_GPIE_NSICR);
 905
 906                /* enable msix_other interrupt */
 907                adapter->eims_other = BIT(vector);
 908                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 909
 910                wr32(E1000_IVAR_MISC, tmp);
 911                break;
 912        default:
 913                /* do nothing, since nothing else supports MSI-X */
 914                break;
 915        } /* switch (hw->mac.type) */
 916
 917        adapter->eims_enable_mask |= adapter->eims_other;
 918
 919        for (i = 0; i < adapter->num_q_vectors; i++)
 920                igb_assign_vector(adapter->q_vector[i], vector++);
 921
 922        wrfl();
 923}
 924
 925/**
 926 *  igb_request_msix - Initialize MSI-X interrupts
 927 *  @adapter: board private structure to initialize
 928 *
 929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 930 *  kernel.
 931 **/
 932static int igb_request_msix(struct igb_adapter *adapter)
 933{
 934        unsigned int num_q_vectors = adapter->num_q_vectors;
 935        struct net_device *netdev = adapter->netdev;
 936        int i, err = 0, vector = 0, free_vector = 0;
 937
 938        err = request_irq(adapter->msix_entries[vector].vector,
 939                          igb_msix_other, 0, netdev->name, adapter);
 940        if (err)
 941                goto err_out;
 942
 943        if (num_q_vectors > MAX_Q_VECTORS) {
 944                num_q_vectors = MAX_Q_VECTORS;
 945                dev_warn(&adapter->pdev->dev,
 946                         "The number of queue vectors (%d) is higher than max allowed (%d)\n",
 947                         adapter->num_q_vectors, MAX_Q_VECTORS);
 948        }
 949        for (i = 0; i < num_q_vectors; i++) {
 950                struct igb_q_vector *q_vector = adapter->q_vector[i];
 951
 952                vector++;
 953
 954                q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 955
 956                if (q_vector->rx.ring && q_vector->tx.ring)
 957                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 958                                q_vector->rx.ring->queue_index);
 959                else if (q_vector->tx.ring)
 960                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 961                                q_vector->tx.ring->queue_index);
 962                else if (q_vector->rx.ring)
 963                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 964                                q_vector->rx.ring->queue_index);
 965                else
 966                        sprintf(q_vector->name, "%s-unused", netdev->name);
 967
 968                err = request_irq(adapter->msix_entries[vector].vector,
 969                                  igb_msix_ring, 0, q_vector->name,
 970                                  q_vector);
 971                if (err)
 972                        goto err_free;
 973        }
 974
 975        igb_configure_msix(adapter);
 976        return 0;
 977
 978err_free:
 979        /* free already assigned IRQs */
 980        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 981
 982        vector--;
 983        for (i = 0; i < vector; i++) {
 984                free_irq(adapter->msix_entries[free_vector++].vector,
 985                         adapter->q_vector[i]);
 986        }
 987err_out:
 988        return err;
 989}
 990
 991/**
 992 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 993 *  @adapter: board private structure to initialize
 994 *  @v_idx: Index of vector to be freed
 995 *
 996 *  This function frees the memory allocated to the q_vector.
 997 **/
 998static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
 999{
1000        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002        adapter->q_vector[v_idx] = NULL;
1003
1004        /* igb_get_stats64() might access the rings on this vector,
1005         * we must wait a grace period before freeing it.
1006         */
1007        if (q_vector)
1008                kfree_rcu(q_vector, rcu);
1009}
1010
1011/**
1012 *  igb_reset_q_vector - Reset config for interrupt vector
1013 *  @adapter: board private structure to initialize
1014 *  @v_idx: Index of vector to be reset
1015 *
1016 *  If NAPI is enabled it will delete any references to the
1017 *  NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
1019static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020{
1021        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024         * allocated. So, q_vector is NULL so we should stop here.
1025         */
1026        if (!q_vector)
1027                return;
1028
1029        if (q_vector->tx.ring)
1030                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032        if (q_vector->rx.ring)
1033                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035        netif_napi_del(&q_vector->napi);
1036
1037}
1038
1039static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040{
1041        int v_idx = adapter->num_q_vectors;
1042
1043        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044                pci_disable_msix(adapter->pdev);
1045        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046                pci_disable_msi(adapter->pdev);
1047
1048        while (v_idx--)
1049                igb_reset_q_vector(adapter, v_idx);
1050}
1051
1052/**
1053 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 *  @adapter: board private structure to initialize
1055 *
1056 *  This function frees the memory allocated to the q_vectors.  In addition if
1057 *  NAPI is enabled it will delete any references to the NAPI struct prior
1058 *  to freeing the q_vector.
1059 **/
1060static void igb_free_q_vectors(struct igb_adapter *adapter)
1061{
1062        int v_idx = adapter->num_q_vectors;
1063
1064        adapter->num_tx_queues = 0;
1065        adapter->num_rx_queues = 0;
1066        adapter->num_q_vectors = 0;
1067
1068        while (v_idx--) {
1069                igb_reset_q_vector(adapter, v_idx);
1070                igb_free_q_vector(adapter, v_idx);
1071        }
1072}
1073
1074/**
1075 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 *  @adapter: board private structure to initialize
1077 *
1078 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 *  MSI-X interrupts allocated.
1080 */
1081static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082{
1083        igb_free_q_vectors(adapter);
1084        igb_reset_interrupt_capability(adapter);
1085}
1086
1087/**
1088 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 *  @adapter: board private structure to initialize
1090 *  @msix: boolean value of MSIX capability
1091 *
1092 *  Attempt to configure interrupts using the best available
1093 *  capabilities of the hardware and kernel.
1094 **/
1095static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096{
1097        int err;
1098        int numvecs, i;
1099
1100        if (!msix)
1101                goto msi_only;
1102        adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104        /* Number of supported queues. */
1105        adapter->num_rx_queues = adapter->rss_queues;
1106        if (adapter->vfs_allocated_count)
1107                adapter->num_tx_queues = 1;
1108        else
1109                adapter->num_tx_queues = adapter->rss_queues;
1110
1111        /* start with one vector for every Rx queue */
1112        numvecs = adapter->num_rx_queues;
1113
1114        /* if Tx handler is separate add 1 for every Tx queue */
1115        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116                numvecs += adapter->num_tx_queues;
1117
1118        /* store the number of vectors reserved for queues */
1119        adapter->num_q_vectors = numvecs;
1120
1121        /* add 1 vector for link status interrupts */
1122        numvecs++;
1123        for (i = 0; i < numvecs; i++)
1124                adapter->msix_entries[i].entry = i;
1125
1126        err = pci_enable_msix_range(adapter->pdev,
1127                                    adapter->msix_entries,
1128                                    numvecs,
1129                                    numvecs);
1130        if (err > 0)
1131                return;
1132
1133        igb_reset_interrupt_capability(adapter);
1134
1135        /* If we can't do MSI-X, try MSI */
1136msi_only:
1137        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138#ifdef CONFIG_PCI_IOV
1139        /* disable SR-IOV for non MSI-X configurations */
1140        if (adapter->vf_data) {
1141                struct e1000_hw *hw = &adapter->hw;
1142                /* disable iov and allow time for transactions to clear */
1143                pci_disable_sriov(adapter->pdev);
1144                msleep(500);
1145
1146                kfree(adapter->vf_mac_list);
1147                adapter->vf_mac_list = NULL;
1148                kfree(adapter->vf_data);
1149                adapter->vf_data = NULL;
1150                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151                wrfl();
1152                msleep(100);
1153                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154        }
1155#endif
1156        adapter->vfs_allocated_count = 0;
1157        adapter->rss_queues = 1;
1158        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159        adapter->num_rx_queues = 1;
1160        adapter->num_tx_queues = 1;
1161        adapter->num_q_vectors = 1;
1162        if (!pci_enable_msi(adapter->pdev))
1163                adapter->flags |= IGB_FLAG_HAS_MSI;
1164}
1165
1166static void igb_add_ring(struct igb_ring *ring,
1167                         struct igb_ring_container *head)
1168{
1169        head->ring = ring;
1170        head->count++;
1171}
1172
1173/**
1174 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 *  @adapter: board private structure to initialize
1176 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 *  @v_idx: index of vector in adapter struct
1178 *  @txr_count: total number of Tx rings to allocate
1179 *  @txr_idx: index of first Tx ring to allocate
1180 *  @rxr_count: total number of Rx rings to allocate
1181 *  @rxr_idx: index of first Rx ring to allocate
1182 *
1183 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184 **/
1185static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186                              int v_count, int v_idx,
1187                              int txr_count, int txr_idx,
1188                              int rxr_count, int rxr_idx)
1189{
1190        struct igb_q_vector *q_vector;
1191        struct igb_ring *ring;
1192        int ring_count;
1193        size_t size;
1194
1195        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196        if (txr_count > 1 || rxr_count > 1)
1197                return -ENOMEM;
1198
1199        ring_count = txr_count + rxr_count;
1200        size = struct_size(q_vector, ring, ring_count);
1201
1202        /* allocate q_vector and rings */
1203        q_vector = adapter->q_vector[v_idx];
1204        if (!q_vector) {
1205                q_vector = kzalloc(size, GFP_KERNEL);
1206        } else if (size > ksize(q_vector)) {
1207                kfree_rcu(q_vector, rcu);
1208                q_vector = kzalloc(size, GFP_KERNEL);
1209        } else {
1210                memset(q_vector, 0, size);
1211        }
1212        if (!q_vector)
1213                return -ENOMEM;
1214
1215        /* initialize NAPI */
1216        netif_napi_add(adapter->netdev, &q_vector->napi,
1217                       igb_poll, 64);
1218
1219        /* tie q_vector and adapter together */
1220        adapter->q_vector[v_idx] = q_vector;
1221        q_vector->adapter = adapter;
1222
1223        /* initialize work limits */
1224        q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226        /* initialize ITR configuration */
1227        q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228        q_vector->itr_val = IGB_START_ITR;
1229
1230        /* initialize pointer to rings */
1231        ring = q_vector->ring;
1232
1233        /* intialize ITR */
1234        if (rxr_count) {
1235                /* rx or rx/tx vector */
1236                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                        q_vector->itr_val = adapter->rx_itr_setting;
1238        } else {
1239                /* tx only vector */
1240                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                        q_vector->itr_val = adapter->tx_itr_setting;
1242        }
1243
1244        if (txr_count) {
1245                /* assign generic ring traits */
1246                ring->dev = &adapter->pdev->dev;
1247                ring->netdev = adapter->netdev;
1248
1249                /* configure backlink on ring */
1250                ring->q_vector = q_vector;
1251
1252                /* update q_vector Tx values */
1253                igb_add_ring(ring, &q_vector->tx);
1254
1255                /* For 82575, context index must be unique per ring. */
1256                if (adapter->hw.mac.type == e1000_82575)
1257                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                /* apply Tx specific ring traits */
1260                ring->count = adapter->tx_ring_count;
1261                ring->queue_index = txr_idx;
1262
1263                ring->cbs_enable = false;
1264                ring->idleslope = 0;
1265                ring->sendslope = 0;
1266                ring->hicredit = 0;
1267                ring->locredit = 0;
1268
1269                u64_stats_init(&ring->tx_syncp);
1270                u64_stats_init(&ring->tx_syncp2);
1271
1272                /* assign ring to adapter */
1273                adapter->tx_ring[txr_idx] = ring;
1274
1275                /* push pointer to next ring */
1276                ring++;
1277        }
1278
1279        if (rxr_count) {
1280                /* assign generic ring traits */
1281                ring->dev = &adapter->pdev->dev;
1282                ring->netdev = adapter->netdev;
1283
1284                /* configure backlink on ring */
1285                ring->q_vector = q_vector;
1286
1287                /* update q_vector Rx values */
1288                igb_add_ring(ring, &q_vector->rx);
1289
1290                /* set flag indicating ring supports SCTP checksum offload */
1291                if (adapter->hw.mac.type >= e1000_82576)
1292                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                /* On i350, i354, i210, and i211, loopback VLAN packets
1295                 * have the tag byte-swapped.
1296                 */
1297                if (adapter->hw.mac.type >= e1000_i350)
1298                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                /* apply Rx specific ring traits */
1301                ring->count = adapter->rx_ring_count;
1302                ring->queue_index = rxr_idx;
1303
1304                u64_stats_init(&ring->rx_syncp);
1305
1306                /* assign ring to adapter */
1307                adapter->rx_ring[rxr_idx] = ring;
1308        }
1309
1310        return 0;
1311}
1312
1313
1314/**
1315 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 *  @adapter: board private structure to initialize
1317 *
1318 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319 *  return -ENOMEM.
1320 **/
1321static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322{
1323        int q_vectors = adapter->num_q_vectors;
1324        int rxr_remaining = adapter->num_rx_queues;
1325        int txr_remaining = adapter->num_tx_queues;
1326        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327        int err;
1328
1329        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                for (; rxr_remaining; v_idx++) {
1331                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                 0, 0, 1, rxr_idx);
1333
1334                        if (err)
1335                                goto err_out;
1336
1337                        /* update counts and index */
1338                        rxr_remaining--;
1339                        rxr_idx++;
1340                }
1341        }
1342
1343        for (; v_idx < q_vectors; v_idx++) {
1344                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                         tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                if (err)
1351                        goto err_out;
1352
1353                /* update counts and index */
1354                rxr_remaining -= rqpv;
1355                txr_remaining -= tqpv;
1356                rxr_idx++;
1357                txr_idx++;
1358        }
1359
1360        return 0;
1361
1362err_out:
1363        adapter->num_tx_queues = 0;
1364        adapter->num_rx_queues = 0;
1365        adapter->num_q_vectors = 0;
1366
1367        while (v_idx--)
1368                igb_free_q_vector(adapter, v_idx);
1369
1370        return -ENOMEM;
1371}
1372
1373/**
1374 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 *  @adapter: board private structure to initialize
1376 *  @msix: boolean value of MSIX capability
1377 *
1378 *  This function initializes the interrupts and allocates all of the queues.
1379 **/
1380static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381{
1382        struct pci_dev *pdev = adapter->pdev;
1383        int err;
1384
1385        igb_set_interrupt_capability(adapter, msix);
1386
1387        err = igb_alloc_q_vectors(adapter);
1388        if (err) {
1389                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                goto err_alloc_q_vectors;
1391        }
1392
1393        igb_cache_ring_register(adapter);
1394
1395        return 0;
1396
1397err_alloc_q_vectors:
1398        igb_reset_interrupt_capability(adapter);
1399        return err;
1400}
1401
1402/**
1403 *  igb_request_irq - initialize interrupts
1404 *  @adapter: board private structure to initialize
1405 *
1406 *  Attempts to configure interrupts using the best available
1407 *  capabilities of the hardware and kernel.
1408 **/
1409static int igb_request_irq(struct igb_adapter *adapter)
1410{
1411        struct net_device *netdev = adapter->netdev;
1412        struct pci_dev *pdev = adapter->pdev;
1413        int err = 0;
1414
1415        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                err = igb_request_msix(adapter);
1417                if (!err)
1418                        goto request_done;
1419                /* fall back to MSI */
1420                igb_free_all_tx_resources(adapter);
1421                igb_free_all_rx_resources(adapter);
1422
1423                igb_clear_interrupt_scheme(adapter);
1424                err = igb_init_interrupt_scheme(adapter, false);
1425                if (err)
1426                        goto request_done;
1427
1428                igb_setup_all_tx_resources(adapter);
1429                igb_setup_all_rx_resources(adapter);
1430                igb_configure(adapter);
1431        }
1432
1433        igb_assign_vector(adapter->q_vector[0], 0);
1434
1435        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                  netdev->name, adapter);
1438                if (!err)
1439                        goto request_done;
1440
1441                /* fall back to legacy interrupts */
1442                igb_reset_interrupt_capability(adapter);
1443                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444        }
1445
1446        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                          netdev->name, adapter);
1448
1449        if (err)
1450                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                        err);
1452
1453request_done:
1454        return err;
1455}
1456
1457static void igb_free_irq(struct igb_adapter *adapter)
1458{
1459        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                int vector = 0, i;
1461
1462                free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                for (i = 0; i < adapter->num_q_vectors; i++)
1465                        free_irq(adapter->msix_entries[vector++].vector,
1466                                 adapter->q_vector[i]);
1467        } else {
1468                free_irq(adapter->pdev->irq, adapter);
1469        }
1470}
1471
1472/**
1473 *  igb_irq_disable - Mask off interrupt generation on the NIC
1474 *  @adapter: board private structure
1475 **/
1476static void igb_irq_disable(struct igb_adapter *adapter)
1477{
1478        struct e1000_hw *hw = &adapter->hw;
1479
1480        /* we need to be careful when disabling interrupts.  The VFs are also
1481         * mapped into these registers and so clearing the bits can cause
1482         * issues on the VF drivers so we only need to clear what we set
1483         */
1484        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                u32 regval = rd32(E1000_EIAM);
1486
1487                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                regval = rd32(E1000_EIAC);
1490                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491        }
1492
1493        wr32(E1000_IAM, 0);
1494        wr32(E1000_IMC, ~0);
1495        wrfl();
1496        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                int i;
1498
1499                for (i = 0; i < adapter->num_q_vectors; i++)
1500                        synchronize_irq(adapter->msix_entries[i].vector);
1501        } else {
1502                synchronize_irq(adapter->pdev->irq);
1503        }
1504}
1505
1506/**
1507 *  igb_irq_enable - Enable default interrupt generation settings
1508 *  @adapter: board private structure
1509 **/
1510static void igb_irq_enable(struct igb_adapter *adapter)
1511{
1512        struct e1000_hw *hw = &adapter->hw;
1513
1514        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                u32 regval = rd32(E1000_EIAC);
1517
1518                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                regval = rd32(E1000_EIAM);
1520                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                if (adapter->vfs_allocated_count) {
1523                        wr32(E1000_MBVFIMR, 0xFF);
1524                        ims |= E1000_IMS_VMMB;
1525                }
1526                wr32(E1000_IMS, ims);
1527        } else {
1528                wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                E1000_IMS_DRSTA);
1530                wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                E1000_IMS_DRSTA);
1532        }
1533}
1534
1535static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536{
1537        struct e1000_hw *hw = &adapter->hw;
1538        u16 pf_id = adapter->vfs_allocated_count;
1539        u16 vid = adapter->hw.mng_cookie.vlan_id;
1540        u16 old_vid = adapter->mng_vlan_id;
1541
1542        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                /* add VID to filter table */
1544                igb_vfta_set(hw, vid, pf_id, true, true);
1545                adapter->mng_vlan_id = vid;
1546        } else {
1547                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548        }
1549
1550        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551            (vid != old_vid) &&
1552            !test_bit(old_vid, adapter->active_vlans)) {
1553                /* remove VID from filter table */
1554                igb_vfta_set(hw, vid, pf_id, false, true);
1555        }
1556}
1557
1558/**
1559 *  igb_release_hw_control - release control of the h/w to f/w
1560 *  @adapter: address of board private structure
1561 *
1562 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 *  For ASF and Pass Through versions of f/w this means that the
1564 *  driver is no longer loaded.
1565 **/
1566static void igb_release_hw_control(struct igb_adapter *adapter)
1567{
1568        struct e1000_hw *hw = &adapter->hw;
1569        u32 ctrl_ext;
1570
1571        /* Let firmware take over control of h/w */
1572        ctrl_ext = rd32(E1000_CTRL_EXT);
1573        wr32(E1000_CTRL_EXT,
1574                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575}
1576
1577/**
1578 *  igb_get_hw_control - get control of the h/w from f/w
1579 *  @adapter: address of board private structure
1580 *
1581 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 *  For ASF and Pass Through versions of f/w this means that
1583 *  the driver is loaded.
1584 **/
1585static void igb_get_hw_control(struct igb_adapter *adapter)
1586{
1587        struct e1000_hw *hw = &adapter->hw;
1588        u32 ctrl_ext;
1589
1590        /* Let firmware know the driver has taken over */
1591        ctrl_ext = rd32(E1000_CTRL_EXT);
1592        wr32(E1000_CTRL_EXT,
1593                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594}
1595
1596static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597{
1598        struct net_device *netdev = adapter->netdev;
1599        struct e1000_hw *hw = &adapter->hw;
1600
1601        WARN_ON(hw->mac.type != e1000_i210);
1602
1603        if (enable)
1604                adapter->flags |= IGB_FLAG_FQTSS;
1605        else
1606                adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608        if (netif_running(netdev))
1609                schedule_work(&adapter->reset_task);
1610}
1611
1612static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613{
1614        return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615}
1616
1617static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618                                   enum tx_queue_prio prio)
1619{
1620        u32 val;
1621
1622        WARN_ON(hw->mac.type != e1000_i210);
1623        WARN_ON(queue < 0 || queue > 4);
1624
1625        val = rd32(E1000_I210_TXDCTL(queue));
1626
1627        if (prio == TX_QUEUE_PRIO_HIGH)
1628                val |= E1000_TXDCTL_PRIORITY;
1629        else
1630                val &= ~E1000_TXDCTL_PRIORITY;
1631
1632        wr32(E1000_I210_TXDCTL(queue), val);
1633}
1634
1635static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636{
1637        u32 val;
1638
1639        WARN_ON(hw->mac.type != e1000_i210);
1640        WARN_ON(queue < 0 || queue > 1);
1641
1642        val = rd32(E1000_I210_TQAVCC(queue));
1643
1644        if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645                val |= E1000_TQAVCC_QUEUEMODE;
1646        else
1647                val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649        wr32(E1000_I210_TQAVCC(queue), val);
1650}
1651
1652static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653{
1654        int i;
1655
1656        for (i = 0; i < adapter->num_tx_queues; i++) {
1657                if (adapter->tx_ring[i]->cbs_enable)
1658                        return true;
1659        }
1660
1661        return false;
1662}
1663
1664static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665{
1666        int i;
1667
1668        for (i = 0; i < adapter->num_tx_queues; i++) {
1669                if (adapter->tx_ring[i]->launchtime_enable)
1670                        return true;
1671        }
1672
1673        return false;
1674}
1675
1676/**
1677 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 *  @adapter: pointer to adapter struct
1679 *  @queue: queue number
1680 *
1681 *  Configure CBS and Launchtime for a given hardware queue.
1682 *  Parameters are retrieved from the correct Tx ring, so
1683 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 *  for setting those correctly prior to this function being called.
1685 **/
1686static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687{
1688        struct net_device *netdev = adapter->netdev;
1689        struct e1000_hw *hw = &adapter->hw;
1690        struct igb_ring *ring;
1691        u32 tqavcc, tqavctrl;
1692        u16 value;
1693
1694        WARN_ON(hw->mac.type != e1000_i210);
1695        WARN_ON(queue < 0 || queue > 1);
1696        ring = adapter->tx_ring[queue];
1697
1698        /* If any of the Qav features is enabled, configure queues as SR and
1699         * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700         * as SP.
1701         */
1702        if (ring->cbs_enable || ring->launchtime_enable) {
1703                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704                set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705        } else {
1706                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707                set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708        }
1709
1710        /* If CBS is enabled, set DataTranARB and config its parameters. */
1711        if (ring->cbs_enable || queue == 0) {
1712                /* i210 does not allow the queue 0 to be in the Strict
1713                 * Priority mode while the Qav mode is enabled, so,
1714                 * instead of disabling strict priority mode, we give
1715                 * queue 0 the maximum of credits possible.
1716                 *
1717                 * See section 8.12.19 of the i210 datasheet, "Note:
1718                 * Queue0 QueueMode must be set to 1b when
1719                 * TransmitMode is set to Qav."
1720                 */
1721                if (queue == 0 && !ring->cbs_enable) {
1722                        /* max "linkspeed" idleslope in kbps */
1723                        ring->idleslope = 1000000;
1724                        ring->hicredit = ETH_FRAME_LEN;
1725                }
1726
1727                /* Always set data transfer arbitration to credit-based
1728                 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729                 * the queues.
1730                 */
1731                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732                tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734
1735                /* According to i210 datasheet section 7.2.7.7, we should set
1736                 * the 'idleSlope' field from TQAVCC register following the
1737                 * equation:
1738                 *
1739                 * For 100 Mbps link speed:
1740                 *
1741                 *     value = BW * 0x7735 * 0.2                          (E1)
1742                 *
1743                 * For 1000Mbps link speed:
1744                 *
1745                 *     value = BW * 0x7735 * 2                            (E2)
1746                 *
1747                 * E1 and E2 can be merged into one equation as shown below.
1748                 * Note that 'link-speed' is in Mbps.
1749                 *
1750                 *     value = BW * 0x7735 * 2 * link-speed
1751                 *                           --------------               (E3)
1752                 *                                1000
1753                 *
1754                 * 'BW' is the percentage bandwidth out of full link speed
1755                 * which can be found with the following equation. Note that
1756                 * idleSlope here is the parameter from this function which
1757                 * is in kbps.
1758                 *
1759                 *     BW =     idleSlope
1760                 *          -----------------                             (E4)
1761                 *          link-speed * 1000
1762                 *
1763                 * That said, we can come up with a generic equation to
1764                 * calculate the value we should set it TQAVCC register by
1765                 * replacing 'BW' in E3 by E4. The resulting equation is:
1766                 *
1767                 * value =     idleSlope     * 0x7735 * 2 * link-speed
1768                 *         -----------------            --------------    (E5)
1769                 *         link-speed * 1000                 1000
1770                 *
1771                 * 'link-speed' is present in both sides of the fraction so
1772                 * it is canceled out. The final equation is the following:
1773                 *
1774                 *     value = idleSlope * 61034
1775                 *             -----------------                          (E6)
1776                 *                  1000000
1777                 *
1778                 * NOTE: For i210, given the above, we can see that idleslope
1779                 *       is represented in 16.38431 kbps units by the value at
1780                 *       the TQAVCC register (1Gbps / 61034), which reduces
1781                 *       the granularity for idleslope increments.
1782                 *       For instance, if you want to configure a 2576kbps
1783                 *       idleslope, the value to be written on the register
1784                 *       would have to be 157.23. If rounded down, you end
1785                 *       up with less bandwidth available than originally
1786                 *       required (~2572 kbps). If rounded up, you end up
1787                 *       with a higher bandwidth (~2589 kbps). Below the
1788                 *       approach we take is to always round up the
1789                 *       calculated value, so the resulting bandwidth might
1790                 *       be slightly higher for some configurations.
1791                 */
1792                value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793
1794                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796                tqavcc |= value;
1797                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799                wr32(E1000_I210_TQAVHC(queue),
1800                     0x80000000 + ring->hicredit * 0x7735);
1801        } else {
1802
1803                /* Set idleSlope to zero. */
1804                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807
1808                /* Set hiCredit to zero. */
1809                wr32(E1000_I210_TQAVHC(queue), 0);
1810
1811                /* If CBS is not enabled for any queues anymore, then return to
1812                 * the default state of Data Transmission Arbitration on
1813                 * TQAVCTRL.
1814                 */
1815                if (!is_any_cbs_enabled(adapter)) {
1816                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819                }
1820        }
1821
1822        /* If LaunchTime is enabled, set DataTranTIM. */
1823        if (ring->launchtime_enable) {
1824                /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825                 * for any of the SR queues, and configure fetchtime delta.
1826                 * XXX NOTE:
1827                 *     - LaunchTime will be enabled for all SR queues.
1828                 *     - A fixed offset can be added relative to the launch
1829                 *       time of all packets if configured at reg LAUNCH_OS0.
1830                 *       We are keeping it as 0 for now (default value).
1831                 */
1832                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833                tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834                       E1000_TQAVCTRL_FETCHTIME_DELTA;
1835                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836        } else {
1837                /* If Launchtime is not enabled for any SR queues anymore,
1838                 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839                 * effectively disabling Launchtime.
1840                 */
1841                if (!is_any_txtime_enabled(adapter)) {
1842                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844                        tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846                }
1847        }
1848
1849        /* XXX: In i210 controller the sendSlope and loCredit parameters from
1850         * CBS are not configurable by software so we don't do any 'controller
1851         * configuration' in respect to these parameters.
1852         */
1853
1854        netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855                   ring->cbs_enable ? "enabled" : "disabled",
1856                   ring->launchtime_enable ? "enabled" : "disabled",
1857                   queue,
1858                   ring->idleslope, ring->sendslope,
1859                   ring->hicredit, ring->locredit);
1860}
1861
1862static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863                                  bool enable)
1864{
1865        struct igb_ring *ring;
1866
1867        if (queue < 0 || queue > adapter->num_tx_queues)
1868                return -EINVAL;
1869
1870        ring = adapter->tx_ring[queue];
1871        ring->launchtime_enable = enable;
1872
1873        return 0;
1874}
1875
1876static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877                               bool enable, int idleslope, int sendslope,
1878                               int hicredit, int locredit)
1879{
1880        struct igb_ring *ring;
1881
1882        if (queue < 0 || queue > adapter->num_tx_queues)
1883                return -EINVAL;
1884
1885        ring = adapter->tx_ring[queue];
1886
1887        ring->cbs_enable = enable;
1888        ring->idleslope = idleslope;
1889        ring->sendslope = sendslope;
1890        ring->hicredit = hicredit;
1891        ring->locredit = locredit;
1892
1893        return 0;
1894}
1895
1896/**
1897 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898 *  @adapter: pointer to adapter struct
1899 *
1900 *  Configure TQAVCTRL register switching the controller's Tx mode
1901 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902 *  a call to igb_config_tx_modes() per queue so any previously saved
1903 *  Tx parameters are applied.
1904 **/
1905static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906{
1907        struct net_device *netdev = adapter->netdev;
1908        struct e1000_hw *hw = &adapter->hw;
1909        u32 val;
1910
1911        /* Only i210 controller supports changing the transmission mode. */
1912        if (hw->mac.type != e1000_i210)
1913                return;
1914
1915        if (is_fqtss_enabled(adapter)) {
1916                int i, max_queue;
1917
1918                /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919                 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920                 * so SP queues wait for SR ones.
1921                 */
1922                val = rd32(E1000_I210_TQAVCTRL);
1923                val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924                val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925                wr32(E1000_I210_TQAVCTRL, val);
1926
1927                /* Configure Tx and Rx packet buffers sizes as described in
1928                 * i210 datasheet section 7.2.7.7.
1929                 */
1930                val = rd32(E1000_TXPBS);
1931                val &= ~I210_TXPBSIZE_MASK;
1932                val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1933                        I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1934                wr32(E1000_TXPBS, val);
1935
1936                val = rd32(E1000_RXPBS);
1937                val &= ~I210_RXPBSIZE_MASK;
1938                val |= I210_RXPBSIZE_PB_30KB;
1939                wr32(E1000_RXPBS, val);
1940
1941                /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942                 * register should not exceed the buffer size programmed in
1943                 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944                 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945                 * 4kB / 64.
1946                 *
1947                 * However, when we do so, no frame from queue 2 and 3 are
1948                 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949                 * or _equal_ to the buffer size programmed in TXPBS. For this
1950                 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951                 */
1952                val = (4096 - 1) / 64;
1953                wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955                /* Since FQTSS mode is enabled, apply any CBS configuration
1956                 * previously set. If no previous CBS configuration has been
1957                 * done, then the initial configuration is applied, which means
1958                 * CBS is disabled.
1959                 */
1960                max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961                            adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963                for (i = 0; i < max_queue; i++) {
1964                        igb_config_tx_modes(adapter, i);
1965                }
1966        } else {
1967                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969                wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971                val = rd32(E1000_I210_TQAVCTRL);
1972                /* According to Section 8.12.21, the other flags we've set when
1973                 * enabling FQTSS are not relevant when disabling FQTSS so we
1974                 * don't set they here.
1975                 */
1976                val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977                wr32(E1000_I210_TQAVCTRL, val);
1978        }
1979
1980        netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981                   "enabled" : "disabled");
1982}
1983
1984/**
1985 *  igb_configure - configure the hardware for RX and TX
1986 *  @adapter: private board structure
1987 **/
1988static void igb_configure(struct igb_adapter *adapter)
1989{
1990        struct net_device *netdev = adapter->netdev;
1991        int i;
1992
1993        igb_get_hw_control(adapter);
1994        igb_set_rx_mode(netdev);
1995        igb_setup_tx_mode(adapter);
1996
1997        igb_restore_vlan(adapter);
1998
1999        igb_setup_tctl(adapter);
2000        igb_setup_mrqc(adapter);
2001        igb_setup_rctl(adapter);
2002
2003        igb_nfc_filter_restore(adapter);
2004        igb_configure_tx(adapter);
2005        igb_configure_rx(adapter);
2006
2007        igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009        /* call igb_desc_unused which always leaves
2010         * at least 1 descriptor unused to make sure
2011         * next_to_use != next_to_clean
2012         */
2013        for (i = 0; i < adapter->num_rx_queues; i++) {
2014                struct igb_ring *ring = adapter->rx_ring[i];
2015                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016        }
2017}
2018
2019/**
2020 *  igb_power_up_link - Power up the phy/serdes link
2021 *  @adapter: address of board private structure
2022 **/
2023void igb_power_up_link(struct igb_adapter *adapter)
2024{
2025        igb_reset_phy(&adapter->hw);
2026
2027        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028                igb_power_up_phy_copper(&adapter->hw);
2029        else
2030                igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032        igb_setup_link(&adapter->hw);
2033}
2034
2035/**
2036 *  igb_power_down_link - Power down the phy/serdes link
2037 *  @adapter: address of board private structure
2038 */
2039static void igb_power_down_link(struct igb_adapter *adapter)
2040{
2041        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042                igb_power_down_phy_copper_82575(&adapter->hw);
2043        else
2044                igb_shutdown_serdes_link_82575(&adapter->hw);
2045}
2046
2047/**
2048 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2049 * @adapter: address of the board private structure
2050 **/
2051static void igb_check_swap_media(struct igb_adapter *adapter)
2052{
2053        struct e1000_hw *hw = &adapter->hw;
2054        u32 ctrl_ext, connsw;
2055        bool swap_now = false;
2056
2057        ctrl_ext = rd32(E1000_CTRL_EXT);
2058        connsw = rd32(E1000_CONNSW);
2059
2060        /* need to live swap if current media is copper and we have fiber/serdes
2061         * to go to.
2062         */
2063
2064        if ((hw->phy.media_type == e1000_media_type_copper) &&
2065            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066                swap_now = true;
2067        } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068                   !(connsw & E1000_CONNSW_SERDESD)) {
2069                /* copper signal takes time to appear */
2070                if (adapter->copper_tries < 4) {
2071                        adapter->copper_tries++;
2072                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073                        wr32(E1000_CONNSW, connsw);
2074                        return;
2075                } else {
2076                        adapter->copper_tries = 0;
2077                        if ((connsw & E1000_CONNSW_PHYSD) &&
2078                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079                                swap_now = true;
2080                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081                                wr32(E1000_CONNSW, connsw);
2082                        }
2083                }
2084        }
2085
2086        if (!swap_now)
2087                return;
2088
2089        switch (hw->phy.media_type) {
2090        case e1000_media_type_copper:
2091                netdev_info(adapter->netdev,
2092                        "MAS: changing media to fiber/serdes\n");
2093                ctrl_ext |=
2094                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096                adapter->copper_tries = 0;
2097                break;
2098        case e1000_media_type_internal_serdes:
2099        case e1000_media_type_fiber:
2100                netdev_info(adapter->netdev,
2101                        "MAS: changing media to copper\n");
2102                ctrl_ext &=
2103                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105                break;
2106        default:
2107                /* shouldn't get here during regular operation */
2108                netdev_err(adapter->netdev,
2109                        "AMS: Invalid media type found, returning\n");
2110                break;
2111        }
2112        wr32(E1000_CTRL_EXT, ctrl_ext);
2113}
2114
2115/**
2116 *  igb_up - Open the interface and prepare it to handle traffic
2117 *  @adapter: board private structure
2118 **/
2119int igb_up(struct igb_adapter *adapter)
2120{
2121        struct e1000_hw *hw = &adapter->hw;
2122        int i;
2123
2124        /* hardware has been reset, we need to reload some things */
2125        igb_configure(adapter);
2126
2127        clear_bit(__IGB_DOWN, &adapter->state);
2128
2129        for (i = 0; i < adapter->num_q_vectors; i++)
2130                napi_enable(&(adapter->q_vector[i]->napi));
2131
2132        if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133                igb_configure_msix(adapter);
2134        else
2135                igb_assign_vector(adapter->q_vector[0], 0);
2136
2137        /* Clear any pending interrupts. */
2138        rd32(E1000_TSICR);
2139        rd32(E1000_ICR);
2140        igb_irq_enable(adapter);
2141
2142        /* notify VFs that reset has been completed */
2143        if (adapter->vfs_allocated_count) {
2144                u32 reg_data = rd32(E1000_CTRL_EXT);
2145
2146                reg_data |= E1000_CTRL_EXT_PFRSTD;
2147                wr32(E1000_CTRL_EXT, reg_data);
2148        }
2149
2150        netif_tx_start_all_queues(adapter->netdev);
2151
2152        /* start the watchdog. */
2153        hw->mac.get_link_status = 1;
2154        schedule_work(&adapter->watchdog_task);
2155
2156        if ((adapter->flags & IGB_FLAG_EEE) &&
2157            (!hw->dev_spec._82575.eee_disable))
2158                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159
2160        return 0;
2161}
2162
2163void igb_down(struct igb_adapter *adapter)
2164{
2165        struct net_device *netdev = adapter->netdev;
2166        struct e1000_hw *hw = &adapter->hw;
2167        u32 tctl, rctl;
2168        int i;
2169
2170        /* signal that we're down so the interrupt handler does not
2171         * reschedule our watchdog timer
2172         */
2173        set_bit(__IGB_DOWN, &adapter->state);
2174
2175        /* disable receives in the hardware */
2176        rctl = rd32(E1000_RCTL);
2177        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178        /* flush and sleep below */
2179
2180        igb_nfc_filter_exit(adapter);
2181
2182        netif_carrier_off(netdev);
2183        netif_tx_stop_all_queues(netdev);
2184
2185        /* disable transmits in the hardware */
2186        tctl = rd32(E1000_TCTL);
2187        tctl &= ~E1000_TCTL_EN;
2188        wr32(E1000_TCTL, tctl);
2189        /* flush both disables and wait for them to finish */
2190        wrfl();
2191        usleep_range(10000, 11000);
2192
2193        igb_irq_disable(adapter);
2194
2195        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196
2197        for (i = 0; i < adapter->num_q_vectors; i++) {
2198                if (adapter->q_vector[i]) {
2199                        napi_synchronize(&adapter->q_vector[i]->napi);
2200                        napi_disable(&adapter->q_vector[i]->napi);
2201                }
2202        }
2203
2204        del_timer_sync(&adapter->watchdog_timer);
2205        del_timer_sync(&adapter->phy_info_timer);
2206
2207        /* record the stats before reset*/
2208        spin_lock(&adapter->stats64_lock);
2209        igb_update_stats(adapter);
2210        spin_unlock(&adapter->stats64_lock);
2211
2212        adapter->link_speed = 0;
2213        adapter->link_duplex = 0;
2214
2215        if (!pci_channel_offline(adapter->pdev))
2216                igb_reset(adapter);
2217
2218        /* clear VLAN promisc flag so VFTA will be updated if necessary */
2219        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220
2221        igb_clean_all_tx_rings(adapter);
2222        igb_clean_all_rx_rings(adapter);
2223#ifdef CONFIG_IGB_DCA
2224
2225        /* since we reset the hardware DCA settings were cleared */
2226        igb_setup_dca(adapter);
2227#endif
2228}
2229
2230void igb_reinit_locked(struct igb_adapter *adapter)
2231{
2232        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233                usleep_range(1000, 2000);
2234        igb_down(adapter);
2235        igb_up(adapter);
2236        clear_bit(__IGB_RESETTING, &adapter->state);
2237}
2238
2239/** igb_enable_mas - Media Autosense re-enable after swap
2240 *
2241 * @adapter: adapter struct
2242 **/
2243static void igb_enable_mas(struct igb_adapter *adapter)
2244{
2245        struct e1000_hw *hw = &adapter->hw;
2246        u32 connsw = rd32(E1000_CONNSW);
2247
2248        /* configure for SerDes media detect */
2249        if ((hw->phy.media_type == e1000_media_type_copper) &&
2250            (!(connsw & E1000_CONNSW_SERDESD))) {
2251                connsw |= E1000_CONNSW_ENRGSRC;
2252                connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253                wr32(E1000_CONNSW, connsw);
2254                wrfl();
2255        }
2256}
2257
2258void igb_reset(struct igb_adapter *adapter)
2259{
2260        struct pci_dev *pdev = adapter->pdev;
2261        struct e1000_hw *hw = &adapter->hw;
2262        struct e1000_mac_info *mac = &hw->mac;
2263        struct e1000_fc_info *fc = &hw->fc;
2264        u32 pba, hwm;
2265
2266        /* Repartition Pba for greater than 9k mtu
2267         * To take effect CTRL.RST is required.
2268         */
2269        switch (mac->type) {
2270        case e1000_i350:
2271        case e1000_i354:
2272        case e1000_82580:
2273                pba = rd32(E1000_RXPBS);
2274                pba = igb_rxpbs_adjust_82580(pba);
2275                break;
2276        case e1000_82576:
2277                pba = rd32(E1000_RXPBS);
2278                pba &= E1000_RXPBS_SIZE_MASK_82576;
2279                break;
2280        case e1000_82575:
2281        case e1000_i210:
2282        case e1000_i211:
2283        default:
2284                pba = E1000_PBA_34K;
2285                break;
2286        }
2287
2288        if (mac->type == e1000_82575) {
2289                u32 min_rx_space, min_tx_space, needed_tx_space;
2290
2291                /* write Rx PBA so that hardware can report correct Tx PBA */
2292                wr32(E1000_PBA, pba);
2293
2294                /* To maintain wire speed transmits, the Tx FIFO should be
2295                 * large enough to accommodate two full transmit packets,
2296                 * rounded up to the next 1KB and expressed in KB.  Likewise,
2297                 * the Rx FIFO should be large enough to accommodate at least
2298                 * one full receive packet and is similarly rounded up and
2299                 * expressed in KB.
2300                 */
2301                min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302
2303                /* The Tx FIFO also stores 16 bytes of information about the Tx
2304                 * but don't include Ethernet FCS because hardware appends it.
2305                 * We only need to round down to the nearest 512 byte block
2306                 * count since the value we care about is 2 frames, not 1.
2307                 */
2308                min_tx_space = adapter->max_frame_size;
2309                min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310                min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311
2312                /* upper 16 bits has Tx packet buffer allocation size in KB */
2313                needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314
2315                /* If current Tx allocation is less than the min Tx FIFO size,
2316                 * and the min Tx FIFO size is less than the current Rx FIFO
2317                 * allocation, take space away from current Rx allocation.
2318                 */
2319                if (needed_tx_space < pba) {
2320                        pba -= needed_tx_space;
2321
2322                        /* if short on Rx space, Rx wins and must trump Tx
2323                         * adjustment
2324                         */
2325                        if (pba < min_rx_space)
2326                                pba = min_rx_space;
2327                }
2328
2329                /* adjust PBA for jumbo frames */
2330                wr32(E1000_PBA, pba);
2331        }
2332
2333        /* flow control settings
2334         * The high water mark must be low enough to fit one full frame
2335         * after transmitting the pause frame.  As such we must have enough
2336         * space to allow for us to complete our current transmit and then
2337         * receive the frame that is in progress from the link partner.
2338         * Set it to:
2339         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340         */
2341        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342
2343        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2344        fc->low_water = fc->high_water - 16;
2345        fc->pause_time = 0xFFFF;
2346        fc->send_xon = 1;
2347        fc->current_mode = fc->requested_mode;
2348
2349        /* disable receive for all VFs and wait one second */
2350        if (adapter->vfs_allocated_count) {
2351                int i;
2352
2353                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355
2356                /* ping all the active vfs to let them know we are going down */
2357                igb_ping_all_vfs(adapter);
2358
2359                /* disable transmits and receives */
2360                wr32(E1000_VFRE, 0);
2361                wr32(E1000_VFTE, 0);
2362        }
2363
2364        /* Allow time for pending master requests to run */
2365        hw->mac.ops.reset_hw(hw);
2366        wr32(E1000_WUC, 0);
2367
2368        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369                /* need to resetup here after media swap */
2370                adapter->ei.get_invariants(hw);
2371                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372        }
2373        if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2374            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375                igb_enable_mas(adapter);
2376        }
2377        if (hw->mac.ops.init_hw(hw))
2378                dev_err(&pdev->dev, "Hardware Error\n");
2379
2380        /* RAR registers were cleared during init_hw, clear mac table */
2381        igb_flush_mac_table(adapter);
2382        __dev_uc_unsync(adapter->netdev, NULL);
2383
2384        /* Recover default RAR entry */
2385        igb_set_default_mac_filter(adapter);
2386
2387        /* Flow control settings reset on hardware reset, so guarantee flow
2388         * control is off when forcing speed.
2389         */
2390        if (!hw->mac.autoneg)
2391                igb_force_mac_fc(hw);
2392
2393        igb_init_dmac(adapter, pba);
2394#ifdef CONFIG_IGB_HWMON
2395        /* Re-initialize the thermal sensor on i350 devices. */
2396        if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397                if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398                        /* If present, re-initialize the external thermal sensor
2399                         * interface.
2400                         */
2401                        if (adapter->ets)
2402                                mac->ops.init_thermal_sensor_thresh(hw);
2403                }
2404        }
2405#endif
2406        /* Re-establish EEE setting */
2407        if (hw->phy.media_type == e1000_media_type_copper) {
2408                switch (mac->type) {
2409                case e1000_i350:
2410                case e1000_i210:
2411                case e1000_i211:
2412                        igb_set_eee_i350(hw, true, true);
2413                        break;
2414                case e1000_i354:
2415                        igb_set_eee_i354(hw, true, true);
2416                        break;
2417                default:
2418                        break;
2419                }
2420        }
2421        if (!netif_running(adapter->netdev))
2422                igb_power_down_link(adapter);
2423
2424        igb_update_mng_vlan(adapter);
2425
2426        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428
2429        /* Re-enable PTP, where applicable. */
2430        if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431                igb_ptp_reset(adapter);
2432
2433        igb_get_phy_info(hw);
2434}
2435
2436static netdev_features_t igb_fix_features(struct net_device *netdev,
2437        netdev_features_t features)
2438{
2439        /* Since there is no support for separate Rx/Tx vlan accel
2440         * enable/disable make sure Tx flag is always in same state as Rx.
2441         */
2442        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443                features |= NETIF_F_HW_VLAN_CTAG_TX;
2444        else
2445                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446
2447        return features;
2448}
2449
2450static int igb_set_features(struct net_device *netdev,
2451        netdev_features_t features)
2452{
2453        netdev_features_t changed = netdev->features ^ features;
2454        struct igb_adapter *adapter = netdev_priv(netdev);
2455
2456        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457                igb_vlan_mode(netdev, features);
2458
2459        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460                return 0;
2461
2462        if (!(features & NETIF_F_NTUPLE)) {
2463                struct hlist_node *node2;
2464                struct igb_nfc_filter *rule;
2465
2466                spin_lock(&adapter->nfc_lock);
2467                hlist_for_each_entry_safe(rule, node2,
2468                                          &adapter->nfc_filter_list, nfc_node) {
2469                        igb_erase_filter(adapter, rule);
2470                        hlist_del(&rule->nfc_node);
2471                        kfree(rule);
2472                }
2473                spin_unlock(&adapter->nfc_lock);
2474                adapter->nfc_filter_count = 0;
2475        }
2476
2477        netdev->features = features;
2478
2479        if (netif_running(netdev))
2480                igb_reinit_locked(adapter);
2481        else
2482                igb_reset(adapter);
2483
2484        return 1;
2485}
2486
2487static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488                           struct net_device *dev,
2489                           const unsigned char *addr, u16 vid,
2490                           u16 flags,
2491                           struct netlink_ext_ack *extack)
2492{
2493        /* guarantee we can provide a unique filter for the unicast address */
2494        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495                struct igb_adapter *adapter = netdev_priv(dev);
2496                int vfn = adapter->vfs_allocated_count;
2497
2498                if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499                        return -ENOMEM;
2500        }
2501
2502        return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503}
2504
2505#define IGB_MAX_MAC_HDR_LEN     127
2506#define IGB_MAX_NETWORK_HDR_LEN 511
2507
2508static netdev_features_t
2509igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510                   netdev_features_t features)
2511{
2512        unsigned int network_hdr_len, mac_hdr_len;
2513
2514        /* Make certain the headers can be described by a context descriptor */
2515        mac_hdr_len = skb_network_header(skb) - skb->data;
2516        if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517                return features & ~(NETIF_F_HW_CSUM |
2518                                    NETIF_F_SCTP_CRC |
2519                                    NETIF_F_GSO_UDP_L4 |
2520                                    NETIF_F_HW_VLAN_CTAG_TX |
2521                                    NETIF_F_TSO |
2522                                    NETIF_F_TSO6);
2523
2524        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2525        if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2526                return features & ~(NETIF_F_HW_CSUM |
2527                                    NETIF_F_SCTP_CRC |
2528                                    NETIF_F_GSO_UDP_L4 |
2529                                    NETIF_F_TSO |
2530                                    NETIF_F_TSO6);
2531
2532        /* We can only support IPV4 TSO in tunnels if we can mangle the
2533         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534         */
2535        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536                features &= ~NETIF_F_TSO;
2537
2538        return features;
2539}
2540
2541static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542{
2543        if (!is_fqtss_enabled(adapter)) {
2544                enable_fqtss(adapter, true);
2545                return;
2546        }
2547
2548        igb_config_tx_modes(adapter, queue);
2549
2550        if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551                enable_fqtss(adapter, false);
2552}
2553
2554static int igb_offload_cbs(struct igb_adapter *adapter,
2555                           struct tc_cbs_qopt_offload *qopt)
2556{
2557        struct e1000_hw *hw = &adapter->hw;
2558        int err;
2559
2560        /* CBS offloading is only supported by i210 controller. */
2561        if (hw->mac.type != e1000_i210)
2562                return -EOPNOTSUPP;
2563
2564        /* CBS offloading is only supported by queue 0 and queue 1. */
2565        if (qopt->queue < 0 || qopt->queue > 1)
2566                return -EINVAL;
2567
2568        err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569                                  qopt->idleslope, qopt->sendslope,
2570                                  qopt->hicredit, qopt->locredit);
2571        if (err)
2572                return err;
2573
2574        igb_offload_apply(adapter, qopt->queue);
2575
2576        return 0;
2577}
2578
2579#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580#define VLAN_PRIO_FULL_MASK (0x07)
2581
2582static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583                                struct flow_cls_offload *f,
2584                                int traffic_class,
2585                                struct igb_nfc_filter *input)
2586{
2587        struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588        struct flow_dissector *dissector = rule->match.dissector;
2589        struct netlink_ext_ack *extack = f->common.extack;
2590
2591        if (dissector->used_keys &
2592            ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593              BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595              BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596                NL_SET_ERR_MSG_MOD(extack,
2597                                   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598                return -EOPNOTSUPP;
2599        }
2600
2601        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602                struct flow_match_eth_addrs match;
2603
2604                flow_rule_match_eth_addrs(rule, &match);
2605                if (!is_zero_ether_addr(match.mask->dst)) {
2606                        if (!is_broadcast_ether_addr(match.mask->dst)) {
2607                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608                                return -EINVAL;
2609                        }
2610
2611                        input->filter.match_flags |=
2612                                IGB_FILTER_FLAG_DST_MAC_ADDR;
2613                        ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614                }
2615
2616                if (!is_zero_ether_addr(match.mask->src)) {
2617                        if (!is_broadcast_ether_addr(match.mask->src)) {
2618                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619                                return -EINVAL;
2620                        }
2621
2622                        input->filter.match_flags |=
2623                                IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624                        ether_addr_copy(input->filter.src_addr, match.key->src);
2625                }
2626        }
2627
2628        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629                struct flow_match_basic match;
2630
2631                flow_rule_match_basic(rule, &match);
2632                if (match.mask->n_proto) {
2633                        if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635                                return -EINVAL;
2636                        }
2637
2638                        input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639                        input->filter.etype = match.key->n_proto;
2640                }
2641        }
2642
2643        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644                struct flow_match_vlan match;
2645
2646                flow_rule_match_vlan(rule, &match);
2647                if (match.mask->vlan_priority) {
2648                        if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650                                return -EINVAL;
2651                        }
2652
2653                        input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654                        input->filter.vlan_tci =
2655                                (__force __be16)match.key->vlan_priority;
2656                }
2657        }
2658
2659        input->action = traffic_class;
2660        input->cookie = f->cookie;
2661
2662        return 0;
2663}
2664
2665static int igb_configure_clsflower(struct igb_adapter *adapter,
2666                                   struct flow_cls_offload *cls_flower)
2667{
2668        struct netlink_ext_ack *extack = cls_flower->common.extack;
2669        struct igb_nfc_filter *filter, *f;
2670        int err, tc;
2671
2672        tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2673        if (tc < 0) {
2674                NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2675                return -EINVAL;
2676        }
2677
2678        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2679        if (!filter)
2680                return -ENOMEM;
2681
2682        err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2683        if (err < 0)
2684                goto err_parse;
2685
2686        spin_lock(&adapter->nfc_lock);
2687
2688        hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2689                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                        err = -EEXIST;
2691                        NL_SET_ERR_MSG_MOD(extack,
2692                                           "This filter is already set in ethtool");
2693                        goto err_locked;
2694                }
2695        }
2696
2697        hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2698                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2699                        err = -EEXIST;
2700                        NL_SET_ERR_MSG_MOD(extack,
2701                                           "This filter is already set in cls_flower");
2702                        goto err_locked;
2703                }
2704        }
2705
2706        err = igb_add_filter(adapter, filter);
2707        if (err < 0) {
2708                NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2709                goto err_locked;
2710        }
2711
2712        hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2713
2714        spin_unlock(&adapter->nfc_lock);
2715
2716        return 0;
2717
2718err_locked:
2719        spin_unlock(&adapter->nfc_lock);
2720
2721err_parse:
2722        kfree(filter);
2723
2724        return err;
2725}
2726
2727static int igb_delete_clsflower(struct igb_adapter *adapter,
2728                                struct flow_cls_offload *cls_flower)
2729{
2730        struct igb_nfc_filter *filter;
2731        int err;
2732
2733        spin_lock(&adapter->nfc_lock);
2734
2735        hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2736                if (filter->cookie == cls_flower->cookie)
2737                        break;
2738
2739        if (!filter) {
2740                err = -ENOENT;
2741                goto out;
2742        }
2743
2744        err = igb_erase_filter(adapter, filter);
2745        if (err < 0)
2746                goto out;
2747
2748        hlist_del(&filter->nfc_node);
2749        kfree(filter);
2750
2751out:
2752        spin_unlock(&adapter->nfc_lock);
2753
2754        return err;
2755}
2756
2757static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2758                                   struct flow_cls_offload *cls_flower)
2759{
2760        switch (cls_flower->command) {
2761        case FLOW_CLS_REPLACE:
2762                return igb_configure_clsflower(adapter, cls_flower);
2763        case FLOW_CLS_DESTROY:
2764                return igb_delete_clsflower(adapter, cls_flower);
2765        case FLOW_CLS_STATS:
2766                return -EOPNOTSUPP;
2767        default:
2768                return -EOPNOTSUPP;
2769        }
2770}
2771
2772static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2773                                 void *cb_priv)
2774{
2775        struct igb_adapter *adapter = cb_priv;
2776
2777        if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2778                return -EOPNOTSUPP;
2779
2780        switch (type) {
2781        case TC_SETUP_CLSFLOWER:
2782                return igb_setup_tc_cls_flower(adapter, type_data);
2783
2784        default:
2785                return -EOPNOTSUPP;
2786        }
2787}
2788
2789static int igb_offload_txtime(struct igb_adapter *adapter,
2790                              struct tc_etf_qopt_offload *qopt)
2791{
2792        struct e1000_hw *hw = &adapter->hw;
2793        int err;
2794
2795        /* Launchtime offloading is only supported by i210 controller. */
2796        if (hw->mac.type != e1000_i210)
2797                return -EOPNOTSUPP;
2798
2799        /* Launchtime offloading is only supported by queues 0 and 1. */
2800        if (qopt->queue < 0 || qopt->queue > 1)
2801                return -EINVAL;
2802
2803        err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2804        if (err)
2805                return err;
2806
2807        igb_offload_apply(adapter, qopt->queue);
2808
2809        return 0;
2810}
2811
2812static LIST_HEAD(igb_block_cb_list);
2813
2814static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2815                        void *type_data)
2816{
2817        struct igb_adapter *adapter = netdev_priv(dev);
2818
2819        switch (type) {
2820        case TC_SETUP_QDISC_CBS:
2821                return igb_offload_cbs(adapter, type_data);
2822        case TC_SETUP_BLOCK:
2823                return flow_block_cb_setup_simple(type_data,
2824                                                  &igb_block_cb_list,
2825                                                  igb_setup_tc_block_cb,
2826                                                  adapter, adapter, true);
2827
2828        case TC_SETUP_QDISC_ETF:
2829                return igb_offload_txtime(adapter, type_data);
2830
2831        default:
2832                return -EOPNOTSUPP;
2833        }
2834}
2835
2836static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2837{
2838        int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2839        struct igb_adapter *adapter = netdev_priv(dev);
2840        struct bpf_prog *prog = bpf->prog, *old_prog;
2841        bool running = netif_running(dev);
2842        bool need_reset;
2843
2844        /* verify igb ring attributes are sufficient for XDP */
2845        for (i = 0; i < adapter->num_rx_queues; i++) {
2846                struct igb_ring *ring = adapter->rx_ring[i];
2847
2848                if (frame_size > igb_rx_bufsz(ring)) {
2849                        NL_SET_ERR_MSG_MOD(bpf->extack,
2850                                           "The RX buffer size is too small for the frame size");
2851                        netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2852                                    igb_rx_bufsz(ring), frame_size);
2853                        return -EINVAL;
2854                }
2855        }
2856
2857        old_prog = xchg(&adapter->xdp_prog, prog);
2858        need_reset = (!!prog != !!old_prog);
2859
2860        /* device is up and bpf is added/removed, must setup the RX queues */
2861        if (need_reset && running) {
2862                igb_close(dev);
2863        } else {
2864                for (i = 0; i < adapter->num_rx_queues; i++)
2865                        (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2866                            adapter->xdp_prog);
2867        }
2868
2869        if (old_prog)
2870                bpf_prog_put(old_prog);
2871
2872        /* bpf is just replaced, RXQ and MTU are already setup */
2873        if (!need_reset)
2874                return 0;
2875
2876        if (running)
2877                igb_open(dev);
2878
2879        return 0;
2880}
2881
2882static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2883{
2884        switch (xdp->command) {
2885        case XDP_SETUP_PROG:
2886                return igb_xdp_setup(dev, xdp);
2887        default:
2888                return -EINVAL;
2889        }
2890}
2891
2892static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2893{
2894        /* Force memory writes to complete before letting h/w know there
2895         * are new descriptors to fetch.
2896         */
2897        wmb();
2898        writel(ring->next_to_use, ring->tail);
2899}
2900
2901static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2902{
2903        unsigned int r_idx = smp_processor_id();
2904
2905        if (r_idx >= adapter->num_tx_queues)
2906                r_idx = r_idx % adapter->num_tx_queues;
2907
2908        return adapter->tx_ring[r_idx];
2909}
2910
2911static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2912{
2913        struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2914        int cpu = smp_processor_id();
2915        struct igb_ring *tx_ring;
2916        struct netdev_queue *nq;
2917        u32 ret;
2918
2919        if (unlikely(!xdpf))
2920                return IGB_XDP_CONSUMED;
2921
2922        /* During program transitions its possible adapter->xdp_prog is assigned
2923         * but ring has not been configured yet. In this case simply abort xmit.
2924         */
2925        tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2926        if (unlikely(!tx_ring))
2927                return IGB_XDP_CONSUMED;
2928
2929        nq = txring_txq(tx_ring);
2930        __netif_tx_lock(nq, cpu);
2931        /* Avoid transmit queue timeout since we share it with the slow path */
2932        nq->trans_start = jiffies;
2933        ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2934        __netif_tx_unlock(nq);
2935
2936        return ret;
2937}
2938
2939static int igb_xdp_xmit(struct net_device *dev, int n,
2940                        struct xdp_frame **frames, u32 flags)
2941{
2942        struct igb_adapter *adapter = netdev_priv(dev);
2943        int cpu = smp_processor_id();
2944        struct igb_ring *tx_ring;
2945        struct netdev_queue *nq;
2946        int nxmit = 0;
2947        int i;
2948
2949        if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2950                return -ENETDOWN;
2951
2952        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2953                return -EINVAL;
2954
2955        /* During program transitions its possible adapter->xdp_prog is assigned
2956         * but ring has not been configured yet. In this case simply abort xmit.
2957         */
2958        tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2959        if (unlikely(!tx_ring))
2960                return -ENXIO;
2961
2962        nq = txring_txq(tx_ring);
2963        __netif_tx_lock(nq, cpu);
2964
2965        /* Avoid transmit queue timeout since we share it with the slow path */
2966        nq->trans_start = jiffies;
2967
2968        for (i = 0; i < n; i++) {
2969                struct xdp_frame *xdpf = frames[i];
2970                int err;
2971
2972                err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2973                if (err != IGB_XDP_TX)
2974                        break;
2975                nxmit++;
2976        }
2977
2978        __netif_tx_unlock(nq);
2979
2980        if (unlikely(flags & XDP_XMIT_FLUSH))
2981                igb_xdp_ring_update_tail(tx_ring);
2982
2983        return nxmit;
2984}
2985
2986static const struct net_device_ops igb_netdev_ops = {
2987        .ndo_open               = igb_open,
2988        .ndo_stop               = igb_close,
2989        .ndo_start_xmit         = igb_xmit_frame,
2990        .ndo_get_stats64        = igb_get_stats64,
2991        .ndo_set_rx_mode        = igb_set_rx_mode,
2992        .ndo_set_mac_address    = igb_set_mac,
2993        .ndo_change_mtu         = igb_change_mtu,
2994        .ndo_eth_ioctl          = igb_ioctl,
2995        .ndo_tx_timeout         = igb_tx_timeout,
2996        .ndo_validate_addr      = eth_validate_addr,
2997        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2998        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2999        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
3000        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
3001        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
3002        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3003        .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
3004        .ndo_get_vf_config      = igb_ndo_get_vf_config,
3005        .ndo_fix_features       = igb_fix_features,
3006        .ndo_set_features       = igb_set_features,
3007        .ndo_fdb_add            = igb_ndo_fdb_add,
3008        .ndo_features_check     = igb_features_check,
3009        .ndo_setup_tc           = igb_setup_tc,
3010        .ndo_bpf                = igb_xdp,
3011        .ndo_xdp_xmit           = igb_xdp_xmit,
3012};
3013
3014/**
3015 * igb_set_fw_version - Configure version string for ethtool
3016 * @adapter: adapter struct
3017 **/
3018void igb_set_fw_version(struct igb_adapter *adapter)
3019{
3020        struct e1000_hw *hw = &adapter->hw;
3021        struct e1000_fw_version fw;
3022
3023        igb_get_fw_version(hw, &fw);
3024
3025        switch (hw->mac.type) {
3026        case e1000_i210:
3027        case e1000_i211:
3028                if (!(igb_get_flash_presence_i210(hw))) {
3029                        snprintf(adapter->fw_version,
3030                                 sizeof(adapter->fw_version),
3031                                 "%2d.%2d-%d",
3032                                 fw.invm_major, fw.invm_minor,
3033                                 fw.invm_img_type);
3034                        break;
3035                }
3036                fallthrough;
3037        default:
3038                /* if option is rom valid, display its version too */
3039                if (fw.or_valid) {
3040                        snprintf(adapter->fw_version,
3041                                 sizeof(adapter->fw_version),
3042                                 "%d.%d, 0x%08x, %d.%d.%d",
3043                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
3044                                 fw.or_major, fw.or_build, fw.or_patch);
3045                /* no option rom */
3046                } else if (fw.etrack_id != 0X0000) {
3047                        snprintf(adapter->fw_version,
3048                            sizeof(adapter->fw_version),
3049                            "%d.%d, 0x%08x",
3050                            fw.eep_major, fw.eep_minor, fw.etrack_id);
3051                } else {
3052                snprintf(adapter->fw_version,
3053                    sizeof(adapter->fw_version),
3054                    "%d.%d.%d",
3055                    fw.eep_major, fw.eep_minor, fw.eep_build);
3056                }
3057                break;
3058        }
3059}
3060
3061/**
3062 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3063 *
3064 * @adapter: adapter struct
3065 **/
3066static void igb_init_mas(struct igb_adapter *adapter)
3067{
3068        struct e1000_hw *hw = &adapter->hw;
3069        u16 eeprom_data;
3070
3071        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3072        switch (hw->bus.func) {
3073        case E1000_FUNC_0:
3074                if (eeprom_data & IGB_MAS_ENABLE_0) {
3075                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076                        netdev_info(adapter->netdev,
3077                                "MAS: Enabling Media Autosense for port %d\n",
3078                                hw->bus.func);
3079                }
3080                break;
3081        case E1000_FUNC_1:
3082                if (eeprom_data & IGB_MAS_ENABLE_1) {
3083                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084                        netdev_info(adapter->netdev,
3085                                "MAS: Enabling Media Autosense for port %d\n",
3086                                hw->bus.func);
3087                }
3088                break;
3089        case E1000_FUNC_2:
3090                if (eeprom_data & IGB_MAS_ENABLE_2) {
3091                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092                        netdev_info(adapter->netdev,
3093                                "MAS: Enabling Media Autosense for port %d\n",
3094                                hw->bus.func);
3095                }
3096                break;
3097        case E1000_FUNC_3:
3098                if (eeprom_data & IGB_MAS_ENABLE_3) {
3099                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3100                        netdev_info(adapter->netdev,
3101                                "MAS: Enabling Media Autosense for port %d\n",
3102                                hw->bus.func);
3103                }
3104                break;
3105        default:
3106                /* Shouldn't get here */
3107                netdev_err(adapter->netdev,
3108                        "MAS: Invalid port configuration, returning\n");
3109                break;
3110        }
3111}
3112
3113/**
3114 *  igb_init_i2c - Init I2C interface
3115 *  @adapter: pointer to adapter structure
3116 **/
3117static s32 igb_init_i2c(struct igb_adapter *adapter)
3118{
3119        s32 status = 0;
3120
3121        /* I2C interface supported on i350 devices */
3122        if (adapter->hw.mac.type != e1000_i350)
3123                return 0;
3124
3125        /* Initialize the i2c bus which is controlled by the registers.
3126         * This bus will use the i2c_algo_bit structure that implements
3127         * the protocol through toggling of the 4 bits in the register.
3128         */
3129        adapter->i2c_adap.owner = THIS_MODULE;
3130        adapter->i2c_algo = igb_i2c_algo;
3131        adapter->i2c_algo.data = adapter;
3132        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3133        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3134        strlcpy(adapter->i2c_adap.name, "igb BB",
3135                sizeof(adapter->i2c_adap.name));
3136        status = i2c_bit_add_bus(&adapter->i2c_adap);
3137        return status;
3138}
3139
3140/**
3141 *  igb_probe - Device Initialization Routine
3142 *  @pdev: PCI device information struct
3143 *  @ent: entry in igb_pci_tbl
3144 *
3145 *  Returns 0 on success, negative on failure
3146 *
3147 *  igb_probe initializes an adapter identified by a pci_dev structure.
3148 *  The OS initialization, configuring of the adapter private structure,
3149 *  and a hardware reset occur.
3150 **/
3151static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3152{
3153        struct net_device *netdev;
3154        struct igb_adapter *adapter;
3155        struct e1000_hw *hw;
3156        u16 eeprom_data = 0;
3157        s32 ret_val;
3158        static int global_quad_port_a; /* global quad port a indication */
3159        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3160        int err, pci_using_dac;
3161        u8 part_str[E1000_PBANUM_LENGTH];
3162
3163        /* Catch broken hardware that put the wrong VF device ID in
3164         * the PCIe SR-IOV capability.
3165         */
3166        if (pdev->is_virtfn) {
3167                WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3168                        pci_name(pdev), pdev->vendor, pdev->device);
3169                return -EINVAL;
3170        }
3171
3172        err = pci_enable_device_mem(pdev);
3173        if (err)
3174                return err;
3175
3176        pci_using_dac = 0;
3177        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3178        if (!err) {
3179                pci_using_dac = 1;
3180        } else {
3181                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3182                if (err) {
3183                        dev_err(&pdev->dev,
3184                                "No usable DMA configuration, aborting\n");
3185                        goto err_dma;
3186                }
3187        }
3188
3189        err = pci_request_mem_regions(pdev, igb_driver_name);
3190        if (err)
3191                goto err_pci_reg;
3192
3193        pci_enable_pcie_error_reporting(pdev);
3194
3195        pci_set_master(pdev);
3196        pci_save_state(pdev);
3197
3198        err = -ENOMEM;
3199        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3200                                   IGB_MAX_TX_QUEUES);
3201        if (!netdev)
3202                goto err_alloc_etherdev;
3203
3204        SET_NETDEV_DEV(netdev, &pdev->dev);
3205
3206        pci_set_drvdata(pdev, netdev);
3207        adapter = netdev_priv(netdev);
3208        adapter->netdev = netdev;
3209        adapter->pdev = pdev;
3210        hw = &adapter->hw;
3211        hw->back = adapter;
3212        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3213
3214        err = -EIO;
3215        adapter->io_addr = pci_iomap(pdev, 0, 0);
3216        if (!adapter->io_addr)
3217                goto err_ioremap;
3218        /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3219        hw->hw_addr = adapter->io_addr;
3220
3221        netdev->netdev_ops = &igb_netdev_ops;
3222        igb_set_ethtool_ops(netdev);
3223        netdev->watchdog_timeo = 5 * HZ;
3224
3225        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3226
3227        netdev->mem_start = pci_resource_start(pdev, 0);
3228        netdev->mem_end = pci_resource_end(pdev, 0);
3229
3230        /* PCI config space info */
3231        hw->vendor_id = pdev->vendor;
3232        hw->device_id = pdev->device;
3233        hw->revision_id = pdev->revision;
3234        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3235        hw->subsystem_device_id = pdev->subsystem_device;
3236
3237        /* Copy the default MAC, PHY and NVM function pointers */
3238        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3239        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3240        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3241        /* Initialize skew-specific constants */
3242        err = ei->get_invariants(hw);
3243        if (err)
3244                goto err_sw_init;
3245
3246        /* setup the private structure */
3247        err = igb_sw_init(adapter);
3248        if (err)
3249                goto err_sw_init;
3250
3251        igb_get_bus_info_pcie(hw);
3252
3253        hw->phy.autoneg_wait_to_complete = false;
3254
3255        /* Copper options */
3256        if (hw->phy.media_type == e1000_media_type_copper) {
3257                hw->phy.mdix = AUTO_ALL_MODES;
3258                hw->phy.disable_polarity_correction = false;
3259                hw->phy.ms_type = e1000_ms_hw_default;
3260        }
3261
3262        if (igb_check_reset_block(hw))
3263                dev_info(&pdev->dev,
3264                        "PHY reset is blocked due to SOL/IDER session.\n");
3265
3266        /* features is initialized to 0 in allocation, it might have bits
3267         * set by igb_sw_init so we should use an or instead of an
3268         * assignment.
3269         */
3270        netdev->features |= NETIF_F_SG |
3271                            NETIF_F_TSO |
3272                            NETIF_F_TSO6 |
3273                            NETIF_F_RXHASH |
3274                            NETIF_F_RXCSUM |
3275                            NETIF_F_HW_CSUM;
3276
3277        if (hw->mac.type >= e1000_82576)
3278                netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3279
3280        if (hw->mac.type >= e1000_i350)
3281                netdev->features |= NETIF_F_HW_TC;
3282
3283#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3284                                  NETIF_F_GSO_GRE_CSUM | \
3285                                  NETIF_F_GSO_IPXIP4 | \
3286                                  NETIF_F_GSO_IPXIP6 | \
3287                                  NETIF_F_GSO_UDP_TUNNEL | \
3288                                  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3289
3290        netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3291        netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3292
3293        /* copy netdev features into list of user selectable features */
3294        netdev->hw_features |= netdev->features |
3295                               NETIF_F_HW_VLAN_CTAG_RX |
3296                               NETIF_F_HW_VLAN_CTAG_TX |
3297                               NETIF_F_RXALL;
3298
3299        if (hw->mac.type >= e1000_i350)
3300                netdev->hw_features |= NETIF_F_NTUPLE;
3301
3302        if (pci_using_dac)
3303                netdev->features |= NETIF_F_HIGHDMA;
3304
3305        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3306        netdev->mpls_features |= NETIF_F_HW_CSUM;
3307        netdev->hw_enc_features |= netdev->vlan_features;
3308
3309        /* set this bit last since it cannot be part of vlan_features */
3310        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3311                            NETIF_F_HW_VLAN_CTAG_RX |
3312                            NETIF_F_HW_VLAN_CTAG_TX;
3313
3314        netdev->priv_flags |= IFF_SUPP_NOFCS;
3315
3316        netdev->priv_flags |= IFF_UNICAST_FLT;
3317
3318        /* MTU range: 68 - 9216 */
3319        netdev->min_mtu = ETH_MIN_MTU;
3320        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3321
3322        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3323
3324        /* before reading the NVM, reset the controller to put the device in a
3325         * known good starting state
3326         */
3327        hw->mac.ops.reset_hw(hw);
3328
3329        /* make sure the NVM is good , i211/i210 parts can have special NVM
3330         * that doesn't contain a checksum
3331         */
3332        switch (hw->mac.type) {
3333        case e1000_i210:
3334        case e1000_i211:
3335                if (igb_get_flash_presence_i210(hw)) {
3336                        if (hw->nvm.ops.validate(hw) < 0) {
3337                                dev_err(&pdev->dev,
3338                                        "The NVM Checksum Is Not Valid\n");
3339                                err = -EIO;
3340                                goto err_eeprom;
3341                        }
3342                }
3343                break;
3344        default:
3345                if (hw->nvm.ops.validate(hw) < 0) {
3346                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3347                        err = -EIO;
3348                        goto err_eeprom;
3349                }
3350                break;
3351        }
3352
3353        if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3354                /* copy the MAC address out of the NVM */
3355                if (hw->mac.ops.read_mac_addr(hw))
3356                        dev_err(&pdev->dev, "NVM Read Error\n");
3357        }
3358
3359        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3360
3361        if (!is_valid_ether_addr(netdev->dev_addr)) {
3362                dev_err(&pdev->dev, "Invalid MAC Address\n");
3363                err = -EIO;
3364                goto err_eeprom;
3365        }
3366
3367        igb_set_default_mac_filter(adapter);
3368
3369        /* get firmware version for ethtool -i */
3370        igb_set_fw_version(adapter);
3371
3372        /* configure RXPBSIZE and TXPBSIZE */
3373        if (hw->mac.type == e1000_i210) {
3374                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3375                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3376        }
3377
3378        timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3379        timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3380
3381        INIT_WORK(&adapter->reset_task, igb_reset_task);
3382        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3383
3384        /* Initialize link properties that are user-changeable */
3385        adapter->fc_autoneg = true;
3386        hw->mac.autoneg = true;
3387        hw->phy.autoneg_advertised = 0x2f;
3388
3389        hw->fc.requested_mode = e1000_fc_default;
3390        hw->fc.current_mode = e1000_fc_default;
3391
3392        igb_validate_mdi_setting(hw);
3393
3394        /* By default, support wake on port A */
3395        if (hw->bus.func == 0)
3396                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3397
3398        /* Check the NVM for wake support on non-port A ports */
3399        if (hw->mac.type >= e1000_82580)
3400                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3401                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3402                                 &eeprom_data);
3403        else if (hw->bus.func == 1)
3404                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3405
3406        if (eeprom_data & IGB_EEPROM_APME)
3407                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3408
3409        /* now that we have the eeprom settings, apply the special cases where
3410         * the eeprom may be wrong or the board simply won't support wake on
3411         * lan on a particular port
3412         */
3413        switch (pdev->device) {
3414        case E1000_DEV_ID_82575GB_QUAD_COPPER:
3415                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416                break;
3417        case E1000_DEV_ID_82575EB_FIBER_SERDES:
3418        case E1000_DEV_ID_82576_FIBER:
3419        case E1000_DEV_ID_82576_SERDES:
3420                /* Wake events only supported on port A for dual fiber
3421                 * regardless of eeprom setting
3422                 */
3423                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3424                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3425                break;
3426        case E1000_DEV_ID_82576_QUAD_COPPER:
3427        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3428                /* if quad port adapter, disable WoL on all but port A */
3429                if (global_quad_port_a != 0)
3430                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3431                else
3432                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3433                /* Reset for multiple quad port adapters */
3434                if (++global_quad_port_a == 4)
3435                        global_quad_port_a = 0;
3436                break;
3437        default:
3438                /* If the device can't wake, don't set software support */
3439                if (!device_can_wakeup(&adapter->pdev->dev))
3440                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441        }
3442
3443        /* initialize the wol settings based on the eeprom settings */
3444        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3445                adapter->wol |= E1000_WUFC_MAG;
3446
3447        /* Some vendors want WoL disabled by default, but still supported */
3448        if ((hw->mac.type == e1000_i350) &&
3449            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3450                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3451                adapter->wol = 0;
3452        }
3453
3454        /* Some vendors want the ability to Use the EEPROM setting as
3455         * enable/disable only, and not for capability
3456         */
3457        if (((hw->mac.type == e1000_i350) ||
3458             (hw->mac.type == e1000_i354)) &&
3459            (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3460                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3461                adapter->wol = 0;
3462        }
3463        if (hw->mac.type == e1000_i350) {
3464                if (((pdev->subsystem_device == 0x5001) ||
3465                     (pdev->subsystem_device == 0x5002)) &&
3466                                (hw->bus.func == 0)) {
3467                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468                        adapter->wol = 0;
3469                }
3470                if (pdev->subsystem_device == 0x1F52)
3471                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472        }
3473
3474        device_set_wakeup_enable(&adapter->pdev->dev,
3475                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3476
3477        /* reset the hardware with the new settings */
3478        igb_reset(adapter);
3479
3480        /* Init the I2C interface */
3481        err = igb_init_i2c(adapter);
3482        if (err) {
3483                dev_err(&pdev->dev, "failed to init i2c interface\n");
3484                goto err_eeprom;
3485        }
3486
3487        /* let the f/w know that the h/w is now under the control of the
3488         * driver.
3489         */
3490        igb_get_hw_control(adapter);
3491
3492        strcpy(netdev->name, "eth%d");
3493        err = register_netdev(netdev);
3494        if (err)
3495                goto err_register;
3496
3497        /* carrier off reporting is important to ethtool even BEFORE open */
3498        netif_carrier_off(netdev);
3499
3500#ifdef CONFIG_IGB_DCA
3501        if (dca_add_requester(&pdev->dev) == 0) {
3502                adapter->flags |= IGB_FLAG_DCA_ENABLED;
3503                dev_info(&pdev->dev, "DCA enabled\n");
3504                igb_setup_dca(adapter);
3505        }
3506
3507#endif
3508#ifdef CONFIG_IGB_HWMON
3509        /* Initialize the thermal sensor on i350 devices. */
3510        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3511                u16 ets_word;
3512
3513                /* Read the NVM to determine if this i350 device supports an
3514                 * external thermal sensor.
3515                 */
3516                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3517                if (ets_word != 0x0000 && ets_word != 0xFFFF)
3518                        adapter->ets = true;
3519                else
3520                        adapter->ets = false;
3521                if (igb_sysfs_init(adapter))
3522                        dev_err(&pdev->dev,
3523                                "failed to allocate sysfs resources\n");
3524        } else {
3525                adapter->ets = false;
3526        }
3527#endif
3528        /* Check if Media Autosense is enabled */
3529        adapter->ei = *ei;
3530        if (hw->dev_spec._82575.mas_capable)
3531                igb_init_mas(adapter);
3532
3533        /* do hw tstamp init after resetting */
3534        igb_ptp_init(adapter);
3535
3536        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3537        /* print bus type/speed/width info, not applicable to i354 */
3538        if (hw->mac.type != e1000_i354) {
3539                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3540                         netdev->name,
3541                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3542                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3543                           "unknown"),
3544                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3545                          "Width x4" :
3546                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
3547                          "Width x2" :
3548                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
3549                          "Width x1" : "unknown"), netdev->dev_addr);
3550        }
3551
3552        if ((hw->mac.type == e1000_82576 &&
3553             rd32(E1000_EECD) & E1000_EECD_PRES) ||
3554            (hw->mac.type >= e1000_i210 ||
3555             igb_get_flash_presence_i210(hw))) {
3556                ret_val = igb_read_part_string(hw, part_str,
3557                                               E1000_PBANUM_LENGTH);
3558        } else {
3559                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3560        }
3561
3562        if (ret_val)
3563                strcpy(part_str, "Unknown");
3564        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3565        dev_info(&pdev->dev,
3566                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3567                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3568                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3569                adapter->num_rx_queues, adapter->num_tx_queues);
3570        if (hw->phy.media_type == e1000_media_type_copper) {
3571                switch (hw->mac.type) {
3572                case e1000_i350:
3573                case e1000_i210:
3574                case e1000_i211:
3575                        /* Enable EEE for internal copper PHY devices */
3576                        err = igb_set_eee_i350(hw, true, true);
3577                        if ((!err) &&
3578                            (!hw->dev_spec._82575.eee_disable)) {
3579                                adapter->eee_advert =
3580                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
3581                                adapter->flags |= IGB_FLAG_EEE;
3582                        }
3583                        break;
3584                case e1000_i354:
3585                        if ((rd32(E1000_CTRL_EXT) &
3586                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3587                                err = igb_set_eee_i354(hw, true, true);
3588                                if ((!err) &&
3589                                        (!hw->dev_spec._82575.eee_disable)) {
3590                                        adapter->eee_advert =
3591                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
3592                                        adapter->flags |= IGB_FLAG_EEE;
3593                                }
3594                        }
3595                        break;
3596                default:
3597                        break;
3598                }
3599        }
3600
3601        dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3602
3603        pm_runtime_put_noidle(&pdev->dev);
3604        return 0;
3605
3606err_register:
3607        igb_release_hw_control(adapter);
3608        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3609err_eeprom:
3610        if (!igb_check_reset_block(hw))
3611                igb_reset_phy(hw);
3612
3613        if (hw->flash_address)
3614                iounmap(hw->flash_address);
3615err_sw_init:
3616        kfree(adapter->mac_table);
3617        kfree(adapter->shadow_vfta);
3618        igb_clear_interrupt_scheme(adapter);
3619#ifdef CONFIG_PCI_IOV
3620        igb_disable_sriov(pdev);
3621#endif
3622        pci_iounmap(pdev, adapter->io_addr);
3623err_ioremap:
3624        free_netdev(netdev);
3625err_alloc_etherdev:
3626        pci_disable_pcie_error_reporting(pdev);
3627        pci_release_mem_regions(pdev);
3628err_pci_reg:
3629err_dma:
3630        pci_disable_device(pdev);
3631        return err;
3632}
3633
3634#ifdef CONFIG_PCI_IOV
3635static int igb_disable_sriov(struct pci_dev *pdev)
3636{
3637        struct net_device *netdev = pci_get_drvdata(pdev);
3638        struct igb_adapter *adapter = netdev_priv(netdev);
3639        struct e1000_hw *hw = &adapter->hw;
3640
3641        /* reclaim resources allocated to VFs */
3642        if (adapter->vf_data) {
3643                /* disable iov and allow time for transactions to clear */
3644                if (pci_vfs_assigned(pdev)) {
3645                        dev_warn(&pdev->dev,
3646                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3647                        return -EPERM;
3648                } else {
3649                        pci_disable_sriov(pdev);
3650                        msleep(500);
3651                }
3652
3653                kfree(adapter->vf_mac_list);
3654                adapter->vf_mac_list = NULL;
3655                kfree(adapter->vf_data);
3656                adapter->vf_data = NULL;
3657                adapter->vfs_allocated_count = 0;
3658                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3659                wrfl();
3660                msleep(100);
3661                dev_info(&pdev->dev, "IOV Disabled\n");
3662
3663                /* Re-enable DMA Coalescing flag since IOV is turned off */
3664                adapter->flags |= IGB_FLAG_DMAC;
3665        }
3666
3667        return 0;
3668}
3669
3670static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3671{
3672        struct net_device *netdev = pci_get_drvdata(pdev);
3673        struct igb_adapter *adapter = netdev_priv(netdev);
3674        int old_vfs = pci_num_vf(pdev);
3675        struct vf_mac_filter *mac_list;
3676        int err = 0;
3677        int num_vf_mac_filters, i;
3678
3679        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3680                err = -EPERM;
3681                goto out;
3682        }
3683        if (!num_vfs)
3684                goto out;
3685
3686        if (old_vfs) {
3687                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3688                         old_vfs, max_vfs);
3689                adapter->vfs_allocated_count = old_vfs;
3690        } else
3691                adapter->vfs_allocated_count = num_vfs;
3692
3693        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3694                                sizeof(struct vf_data_storage), GFP_KERNEL);
3695
3696        /* if allocation failed then we do not support SR-IOV */
3697        if (!adapter->vf_data) {
3698                adapter->vfs_allocated_count = 0;
3699                err = -ENOMEM;
3700                goto out;
3701        }
3702
3703        /* Due to the limited number of RAR entries calculate potential
3704         * number of MAC filters available for the VFs. Reserve entries
3705         * for PF default MAC, PF MAC filters and at least one RAR entry
3706         * for each VF for VF MAC.
3707         */
3708        num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3709                             (1 + IGB_PF_MAC_FILTERS_RESERVED +
3710                              adapter->vfs_allocated_count);
3711
3712        adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3713                                       sizeof(struct vf_mac_filter),
3714                                       GFP_KERNEL);
3715
3716        mac_list = adapter->vf_mac_list;
3717        INIT_LIST_HEAD(&adapter->vf_macs.l);
3718
3719        if (adapter->vf_mac_list) {
3720                /* Initialize list of VF MAC filters */
3721                for (i = 0; i < num_vf_mac_filters; i++) {
3722                        mac_list->vf = -1;
3723                        mac_list->free = true;
3724                        list_add(&mac_list->l, &adapter->vf_macs.l);
3725                        mac_list++;
3726                }
3727        } else {
3728                /* If we could not allocate memory for the VF MAC filters
3729                 * we can continue without this feature but warn user.
3730                 */
3731                dev_err(&pdev->dev,
3732                        "Unable to allocate memory for VF MAC filter list\n");
3733        }
3734
3735        /* only call pci_enable_sriov() if no VFs are allocated already */
3736        if (!old_vfs) {
3737                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3738                if (err)
3739                        goto err_out;
3740        }
3741        dev_info(&pdev->dev, "%d VFs allocated\n",
3742                 adapter->vfs_allocated_count);
3743        for (i = 0; i < adapter->vfs_allocated_count; i++)
3744                igb_vf_configure(adapter, i);
3745
3746        /* DMA Coalescing is not supported in IOV mode. */
3747        adapter->flags &= ~IGB_FLAG_DMAC;
3748        goto out;
3749
3750err_out:
3751        kfree(adapter->vf_mac_list);
3752        adapter->vf_mac_list = NULL;
3753        kfree(adapter->vf_data);
3754        adapter->vf_data = NULL;
3755        adapter->vfs_allocated_count = 0;
3756out:
3757        return err;
3758}
3759
3760#endif
3761/**
3762 *  igb_remove_i2c - Cleanup  I2C interface
3763 *  @adapter: pointer to adapter structure
3764 **/
3765static void igb_remove_i2c(struct igb_adapter *adapter)
3766{
3767        /* free the adapter bus structure */
3768        i2c_del_adapter(&adapter->i2c_adap);
3769}
3770
3771/**
3772 *  igb_remove - Device Removal Routine
3773 *  @pdev: PCI device information struct
3774 *
3775 *  igb_remove is called by the PCI subsystem to alert the driver
3776 *  that it should release a PCI device.  The could be caused by a
3777 *  Hot-Plug event, or because the driver is going to be removed from
3778 *  memory.
3779 **/
3780static void igb_remove(struct pci_dev *pdev)
3781{
3782        struct net_device *netdev = pci_get_drvdata(pdev);
3783        struct igb_adapter *adapter = netdev_priv(netdev);
3784        struct e1000_hw *hw = &adapter->hw;
3785
3786        pm_runtime_get_noresume(&pdev->dev);
3787#ifdef CONFIG_IGB_HWMON
3788        igb_sysfs_exit(adapter);
3789#endif
3790        igb_remove_i2c(adapter);
3791        igb_ptp_stop(adapter);
3792        /* The watchdog timer may be rescheduled, so explicitly
3793         * disable watchdog from being rescheduled.
3794         */
3795        set_bit(__IGB_DOWN, &adapter->state);
3796        del_timer_sync(&adapter->watchdog_timer);
3797        del_timer_sync(&adapter->phy_info_timer);
3798
3799        cancel_work_sync(&adapter->reset_task);
3800        cancel_work_sync(&adapter->watchdog_task);
3801
3802#ifdef CONFIG_IGB_DCA
3803        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3804                dev_info(&pdev->dev, "DCA disabled\n");
3805                dca_remove_requester(&pdev->dev);
3806                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3807                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3808        }
3809#endif
3810
3811        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3812         * would have already happened in close and is redundant.
3813         */
3814        igb_release_hw_control(adapter);
3815
3816#ifdef CONFIG_PCI_IOV
3817        igb_disable_sriov(pdev);
3818#endif
3819
3820        unregister_netdev(netdev);
3821
3822        igb_clear_interrupt_scheme(adapter);
3823
3824        pci_iounmap(pdev, adapter->io_addr);
3825        if (hw->flash_address)
3826                iounmap(hw->flash_address);
3827        pci_release_mem_regions(pdev);
3828
3829        kfree(adapter->mac_table);
3830        kfree(adapter->shadow_vfta);
3831        free_netdev(netdev);
3832
3833        pci_disable_pcie_error_reporting(pdev);
3834
3835        pci_disable_device(pdev);
3836}
3837
3838/**
3839 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3840 *  @adapter: board private structure to initialize
3841 *
3842 *  This function initializes the vf specific data storage and then attempts to
3843 *  allocate the VFs.  The reason for ordering it this way is because it is much
3844 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3845 *  the memory for the VFs.
3846 **/
3847static void igb_probe_vfs(struct igb_adapter *adapter)
3848{
3849#ifdef CONFIG_PCI_IOV
3850        struct pci_dev *pdev = adapter->pdev;
3851        struct e1000_hw *hw = &adapter->hw;
3852
3853        /* Virtualization features not supported on i210 family. */
3854        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3855                return;
3856
3857        /* Of the below we really only want the effect of getting
3858         * IGB_FLAG_HAS_MSIX set (if available), without which
3859         * igb_enable_sriov() has no effect.
3860         */
3861        igb_set_interrupt_capability(adapter, true);
3862        igb_reset_interrupt_capability(adapter);
3863
3864        pci_sriov_set_totalvfs(pdev, 7);
3865        igb_enable_sriov(pdev, max_vfs);
3866
3867#endif /* CONFIG_PCI_IOV */
3868}
3869
3870unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3871{
3872        struct e1000_hw *hw = &adapter->hw;
3873        unsigned int max_rss_queues;
3874
3875        /* Determine the maximum number of RSS queues supported. */
3876        switch (hw->mac.type) {
3877        case e1000_i211:
3878                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3879                break;
3880        case e1000_82575:
3881        case e1000_i210:
3882                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3883                break;
3884        case e1000_i350:
3885                /* I350 cannot do RSS and SR-IOV at the same time */
3886                if (!!adapter->vfs_allocated_count) {
3887                        max_rss_queues = 1;
3888                        break;
3889                }
3890                fallthrough;
3891        case e1000_82576:
3892                if (!!adapter->vfs_allocated_count) {
3893                        max_rss_queues = 2;
3894                        break;
3895                }
3896                fallthrough;
3897        case e1000_82580:
3898        case e1000_i354:
3899        default:
3900                max_rss_queues = IGB_MAX_RX_QUEUES;
3901                break;
3902        }
3903
3904        return max_rss_queues;
3905}
3906
3907static void igb_init_queue_configuration(struct igb_adapter *adapter)
3908{
3909        u32 max_rss_queues;
3910
3911        max_rss_queues = igb_get_max_rss_queues(adapter);
3912        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3913
3914        igb_set_flag_queue_pairs(adapter, max_rss_queues);
3915}
3916
3917void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3918                              const u32 max_rss_queues)
3919{
3920        struct e1000_hw *hw = &adapter->hw;
3921
3922        /* Determine if we need to pair queues. */
3923        switch (hw->mac.type) {
3924        case e1000_82575:
3925        case e1000_i211:
3926                /* Device supports enough interrupts without queue pairing. */
3927                break;
3928        case e1000_82576:
3929        case e1000_82580:
3930        case e1000_i350:
3931        case e1000_i354:
3932        case e1000_i210:
3933        default:
3934                /* If rss_queues > half of max_rss_queues, pair the queues in
3935                 * order to conserve interrupts due to limited supply.
3936                 */
3937                if (adapter->rss_queues > (max_rss_queues / 2))
3938                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3939                else
3940                        adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3941                break;
3942        }
3943}
3944
3945/**
3946 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3947 *  @adapter: board private structure to initialize
3948 *
3949 *  igb_sw_init initializes the Adapter private data structure.
3950 *  Fields are initialized based on PCI device information and
3951 *  OS network device settings (MTU size).
3952 **/
3953static int igb_sw_init(struct igb_adapter *adapter)
3954{
3955        struct e1000_hw *hw = &adapter->hw;
3956        struct net_device *netdev = adapter->netdev;
3957        struct pci_dev *pdev = adapter->pdev;
3958
3959        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3960
3961        /* set default ring sizes */
3962        adapter->tx_ring_count = IGB_DEFAULT_TXD;
3963        adapter->rx_ring_count = IGB_DEFAULT_RXD;
3964
3965        /* set default ITR values */
3966        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3967        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3968
3969        /* set default work limits */
3970        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3971
3972        adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3973        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3974
3975        spin_lock_init(&adapter->nfc_lock);
3976        spin_lock_init(&adapter->stats64_lock);
3977#ifdef CONFIG_PCI_IOV
3978        switch (hw->mac.type) {
3979        case e1000_82576:
3980        case e1000_i350:
3981                if (max_vfs > 7) {
3982                        dev_warn(&pdev->dev,
3983                                 "Maximum of 7 VFs per PF, using max\n");
3984                        max_vfs = adapter->vfs_allocated_count = 7;
3985                } else
3986                        adapter->vfs_allocated_count = max_vfs;
3987                if (adapter->vfs_allocated_count)
3988                        dev_warn(&pdev->dev,
3989                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3990                break;
3991        default:
3992                break;
3993        }
3994#endif /* CONFIG_PCI_IOV */
3995
3996        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3997        adapter->flags |= IGB_FLAG_HAS_MSIX;
3998
3999        adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4000                                     sizeof(struct igb_mac_addr),
4001                                     GFP_KERNEL);
4002        if (!adapter->mac_table)
4003                return -ENOMEM;
4004
4005        igb_probe_vfs(adapter);
4006
4007        igb_init_queue_configuration(adapter);
4008
4009        /* Setup and initialize a copy of the hw vlan table array */
4010        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4011                                       GFP_KERNEL);
4012        if (!adapter->shadow_vfta)
4013                return -ENOMEM;
4014
4015        /* This call may decrease the number of queues */
4016        if (igb_init_interrupt_scheme(adapter, true)) {
4017                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4018                return -ENOMEM;
4019        }
4020
4021        /* Explicitly disable IRQ since the NIC can be in any state. */
4022        igb_irq_disable(adapter);
4023
4024        if (hw->mac.type >= e1000_i350)
4025                adapter->flags &= ~IGB_FLAG_DMAC;
4026
4027        set_bit(__IGB_DOWN, &adapter->state);
4028        return 0;
4029}
4030
4031/**
4032 *  __igb_open - Called when a network interface is made active
4033 *  @netdev: network interface device structure
4034 *  @resuming: indicates whether we are in a resume call
4035 *
4036 *  Returns 0 on success, negative value on failure
4037 *
4038 *  The open entry point is called when a network interface is made
4039 *  active by the system (IFF_UP).  At this point all resources needed
4040 *  for transmit and receive operations are allocated, the interrupt
4041 *  handler is registered with the OS, the watchdog timer is started,
4042 *  and the stack is notified that the interface is ready.
4043 **/
4044static int __igb_open(struct net_device *netdev, bool resuming)
4045{
4046        struct igb_adapter *adapter = netdev_priv(netdev);
4047        struct e1000_hw *hw = &adapter->hw;
4048        struct pci_dev *pdev = adapter->pdev;
4049        int err;
4050        int i;
4051
4052        /* disallow open during test */
4053        if (test_bit(__IGB_TESTING, &adapter->state)) {
4054                WARN_ON(resuming);
4055                return -EBUSY;
4056        }
4057
4058        if (!resuming)
4059                pm_runtime_get_sync(&pdev->dev);
4060
4061        netif_carrier_off(netdev);
4062
4063        /* allocate transmit descriptors */
4064        err = igb_setup_all_tx_resources(adapter);
4065        if (err)
4066                goto err_setup_tx;
4067
4068        /* allocate receive descriptors */
4069        err = igb_setup_all_rx_resources(adapter);
4070        if (err)
4071                goto err_setup_rx;
4072
4073        igb_power_up_link(adapter);
4074
4075        /* before we allocate an interrupt, we must be ready to handle it.
4076         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4077         * as soon as we call pci_request_irq, so we have to setup our
4078         * clean_rx handler before we do so.
4079         */
4080        igb_configure(adapter);
4081
4082        err = igb_request_irq(adapter);
4083        if (err)
4084                goto err_req_irq;
4085
4086        /* Notify the stack of the actual queue counts. */
4087        err = netif_set_real_num_tx_queues(adapter->netdev,
4088                                           adapter->num_tx_queues);
4089        if (err)
4090                goto err_set_queues;
4091
4092        err = netif_set_real_num_rx_queues(adapter->netdev,
4093                                           adapter->num_rx_queues);
4094        if (err)
4095                goto err_set_queues;
4096
4097        /* From here on the code is the same as igb_up() */
4098        clear_bit(__IGB_DOWN, &adapter->state);
4099
4100        for (i = 0; i < adapter->num_q_vectors; i++)
4101                napi_enable(&(adapter->q_vector[i]->napi));
4102
4103        /* Clear any pending interrupts. */
4104        rd32(E1000_TSICR);
4105        rd32(E1000_ICR);
4106
4107        igb_irq_enable(adapter);
4108
4109        /* notify VFs that reset has been completed */
4110        if (adapter->vfs_allocated_count) {
4111                u32 reg_data = rd32(E1000_CTRL_EXT);
4112
4113                reg_data |= E1000_CTRL_EXT_PFRSTD;
4114                wr32(E1000_CTRL_EXT, reg_data);
4115        }
4116
4117        netif_tx_start_all_queues(netdev);
4118
4119        if (!resuming)
4120                pm_runtime_put(&pdev->dev);
4121
4122        /* start the watchdog. */
4123        hw->mac.get_link_status = 1;
4124        schedule_work(&adapter->watchdog_task);
4125
4126        return 0;
4127
4128err_set_queues:
4129        igb_free_irq(adapter);
4130err_req_irq:
4131        igb_release_hw_control(adapter);
4132        igb_power_down_link(adapter);
4133        igb_free_all_rx_resources(adapter);
4134err_setup_rx:
4135        igb_free_all_tx_resources(adapter);
4136err_setup_tx:
4137        igb_reset(adapter);
4138        if (!resuming)
4139                pm_runtime_put(&pdev->dev);
4140
4141        return err;
4142}
4143
4144int igb_open(struct net_device *netdev)
4145{
4146        return __igb_open(netdev, false);
4147}
4148
4149/**
4150 *  __igb_close - Disables a network interface
4151 *  @netdev: network interface device structure
4152 *  @suspending: indicates we are in a suspend call
4153 *
4154 *  Returns 0, this is not allowed to fail
4155 *
4156 *  The close entry point is called when an interface is de-activated
4157 *  by the OS.  The hardware is still under the driver's control, but
4158 *  needs to be disabled.  A global MAC reset is issued to stop the
4159 *  hardware, and all transmit and receive resources are freed.
4160 **/
4161static int __igb_close(struct net_device *netdev, bool suspending)
4162{
4163        struct igb_adapter *adapter = netdev_priv(netdev);
4164        struct pci_dev *pdev = adapter->pdev;
4165
4166        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4167
4168        if (!suspending)
4169                pm_runtime_get_sync(&pdev->dev);
4170
4171        igb_down(adapter);
4172        igb_free_irq(adapter);
4173
4174        igb_free_all_tx_resources(adapter);
4175        igb_free_all_rx_resources(adapter);
4176
4177        if (!suspending)
4178                pm_runtime_put_sync(&pdev->dev);
4179        return 0;
4180}
4181
4182int igb_close(struct net_device *netdev)
4183{
4184        if (netif_device_present(netdev) || netdev->dismantle)
4185                return __igb_close(netdev, false);
4186        return 0;
4187}
4188
4189/**
4190 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4191 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4192 *
4193 *  Return 0 on success, negative on failure
4194 **/
4195int igb_setup_tx_resources(struct igb_ring *tx_ring)
4196{
4197        struct device *dev = tx_ring->dev;
4198        int size;
4199
4200        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4201
4202        tx_ring->tx_buffer_info = vmalloc(size);
4203        if (!tx_ring->tx_buffer_info)
4204                goto err;
4205
4206        /* round up to nearest 4K */
4207        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4208        tx_ring->size = ALIGN(tx_ring->size, 4096);
4209
4210        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4211                                           &tx_ring->dma, GFP_KERNEL);
4212        if (!tx_ring->desc)
4213                goto err;
4214
4215        tx_ring->next_to_use = 0;
4216        tx_ring->next_to_clean = 0;
4217
4218        return 0;
4219
4220err:
4221        vfree(tx_ring->tx_buffer_info);
4222        tx_ring->tx_buffer_info = NULL;
4223        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4224        return -ENOMEM;
4225}
4226
4227/**
4228 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4229 *                               (Descriptors) for all queues
4230 *  @adapter: board private structure
4231 *
4232 *  Return 0 on success, negative on failure
4233 **/
4234static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4235{
4236        struct pci_dev *pdev = adapter->pdev;
4237        int i, err = 0;
4238
4239        for (i = 0; i < adapter->num_tx_queues; i++) {
4240                err = igb_setup_tx_resources(adapter->tx_ring[i]);
4241                if (err) {
4242                        dev_err(&pdev->dev,
4243                                "Allocation for Tx Queue %u failed\n", i);
4244                        for (i--; i >= 0; i--)
4245                                igb_free_tx_resources(adapter->tx_ring[i]);
4246                        break;
4247                }
4248        }
4249
4250        return err;
4251}
4252
4253/**
4254 *  igb_setup_tctl - configure the transmit control registers
4255 *  @adapter: Board private structure
4256 **/
4257void igb_setup_tctl(struct igb_adapter *adapter)
4258{
4259        struct e1000_hw *hw = &adapter->hw;
4260        u32 tctl;
4261
4262        /* disable queue 0 which is enabled by default on 82575 and 82576 */
4263        wr32(E1000_TXDCTL(0), 0);
4264
4265        /* Program the Transmit Control Register */
4266        tctl = rd32(E1000_TCTL);
4267        tctl &= ~E1000_TCTL_CT;
4268        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4269                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4270
4271        igb_config_collision_dist(hw);
4272
4273        /* Enable transmits */
4274        tctl |= E1000_TCTL_EN;
4275
4276        wr32(E1000_TCTL, tctl);
4277}
4278
4279/**
4280 *  igb_configure_tx_ring - Configure transmit ring after Reset
4281 *  @adapter: board private structure
4282 *  @ring: tx ring to configure
4283 *
4284 *  Configure a transmit ring after a reset.
4285 **/
4286void igb_configure_tx_ring(struct igb_adapter *adapter,
4287                           struct igb_ring *ring)
4288{
4289        struct e1000_hw *hw = &adapter->hw;
4290        u32 txdctl = 0;
4291        u64 tdba = ring->dma;
4292        int reg_idx = ring->reg_idx;
4293
4294        wr32(E1000_TDLEN(reg_idx),
4295             ring->count * sizeof(union e1000_adv_tx_desc));
4296        wr32(E1000_TDBAL(reg_idx),
4297             tdba & 0x00000000ffffffffULL);
4298        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4299
4300        ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4301        wr32(E1000_TDH(reg_idx), 0);
4302        writel(0, ring->tail);
4303
4304        txdctl |= IGB_TX_PTHRESH;
4305        txdctl |= IGB_TX_HTHRESH << 8;
4306        txdctl |= IGB_TX_WTHRESH << 16;
4307
4308        /* reinitialize tx_buffer_info */
4309        memset(ring->tx_buffer_info, 0,
4310               sizeof(struct igb_tx_buffer) * ring->count);
4311
4312        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4313        wr32(E1000_TXDCTL(reg_idx), txdctl);
4314}
4315
4316/**
4317 *  igb_configure_tx - Configure transmit Unit after Reset
4318 *  @adapter: board private structure
4319 *
4320 *  Configure the Tx unit of the MAC after a reset.
4321 **/
4322static void igb_configure_tx(struct igb_adapter *adapter)
4323{
4324        struct e1000_hw *hw = &adapter->hw;
4325        int i;
4326
4327        /* disable the queues */
4328        for (i = 0; i < adapter->num_tx_queues; i++)
4329                wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4330
4331        wrfl();
4332        usleep_range(10000, 20000);
4333
4334        for (i = 0; i < adapter->num_tx_queues; i++)
4335                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4336}
4337
4338/**
4339 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4340 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4341 *
4342 *  Returns 0 on success, negative on failure
4343 **/
4344int igb_setup_rx_resources(struct igb_ring *rx_ring)
4345{
4346        struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4347        struct device *dev = rx_ring->dev;
4348        int size;
4349
4350        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4351
4352        rx_ring->rx_buffer_info = vmalloc(size);
4353        if (!rx_ring->rx_buffer_info)
4354                goto err;
4355
4356        /* Round up to nearest 4K */
4357        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4358        rx_ring->size = ALIGN(rx_ring->size, 4096);
4359
4360        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4361                                           &rx_ring->dma, GFP_KERNEL);
4362        if (!rx_ring->desc)
4363                goto err;
4364
4365        rx_ring->next_to_alloc = 0;
4366        rx_ring->next_to_clean = 0;
4367        rx_ring->next_to_use = 0;
4368
4369        rx_ring->xdp_prog = adapter->xdp_prog;
4370
4371        /* XDP RX-queue info */
4372        if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4373                             rx_ring->queue_index, 0) < 0)
4374                goto err;
4375
4376        return 0;
4377
4378err:
4379        vfree(rx_ring->rx_buffer_info);
4380        rx_ring->rx_buffer_info = NULL;
4381        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4382        return -ENOMEM;
4383}
4384
4385/**
4386 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4387 *                               (Descriptors) for all queues
4388 *  @adapter: board private structure
4389 *
4390 *  Return 0 on success, negative on failure
4391 **/
4392static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4393{
4394        struct pci_dev *pdev = adapter->pdev;
4395        int i, err = 0;
4396
4397        for (i = 0; i < adapter->num_rx_queues; i++) {
4398                err = igb_setup_rx_resources(adapter->rx_ring[i]);
4399                if (err) {
4400                        dev_err(&pdev->dev,
4401                                "Allocation for Rx Queue %u failed\n", i);
4402                        for (i--; i >= 0; i--)
4403                                igb_free_rx_resources(adapter->rx_ring[i]);
4404                        break;
4405                }
4406        }
4407
4408        return err;
4409}
4410
4411/**
4412 *  igb_setup_mrqc - configure the multiple receive queue control registers
4413 *  @adapter: Board private structure
4414 **/
4415static void igb_setup_mrqc(struct igb_adapter *adapter)
4416{
4417        struct e1000_hw *hw = &adapter->hw;
4418        u32 mrqc, rxcsum;
4419        u32 j, num_rx_queues;
4420        u32 rss_key[10];
4421
4422        netdev_rss_key_fill(rss_key, sizeof(rss_key));
4423        for (j = 0; j < 10; j++)
4424                wr32(E1000_RSSRK(j), rss_key[j]);
4425
4426        num_rx_queues = adapter->rss_queues;
4427
4428        switch (hw->mac.type) {
4429        case e1000_82576:
4430                /* 82576 supports 2 RSS queues for SR-IOV */
4431                if (adapter->vfs_allocated_count)
4432                        num_rx_queues = 2;
4433                break;
4434        default:
4435                break;
4436        }
4437
4438        if (adapter->rss_indir_tbl_init != num_rx_queues) {
4439                for (j = 0; j < IGB_RETA_SIZE; j++)
4440                        adapter->rss_indir_tbl[j] =
4441                        (j * num_rx_queues) / IGB_RETA_SIZE;
4442                adapter->rss_indir_tbl_init = num_rx_queues;
4443        }
4444        igb_write_rss_indir_tbl(adapter);
4445
4446        /* Disable raw packet checksumming so that RSS hash is placed in
4447         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4448         * offloads as they are enabled by default
4449         */
4450        rxcsum = rd32(E1000_RXCSUM);
4451        rxcsum |= E1000_RXCSUM_PCSD;
4452
4453        if (adapter->hw.mac.type >= e1000_82576)
4454                /* Enable Receive Checksum Offload for SCTP */
4455                rxcsum |= E1000_RXCSUM_CRCOFL;
4456
4457        /* Don't need to set TUOFL or IPOFL, they default to 1 */
4458        wr32(E1000_RXCSUM, rxcsum);
4459
4460        /* Generate RSS hash based on packet types, TCP/UDP
4461         * port numbers and/or IPv4/v6 src and dst addresses
4462         */
4463        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4464               E1000_MRQC_RSS_FIELD_IPV4_TCP |
4465               E1000_MRQC_RSS_FIELD_IPV6 |
4466               E1000_MRQC_RSS_FIELD_IPV6_TCP |
4467               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4468
4469        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4470                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4471        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4472                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4473
4474        /* If VMDq is enabled then we set the appropriate mode for that, else
4475         * we default to RSS so that an RSS hash is calculated per packet even
4476         * if we are only using one queue
4477         */
4478        if (adapter->vfs_allocated_count) {
4479                if (hw->mac.type > e1000_82575) {
4480                        /* Set the default pool for the PF's first queue */
4481                        u32 vtctl = rd32(E1000_VT_CTL);
4482
4483                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4484                                   E1000_VT_CTL_DISABLE_DEF_POOL);
4485                        vtctl |= adapter->vfs_allocated_count <<
4486                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4487                        wr32(E1000_VT_CTL, vtctl);
4488                }
4489                if (adapter->rss_queues > 1)
4490                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4491                else
4492                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
4493        } else {
4494                mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4495        }
4496        igb_vmm_control(adapter);
4497
4498        wr32(E1000_MRQC, mrqc);
4499}
4500
4501/**
4502 *  igb_setup_rctl - configure the receive control registers
4503 *  @adapter: Board private structure
4504 **/
4505void igb_setup_rctl(struct igb_adapter *adapter)
4506{
4507        struct e1000_hw *hw = &adapter->hw;
4508        u32 rctl;
4509
4510        rctl = rd32(E1000_RCTL);
4511
4512        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4513        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4514
4515        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4516                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4517
4518        /* enable stripping of CRC. It's unlikely this will break BMC
4519         * redirection as it did with e1000. Newer features require
4520         * that the HW strips the CRC.
4521         */
4522        rctl |= E1000_RCTL_SECRC;
4523
4524        /* disable store bad packets and clear size bits. */
4525        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4526
4527        /* enable LPE to allow for reception of jumbo frames */
4528        rctl |= E1000_RCTL_LPE;
4529
4530        /* disable queue 0 to prevent tail write w/o re-config */
4531        wr32(E1000_RXDCTL(0), 0);
4532
4533        /* Attention!!!  For SR-IOV PF driver operations you must enable
4534         * queue drop for all VF and PF queues to prevent head of line blocking
4535         * if an un-trusted VF does not provide descriptors to hardware.
4536         */
4537        if (adapter->vfs_allocated_count) {
4538                /* set all queue drop enable bits */
4539                wr32(E1000_QDE, ALL_QUEUES);
4540        }
4541
4542        /* This is useful for sniffing bad packets. */
4543        if (adapter->netdev->features & NETIF_F_RXALL) {
4544                /* UPE and MPE will be handled by normal PROMISC logic
4545                 * in e1000e_set_rx_mode
4546                 */
4547                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4548                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
4549                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4550
4551                rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4552                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4553                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4554                 * and that breaks VLANs.
4555                 */
4556        }
4557
4558        wr32(E1000_RCTL, rctl);
4559}
4560
4561static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4562                                   int vfn)
4563{
4564        struct e1000_hw *hw = &adapter->hw;
4565        u32 vmolr;
4566
4567        if (size > MAX_JUMBO_FRAME_SIZE)
4568                size = MAX_JUMBO_FRAME_SIZE;
4569
4570        vmolr = rd32(E1000_VMOLR(vfn));
4571        vmolr &= ~E1000_VMOLR_RLPML_MASK;
4572        vmolr |= size | E1000_VMOLR_LPE;
4573        wr32(E1000_VMOLR(vfn), vmolr);
4574
4575        return 0;
4576}
4577
4578static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4579                                         int vfn, bool enable)
4580{
4581        struct e1000_hw *hw = &adapter->hw;
4582        u32 val, reg;
4583
4584        if (hw->mac.type < e1000_82576)
4585                return;
4586
4587        if (hw->mac.type == e1000_i350)
4588                reg = E1000_DVMOLR(vfn);
4589        else
4590                reg = E1000_VMOLR(vfn);
4591
4592        val = rd32(reg);
4593        if (enable)
4594                val |= E1000_VMOLR_STRVLAN;
4595        else
4596                val &= ~(E1000_VMOLR_STRVLAN);
4597        wr32(reg, val);
4598}
4599
4600static inline void igb_set_vmolr(struct igb_adapter *adapter,
4601                                 int vfn, bool aupe)
4602{
4603        struct e1000_hw *hw = &adapter->hw;
4604        u32 vmolr;
4605
4606        /* This register exists only on 82576 and newer so if we are older then
4607         * we should exit and do nothing
4608         */
4609        if (hw->mac.type < e1000_82576)
4610                return;
4611
4612        vmolr = rd32(E1000_VMOLR(vfn));
4613        if (aupe)
4614                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4615        else
4616                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4617
4618        /* clear all bits that might not be set */
4619        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4620
4621        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4622                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4623        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4624         * multicast packets
4625         */
4626        if (vfn <= adapter->vfs_allocated_count)
4627                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4628
4629        wr32(E1000_VMOLR(vfn), vmolr);
4630}
4631
4632/**
4633 *  igb_setup_srrctl - configure the split and replication receive control
4634 *                     registers
4635 *  @adapter: Board private structure
4636 *  @ring: receive ring to be configured
4637 **/
4638void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4639{
4640        struct e1000_hw *hw = &adapter->hw;
4641        int reg_idx = ring->reg_idx;
4642        u32 srrctl = 0;
4643
4644        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4645        if (ring_uses_large_buffer(ring))
4646                srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4647        else
4648                srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4649        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4650        if (hw->mac.type >= e1000_82580)
4651                srrctl |= E1000_SRRCTL_TIMESTAMP;
4652        /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4653         * queues and rx flow control is disabled
4654         */
4655        if (adapter->vfs_allocated_count ||
4656            (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4657             adapter->num_rx_queues > 1))
4658                srrctl |= E1000_SRRCTL_DROP_EN;
4659
4660        wr32(E1000_SRRCTL(reg_idx), srrctl);
4661}
4662
4663/**
4664 *  igb_configure_rx_ring - Configure a receive ring after Reset
4665 *  @adapter: board private structure
4666 *  @ring: receive ring to be configured
4667 *
4668 *  Configure the Rx unit of the MAC after a reset.
4669 **/
4670void igb_configure_rx_ring(struct igb_adapter *adapter,
4671                           struct igb_ring *ring)
4672{
4673        struct e1000_hw *hw = &adapter->hw;
4674        union e1000_adv_rx_desc *rx_desc;
4675        u64 rdba = ring->dma;
4676        int reg_idx = ring->reg_idx;
4677        u32 rxdctl = 0;
4678
4679        xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4680        WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4681                                           MEM_TYPE_PAGE_SHARED, NULL));
4682
4683        /* disable the queue */
4684        wr32(E1000_RXDCTL(reg_idx), 0);
4685
4686        /* Set DMA base address registers */
4687        wr32(E1000_RDBAL(reg_idx),
4688             rdba & 0x00000000ffffffffULL);
4689        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4690        wr32(E1000_RDLEN(reg_idx),
4691             ring->count * sizeof(union e1000_adv_rx_desc));
4692
4693        /* initialize head and tail */
4694        ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4695        wr32(E1000_RDH(reg_idx), 0);
4696        writel(0, ring->tail);
4697
4698        /* set descriptor configuration */
4699        igb_setup_srrctl(adapter, ring);
4700
4701        /* set filtering for VMDQ pools */
4702        igb_set_vmolr(adapter, reg_idx & 0x7, true);
4703
4704        rxdctl |= IGB_RX_PTHRESH;
4705        rxdctl |= IGB_RX_HTHRESH << 8;
4706        rxdctl |= IGB_RX_WTHRESH << 16;
4707
4708        /* initialize rx_buffer_info */
4709        memset(ring->rx_buffer_info, 0,
4710               sizeof(struct igb_rx_buffer) * ring->count);
4711
4712        /* initialize Rx descriptor 0 */
4713        rx_desc = IGB_RX_DESC(ring, 0);
4714        rx_desc->wb.upper.length = 0;
4715
4716        /* enable receive descriptor fetching */
4717        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4718        wr32(E1000_RXDCTL(reg_idx), rxdctl);
4719}
4720
4721static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4722                                  struct igb_ring *rx_ring)
4723{
4724        /* set build_skb and buffer size flags */
4725        clear_ring_build_skb_enabled(rx_ring);
4726        clear_ring_uses_large_buffer(rx_ring);
4727
4728        if (adapter->flags & IGB_FLAG_RX_LEGACY)
4729                return;
4730
4731        set_ring_build_skb_enabled(rx_ring);
4732
4733#if (PAGE_SIZE < 8192)
4734        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4735                return;
4736
4737        set_ring_uses_large_buffer(rx_ring);
4738#endif
4739}
4740
4741/**
4742 *  igb_configure_rx - Configure receive Unit after Reset
4743 *  @adapter: board private structure
4744 *
4745 *  Configure the Rx unit of the MAC after a reset.
4746 **/
4747static void igb_configure_rx(struct igb_adapter *adapter)
4748{
4749        int i;
4750
4751        /* set the correct pool for the PF default MAC address in entry 0 */
4752        igb_set_default_mac_filter(adapter);
4753
4754        /* Setup the HW Rx Head and Tail Descriptor Pointers and
4755         * the Base and Length of the Rx Descriptor Ring
4756         */
4757        for (i = 0; i < adapter->num_rx_queues; i++) {
4758                struct igb_ring *rx_ring = adapter->rx_ring[i];
4759
4760                igb_set_rx_buffer_len(adapter, rx_ring);
4761                igb_configure_rx_ring(adapter, rx_ring);
4762        }
4763}
4764
4765/**
4766 *  igb_free_tx_resources - Free Tx Resources per Queue
4767 *  @tx_ring: Tx descriptor ring for a specific queue
4768 *
4769 *  Free all transmit software resources
4770 **/
4771void igb_free_tx_resources(struct igb_ring *tx_ring)
4772{
4773        igb_clean_tx_ring(tx_ring);
4774
4775        vfree(tx_ring->tx_buffer_info);
4776        tx_ring->tx_buffer_info = NULL;
4777
4778        /* if not set, then don't free */
4779        if (!tx_ring->desc)
4780                return;
4781
4782        dma_free_coherent(tx_ring->dev, tx_ring->size,
4783                          tx_ring->desc, tx_ring->dma);
4784
4785        tx_ring->desc = NULL;
4786}
4787
4788/**
4789 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4790 *  @adapter: board private structure
4791 *
4792 *  Free all transmit software resources
4793 **/
4794static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4795{
4796        int i;
4797
4798        for (i = 0; i < adapter->num_tx_queues; i++)
4799                if (adapter->tx_ring[i])
4800                        igb_free_tx_resources(adapter->tx_ring[i]);
4801}
4802
4803/**
4804 *  igb_clean_tx_ring - Free Tx Buffers
4805 *  @tx_ring: ring to be cleaned
4806 **/
4807static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4808{
4809        u16 i = tx_ring->next_to_clean;
4810        struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4811
4812        while (i != tx_ring->next_to_use) {
4813                union e1000_adv_tx_desc *eop_desc, *tx_desc;
4814
4815                /* Free all the Tx ring sk_buffs */
4816                dev_kfree_skb_any(tx_buffer->skb);
4817
4818                /* unmap skb header data */
4819                dma_unmap_single(tx_ring->dev,
4820                                 dma_unmap_addr(tx_buffer, dma),
4821                                 dma_unmap_len(tx_buffer, len),
4822                                 DMA_TO_DEVICE);
4823
4824                /* check for eop_desc to determine the end of the packet */
4825                eop_desc = tx_buffer->next_to_watch;
4826                tx_desc = IGB_TX_DESC(tx_ring, i);
4827
4828                /* unmap remaining buffers */
4829                while (tx_desc != eop_desc) {
4830                        tx_buffer++;
4831                        tx_desc++;
4832                        i++;
4833                        if (unlikely(i == tx_ring->count)) {
4834                                i = 0;
4835                                tx_buffer = tx_ring->tx_buffer_info;
4836                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4837                        }
4838
4839                        /* unmap any remaining paged data */
4840                        if (dma_unmap_len(tx_buffer, len))
4841                                dma_unmap_page(tx_ring->dev,
4842                                               dma_unmap_addr(tx_buffer, dma),
4843                                               dma_unmap_len(tx_buffer, len),
4844                                               DMA_TO_DEVICE);
4845                }
4846
4847                tx_buffer->next_to_watch = NULL;
4848
4849                /* move us one more past the eop_desc for start of next pkt */
4850                tx_buffer++;
4851                i++;
4852                if (unlikely(i == tx_ring->count)) {
4853                        i = 0;
4854                        tx_buffer = tx_ring->tx_buffer_info;
4855                }
4856        }
4857
4858        /* reset BQL for queue */
4859        netdev_tx_reset_queue(txring_txq(tx_ring));
4860
4861        /* reset next_to_use and next_to_clean */
4862        tx_ring->next_to_use = 0;
4863        tx_ring->next_to_clean = 0;
4864}
4865
4866/**
4867 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4868 *  @adapter: board private structure
4869 **/
4870static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4871{
4872        int i;
4873
4874        for (i = 0; i < adapter->num_tx_queues; i++)
4875                if (adapter->tx_ring[i])
4876                        igb_clean_tx_ring(adapter->tx_ring[i]);
4877}
4878
4879/**
4880 *  igb_free_rx_resources - Free Rx Resources
4881 *  @rx_ring: ring to clean the resources from
4882 *
4883 *  Free all receive software resources
4884 **/
4885void igb_free_rx_resources(struct igb_ring *rx_ring)
4886{
4887        igb_clean_rx_ring(rx_ring);
4888
4889        rx_ring->xdp_prog = NULL;
4890        xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4891        vfree(rx_ring->rx_buffer_info);
4892        rx_ring->rx_buffer_info = NULL;
4893
4894        /* if not set, then don't free */
4895        if (!rx_ring->desc)
4896                return;
4897
4898        dma_free_coherent(rx_ring->dev, rx_ring->size,
4899                          rx_ring->desc, rx_ring->dma);
4900
4901        rx_ring->desc = NULL;
4902}
4903
4904/**
4905 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4906 *  @adapter: board private structure
4907 *
4908 *  Free all receive software resources
4909 **/
4910static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4911{
4912        int i;
4913
4914        for (i = 0; i < adapter->num_rx_queues; i++)
4915                if (adapter->rx_ring[i])
4916                        igb_free_rx_resources(adapter->rx_ring[i]);
4917}
4918
4919/**
4920 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4921 *  @rx_ring: ring to free buffers from
4922 **/
4923static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4924{
4925        u16 i = rx_ring->next_to_clean;
4926
4927        dev_kfree_skb(rx_ring->skb);
4928        rx_ring->skb = NULL;
4929
4930        /* Free all the Rx ring sk_buffs */
4931        while (i != rx_ring->next_to_alloc) {
4932                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4933
4934                /* Invalidate cache lines that may have been written to by
4935                 * device so that we avoid corrupting memory.
4936                 */
4937                dma_sync_single_range_for_cpu(rx_ring->dev,
4938                                              buffer_info->dma,
4939                                              buffer_info->page_offset,
4940                                              igb_rx_bufsz(rx_ring),
4941                                              DMA_FROM_DEVICE);
4942
4943                /* free resources associated with mapping */
4944                dma_unmap_page_attrs(rx_ring->dev,
4945                                     buffer_info->dma,
4946                                     igb_rx_pg_size(rx_ring),
4947                                     DMA_FROM_DEVICE,
4948                                     IGB_RX_DMA_ATTR);
4949                __page_frag_cache_drain(buffer_info->page,
4950                                        buffer_info->pagecnt_bias);
4951
4952                i++;
4953                if (i == rx_ring->count)
4954                        i = 0;
4955        }
4956
4957        rx_ring->next_to_alloc = 0;
4958        rx_ring->next_to_clean = 0;
4959        rx_ring->next_to_use = 0;
4960}
4961
4962/**
4963 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4964 *  @adapter: board private structure
4965 **/
4966static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4967{
4968        int i;
4969
4970        for (i = 0; i < adapter->num_rx_queues; i++)
4971                if (adapter->rx_ring[i])
4972                        igb_clean_rx_ring(adapter->rx_ring[i]);
4973}
4974
4975/**
4976 *  igb_set_mac - Change the Ethernet Address of the NIC
4977 *  @netdev: network interface device structure
4978 *  @p: pointer to an address structure
4979 *
4980 *  Returns 0 on success, negative on failure
4981 **/
4982static int igb_set_mac(struct net_device *netdev, void *p)
4983{
4984        struct igb_adapter *adapter = netdev_priv(netdev);
4985        struct e1000_hw *hw = &adapter->hw;
4986        struct sockaddr *addr = p;
4987
4988        if (!is_valid_ether_addr(addr->sa_data))
4989                return -EADDRNOTAVAIL;
4990
4991        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4992        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4993
4994        /* set the correct pool for the new PF MAC address in entry 0 */
4995        igb_set_default_mac_filter(adapter);
4996
4997        return 0;
4998}
4999
5000/**
5001 *  igb_write_mc_addr_list - write multicast addresses to MTA
5002 *  @netdev: network interface device structure
5003 *
5004 *  Writes multicast address list to the MTA hash table.
5005 *  Returns: -ENOMEM on failure
5006 *           0 on no addresses written
5007 *           X on writing X addresses to MTA
5008 **/
5009static int igb_write_mc_addr_list(struct net_device *netdev)
5010{
5011        struct igb_adapter *adapter = netdev_priv(netdev);
5012        struct e1000_hw *hw = &adapter->hw;
5013        struct netdev_hw_addr *ha;
5014        u8  *mta_list;
5015        int i;
5016
5017        if (netdev_mc_empty(netdev)) {
5018                /* nothing to program, so clear mc list */
5019                igb_update_mc_addr_list(hw, NULL, 0);
5020                igb_restore_vf_multicasts(adapter);
5021                return 0;
5022        }
5023
5024        mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5025        if (!mta_list)
5026                return -ENOMEM;
5027
5028        /* The shared function expects a packed array of only addresses. */
5029        i = 0;
5030        netdev_for_each_mc_addr(ha, netdev)
5031                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5032
5033        igb_update_mc_addr_list(hw, mta_list, i);
5034        kfree(mta_list);
5035
5036        return netdev_mc_count(netdev);
5037}
5038
5039static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5040{
5041        struct e1000_hw *hw = &adapter->hw;
5042        u32 i, pf_id;
5043
5044        switch (hw->mac.type) {
5045        case e1000_i210:
5046        case e1000_i211:
5047        case e1000_i350:
5048                /* VLAN filtering needed for VLAN prio filter */
5049                if (adapter->netdev->features & NETIF_F_NTUPLE)
5050                        break;
5051                fallthrough;
5052        case e1000_82576:
5053        case e1000_82580:
5054        case e1000_i354:
5055                /* VLAN filtering needed for pool filtering */
5056                if (adapter->vfs_allocated_count)
5057                        break;
5058                fallthrough;
5059        default:
5060                return 1;
5061        }
5062
5063        /* We are already in VLAN promisc, nothing to do */
5064        if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5065                return 0;
5066
5067        if (!adapter->vfs_allocated_count)
5068                goto set_vfta;
5069
5070        /* Add PF to all active pools */
5071        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5072
5073        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5074                u32 vlvf = rd32(E1000_VLVF(i));
5075
5076                vlvf |= BIT(pf_id);
5077                wr32(E1000_VLVF(i), vlvf);
5078        }
5079
5080set_vfta:
5081        /* Set all bits in the VLAN filter table array */
5082        for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5083                hw->mac.ops.write_vfta(hw, i, ~0U);
5084
5085        /* Set flag so we don't redo unnecessary work */
5086        adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5087
5088        return 0;
5089}
5090
5091#define VFTA_BLOCK_SIZE 8
5092static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5093{
5094        struct e1000_hw *hw = &adapter->hw;
5095        u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5096        u32 vid_start = vfta_offset * 32;
5097        u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5098        u32 i, vid, word, bits, pf_id;
5099
5100        /* guarantee that we don't scrub out management VLAN */
5101        vid = adapter->mng_vlan_id;
5102        if (vid >= vid_start && vid < vid_end)
5103                vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5104
5105        if (!adapter->vfs_allocated_count)
5106                goto set_vfta;
5107
5108        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5109
5110        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5111                u32 vlvf = rd32(E1000_VLVF(i));
5112
5113                /* pull VLAN ID from VLVF */
5114                vid = vlvf & VLAN_VID_MASK;
5115
5116                /* only concern ourselves with a certain range */
5117                if (vid < vid_start || vid >= vid_end)
5118                        continue;
5119
5120                if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5121                        /* record VLAN ID in VFTA */
5122                        vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5123
5124                        /* if PF is part of this then continue */
5125                        if (test_bit(vid, adapter->active_vlans))
5126                                continue;
5127                }
5128
5129                /* remove PF from the pool */
5130                bits = ~BIT(pf_id);
5131                bits &= rd32(E1000_VLVF(i));
5132                wr32(E1000_VLVF(i), bits);
5133        }
5134
5135set_vfta:
5136        /* extract values from active_vlans and write back to VFTA */
5137        for (i = VFTA_BLOCK_SIZE; i--;) {
5138                vid = (vfta_offset + i) * 32;
5139                word = vid / BITS_PER_LONG;
5140                bits = vid % BITS_PER_LONG;
5141
5142                vfta[i] |= adapter->active_vlans[word] >> bits;
5143
5144                hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5145        }
5146}
5147
5148static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5149{
5150        u32 i;
5151
5152        /* We are not in VLAN promisc, nothing to do */
5153        if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5154                return;
5155
5156        /* Set flag so we don't redo unnecessary work */
5157        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5158
5159        for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5160                igb_scrub_vfta(adapter, i);
5161}
5162
5163/**
5164 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5165 *  @netdev: network interface device structure
5166 *
5167 *  The set_rx_mode entry point is called whenever the unicast or multicast
5168 *  address lists or the network interface flags are updated.  This routine is
5169 *  responsible for configuring the hardware for proper unicast, multicast,
5170 *  promiscuous mode, and all-multi behavior.
5171 **/
5172static void igb_set_rx_mode(struct net_device *netdev)
5173{
5174        struct igb_adapter *adapter = netdev_priv(netdev);
5175        struct e1000_hw *hw = &adapter->hw;
5176        unsigned int vfn = adapter->vfs_allocated_count;
5177        u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5178        int count;
5179
5180        /* Check for Promiscuous and All Multicast modes */
5181        if (netdev->flags & IFF_PROMISC) {
5182                rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5183                vmolr |= E1000_VMOLR_MPME;
5184
5185                /* enable use of UTA filter to force packets to default pool */
5186                if (hw->mac.type == e1000_82576)
5187                        vmolr |= E1000_VMOLR_ROPE;
5188        } else {
5189                if (netdev->flags & IFF_ALLMULTI) {
5190                        rctl |= E1000_RCTL_MPE;
5191                        vmolr |= E1000_VMOLR_MPME;
5192                } else {
5193                        /* Write addresses to the MTA, if the attempt fails
5194                         * then we should just turn on promiscuous mode so
5195                         * that we can at least receive multicast traffic
5196                         */
5197                        count = igb_write_mc_addr_list(netdev);
5198                        if (count < 0) {
5199                                rctl |= E1000_RCTL_MPE;
5200                                vmolr |= E1000_VMOLR_MPME;
5201                        } else if (count) {
5202                                vmolr |= E1000_VMOLR_ROMPE;
5203                        }
5204                }
5205        }
5206
5207        /* Write addresses to available RAR registers, if there is not
5208         * sufficient space to store all the addresses then enable
5209         * unicast promiscuous mode
5210         */
5211        if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5212                rctl |= E1000_RCTL_UPE;
5213                vmolr |= E1000_VMOLR_ROPE;
5214        }
5215
5216        /* enable VLAN filtering by default */
5217        rctl |= E1000_RCTL_VFE;
5218
5219        /* disable VLAN filtering for modes that require it */
5220        if ((netdev->flags & IFF_PROMISC) ||
5221            (netdev->features & NETIF_F_RXALL)) {
5222                /* if we fail to set all rules then just clear VFE */
5223                if (igb_vlan_promisc_enable(adapter))
5224                        rctl &= ~E1000_RCTL_VFE;
5225        } else {
5226                igb_vlan_promisc_disable(adapter);
5227        }
5228
5229        /* update state of unicast, multicast, and VLAN filtering modes */
5230        rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5231                                     E1000_RCTL_VFE);
5232        wr32(E1000_RCTL, rctl);
5233
5234#if (PAGE_SIZE < 8192)
5235        if (!adapter->vfs_allocated_count) {
5236                if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5237                        rlpml = IGB_MAX_FRAME_BUILD_SKB;
5238        }
5239#endif
5240        wr32(E1000_RLPML, rlpml);
5241
5242        /* In order to support SR-IOV and eventually VMDq it is necessary to set
5243         * the VMOLR to enable the appropriate modes.  Without this workaround
5244         * we will have issues with VLAN tag stripping not being done for frames
5245         * that are only arriving because we are the default pool
5246         */
5247        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5248                return;
5249
5250        /* set UTA to appropriate mode */
5251        igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5252
5253        vmolr |= rd32(E1000_VMOLR(vfn)) &
5254                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5255
5256        /* enable Rx jumbo frames, restrict as needed to support build_skb */
5257        vmolr &= ~E1000_VMOLR_RLPML_MASK;
5258#if (PAGE_SIZE < 8192)
5259        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5260                vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5261        else
5262#endif
5263                vmolr |= MAX_JUMBO_FRAME_SIZE;
5264        vmolr |= E1000_VMOLR_LPE;
5265
5266        wr32(E1000_VMOLR(vfn), vmolr);
5267
5268        igb_restore_vf_multicasts(adapter);
5269}
5270
5271static void igb_check_wvbr(struct igb_adapter *adapter)
5272{
5273        struct e1000_hw *hw = &adapter->hw;
5274        u32 wvbr = 0;
5275
5276        switch (hw->mac.type) {
5277        case e1000_82576:
5278        case e1000_i350:
5279                wvbr = rd32(E1000_WVBR);
5280                if (!wvbr)
5281                        return;
5282                break;
5283        default:
5284                break;
5285        }
5286
5287        adapter->wvbr |= wvbr;
5288}
5289
5290#define IGB_STAGGERED_QUEUE_OFFSET 8
5291
5292static void igb_spoof_check(struct igb_adapter *adapter)
5293{
5294        int j;
5295
5296        if (!adapter->wvbr)
5297                return;
5298
5299        for (j = 0; j < adapter->vfs_allocated_count; j++) {
5300                if (adapter->wvbr & BIT(j) ||
5301                    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5302                        dev_warn(&adapter->pdev->dev,
5303                                "Spoof event(s) detected on VF %d\n", j);
5304                        adapter->wvbr &=
5305                                ~(BIT(j) |
5306                                  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5307                }
5308        }
5309}
5310
5311/* Need to wait a few seconds after link up to get diagnostic information from
5312 * the phy
5313 */
5314static void igb_update_phy_info(struct timer_list *t)
5315{
5316        struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5317        igb_get_phy_info(&adapter->hw);
5318}
5319
5320/**
5321 *  igb_has_link - check shared code for link and determine up/down
5322 *  @adapter: pointer to driver private info
5323 **/
5324bool igb_has_link(struct igb_adapter *adapter)
5325{
5326        struct e1000_hw *hw = &adapter->hw;
5327        bool link_active = false;
5328
5329        /* get_link_status is set on LSC (link status) interrupt or
5330         * rx sequence error interrupt.  get_link_status will stay
5331         * false until the e1000_check_for_link establishes link
5332         * for copper adapters ONLY
5333         */
5334        switch (hw->phy.media_type) {
5335        case e1000_media_type_copper:
5336                if (!hw->mac.get_link_status)
5337                        return true;
5338                fallthrough;
5339        case e1000_media_type_internal_serdes:
5340                hw->mac.ops.check_for_link(hw);
5341                link_active = !hw->mac.get_link_status;
5342                break;
5343        default:
5344        case e1000_media_type_unknown:
5345                break;
5346        }
5347
5348        if (((hw->mac.type == e1000_i210) ||
5349             (hw->mac.type == e1000_i211)) &&
5350             (hw->phy.id == I210_I_PHY_ID)) {
5351                if (!netif_carrier_ok(adapter->netdev)) {
5352                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5353                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5354                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5355                        adapter->link_check_timeout = jiffies;
5356                }
5357        }
5358
5359        return link_active;
5360}
5361
5362static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5363{
5364        bool ret = false;
5365        u32 ctrl_ext, thstat;
5366
5367        /* check for thermal sensor event on i350 copper only */
5368        if (hw->mac.type == e1000_i350) {
5369                thstat = rd32(E1000_THSTAT);
5370                ctrl_ext = rd32(E1000_CTRL_EXT);
5371
5372                if ((hw->phy.media_type == e1000_media_type_copper) &&
5373                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5374                        ret = !!(thstat & event);
5375        }
5376
5377        return ret;
5378}
5379
5380/**
5381 *  igb_check_lvmmc - check for malformed packets received
5382 *  and indicated in LVMMC register
5383 *  @adapter: pointer to adapter
5384 **/
5385static void igb_check_lvmmc(struct igb_adapter *adapter)
5386{
5387        struct e1000_hw *hw = &adapter->hw;
5388        u32 lvmmc;
5389
5390        lvmmc = rd32(E1000_LVMMC);
5391        if (lvmmc) {
5392                if (unlikely(net_ratelimit())) {
5393                        netdev_warn(adapter->netdev,
5394                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5395                                    lvmmc);
5396                }
5397        }
5398}
5399
5400/**
5401 *  igb_watchdog - Timer Call-back
5402 *  @t: pointer to timer_list containing our private info pointer
5403 **/
5404static void igb_watchdog(struct timer_list *t)
5405{
5406        struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5407        /* Do the rest outside of interrupt context */
5408        schedule_work(&adapter->watchdog_task);
5409}
5410
5411static void igb_watchdog_task(struct work_struct *work)
5412{
5413        struct igb_adapter *adapter = container_of(work,
5414                                                   struct igb_adapter,
5415                                                   watchdog_task);
5416        struct e1000_hw *hw = &adapter->hw;
5417        struct e1000_phy_info *phy = &hw->phy;
5418        struct net_device *netdev = adapter->netdev;
5419        u32 link;
5420        int i;
5421        u32 connsw;
5422        u16 phy_data, retry_count = 20;
5423
5424        link = igb_has_link(adapter);
5425
5426        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5427                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5428                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5429                else
5430                        link = false;
5431        }
5432
5433        /* Force link down if we have fiber to swap to */
5434        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5435                if (hw->phy.media_type == e1000_media_type_copper) {
5436                        connsw = rd32(E1000_CONNSW);
5437                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5438                                link = 0;
5439                }
5440        }
5441        if (link) {
5442                /* Perform a reset if the media type changed. */
5443                if (hw->dev_spec._82575.media_changed) {
5444                        hw->dev_spec._82575.media_changed = false;
5445                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
5446                        igb_reset(adapter);
5447                }
5448                /* Cancel scheduled suspend requests. */
5449                pm_runtime_resume(netdev->dev.parent);
5450
5451                if (!netif_carrier_ok(netdev)) {
5452                        u32 ctrl;
5453
5454                        hw->mac.ops.get_speed_and_duplex(hw,
5455                                                         &adapter->link_speed,
5456                                                         &adapter->link_duplex);
5457
5458                        ctrl = rd32(E1000_CTRL);
5459                        /* Links status message must follow this format */
5460                        netdev_info(netdev,
5461                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5462                               netdev->name,
5463                               adapter->link_speed,
5464                               adapter->link_duplex == FULL_DUPLEX ?
5465                               "Full" : "Half",
5466                               (ctrl & E1000_CTRL_TFCE) &&
5467                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5468                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5469                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5470
5471                        /* disable EEE if enabled */
5472                        if ((adapter->flags & IGB_FLAG_EEE) &&
5473                                (adapter->link_duplex == HALF_DUPLEX)) {
5474                                dev_info(&adapter->pdev->dev,
5475                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5476                                adapter->hw.dev_spec._82575.eee_disable = true;
5477                                adapter->flags &= ~IGB_FLAG_EEE;
5478                        }
5479
5480                        /* check if SmartSpeed worked */
5481                        igb_check_downshift(hw);
5482                        if (phy->speed_downgraded)
5483                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5484
5485                        /* check for thermal sensor event */
5486                        if (igb_thermal_sensor_event(hw,
5487                            E1000_THSTAT_LINK_THROTTLE))
5488                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5489
5490                        /* adjust timeout factor according to speed/duplex */
5491                        adapter->tx_timeout_factor = 1;
5492                        switch (adapter->link_speed) {
5493                        case SPEED_10:
5494                                adapter->tx_timeout_factor = 14;
5495                                break;
5496                        case SPEED_100:
5497                                /* maybe add some timeout factor ? */
5498                                break;
5499                        }
5500
5501                        if (adapter->link_speed != SPEED_1000)
5502                                goto no_wait;
5503
5504                        /* wait for Remote receiver status OK */
5505retry_read_status:
5506                        if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5507                                              &phy_data)) {
5508                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5509                                    retry_count) {
5510                                        msleep(100);
5511                                        retry_count--;
5512                                        goto retry_read_status;
5513                                } else if (!retry_count) {
5514                                        dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5515                                }
5516                        } else {
5517                                dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5518                        }
5519no_wait:
5520                        netif_carrier_on(netdev);
5521
5522                        igb_ping_all_vfs(adapter);
5523                        igb_check_vf_rate_limit(adapter);
5524
5525                        /* link state has changed, schedule phy info update */
5526                        if (!test_bit(__IGB_DOWN, &adapter->state))
5527                                mod_timer(&adapter->phy_info_timer,
5528                                          round_jiffies(jiffies + 2 * HZ));
5529                }
5530        } else {
5531                if (netif_carrier_ok(netdev)) {
5532                        adapter->link_speed = 0;
5533                        adapter->link_duplex = 0;
5534
5535                        /* check for thermal sensor event */
5536                        if (igb_thermal_sensor_event(hw,
5537                            E1000_THSTAT_PWR_DOWN)) {
5538                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5539                        }
5540
5541                        /* Links status message must follow this format */
5542                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
5543                               netdev->name);
5544                        netif_carrier_off(netdev);
5545
5546                        igb_ping_all_vfs(adapter);
5547
5548                        /* link state has changed, schedule phy info update */
5549                        if (!test_bit(__IGB_DOWN, &adapter->state))
5550                                mod_timer(&adapter->phy_info_timer,
5551                                          round_jiffies(jiffies + 2 * HZ));
5552
5553                        /* link is down, time to check for alternate media */
5554                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5555                                igb_check_swap_media(adapter);
5556                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5557                                        schedule_work(&adapter->reset_task);
5558                                        /* return immediately */
5559                                        return;
5560                                }
5561                        }
5562                        pm_schedule_suspend(netdev->dev.parent,
5563                                            MSEC_PER_SEC * 5);
5564
5565                /* also check for alternate media here */
5566                } else if (!netif_carrier_ok(netdev) &&
5567                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5568                        igb_check_swap_media(adapter);
5569                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5570                                schedule_work(&adapter->reset_task);
5571                                /* return immediately */
5572                                return;
5573                        }
5574                }
5575        }
5576
5577        spin_lock(&adapter->stats64_lock);
5578        igb_update_stats(adapter);
5579        spin_unlock(&adapter->stats64_lock);
5580
5581        for (i = 0; i < adapter->num_tx_queues; i++) {
5582                struct igb_ring *tx_ring = adapter->tx_ring[i];
5583                if (!netif_carrier_ok(netdev)) {
5584                        /* We've lost link, so the controller stops DMA,
5585                         * but we've got queued Tx work that's never going
5586                         * to get done, so reset controller to flush Tx.
5587                         * (Do the reset outside of interrupt context).
5588                         */
5589                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5590                                adapter->tx_timeout_count++;
5591                                schedule_work(&adapter->reset_task);
5592                                /* return immediately since reset is imminent */
5593                                return;
5594                        }
5595                }
5596
5597                /* Force detection of hung controller every watchdog period */
5598                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5599        }
5600
5601        /* Cause software interrupt to ensure Rx ring is cleaned */
5602        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5603                u32 eics = 0;
5604
5605                for (i = 0; i < adapter->num_q_vectors; i++)
5606                        eics |= adapter->q_vector[i]->eims_value;
5607                wr32(E1000_EICS, eics);
5608        } else {
5609                wr32(E1000_ICS, E1000_ICS_RXDMT0);
5610        }
5611
5612        igb_spoof_check(adapter);
5613        igb_ptp_rx_hang(adapter);
5614        igb_ptp_tx_hang(adapter);
5615
5616        /* Check LVMMC register on i350/i354 only */
5617        if ((adapter->hw.mac.type == e1000_i350) ||
5618            (adapter->hw.mac.type == e1000_i354))
5619                igb_check_lvmmc(adapter);
5620
5621        /* Reset the timer */
5622        if (!test_bit(__IGB_DOWN, &adapter->state)) {
5623                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5624                        mod_timer(&adapter->watchdog_timer,
5625                                  round_jiffies(jiffies +  HZ));
5626                else
5627                        mod_timer(&adapter->watchdog_timer,
5628                                  round_jiffies(jiffies + 2 * HZ));
5629        }
5630}
5631
5632enum latency_range {
5633        lowest_latency = 0,
5634        low_latency = 1,
5635        bulk_latency = 2,
5636        latency_invalid = 255
5637};
5638
5639/**
5640 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5641 *  @q_vector: pointer to q_vector
5642 *
5643 *  Stores a new ITR value based on strictly on packet size.  This
5644 *  algorithm is less sophisticated than that used in igb_update_itr,
5645 *  due to the difficulty of synchronizing statistics across multiple
5646 *  receive rings.  The divisors and thresholds used by this function
5647 *  were determined based on theoretical maximum wire speed and testing
5648 *  data, in order to minimize response time while increasing bulk
5649 *  throughput.
5650 *  This functionality is controlled by ethtool's coalescing settings.
5651 *  NOTE:  This function is called only when operating in a multiqueue
5652 *         receive environment.
5653 **/
5654static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5655{
5656        int new_val = q_vector->itr_val;
5657        int avg_wire_size = 0;
5658        struct igb_adapter *adapter = q_vector->adapter;
5659        unsigned int packets;
5660
5661        /* For non-gigabit speeds, just fix the interrupt rate at 4000
5662         * ints/sec - ITR timer value of 120 ticks.
5663         */
5664        if (adapter->link_speed != SPEED_1000) {
5665                new_val = IGB_4K_ITR;
5666                goto set_itr_val;
5667        }
5668
5669        packets = q_vector->rx.total_packets;
5670        if (packets)
5671                avg_wire_size = q_vector->rx.total_bytes / packets;
5672
5673        packets = q_vector->tx.total_packets;
5674        if (packets)
5675                avg_wire_size = max_t(u32, avg_wire_size,
5676                                      q_vector->tx.total_bytes / packets);
5677
5678        /* if avg_wire_size isn't set no work was done */
5679        if (!avg_wire_size)
5680                goto clear_counts;
5681
5682        /* Add 24 bytes to size to account for CRC, preamble, and gap */
5683        avg_wire_size += 24;
5684
5685        /* Don't starve jumbo frames */
5686        avg_wire_size = min(avg_wire_size, 3000);
5687
5688        /* Give a little boost to mid-size frames */
5689        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5690                new_val = avg_wire_size / 3;
5691        else
5692                new_val = avg_wire_size / 2;
5693
5694        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5695        if (new_val < IGB_20K_ITR &&
5696            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5697             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5698                new_val = IGB_20K_ITR;
5699
5700set_itr_val:
5701        if (new_val != q_vector->itr_val) {
5702                q_vector->itr_val = new_val;
5703                q_vector->set_itr = 1;
5704        }
5705clear_counts:
5706        q_vector->rx.total_bytes = 0;
5707        q_vector->rx.total_packets = 0;
5708        q_vector->tx.total_bytes = 0;
5709        q_vector->tx.total_packets = 0;
5710}
5711
5712/**
5713 *  igb_update_itr - update the dynamic ITR value based on statistics
5714 *  @q_vector: pointer to q_vector
5715 *  @ring_container: ring info to update the itr for
5716 *
5717 *  Stores a new ITR value based on packets and byte
5718 *  counts during the last interrupt.  The advantage of per interrupt
5719 *  computation is faster updates and more accurate ITR for the current
5720 *  traffic pattern.  Constants in this function were computed
5721 *  based on theoretical maximum wire speed and thresholds were set based
5722 *  on testing data as well as attempting to minimize response time
5723 *  while increasing bulk throughput.
5724 *  This functionality is controlled by ethtool's coalescing settings.
5725 *  NOTE:  These calculations are only valid when operating in a single-
5726 *         queue environment.
5727 **/
5728static void igb_update_itr(struct igb_q_vector *q_vector,
5729                           struct igb_ring_container *ring_container)
5730{
5731        unsigned int packets = ring_container->total_packets;
5732        unsigned int bytes = ring_container->total_bytes;
5733        u8 itrval = ring_container->itr;
5734
5735        /* no packets, exit with status unchanged */
5736        if (packets == 0)
5737                return;
5738
5739        switch (itrval) {
5740        case lowest_latency:
5741                /* handle TSO and jumbo frames */
5742                if (bytes/packets > 8000)
5743                        itrval = bulk_latency;
5744                else if ((packets < 5) && (bytes > 512))
5745                        itrval = low_latency;
5746                break;
5747        case low_latency:  /* 50 usec aka 20000 ints/s */
5748                if (bytes > 10000) {
5749                        /* this if handles the TSO accounting */
5750                        if (bytes/packets > 8000)
5751                                itrval = bulk_latency;
5752                        else if ((packets < 10) || ((bytes/packets) > 1200))
5753                                itrval = bulk_latency;
5754                        else if ((packets > 35))
5755                                itrval = lowest_latency;
5756                } else if (bytes/packets > 2000) {
5757                        itrval = bulk_latency;
5758                } else if (packets <= 2 && bytes < 512) {
5759                        itrval = lowest_latency;
5760                }
5761                break;
5762        case bulk_latency: /* 250 usec aka 4000 ints/s */
5763                if (bytes > 25000) {
5764                        if (packets > 35)
5765                                itrval = low_latency;
5766                } else if (bytes < 1500) {
5767                        itrval = low_latency;
5768                }
5769                break;
5770        }
5771
5772        /* clear work counters since we have the values we need */
5773        ring_container->total_bytes = 0;
5774        ring_container->total_packets = 0;
5775
5776        /* write updated itr to ring container */
5777        ring_container->itr = itrval;
5778}
5779
5780static void igb_set_itr(struct igb_q_vector *q_vector)
5781{
5782        struct igb_adapter *adapter = q_vector->adapter;
5783        u32 new_itr = q_vector->itr_val;
5784        u8 current_itr = 0;
5785
5786        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5787        if (adapter->link_speed != SPEED_1000) {
5788                current_itr = 0;
5789                new_itr = IGB_4K_ITR;
5790                goto set_itr_now;
5791        }
5792
5793        igb_update_itr(q_vector, &q_vector->tx);
5794        igb_update_itr(q_vector, &q_vector->rx);
5795
5796        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5797
5798        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5799        if (current_itr == lowest_latency &&
5800            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5801             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5802                current_itr = low_latency;
5803
5804        switch (current_itr) {
5805        /* counts and packets in update_itr are dependent on these numbers */
5806        case lowest_latency:
5807                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5808                break;
5809        case low_latency:
5810                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5811                break;
5812        case bulk_latency:
5813                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5814                break;
5815        default:
5816                break;
5817        }
5818
5819set_itr_now:
5820        if (new_itr != q_vector->itr_val) {
5821                /* this attempts to bias the interrupt rate towards Bulk
5822                 * by adding intermediate steps when interrupt rate is
5823                 * increasing
5824                 */
5825                new_itr = new_itr > q_vector->itr_val ?
5826                          max((new_itr * q_vector->itr_val) /
5827                          (new_itr + (q_vector->itr_val >> 2)),
5828                          new_itr) : new_itr;
5829                /* Don't write the value here; it resets the adapter's
5830                 * internal timer, and causes us to delay far longer than
5831                 * we should between interrupts.  Instead, we write the ITR
5832                 * value at the beginning of the next interrupt so the timing
5833                 * ends up being correct.
5834                 */
5835                q_vector->itr_val = new_itr;
5836                q_vector->set_itr = 1;
5837        }
5838}
5839
5840static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5841                            struct igb_tx_buffer *first,
5842                            u32 vlan_macip_lens, u32 type_tucmd,
5843                            u32 mss_l4len_idx)
5844{
5845        struct e1000_adv_tx_context_desc *context_desc;
5846        u16 i = tx_ring->next_to_use;
5847        struct timespec64 ts;
5848
5849        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5850
5851        i++;
5852        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5853
5854        /* set bits to identify this as an advanced context descriptor */
5855        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5856
5857        /* For 82575, context index must be unique per ring. */
5858        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5859                mss_l4len_idx |= tx_ring->reg_idx << 4;
5860
5861        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5862        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5863        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5864
5865        /* We assume there is always a valid tx time available. Invalid times
5866         * should have been handled by the upper layers.
5867         */
5868        if (tx_ring->launchtime_enable) {
5869                ts = ktime_to_timespec64(first->skb->tstamp);
5870                skb_txtime_consumed(first->skb);
5871                context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5872        } else {
5873                context_desc->seqnum_seed = 0;
5874        }
5875}
5876
5877static int igb_tso(struct igb_ring *tx_ring,
5878                   struct igb_tx_buffer *first,
5879                   u8 *hdr_len)
5880{
5881        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5882        struct sk_buff *skb = first->skb;
5883        union {
5884                struct iphdr *v4;
5885                struct ipv6hdr *v6;
5886                unsigned char *hdr;
5887        } ip;
5888        union {
5889                struct tcphdr *tcp;
5890                struct udphdr *udp;
5891                unsigned char *hdr;
5892        } l4;
5893        u32 paylen, l4_offset;
5894        int err;
5895
5896        if (skb->ip_summed != CHECKSUM_PARTIAL)
5897                return 0;
5898
5899        if (!skb_is_gso(skb))
5900                return 0;
5901
5902        err = skb_cow_head(skb, 0);
5903        if (err < 0)
5904                return err;
5905
5906        ip.hdr = skb_network_header(skb);
5907        l4.hdr = skb_checksum_start(skb);
5908
5909        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5910        type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5911                      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5912
5913        /* initialize outer IP header fields */
5914        if (ip.v4->version == 4) {
5915                unsigned char *csum_start = skb_checksum_start(skb);
5916                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5917
5918                /* IP header will have to cancel out any data that
5919                 * is not a part of the outer IP header
5920                 */
5921                ip.v4->check = csum_fold(csum_partial(trans_start,
5922                                                      csum_start - trans_start,
5923                                                      0));
5924                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5925
5926                ip.v4->tot_len = 0;
5927                first->tx_flags |= IGB_TX_FLAGS_TSO |
5928                                   IGB_TX_FLAGS_CSUM |
5929                                   IGB_TX_FLAGS_IPV4;
5930        } else {
5931                ip.v6->payload_len = 0;
5932                first->tx_flags |= IGB_TX_FLAGS_TSO |
5933                                   IGB_TX_FLAGS_CSUM;
5934        }
5935
5936        /* determine offset of inner transport header */
5937        l4_offset = l4.hdr - skb->data;
5938
5939        /* remove payload length from inner checksum */
5940        paylen = skb->len - l4_offset;
5941        if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5942                /* compute length of segmentation header */
5943                *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5944                csum_replace_by_diff(&l4.tcp->check,
5945                        (__force __wsum)htonl(paylen));
5946        } else {
5947                /* compute length of segmentation header */
5948                *hdr_len = sizeof(*l4.udp) + l4_offset;
5949                csum_replace_by_diff(&l4.udp->check,
5950                                     (__force __wsum)htonl(paylen));
5951        }
5952
5953        /* update gso size and bytecount with header size */
5954        first->gso_segs = skb_shinfo(skb)->gso_segs;
5955        first->bytecount += (first->gso_segs - 1) * *hdr_len;
5956
5957        /* MSS L4LEN IDX */
5958        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5959        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5960
5961        /* VLAN MACLEN IPLEN */
5962        vlan_macip_lens = l4.hdr - ip.hdr;
5963        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5964        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5965
5966        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5967                        type_tucmd, mss_l4len_idx);
5968
5969        return 1;
5970}
5971
5972static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5973{
5974        struct sk_buff *skb = first->skb;
5975        u32 vlan_macip_lens = 0;
5976        u32 type_tucmd = 0;
5977
5978        if (skb->ip_summed != CHECKSUM_PARTIAL) {
5979csum_failed:
5980                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5981                    !tx_ring->launchtime_enable)
5982                        return;
5983                goto no_csum;
5984        }
5985
5986        switch (skb->csum_offset) {
5987        case offsetof(struct tcphdr, check):
5988                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5989                fallthrough;
5990        case offsetof(struct udphdr, check):
5991                break;
5992        case offsetof(struct sctphdr, checksum):
5993                /* validate that this is actually an SCTP request */
5994                if (skb_csum_is_sctp(skb)) {
5995                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5996                        break;
5997                }
5998                fallthrough;
5999        default:
6000                skb_checksum_help(skb);
6001                goto csum_failed;
6002        }
6003
6004        /* update TX checksum flag */
6005        first->tx_flags |= IGB_TX_FLAGS_CSUM;
6006        vlan_macip_lens = skb_checksum_start_offset(skb) -
6007                          skb_network_offset(skb);
6008no_csum:
6009        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6010        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6011
6012        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6013}
6014
6015#define IGB_SET_FLAG(_input, _flag, _result) \
6016        ((_flag <= _result) ? \
6017         ((u32)(_input & _flag) * (_result / _flag)) : \
6018         ((u32)(_input & _flag) / (_flag / _result)))
6019
6020static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6021{
6022        /* set type for advanced descriptor with frame checksum insertion */
6023        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6024                       E1000_ADVTXD_DCMD_DEXT |
6025                       E1000_ADVTXD_DCMD_IFCS;
6026
6027        /* set HW vlan bit if vlan is present */
6028        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6029                                 (E1000_ADVTXD_DCMD_VLE));
6030
6031        /* set segmentation bits for TSO */
6032        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6033                                 (E1000_ADVTXD_DCMD_TSE));
6034
6035        /* set timestamp bit if present */
6036        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6037                                 (E1000_ADVTXD_MAC_TSTAMP));
6038
6039        /* insert frame checksum */
6040        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6041
6042        return cmd_type;
6043}
6044
6045static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6046                                 union e1000_adv_tx_desc *tx_desc,
6047                                 u32 tx_flags, unsigned int paylen)
6048{
6049        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6050
6051        /* 82575 requires a unique index per ring */
6052        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6053                olinfo_status |= tx_ring->reg_idx << 4;
6054
6055        /* insert L4 checksum */
6056        olinfo_status |= IGB_SET_FLAG(tx_flags,
6057                                      IGB_TX_FLAGS_CSUM,
6058                                      (E1000_TXD_POPTS_TXSM << 8));
6059
6060        /* insert IPv4 checksum */
6061        olinfo_status |= IGB_SET_FLAG(tx_flags,
6062                                      IGB_TX_FLAGS_IPV4,
6063                                      (E1000_TXD_POPTS_IXSM << 8));
6064
6065        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6066}
6067
6068static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6069{
6070        struct net_device *netdev = tx_ring->netdev;
6071
6072        netif_stop_subqueue(netdev, tx_ring->queue_index);
6073
6074        /* Herbert's original patch had:
6075         *  smp_mb__after_netif_stop_queue();
6076         * but since that doesn't exist yet, just open code it.
6077         */
6078        smp_mb();
6079
6080        /* We need to check again in a case another CPU has just
6081         * made room available.
6082         */
6083        if (igb_desc_unused(tx_ring) < size)
6084                return -EBUSY;
6085
6086        /* A reprieve! */
6087        netif_wake_subqueue(netdev, tx_ring->queue_index);
6088
6089        u64_stats_update_begin(&tx_ring->tx_syncp2);
6090        tx_ring->tx_stats.restart_queue2++;
6091        u64_stats_update_end(&tx_ring->tx_syncp2);
6092
6093        return 0;
6094}
6095
6096static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6097{
6098        if (igb_desc_unused(tx_ring) >= size)
6099                return 0;
6100        return __igb_maybe_stop_tx(tx_ring, size);
6101}
6102
6103static int igb_tx_map(struct igb_ring *tx_ring,
6104                      struct igb_tx_buffer *first,
6105                      const u8 hdr_len)
6106{
6107        struct sk_buff *skb = first->skb;
6108        struct igb_tx_buffer *tx_buffer;
6109        union e1000_adv_tx_desc *tx_desc;
6110        skb_frag_t *frag;
6111        dma_addr_t dma;
6112        unsigned int data_len, size;
6113        u32 tx_flags = first->tx_flags;
6114        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6115        u16 i = tx_ring->next_to_use;
6116
6117        tx_desc = IGB_TX_DESC(tx_ring, i);
6118
6119        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6120
6121        size = skb_headlen(skb);
6122        data_len = skb->data_len;
6123
6124        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6125
6126        tx_buffer = first;
6127
6128        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6129                if (dma_mapping_error(tx_ring->dev, dma))
6130                        goto dma_error;
6131
6132                /* record length, and DMA address */
6133                dma_unmap_len_set(tx_buffer, len, size);
6134                dma_unmap_addr_set(tx_buffer, dma, dma);
6135
6136                tx_desc->read.buffer_addr = cpu_to_le64(dma);
6137
6138                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6139                        tx_desc->read.cmd_type_len =
6140                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6141
6142                        i++;
6143                        tx_desc++;
6144                        if (i == tx_ring->count) {
6145                                tx_desc = IGB_TX_DESC(tx_ring, 0);
6146                                i = 0;
6147                        }
6148                        tx_desc->read.olinfo_status = 0;
6149
6150                        dma += IGB_MAX_DATA_PER_TXD;
6151                        size -= IGB_MAX_DATA_PER_TXD;
6152
6153                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
6154                }
6155
6156                if (likely(!data_len))
6157                        break;
6158
6159                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6160
6161                i++;
6162                tx_desc++;
6163                if (i == tx_ring->count) {
6164                        tx_desc = IGB_TX_DESC(tx_ring, 0);
6165                        i = 0;
6166                }
6167                tx_desc->read.olinfo_status = 0;
6168
6169                size = skb_frag_size(frag);
6170                data_len -= size;
6171
6172                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6173                                       size, DMA_TO_DEVICE);
6174
6175                tx_buffer = &tx_ring->tx_buffer_info[i];
6176        }
6177
6178        /* write last descriptor with RS and EOP bits */
6179        cmd_type |= size | IGB_TXD_DCMD;
6180        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6181
6182        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6183
6184        /* set the timestamp */
6185        first->time_stamp = jiffies;
6186
6187        skb_tx_timestamp(skb);
6188
6189        /* Force memory writes to complete before letting h/w know there
6190         * are new descriptors to fetch.  (Only applicable for weak-ordered
6191         * memory model archs, such as IA-64).
6192         *
6193         * We also need this memory barrier to make certain all of the
6194         * status bits have been updated before next_to_watch is written.
6195         */
6196        dma_wmb();
6197
6198        /* set next_to_watch value indicating a packet is present */
6199        first->next_to_watch = tx_desc;
6200
6201        i++;
6202        if (i == tx_ring->count)
6203                i = 0;
6204
6205        tx_ring->next_to_use = i;
6206
6207        /* Make sure there is space in the ring for the next send. */
6208        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6209
6210        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6211                writel(i, tx_ring->tail);
6212        }
6213        return 0;
6214
6215dma_error:
6216        dev_err(tx_ring->dev, "TX DMA map failed\n");
6217        tx_buffer = &tx_ring->tx_buffer_info[i];
6218
6219        /* clear dma mappings for failed tx_buffer_info map */
6220        while (tx_buffer != first) {
6221                if (dma_unmap_len(tx_buffer, len))
6222                        dma_unmap_page(tx_ring->dev,
6223                                       dma_unmap_addr(tx_buffer, dma),
6224                                       dma_unmap_len(tx_buffer, len),
6225                                       DMA_TO_DEVICE);
6226                dma_unmap_len_set(tx_buffer, len, 0);
6227
6228                if (i-- == 0)
6229                        i += tx_ring->count;
6230                tx_buffer = &tx_ring->tx_buffer_info[i];
6231        }
6232
6233        if (dma_unmap_len(tx_buffer, len))
6234                dma_unmap_single(tx_ring->dev,
6235                                 dma_unmap_addr(tx_buffer, dma),
6236                                 dma_unmap_len(tx_buffer, len),
6237                                 DMA_TO_DEVICE);
6238        dma_unmap_len_set(tx_buffer, len, 0);
6239
6240        dev_kfree_skb_any(tx_buffer->skb);
6241        tx_buffer->skb = NULL;
6242
6243        tx_ring->next_to_use = i;
6244
6245        return -1;
6246}
6247
6248int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6249                      struct igb_ring *tx_ring,
6250                      struct xdp_frame *xdpf)
6251{
6252        union e1000_adv_tx_desc *tx_desc;
6253        u32 len, cmd_type, olinfo_status;
6254        struct igb_tx_buffer *tx_buffer;
6255        dma_addr_t dma;
6256        u16 i;
6257
6258        len = xdpf->len;
6259
6260        if (unlikely(!igb_desc_unused(tx_ring)))
6261                return IGB_XDP_CONSUMED;
6262
6263        dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6264        if (dma_mapping_error(tx_ring->dev, dma))
6265                return IGB_XDP_CONSUMED;
6266
6267        /* record the location of the first descriptor for this packet */
6268        tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6269        tx_buffer->bytecount = len;
6270        tx_buffer->gso_segs = 1;
6271        tx_buffer->protocol = 0;
6272
6273        i = tx_ring->next_to_use;
6274        tx_desc = IGB_TX_DESC(tx_ring, i);
6275
6276        dma_unmap_len_set(tx_buffer, len, len);
6277        dma_unmap_addr_set(tx_buffer, dma, dma);
6278        tx_buffer->type = IGB_TYPE_XDP;
6279        tx_buffer->xdpf = xdpf;
6280
6281        tx_desc->read.buffer_addr = cpu_to_le64(dma);
6282
6283        /* put descriptor type bits */
6284        cmd_type = E1000_ADVTXD_DTYP_DATA |
6285                   E1000_ADVTXD_DCMD_DEXT |
6286                   E1000_ADVTXD_DCMD_IFCS;
6287        cmd_type |= len | IGB_TXD_DCMD;
6288        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6289
6290        olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6291        /* 82575 requires a unique index per ring */
6292        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6293                olinfo_status |= tx_ring->reg_idx << 4;
6294
6295        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6296
6297        netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6298
6299        /* set the timestamp */
6300        tx_buffer->time_stamp = jiffies;
6301
6302        /* Avoid any potential race with xdp_xmit and cleanup */
6303        smp_wmb();
6304
6305        /* set next_to_watch value indicating a packet is present */
6306        i++;
6307        if (i == tx_ring->count)
6308                i = 0;
6309
6310        tx_buffer->next_to_watch = tx_desc;
6311        tx_ring->next_to_use = i;
6312
6313        /* Make sure there is space in the ring for the next send. */
6314        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6315
6316        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6317                writel(i, tx_ring->tail);
6318
6319        return IGB_XDP_TX;
6320}
6321
6322netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6323                                struct igb_ring *tx_ring)
6324{
6325        struct igb_tx_buffer *first;
6326        int tso;
6327        u32 tx_flags = 0;
6328        unsigned short f;
6329        u16 count = TXD_USE_COUNT(skb_headlen(skb));
6330        __be16 protocol = vlan_get_protocol(skb);
6331        u8 hdr_len = 0;
6332
6333        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6334         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6335         *       + 2 desc gap to keep tail from touching head,
6336         *       + 1 desc for context descriptor,
6337         * otherwise try next time
6338         */
6339        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6340                count += TXD_USE_COUNT(skb_frag_size(
6341                                                &skb_shinfo(skb)->frags[f]));
6342
6343        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6344                /* this is a hard error */
6345                return NETDEV_TX_BUSY;
6346        }
6347
6348        /* record the location of the first descriptor for this packet */
6349        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6350        first->type = IGB_TYPE_SKB;
6351        first->skb = skb;
6352        first->bytecount = skb->len;
6353        first->gso_segs = 1;
6354
6355        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6356                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6357
6358                if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6359                    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6360                                           &adapter->state)) {
6361                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6362                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
6363
6364                        adapter->ptp_tx_skb = skb_get(skb);
6365                        adapter->ptp_tx_start = jiffies;
6366                        if (adapter->hw.mac.type == e1000_82576)
6367                                schedule_work(&adapter->ptp_tx_work);
6368                } else {
6369                        adapter->tx_hwtstamp_skipped++;
6370                }
6371        }
6372
6373        if (skb_vlan_tag_present(skb)) {
6374                tx_flags |= IGB_TX_FLAGS_VLAN;
6375                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6376        }
6377
6378        /* record initial flags and protocol */
6379        first->tx_flags = tx_flags;
6380        first->protocol = protocol;
6381
6382        tso = igb_tso(tx_ring, first, &hdr_len);
6383        if (tso < 0)
6384                goto out_drop;
6385        else if (!tso)
6386                igb_tx_csum(tx_ring, first);
6387
6388        if (igb_tx_map(tx_ring, first, hdr_len))
6389                goto cleanup_tx_tstamp;
6390
6391        return NETDEV_TX_OK;
6392
6393out_drop:
6394        dev_kfree_skb_any(first->skb);
6395        first->skb = NULL;
6396cleanup_tx_tstamp:
6397        if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6398                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6399
6400                dev_kfree_skb_any(adapter->ptp_tx_skb);
6401                adapter->ptp_tx_skb = NULL;
6402                if (adapter->hw.mac.type == e1000_82576)
6403                        cancel_work_sync(&adapter->ptp_tx_work);
6404                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6405        }
6406
6407        return NETDEV_TX_OK;
6408}
6409
6410static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6411                                                    struct sk_buff *skb)
6412{
6413        unsigned int r_idx = skb->queue_mapping;
6414
6415        if (r_idx >= adapter->num_tx_queues)
6416                r_idx = r_idx % adapter->num_tx_queues;
6417
6418        return adapter->tx_ring[r_idx];
6419}
6420
6421static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6422                                  struct net_device *netdev)
6423{
6424        struct igb_adapter *adapter = netdev_priv(netdev);
6425
6426        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6427         * in order to meet this minimum size requirement.
6428         */
6429        if (skb_put_padto(skb, 17))
6430                return NETDEV_TX_OK;
6431
6432        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6433}
6434
6435/**
6436 *  igb_tx_timeout - Respond to a Tx Hang
6437 *  @netdev: network interface device structure
6438 *  @txqueue: number of the Tx queue that hung (unused)
6439 **/
6440static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6441{
6442        struct igb_adapter *adapter = netdev_priv(netdev);
6443        struct e1000_hw *hw = &adapter->hw;
6444
6445        /* Do the reset outside of interrupt context */
6446        adapter->tx_timeout_count++;
6447
6448        if (hw->mac.type >= e1000_82580)
6449                hw->dev_spec._82575.global_device_reset = true;
6450
6451        schedule_work(&adapter->reset_task);
6452        wr32(E1000_EICS,
6453             (adapter->eims_enable_mask & ~adapter->eims_other));
6454}
6455
6456static void igb_reset_task(struct work_struct *work)
6457{
6458        struct igb_adapter *adapter;
6459        adapter = container_of(work, struct igb_adapter, reset_task);
6460
6461        rtnl_lock();
6462        /* If we're already down or resetting, just bail */
6463        if (test_bit(__IGB_DOWN, &adapter->state) ||
6464            test_bit(__IGB_RESETTING, &adapter->state)) {
6465                rtnl_unlock();
6466                return;
6467        }
6468
6469        igb_dump(adapter);
6470        netdev_err(adapter->netdev, "Reset adapter\n");
6471        igb_reinit_locked(adapter);
6472        rtnl_unlock();
6473}
6474
6475/**
6476 *  igb_get_stats64 - Get System Network Statistics
6477 *  @netdev: network interface device structure
6478 *  @stats: rtnl_link_stats64 pointer
6479 **/
6480static void igb_get_stats64(struct net_device *netdev,
6481                            struct rtnl_link_stats64 *stats)
6482{
6483        struct igb_adapter *adapter = netdev_priv(netdev);
6484
6485        spin_lock(&adapter->stats64_lock);
6486        igb_update_stats(adapter);
6487        memcpy(stats, &adapter->stats64, sizeof(*stats));
6488        spin_unlock(&adapter->stats64_lock);
6489}
6490
6491/**
6492 *  igb_change_mtu - Change the Maximum Transfer Unit
6493 *  @netdev: network interface device structure
6494 *  @new_mtu: new value for maximum frame size
6495 *
6496 *  Returns 0 on success, negative on failure
6497 **/
6498static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6499{
6500        struct igb_adapter *adapter = netdev_priv(netdev);
6501        int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6502
6503        if (adapter->xdp_prog) {
6504                int i;
6505
6506                for (i = 0; i < adapter->num_rx_queues; i++) {
6507                        struct igb_ring *ring = adapter->rx_ring[i];
6508
6509                        if (max_frame > igb_rx_bufsz(ring)) {
6510                                netdev_warn(adapter->netdev,
6511                                            "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6512                                            max_frame);
6513                                return -EINVAL;
6514                        }
6515                }
6516        }
6517
6518        /* adjust max frame to be at least the size of a standard frame */
6519        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6520                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6521
6522        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6523                usleep_range(1000, 2000);
6524
6525        /* igb_down has a dependency on max_frame_size */
6526        adapter->max_frame_size = max_frame;
6527
6528        if (netif_running(netdev))
6529                igb_down(adapter);
6530
6531        netdev_dbg(netdev, "changing MTU from %d to %d\n",
6532                   netdev->mtu, new_mtu);
6533        netdev->mtu = new_mtu;
6534
6535        if (netif_running(netdev))
6536                igb_up(adapter);
6537        else
6538                igb_reset(adapter);
6539
6540        clear_bit(__IGB_RESETTING, &adapter->state);
6541
6542        return 0;
6543}
6544
6545/**
6546 *  igb_update_stats - Update the board statistics counters
6547 *  @adapter: board private structure
6548 **/
6549void igb_update_stats(struct igb_adapter *adapter)
6550{
6551        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6552        struct e1000_hw *hw = &adapter->hw;
6553        struct pci_dev *pdev = adapter->pdev;
6554        u32 reg, mpc;
6555        int i;
6556        u64 bytes, packets;
6557        unsigned int start;
6558        u64 _bytes, _packets;
6559
6560        /* Prevent stats update while adapter is being reset, or if the pci
6561         * connection is down.
6562         */
6563        if (adapter->link_speed == 0)
6564                return;
6565        if (pci_channel_offline(pdev))
6566                return;
6567
6568        bytes = 0;
6569        packets = 0;
6570
6571        rcu_read_lock();
6572        for (i = 0; i < adapter->num_rx_queues; i++) {
6573                struct igb_ring *ring = adapter->rx_ring[i];
6574                u32 rqdpc = rd32(E1000_RQDPC(i));
6575                if (hw->mac.type >= e1000_i210)
6576                        wr32(E1000_RQDPC(i), 0);
6577
6578                if (rqdpc) {
6579                        ring->rx_stats.drops += rqdpc;
6580                        net_stats->rx_fifo_errors += rqdpc;
6581                }
6582
6583                do {
6584                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6585                        _bytes = ring->rx_stats.bytes;
6586                        _packets = ring->rx_stats.packets;
6587                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6588                bytes += _bytes;
6589                packets += _packets;
6590        }
6591
6592        net_stats->rx_bytes = bytes;
6593        net_stats->rx_packets = packets;
6594
6595        bytes = 0;
6596        packets = 0;
6597        for (i = 0; i < adapter->num_tx_queues; i++) {
6598                struct igb_ring *ring = adapter->tx_ring[i];
6599                do {
6600                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6601                        _bytes = ring->tx_stats.bytes;
6602                        _packets = ring->tx_stats.packets;
6603                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6604                bytes += _bytes;
6605                packets += _packets;
6606        }
6607        net_stats->tx_bytes = bytes;
6608        net_stats->tx_packets = packets;
6609        rcu_read_unlock();
6610
6611        /* read stats registers */
6612        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6613        adapter->stats.gprc += rd32(E1000_GPRC);
6614        adapter->stats.gorc += rd32(E1000_GORCL);
6615        rd32(E1000_GORCH); /* clear GORCL */
6616        adapter->stats.bprc += rd32(E1000_BPRC);
6617        adapter->stats.mprc += rd32(E1000_MPRC);
6618        adapter->stats.roc += rd32(E1000_ROC);
6619
6620        adapter->stats.prc64 += rd32(E1000_PRC64);
6621        adapter->stats.prc127 += rd32(E1000_PRC127);
6622        adapter->stats.prc255 += rd32(E1000_PRC255);
6623        adapter->stats.prc511 += rd32(E1000_PRC511);
6624        adapter->stats.prc1023 += rd32(E1000_PRC1023);
6625        adapter->stats.prc1522 += rd32(E1000_PRC1522);
6626        adapter->stats.symerrs += rd32(E1000_SYMERRS);
6627        adapter->stats.sec += rd32(E1000_SEC);
6628
6629        mpc = rd32(E1000_MPC);
6630        adapter->stats.mpc += mpc;
6631        net_stats->rx_fifo_errors += mpc;
6632        adapter->stats.scc += rd32(E1000_SCC);
6633        adapter->stats.ecol += rd32(E1000_ECOL);
6634        adapter->stats.mcc += rd32(E1000_MCC);
6635        adapter->stats.latecol += rd32(E1000_LATECOL);
6636        adapter->stats.dc += rd32(E1000_DC);
6637        adapter->stats.rlec += rd32(E1000_RLEC);
6638        adapter->stats.xonrxc += rd32(E1000_XONRXC);
6639        adapter->stats.xontxc += rd32(E1000_XONTXC);
6640        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6641        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6642        adapter->stats.fcruc += rd32(E1000_FCRUC);
6643        adapter->stats.gptc += rd32(E1000_GPTC);
6644        adapter->stats.gotc += rd32(E1000_GOTCL);
6645        rd32(E1000_GOTCH); /* clear GOTCL */
6646        adapter->stats.rnbc += rd32(E1000_RNBC);
6647        adapter->stats.ruc += rd32(E1000_RUC);
6648        adapter->stats.rfc += rd32(E1000_RFC);
6649        adapter->stats.rjc += rd32(E1000_RJC);
6650        adapter->stats.tor += rd32(E1000_TORH);
6651        adapter->stats.tot += rd32(E1000_TOTH);
6652        adapter->stats.tpr += rd32(E1000_TPR);
6653
6654        adapter->stats.ptc64 += rd32(E1000_PTC64);
6655        adapter->stats.ptc127 += rd32(E1000_PTC127);
6656        adapter->stats.ptc255 += rd32(E1000_PTC255);
6657        adapter->stats.ptc511 += rd32(E1000_PTC511);
6658        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6659        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6660
6661        adapter->stats.mptc += rd32(E1000_MPTC);
6662        adapter->stats.bptc += rd32(E1000_BPTC);
6663
6664        adapter->stats.tpt += rd32(E1000_TPT);
6665        adapter->stats.colc += rd32(E1000_COLC);
6666
6667        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6668        /* read internal phy specific stats */
6669        reg = rd32(E1000_CTRL_EXT);
6670        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6671                adapter->stats.rxerrc += rd32(E1000_RXERRC);
6672
6673                /* this stat has invalid values on i210/i211 */
6674                if ((hw->mac.type != e1000_i210) &&
6675                    (hw->mac.type != e1000_i211))
6676                        adapter->stats.tncrs += rd32(E1000_TNCRS);
6677        }
6678
6679        adapter->stats.tsctc += rd32(E1000_TSCTC);
6680        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6681
6682        adapter->stats.iac += rd32(E1000_IAC);
6683        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6684        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6685        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6686        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6687        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6688        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6689        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6690        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6691
6692        /* Fill out the OS statistics structure */
6693        net_stats->multicast = adapter->stats.mprc;
6694        net_stats->collisions = adapter->stats.colc;
6695
6696        /* Rx Errors */
6697
6698        /* RLEC on some newer hardware can be incorrect so build
6699         * our own version based on RUC and ROC
6700         */
6701        net_stats->rx_errors = adapter->stats.rxerrc +
6702                adapter->stats.crcerrs + adapter->stats.algnerrc +
6703                adapter->stats.ruc + adapter->stats.roc +
6704                adapter->stats.cexterr;
6705        net_stats->rx_length_errors = adapter->stats.ruc +
6706                                      adapter->stats.roc;
6707        net_stats->rx_crc_errors = adapter->stats.crcerrs;
6708        net_stats->rx_frame_errors = adapter->stats.algnerrc;
6709        net_stats->rx_missed_errors = adapter->stats.mpc;
6710
6711        /* Tx Errors */
6712        net_stats->tx_errors = adapter->stats.ecol +
6713                               adapter->stats.latecol;
6714        net_stats->tx_aborted_errors = adapter->stats.ecol;
6715        net_stats->tx_window_errors = adapter->stats.latecol;
6716        net_stats->tx_carrier_errors = adapter->stats.tncrs;
6717
6718        /* Tx Dropped needs to be maintained elsewhere */
6719
6720        /* Management Stats */
6721        adapter->stats.mgptc += rd32(E1000_MGTPTC);
6722        adapter->stats.mgprc += rd32(E1000_MGTPRC);
6723        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6724
6725        /* OS2BMC Stats */
6726        reg = rd32(E1000_MANC);
6727        if (reg & E1000_MANC_EN_BMC2OS) {
6728                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6729                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6730                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6731                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6732        }
6733}
6734
6735static void igb_tsync_interrupt(struct igb_adapter *adapter)
6736{
6737        struct e1000_hw *hw = &adapter->hw;
6738        struct ptp_clock_event event;
6739        struct timespec64 ts;
6740        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6741
6742        if (tsicr & TSINTR_SYS_WRAP) {
6743                event.type = PTP_CLOCK_PPS;
6744                if (adapter->ptp_caps.pps)
6745                        ptp_clock_event(adapter->ptp_clock, &event);
6746                ack |= TSINTR_SYS_WRAP;
6747        }
6748
6749        if (tsicr & E1000_TSICR_TXTS) {
6750                /* retrieve hardware timestamp */
6751                schedule_work(&adapter->ptp_tx_work);
6752                ack |= E1000_TSICR_TXTS;
6753        }
6754
6755        if (tsicr & TSINTR_TT0) {
6756                spin_lock(&adapter->tmreg_lock);
6757                ts = timespec64_add(adapter->perout[0].start,
6758                                    adapter->perout[0].period);
6759                /* u32 conversion of tv_sec is safe until y2106 */
6760                wr32(E1000_TRGTTIML0, ts.tv_nsec);
6761                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6762                tsauxc = rd32(E1000_TSAUXC);
6763                tsauxc |= TSAUXC_EN_TT0;
6764                wr32(E1000_TSAUXC, tsauxc);
6765                adapter->perout[0].start = ts;
6766                spin_unlock(&adapter->tmreg_lock);
6767                ack |= TSINTR_TT0;
6768        }
6769
6770        if (tsicr & TSINTR_TT1) {
6771                spin_lock(&adapter->tmreg_lock);
6772                ts = timespec64_add(adapter->perout[1].start,
6773                                    adapter->perout[1].period);
6774                wr32(E1000_TRGTTIML1, ts.tv_nsec);
6775                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6776                tsauxc = rd32(E1000_TSAUXC);
6777                tsauxc |= TSAUXC_EN_TT1;
6778                wr32(E1000_TSAUXC, tsauxc);
6779                adapter->perout[1].start = ts;
6780                spin_unlock(&adapter->tmreg_lock);
6781                ack |= TSINTR_TT1;
6782        }
6783
6784        if (tsicr & TSINTR_AUTT0) {
6785                nsec = rd32(E1000_AUXSTMPL0);
6786                sec  = rd32(E1000_AUXSTMPH0);
6787                event.type = PTP_CLOCK_EXTTS;
6788                event.index = 0;
6789                event.timestamp = sec * 1000000000ULL + nsec;
6790                ptp_clock_event(adapter->ptp_clock, &event);
6791                ack |= TSINTR_AUTT0;
6792        }
6793
6794        if (tsicr & TSINTR_AUTT1) {
6795                nsec = rd32(E1000_AUXSTMPL1);
6796                sec  = rd32(E1000_AUXSTMPH1);
6797                event.type = PTP_CLOCK_EXTTS;
6798                event.index = 1;
6799                event.timestamp = sec * 1000000000ULL + nsec;
6800                ptp_clock_event(adapter->ptp_clock, &event);
6801                ack |= TSINTR_AUTT1;
6802        }
6803
6804        /* acknowledge the interrupts */
6805        wr32(E1000_TSICR, ack);
6806}
6807
6808static irqreturn_t igb_msix_other(int irq, void *data)
6809{
6810        struct igb_adapter *adapter = data;
6811        struct e1000_hw *hw = &adapter->hw;
6812        u32 icr = rd32(E1000_ICR);
6813        /* reading ICR causes bit 31 of EICR to be cleared */
6814
6815        if (icr & E1000_ICR_DRSTA)
6816                schedule_work(&adapter->reset_task);
6817
6818        if (icr & E1000_ICR_DOUTSYNC) {
6819                /* HW is reporting DMA is out of sync */
6820                adapter->stats.doosync++;
6821                /* The DMA Out of Sync is also indication of a spoof event
6822                 * in IOV mode. Check the Wrong VM Behavior register to
6823                 * see if it is really a spoof event.
6824                 */
6825                igb_check_wvbr(adapter);
6826        }
6827
6828        /* Check for a mailbox event */
6829        if (icr & E1000_ICR_VMMB)
6830                igb_msg_task(adapter);
6831
6832        if (icr & E1000_ICR_LSC) {
6833                hw->mac.get_link_status = 1;
6834                /* guard against interrupt when we're going down */
6835                if (!test_bit(__IGB_DOWN, &adapter->state))
6836                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6837        }
6838
6839        if (icr & E1000_ICR_TS)
6840                igb_tsync_interrupt(adapter);
6841
6842        wr32(E1000_EIMS, adapter->eims_other);
6843
6844        return IRQ_HANDLED;
6845}
6846
6847static void igb_write_itr(struct igb_q_vector *q_vector)
6848{
6849        struct igb_adapter *adapter = q_vector->adapter;
6850        u32 itr_val = q_vector->itr_val & 0x7FFC;
6851
6852        if (!q_vector->set_itr)
6853                return;
6854
6855        if (!itr_val)
6856                itr_val = 0x4;
6857
6858        if (adapter->hw.mac.type == e1000_82575)
6859                itr_val |= itr_val << 16;
6860        else
6861                itr_val |= E1000_EITR_CNT_IGNR;
6862
6863        writel(itr_val, q_vector->itr_register);
6864        q_vector->set_itr = 0;
6865}
6866
6867static irqreturn_t igb_msix_ring(int irq, void *data)
6868{
6869        struct igb_q_vector *q_vector = data;
6870
6871        /* Write the ITR value calculated from the previous interrupt. */
6872        igb_write_itr(q_vector);
6873
6874        napi_schedule(&q_vector->napi);
6875
6876        return IRQ_HANDLED;
6877}
6878
6879#ifdef CONFIG_IGB_DCA
6880static void igb_update_tx_dca(struct igb_adapter *adapter,
6881                              struct igb_ring *tx_ring,
6882                              int cpu)
6883{
6884        struct e1000_hw *hw = &adapter->hw;
6885        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6886
6887        if (hw->mac.type != e1000_82575)
6888                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6889
6890        /* We can enable relaxed ordering for reads, but not writes when
6891         * DCA is enabled.  This is due to a known issue in some chipsets
6892         * which will cause the DCA tag to be cleared.
6893         */
6894        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6895                  E1000_DCA_TXCTRL_DATA_RRO_EN |
6896                  E1000_DCA_TXCTRL_DESC_DCA_EN;
6897
6898        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6899}
6900
6901static void igb_update_rx_dca(struct igb_adapter *adapter,
6902                              struct igb_ring *rx_ring,
6903                              int cpu)
6904{
6905        struct e1000_hw *hw = &adapter->hw;
6906        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6907
6908        if (hw->mac.type != e1000_82575)
6909                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6910
6911        /* We can enable relaxed ordering for reads, but not writes when
6912         * DCA is enabled.  This is due to a known issue in some chipsets
6913         * which will cause the DCA tag to be cleared.
6914         */
6915        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6916                  E1000_DCA_RXCTRL_DESC_DCA_EN;
6917
6918        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6919}
6920
6921static void igb_update_dca(struct igb_q_vector *q_vector)
6922{
6923        struct igb_adapter *adapter = q_vector->adapter;
6924        int cpu = get_cpu();
6925
6926        if (q_vector->cpu == cpu)
6927                goto out_no_update;
6928
6929        if (q_vector->tx.ring)
6930                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6931
6932        if (q_vector->rx.ring)
6933                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6934
6935        q_vector->cpu = cpu;
6936out_no_update:
6937        put_cpu();
6938}
6939
6940static void igb_setup_dca(struct igb_adapter *adapter)
6941{
6942        struct e1000_hw *hw = &adapter->hw;
6943        int i;
6944
6945        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6946                return;
6947
6948        /* Always use CB2 mode, difference is masked in the CB driver. */
6949        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6950
6951        for (i = 0; i < adapter->num_q_vectors; i++) {
6952                adapter->q_vector[i]->cpu = -1;
6953                igb_update_dca(adapter->q_vector[i]);
6954        }
6955}
6956
6957static int __igb_notify_dca(struct device *dev, void *data)
6958{
6959        struct net_device *netdev = dev_get_drvdata(dev);
6960        struct igb_adapter *adapter = netdev_priv(netdev);
6961        struct pci_dev *pdev = adapter->pdev;
6962        struct e1000_hw *hw = &adapter->hw;
6963        unsigned long event = *(unsigned long *)data;
6964
6965        switch (event) {
6966        case DCA_PROVIDER_ADD:
6967                /* if already enabled, don't do it again */
6968                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6969                        break;
6970                if (dca_add_requester(dev) == 0) {
6971                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
6972                        dev_info(&pdev->dev, "DCA enabled\n");
6973                        igb_setup_dca(adapter);
6974                        break;
6975                }
6976                fallthrough; /* since DCA is disabled. */
6977        case DCA_PROVIDER_REMOVE:
6978                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6979                        /* without this a class_device is left
6980                         * hanging around in the sysfs model
6981                         */
6982                        dca_remove_requester(dev);
6983                        dev_info(&pdev->dev, "DCA disabled\n");
6984                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6985                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6986                }
6987                break;
6988        }
6989
6990        return 0;
6991}
6992
6993static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6994                          void *p)
6995{
6996        int ret_val;
6997
6998        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6999                                         __igb_notify_dca);
7000
7001        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7002}
7003#endif /* CONFIG_IGB_DCA */
7004
7005#ifdef CONFIG_PCI_IOV
7006static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7007{
7008        unsigned char mac_addr[ETH_ALEN];
7009
7010        eth_zero_addr(mac_addr);
7011        igb_set_vf_mac(adapter, vf, mac_addr);
7012
7013        /* By default spoof check is enabled for all VFs */
7014        adapter->vf_data[vf].spoofchk_enabled = true;
7015
7016        /* By default VFs are not trusted */
7017        adapter->vf_data[vf].trusted = false;
7018
7019        return 0;
7020}
7021
7022#endif
7023static void igb_ping_all_vfs(struct igb_adapter *adapter)
7024{
7025        struct e1000_hw *hw = &adapter->hw;
7026        u32 ping;
7027        int i;
7028
7029        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7030                ping = E1000_PF_CONTROL_MSG;
7031                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7032                        ping |= E1000_VT_MSGTYPE_CTS;
7033                igb_write_mbx(hw, &ping, 1, i);
7034        }
7035}
7036
7037static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7038{
7039        struct e1000_hw *hw = &adapter->hw;
7040        u32 vmolr = rd32(E1000_VMOLR(vf));
7041        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7042
7043        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7044                            IGB_VF_FLAG_MULTI_PROMISC);
7045        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7046
7047        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7048                vmolr |= E1000_VMOLR_MPME;
7049                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7050                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7051        } else {
7052                /* if we have hashes and we are clearing a multicast promisc
7053                 * flag we need to write the hashes to the MTA as this step
7054                 * was previously skipped
7055                 */
7056                if (vf_data->num_vf_mc_hashes > 30) {
7057                        vmolr |= E1000_VMOLR_MPME;
7058                } else if (vf_data->num_vf_mc_hashes) {
7059                        int j;
7060
7061                        vmolr |= E1000_VMOLR_ROMPE;
7062                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7063                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7064                }
7065        }
7066
7067        wr32(E1000_VMOLR(vf), vmolr);
7068
7069        /* there are flags left unprocessed, likely not supported */
7070        if (*msgbuf & E1000_VT_MSGINFO_MASK)
7071                return -EINVAL;
7072
7073        return 0;
7074}
7075
7076static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7077                                  u32 *msgbuf, u32 vf)
7078{
7079        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7080        u16 *hash_list = (u16 *)&msgbuf[1];
7081        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7082        int i;
7083
7084        /* salt away the number of multicast addresses assigned
7085         * to this VF for later use to restore when the PF multi cast
7086         * list changes
7087         */
7088        vf_data->num_vf_mc_hashes = n;
7089
7090        /* only up to 30 hash values supported */
7091        if (n > 30)
7092                n = 30;
7093
7094        /* store the hashes for later use */
7095        for (i = 0; i < n; i++)
7096                vf_data->vf_mc_hashes[i] = hash_list[i];
7097
7098        /* Flush and reset the mta with the new values */
7099        igb_set_rx_mode(adapter->netdev);
7100
7101        return 0;
7102}
7103
7104static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7105{
7106        struct e1000_hw *hw = &adapter->hw;
7107        struct vf_data_storage *vf_data;
7108        int i, j;
7109
7110        for (i = 0; i < adapter->vfs_allocated_count; i++) {
7111                u32 vmolr = rd32(E1000_VMOLR(i));
7112
7113                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7114
7115                vf_data = &adapter->vf_data[i];
7116
7117                if ((vf_data->num_vf_mc_hashes > 30) ||
7118                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7119                        vmolr |= E1000_VMOLR_MPME;
7120                } else if (vf_data->num_vf_mc_hashes) {
7121                        vmolr |= E1000_VMOLR_ROMPE;
7122                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7123                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7124                }
7125                wr32(E1000_VMOLR(i), vmolr);
7126        }
7127}
7128
7129static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7130{
7131        struct e1000_hw *hw = &adapter->hw;
7132        u32 pool_mask, vlvf_mask, i;
7133
7134        /* create mask for VF and other pools */
7135        pool_mask = E1000_VLVF_POOLSEL_MASK;
7136        vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7137
7138        /* drop PF from pool bits */
7139        pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7140                             adapter->vfs_allocated_count);
7141
7142        /* Find the vlan filter for this id */
7143        for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7144                u32 vlvf = rd32(E1000_VLVF(i));
7145                u32 vfta_mask, vid, vfta;
7146
7147                /* remove the vf from the pool */
7148                if (!(vlvf & vlvf_mask))
7149                        continue;
7150
7151                /* clear out bit from VLVF */
7152                vlvf ^= vlvf_mask;
7153
7154                /* if other pools are present, just remove ourselves */
7155                if (vlvf & pool_mask)
7156                        goto update_vlvfb;
7157
7158                /* if PF is present, leave VFTA */
7159                if (vlvf & E1000_VLVF_POOLSEL_MASK)
7160                        goto update_vlvf;
7161
7162                vid = vlvf & E1000_VLVF_VLANID_MASK;
7163                vfta_mask = BIT(vid % 32);
7164
7165                /* clear bit from VFTA */
7166                vfta = adapter->shadow_vfta[vid / 32];
7167                if (vfta & vfta_mask)
7168                        hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7169update_vlvf:
7170                /* clear pool selection enable */
7171                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7172                        vlvf &= E1000_VLVF_POOLSEL_MASK;
7173                else
7174                        vlvf = 0;
7175update_vlvfb:
7176                /* clear pool bits */
7177                wr32(E1000_VLVF(i), vlvf);
7178        }
7179}
7180
7181static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7182{
7183        u32 vlvf;
7184        int idx;
7185
7186        /* short cut the special case */
7187        if (vlan == 0)
7188                return 0;
7189
7190        /* Search for the VLAN id in the VLVF entries */
7191        for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7192                vlvf = rd32(E1000_VLVF(idx));
7193                if ((vlvf & VLAN_VID_MASK) == vlan)
7194                        break;
7195        }
7196
7197        return idx;
7198}
7199
7200static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7201{
7202        struct e1000_hw *hw = &adapter->hw;
7203        u32 bits, pf_id;
7204        int idx;
7205
7206        idx = igb_find_vlvf_entry(hw, vid);
7207        if (!idx)
7208                return;
7209
7210        /* See if any other pools are set for this VLAN filter
7211         * entry other than the PF.
7212         */
7213        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7214        bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7215        bits &= rd32(E1000_VLVF(idx));
7216
7217        /* Disable the filter so this falls into the default pool. */
7218        if (!bits) {
7219                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7220                        wr32(E1000_VLVF(idx), BIT(pf_id));
7221                else
7222                        wr32(E1000_VLVF(idx), 0);
7223        }
7224}
7225
7226static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7227                           bool add, u32 vf)
7228{
7229        int pf_id = adapter->vfs_allocated_count;
7230        struct e1000_hw *hw = &adapter->hw;
7231        int err;
7232
7233        /* If VLAN overlaps with one the PF is currently monitoring make
7234         * sure that we are able to allocate a VLVF entry.  This may be
7235         * redundant but it guarantees PF will maintain visibility to
7236         * the VLAN.
7237         */
7238        if (add && test_bit(vid, adapter->active_vlans)) {
7239                err = igb_vfta_set(hw, vid, pf_id, true, false);
7240                if (err)
7241                        return err;
7242        }
7243
7244        err = igb_vfta_set(hw, vid, vf, add, false);
7245
7246        if (add && !err)
7247                return err;
7248
7249        /* If we failed to add the VF VLAN or we are removing the VF VLAN
7250         * we may need to drop the PF pool bit in order to allow us to free
7251         * up the VLVF resources.
7252         */
7253        if (test_bit(vid, adapter->active_vlans) ||
7254            (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7255                igb_update_pf_vlvf(adapter, vid);
7256
7257        return err;
7258}
7259
7260static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7261{
7262        struct e1000_hw *hw = &adapter->hw;
7263
7264        if (vid)
7265                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7266        else
7267                wr32(E1000_VMVIR(vf), 0);
7268}
7269
7270static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7271                                u16 vlan, u8 qos)
7272{
7273        int err;
7274
7275        err = igb_set_vf_vlan(adapter, vlan, true, vf);
7276        if (err)
7277                return err;
7278
7279        igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7280        igb_set_vmolr(adapter, vf, !vlan);
7281
7282        /* revoke access to previous VLAN */
7283        if (vlan != adapter->vf_data[vf].pf_vlan)
7284                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7285                                false, vf);
7286
7287        adapter->vf_data[vf].pf_vlan = vlan;
7288        adapter->vf_data[vf].pf_qos = qos;
7289        igb_set_vf_vlan_strip(adapter, vf, true);
7290        dev_info(&adapter->pdev->dev,
7291                 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7292        if (test_bit(__IGB_DOWN, &adapter->state)) {
7293                dev_warn(&adapter->pdev->dev,
7294                         "The VF VLAN has been set, but the PF device is not up.\n");
7295                dev_warn(&adapter->pdev->dev,
7296                         "Bring the PF device up before attempting to use the VF device.\n");
7297        }
7298
7299        return err;
7300}
7301
7302static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7303{
7304        /* Restore tagless access via VLAN 0 */
7305        igb_set_vf_vlan(adapter, 0, true, vf);
7306
7307        igb_set_vmvir(adapter, 0, vf);
7308        igb_set_vmolr(adapter, vf, true);
7309
7310        /* Remove any PF assigned VLAN */
7311        if (adapter->vf_data[vf].pf_vlan)
7312                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7313                                false, vf);
7314
7315        adapter->vf_data[vf].pf_vlan = 0;
7316        adapter->vf_data[vf].pf_qos = 0;
7317        igb_set_vf_vlan_strip(adapter, vf, false);
7318
7319        return 0;
7320}
7321
7322static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7323                               u16 vlan, u8 qos, __be16 vlan_proto)
7324{
7325        struct igb_adapter *adapter = netdev_priv(netdev);
7326
7327        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7328                return -EINVAL;
7329
7330        if (vlan_proto != htons(ETH_P_8021Q))
7331                return -EPROTONOSUPPORT;
7332
7333        return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7334                               igb_disable_port_vlan(adapter, vf);
7335}
7336
7337static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7338{
7339        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7340        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7341        int ret;
7342
7343        if (adapter->vf_data[vf].pf_vlan)
7344                return -1;
7345
7346        /* VLAN 0 is a special case, don't allow it to be removed */
7347        if (!vid && !add)
7348                return 0;
7349
7350        ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7351        if (!ret)
7352                igb_set_vf_vlan_strip(adapter, vf, !!vid);
7353        return ret;
7354}
7355
7356static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7357{
7358        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7359
7360        /* clear flags - except flag that indicates PF has set the MAC */
7361        vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7362        vf_data->last_nack = jiffies;
7363
7364        /* reset vlans for device */
7365        igb_clear_vf_vfta(adapter, vf);
7366        igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7367        igb_set_vmvir(adapter, vf_data->pf_vlan |
7368                               (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7369        igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7370        igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7371
7372        /* reset multicast table array for vf */
7373        adapter->vf_data[vf].num_vf_mc_hashes = 0;
7374
7375        /* Flush and reset the mta with the new values */
7376        igb_set_rx_mode(adapter->netdev);
7377}
7378
7379static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7380{
7381        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7382
7383        /* clear mac address as we were hotplug removed/added */
7384        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7385                eth_zero_addr(vf_mac);
7386
7387        /* process remaining reset events */
7388        igb_vf_reset(adapter, vf);
7389}
7390
7391static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7392{
7393        struct e1000_hw *hw = &adapter->hw;
7394        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7395        u32 reg, msgbuf[3];
7396        u8 *addr = (u8 *)(&msgbuf[1]);
7397
7398        /* process all the same items cleared in a function level reset */
7399        igb_vf_reset(adapter, vf);
7400
7401        /* set vf mac address */
7402        igb_set_vf_mac(adapter, vf, vf_mac);
7403
7404        /* enable transmit and receive for vf */
7405        reg = rd32(E1000_VFTE);
7406        wr32(E1000_VFTE, reg | BIT(vf));
7407        reg = rd32(E1000_VFRE);
7408        wr32(E1000_VFRE, reg | BIT(vf));
7409
7410        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7411
7412        /* reply to reset with ack and vf mac address */
7413        if (!is_zero_ether_addr(vf_mac)) {
7414                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7415                memcpy(addr, vf_mac, ETH_ALEN);
7416        } else {
7417                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7418        }
7419        igb_write_mbx(hw, msgbuf, 3, vf);
7420}
7421
7422static void igb_flush_mac_table(struct igb_adapter *adapter)
7423{
7424        struct e1000_hw *hw = &adapter->hw;
7425        int i;
7426
7427        for (i = 0; i < hw->mac.rar_entry_count; i++) {
7428                adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7429                eth_zero_addr(adapter->mac_table[i].addr);
7430                adapter->mac_table[i].queue = 0;
7431                igb_rar_set_index(adapter, i);
7432        }
7433}
7434
7435static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7436{
7437        struct e1000_hw *hw = &adapter->hw;
7438        /* do not count rar entries reserved for VFs MAC addresses */
7439        int rar_entries = hw->mac.rar_entry_count -
7440                          adapter->vfs_allocated_count;
7441        int i, count = 0;
7442
7443        for (i = 0; i < rar_entries; i++) {
7444                /* do not count default entries */
7445                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7446                        continue;
7447
7448                /* do not count "in use" entries for different queues */
7449                if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7450                    (adapter->mac_table[i].queue != queue))
7451                        continue;
7452
7453                count++;
7454        }
7455
7456        return count;
7457}
7458
7459/* Set default MAC address for the PF in the first RAR entry */
7460static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7461{
7462        struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7463
7464        ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7465        mac_table->queue = adapter->vfs_allocated_count;
7466        mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7467
7468        igb_rar_set_index(adapter, 0);
7469}
7470
7471/* If the filter to be added and an already existing filter express
7472 * the same address and address type, it should be possible to only
7473 * override the other configurations, for example the queue to steer
7474 * traffic.
7475 */
7476static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7477                                      const u8 *addr, const u8 flags)
7478{
7479        if (!(entry->state & IGB_MAC_STATE_IN_USE))
7480                return true;
7481
7482        if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7483            (flags & IGB_MAC_STATE_SRC_ADDR))
7484                return false;
7485
7486        if (!ether_addr_equal(addr, entry->addr))
7487                return false;
7488
7489        return true;
7490}
7491
7492/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7493 * 'flags' is used to indicate what kind of match is made, match is by
7494 * default for the destination address, if matching by source address
7495 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7496 */
7497static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7498                                    const u8 *addr, const u8 queue,
7499                                    const u8 flags)
7500{
7501        struct e1000_hw *hw = &adapter->hw;
7502        int rar_entries = hw->mac.rar_entry_count -
7503                          adapter->vfs_allocated_count;
7504        int i;
7505
7506        if (is_zero_ether_addr(addr))
7507                return -EINVAL;
7508
7509        /* Search for the first empty entry in the MAC table.
7510         * Do not touch entries at the end of the table reserved for the VF MAC
7511         * addresses.
7512         */
7513        for (i = 0; i < rar_entries; i++) {
7514                if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7515                                               addr, flags))
7516                        continue;
7517
7518                ether_addr_copy(adapter->mac_table[i].addr, addr);
7519                adapter->mac_table[i].queue = queue;
7520                adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7521
7522                igb_rar_set_index(adapter, i);
7523                return i;
7524        }
7525
7526        return -ENOSPC;
7527}
7528
7529static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7530                              const u8 queue)
7531{
7532        return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7533}
7534
7535/* Remove a MAC filter for 'addr' directing matching traffic to
7536 * 'queue', 'flags' is used to indicate what kind of match need to be
7537 * removed, match is by default for the destination address, if
7538 * matching by source address is to be removed the flag
7539 * IGB_MAC_STATE_SRC_ADDR can be used.
7540 */
7541static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7542                                    const u8 *addr, const u8 queue,
7543                                    const u8 flags)
7544{
7545        struct e1000_hw *hw = &adapter->hw;
7546        int rar_entries = hw->mac.rar_entry_count -
7547                          adapter->vfs_allocated_count;
7548        int i;
7549
7550        if (is_zero_ether_addr(addr))
7551                return -EINVAL;
7552
7553        /* Search for matching entry in the MAC table based on given address
7554         * and queue. Do not touch entries at the end of the table reserved
7555         * for the VF MAC addresses.
7556         */
7557        for (i = 0; i < rar_entries; i++) {
7558                if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7559                        continue;
7560                if ((adapter->mac_table[i].state & flags) != flags)
7561                        continue;
7562                if (adapter->mac_table[i].queue != queue)
7563                        continue;
7564                if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7565                        continue;
7566
7567                /* When a filter for the default address is "deleted",
7568                 * we return it to its initial configuration
7569                 */
7570                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7571                        adapter->mac_table[i].state =
7572                                IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7573                        adapter->mac_table[i].queue =
7574                                adapter->vfs_allocated_count;
7575                } else {
7576                        adapter->mac_table[i].state = 0;
7577                        adapter->mac_table[i].queue = 0;
7578                        eth_zero_addr(adapter->mac_table[i].addr);
7579                }
7580
7581                igb_rar_set_index(adapter, i);
7582                return 0;
7583        }
7584
7585        return -ENOENT;
7586}
7587
7588static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7589                              const u8 queue)
7590{
7591        return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7592}
7593
7594int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7595                                const u8 *addr, u8 queue, u8 flags)
7596{
7597        struct e1000_hw *hw = &adapter->hw;
7598
7599        /* In theory, this should be supported on 82575 as well, but
7600         * that part wasn't easily accessible during development.
7601         */
7602        if (hw->mac.type != e1000_i210)
7603                return -EOPNOTSUPP;
7604
7605        return igb_add_mac_filter_flags(adapter, addr, queue,
7606                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7607}
7608
7609int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7610                                const u8 *addr, u8 queue, u8 flags)
7611{
7612        return igb_del_mac_filter_flags(adapter, addr, queue,
7613                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7614}
7615
7616static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7617{
7618        struct igb_adapter *adapter = netdev_priv(netdev);
7619        int ret;
7620
7621        ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7622
7623        return min_t(int, ret, 0);
7624}
7625
7626static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7627{
7628        struct igb_adapter *adapter = netdev_priv(netdev);
7629
7630        igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7631
7632        return 0;
7633}
7634
7635static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7636                                 const u32 info, const u8 *addr)
7637{
7638        struct pci_dev *pdev = adapter->pdev;
7639        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7640        struct list_head *pos;
7641        struct vf_mac_filter *entry = NULL;
7642        int ret = 0;
7643
7644        switch (info) {
7645        case E1000_VF_MAC_FILTER_CLR:
7646                /* remove all unicast MAC filters related to the current VF */
7647                list_for_each(pos, &adapter->vf_macs.l) {
7648                        entry = list_entry(pos, struct vf_mac_filter, l);
7649                        if (entry->vf == vf) {
7650                                entry->vf = -1;
7651                                entry->free = true;
7652                                igb_del_mac_filter(adapter, entry->vf_mac, vf);
7653                        }
7654                }
7655                break;
7656        case E1000_VF_MAC_FILTER_ADD:
7657                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7658                    !vf_data->trusted) {
7659                        dev_warn(&pdev->dev,
7660                                 "VF %d requested MAC filter but is administratively denied\n",
7661                                 vf);
7662                        return -EINVAL;
7663                }
7664                if (!is_valid_ether_addr(addr)) {
7665                        dev_warn(&pdev->dev,
7666                                 "VF %d attempted to set invalid MAC filter\n",
7667                                 vf);
7668                        return -EINVAL;
7669                }
7670
7671                /* try to find empty slot in the list */
7672                list_for_each(pos, &adapter->vf_macs.l) {
7673                        entry = list_entry(pos, struct vf_mac_filter, l);
7674                        if (entry->free)
7675                                break;
7676                }
7677
7678                if (entry && entry->free) {
7679                        entry->free = false;
7680                        entry->vf = vf;
7681                        ether_addr_copy(entry->vf_mac, addr);
7682
7683                        ret = igb_add_mac_filter(adapter, addr, vf);
7684                        ret = min_t(int, ret, 0);
7685                } else {
7686                        ret = -ENOSPC;
7687                }
7688
7689                if (ret == -ENOSPC)
7690                        dev_warn(&pdev->dev,
7691                                 "VF %d has requested MAC filter but there is no space for it\n",
7692                                 vf);
7693                break;
7694        default:
7695                ret = -EINVAL;
7696                break;
7697        }
7698
7699        return ret;
7700}
7701
7702static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7703{
7704        struct pci_dev *pdev = adapter->pdev;
7705        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7706        u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7707
7708        /* The VF MAC Address is stored in a packed array of bytes
7709         * starting at the second 32 bit word of the msg array
7710         */
7711        unsigned char *addr = (unsigned char *)&msg[1];
7712        int ret = 0;
7713
7714        if (!info) {
7715                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7716                    !vf_data->trusted) {
7717                        dev_warn(&pdev->dev,
7718                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7719                                 vf);
7720                        return -EINVAL;
7721                }
7722
7723                if (!is_valid_ether_addr(addr)) {
7724                        dev_warn(&pdev->dev,
7725                                 "VF %d attempted to set invalid MAC\n",
7726                                 vf);
7727                        return -EINVAL;
7728                }
7729
7730                ret = igb_set_vf_mac(adapter, vf, addr);
7731        } else {
7732                ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7733        }
7734
7735        return ret;
7736}
7737
7738static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7739{
7740        struct e1000_hw *hw = &adapter->hw;
7741        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7742        u32 msg = E1000_VT_MSGTYPE_NACK;
7743
7744        /* if device isn't clear to send it shouldn't be reading either */
7745        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7746            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7747                igb_write_mbx(hw, &msg, 1, vf);
7748                vf_data->last_nack = jiffies;
7749        }
7750}
7751
7752static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7753{
7754        struct pci_dev *pdev = adapter->pdev;
7755        u32 msgbuf[E1000_VFMAILBOX_SIZE];
7756        struct e1000_hw *hw = &adapter->hw;
7757        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7758        s32 retval;
7759
7760        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7761
7762        if (retval) {
7763                /* if receive failed revoke VF CTS stats and restart init */
7764                dev_err(&pdev->dev, "Error receiving message from VF\n");
7765                vf_data->flags &= ~IGB_VF_FLAG_CTS;
7766                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7767                        goto unlock;
7768                goto out;
7769        }
7770
7771        /* this is a message we already processed, do nothing */
7772        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7773                goto unlock;
7774
7775        /* until the vf completes a reset it should not be
7776         * allowed to start any configuration.
7777         */
7778        if (msgbuf[0] == E1000_VF_RESET) {
7779                /* unlocks mailbox */
7780                igb_vf_reset_msg(adapter, vf);
7781                return;
7782        }
7783
7784        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7785                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7786                        goto unlock;
7787                retval = -1;
7788                goto out;
7789        }
7790
7791        switch ((msgbuf[0] & 0xFFFF)) {
7792        case E1000_VF_SET_MAC_ADDR:
7793                retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7794                break;
7795        case E1000_VF_SET_PROMISC:
7796                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7797                break;
7798        case E1000_VF_SET_MULTICAST:
7799                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7800                break;
7801        case E1000_VF_SET_LPE:
7802                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7803                break;
7804        case E1000_VF_SET_VLAN:
7805                retval = -1;
7806                if (vf_data->pf_vlan)
7807                        dev_warn(&pdev->dev,
7808                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7809                                 vf);
7810                else
7811                        retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7812                break;
7813        default:
7814                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7815                retval = -1;
7816                break;
7817        }
7818
7819        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7820out:
7821        /* notify the VF of the results of what it sent us */
7822        if (retval)
7823                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7824        else
7825                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7826
7827        /* unlocks mailbox */
7828        igb_write_mbx(hw, msgbuf, 1, vf);
7829        return;
7830
7831unlock:
7832        igb_unlock_mbx(hw, vf);
7833}
7834
7835static void igb_msg_task(struct igb_adapter *adapter)
7836{
7837        struct e1000_hw *hw = &adapter->hw;
7838        u32 vf;
7839
7840        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7841                /* process any reset requests */
7842                if (!igb_check_for_rst(hw, vf))
7843                        igb_vf_reset_event(adapter, vf);
7844
7845                /* process any messages pending */
7846                if (!igb_check_for_msg(hw, vf))
7847                        igb_rcv_msg_from_vf(adapter, vf);
7848
7849                /* process any acks */
7850                if (!igb_check_for_ack(hw, vf))
7851                        igb_rcv_ack_from_vf(adapter, vf);
7852        }
7853}
7854
7855/**
7856 *  igb_set_uta - Set unicast filter table address
7857 *  @adapter: board private structure
7858 *  @set: boolean indicating if we are setting or clearing bits
7859 *
7860 *  The unicast table address is a register array of 32-bit registers.
7861 *  The table is meant to be used in a way similar to how the MTA is used
7862 *  however due to certain limitations in the hardware it is necessary to
7863 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7864 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7865 **/
7866static void igb_set_uta(struct igb_adapter *adapter, bool set)
7867{
7868        struct e1000_hw *hw = &adapter->hw;
7869        u32 uta = set ? ~0 : 0;
7870        int i;
7871
7872        /* we only need to do this if VMDq is enabled */
7873        if (!adapter->vfs_allocated_count)
7874                return;
7875
7876        for (i = hw->mac.uta_reg_count; i--;)
7877                array_wr32(E1000_UTA, i, uta);
7878}
7879
7880/**
7881 *  igb_intr_msi - Interrupt Handler
7882 *  @irq: interrupt number
7883 *  @data: pointer to a network interface device structure
7884 **/
7885static irqreturn_t igb_intr_msi(int irq, void *data)
7886{
7887        struct igb_adapter *adapter = data;
7888        struct igb_q_vector *q_vector = adapter->q_vector[0];
7889        struct e1000_hw *hw = &adapter->hw;
7890        /* read ICR disables interrupts using IAM */
7891        u32 icr = rd32(E1000_ICR);
7892
7893        igb_write_itr(q_vector);
7894
7895        if (icr & E1000_ICR_DRSTA)
7896                schedule_work(&adapter->reset_task);
7897
7898        if (icr & E1000_ICR_DOUTSYNC) {
7899                /* HW is reporting DMA is out of sync */
7900                adapter->stats.doosync++;
7901        }
7902
7903        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7904                hw->mac.get_link_status = 1;
7905                if (!test_bit(__IGB_DOWN, &adapter->state))
7906                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7907        }
7908
7909        if (icr & E1000_ICR_TS)
7910                igb_tsync_interrupt(adapter);
7911
7912        napi_schedule(&q_vector->napi);
7913
7914        return IRQ_HANDLED;
7915}
7916
7917/**
7918 *  igb_intr - Legacy Interrupt Handler
7919 *  @irq: interrupt number
7920 *  @data: pointer to a network interface device structure
7921 **/
7922static irqreturn_t igb_intr(int irq, void *data)
7923{
7924        struct igb_adapter *adapter = data;
7925        struct igb_q_vector *q_vector = adapter->q_vector[0];
7926        struct e1000_hw *hw = &adapter->hw;
7927        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7928         * need for the IMC write
7929         */
7930        u32 icr = rd32(E1000_ICR);
7931
7932        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7933         * not set, then the adapter didn't send an interrupt
7934         */
7935        if (!(icr & E1000_ICR_INT_ASSERTED))
7936                return IRQ_NONE;
7937
7938        igb_write_itr(q_vector);
7939
7940        if (icr & E1000_ICR_DRSTA)
7941                schedule_work(&adapter->reset_task);
7942
7943        if (icr & E1000_ICR_DOUTSYNC) {
7944                /* HW is reporting DMA is out of sync */
7945                adapter->stats.doosync++;
7946        }
7947
7948        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7949                hw->mac.get_link_status = 1;
7950                /* guard against interrupt when we're going down */
7951                if (!test_bit(__IGB_DOWN, &adapter->state))
7952                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7953        }
7954
7955        if (icr & E1000_ICR_TS)
7956                igb_tsync_interrupt(adapter);
7957
7958        napi_schedule(&q_vector->napi);
7959
7960        return IRQ_HANDLED;
7961}
7962
7963static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7964{
7965        struct igb_adapter *adapter = q_vector->adapter;
7966        struct e1000_hw *hw = &adapter->hw;
7967
7968        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7969            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7970                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7971                        igb_set_itr(q_vector);
7972                else
7973                        igb_update_ring_itr(q_vector);
7974        }
7975
7976        if (!test_bit(__IGB_DOWN, &adapter->state)) {
7977                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7978                        wr32(E1000_EIMS, q_vector->eims_value);
7979                else
7980                        igb_irq_enable(adapter);
7981        }
7982}
7983
7984/**
7985 *  igb_poll - NAPI Rx polling callback
7986 *  @napi: napi polling structure
7987 *  @budget: count of how many packets we should handle
7988 **/
7989static int igb_poll(struct napi_struct *napi, int budget)
7990{
7991        struct igb_q_vector *q_vector = container_of(napi,
7992                                                     struct igb_q_vector,
7993                                                     napi);
7994        bool clean_complete = true;
7995        int work_done = 0;
7996
7997#ifdef CONFIG_IGB_DCA
7998        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7999                igb_update_dca(q_vector);
8000#endif
8001        if (q_vector->tx.ring)
8002                clean_complete = igb_clean_tx_irq(q_vector, budget);
8003
8004        if (q_vector->rx.ring) {
8005                int cleaned = igb_clean_rx_irq(q_vector, budget);
8006
8007                work_done += cleaned;
8008                if (cleaned >= budget)
8009                        clean_complete = false;
8010        }
8011
8012        /* If all work not completed, return budget and keep polling */
8013        if (!clean_complete)
8014                return budget;
8015
8016        /* Exit the polling mode, but don't re-enable interrupts if stack might
8017         * poll us due to busy-polling
8018         */
8019        if (likely(napi_complete_done(napi, work_done)))
8020                igb_ring_irq_enable(q_vector);
8021
8022        return min(work_done, budget - 1);
8023}
8024
8025/**
8026 *  igb_clean_tx_irq - Reclaim resources after transmit completes
8027 *  @q_vector: pointer to q_vector containing needed info
8028 *  @napi_budget: Used to determine if we are in netpoll
8029 *
8030 *  returns true if ring is completely cleaned
8031 **/
8032static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8033{
8034        struct igb_adapter *adapter = q_vector->adapter;
8035        struct igb_ring *tx_ring = q_vector->tx.ring;
8036        struct igb_tx_buffer *tx_buffer;
8037        union e1000_adv_tx_desc *tx_desc;
8038        unsigned int total_bytes = 0, total_packets = 0;
8039        unsigned int budget = q_vector->tx.work_limit;
8040        unsigned int i = tx_ring->next_to_clean;
8041
8042        if (test_bit(__IGB_DOWN, &adapter->state))
8043                return true;
8044
8045        tx_buffer = &tx_ring->tx_buffer_info[i];
8046        tx_desc = IGB_TX_DESC(tx_ring, i);
8047        i -= tx_ring->count;
8048
8049        do {
8050                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8051
8052                /* if next_to_watch is not set then there is no work pending */
8053                if (!eop_desc)
8054                        break;
8055
8056                /* prevent any other reads prior to eop_desc */
8057                smp_rmb();
8058
8059                /* if DD is not set pending work has not been completed */
8060                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8061                        break;
8062
8063                /* clear next_to_watch to prevent false hangs */
8064                tx_buffer->next_to_watch = NULL;
8065
8066                /* update the statistics for this packet */
8067                total_bytes += tx_buffer->bytecount;
8068                total_packets += tx_buffer->gso_segs;
8069
8070                /* free the skb */
8071                if (tx_buffer->type == IGB_TYPE_SKB)
8072                        napi_consume_skb(tx_buffer->skb, napi_budget);
8073                else
8074                        xdp_return_frame(tx_buffer->xdpf);
8075
8076                /* unmap skb header data */
8077                dma_unmap_single(tx_ring->dev,
8078                                 dma_unmap_addr(tx_buffer, dma),
8079                                 dma_unmap_len(tx_buffer, len),
8080                                 DMA_TO_DEVICE);
8081
8082                /* clear tx_buffer data */
8083                dma_unmap_len_set(tx_buffer, len, 0);
8084
8085                /* clear last DMA location and unmap remaining buffers */
8086                while (tx_desc != eop_desc) {
8087                        tx_buffer++;
8088                        tx_desc++;
8089                        i++;
8090                        if (unlikely(!i)) {
8091                                i -= tx_ring->count;
8092                                tx_buffer = tx_ring->tx_buffer_info;
8093                                tx_desc = IGB_TX_DESC(tx_ring, 0);
8094                        }
8095
8096                        /* unmap any remaining paged data */
8097                        if (dma_unmap_len(tx_buffer, len)) {
8098                                dma_unmap_page(tx_ring->dev,
8099                                               dma_unmap_addr(tx_buffer, dma),
8100                                               dma_unmap_len(tx_buffer, len),
8101                                               DMA_TO_DEVICE);
8102                                dma_unmap_len_set(tx_buffer, len, 0);
8103                        }
8104                }
8105
8106                /* move us one more past the eop_desc for start of next pkt */
8107                tx_buffer++;
8108                tx_desc++;
8109                i++;
8110                if (unlikely(!i)) {
8111                        i -= tx_ring->count;
8112                        tx_buffer = tx_ring->tx_buffer_info;
8113                        tx_desc = IGB_TX_DESC(tx_ring, 0);
8114                }
8115
8116                /* issue prefetch for next Tx descriptor */
8117                prefetch(tx_desc);
8118
8119                /* update budget accounting */
8120                budget--;
8121        } while (likely(budget));
8122
8123        netdev_tx_completed_queue(txring_txq(tx_ring),
8124                                  total_packets, total_bytes);
8125        i += tx_ring->count;
8126        tx_ring->next_to_clean = i;
8127        u64_stats_update_begin(&tx_ring->tx_syncp);
8128        tx_ring->tx_stats.bytes += total_bytes;
8129        tx_ring->tx_stats.packets += total_packets;
8130        u64_stats_update_end(&tx_ring->tx_syncp);
8131        q_vector->tx.total_bytes += total_bytes;
8132        q_vector->tx.total_packets += total_packets;
8133
8134        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8135                struct e1000_hw *hw = &adapter->hw;
8136
8137                /* Detect a transmit hang in hardware, this serializes the
8138                 * check with the clearing of time_stamp and movement of i
8139                 */
8140                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8141                if (tx_buffer->next_to_watch &&
8142                    time_after(jiffies, tx_buffer->time_stamp +
8143                               (adapter->tx_timeout_factor * HZ)) &&
8144                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8145
8146                        /* detected Tx unit hang */
8147                        dev_err(tx_ring->dev,
8148                                "Detected Tx Unit Hang\n"
8149                                "  Tx Queue             <%d>\n"
8150                                "  TDH                  <%x>\n"
8151                                "  TDT                  <%x>\n"
8152                                "  next_to_use          <%x>\n"
8153                                "  next_to_clean        <%x>\n"
8154                                "buffer_info[next_to_clean]\n"
8155                                "  time_stamp           <%lx>\n"
8156                                "  next_to_watch        <%p>\n"
8157                                "  jiffies              <%lx>\n"
8158                                "  desc.status          <%x>\n",
8159                                tx_ring->queue_index,
8160                                rd32(E1000_TDH(tx_ring->reg_idx)),
8161                                readl(tx_ring->tail),
8162                                tx_ring->next_to_use,
8163                                tx_ring->next_to_clean,
8164                                tx_buffer->time_stamp,
8165                                tx_buffer->next_to_watch,
8166                                jiffies,
8167                                tx_buffer->next_to_watch->wb.status);
8168                        netif_stop_subqueue(tx_ring->netdev,
8169                                            tx_ring->queue_index);
8170
8171                        /* we are about to reset, no point in enabling stuff */
8172                        return true;
8173                }
8174        }
8175
8176#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8177        if (unlikely(total_packets &&
8178            netif_carrier_ok(tx_ring->netdev) &&
8179            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8180                /* Make sure that anybody stopping the queue after this
8181                 * sees the new next_to_clean.
8182                 */
8183                smp_mb();
8184                if (__netif_subqueue_stopped(tx_ring->netdev,
8185                                             tx_ring->queue_index) &&
8186                    !(test_bit(__IGB_DOWN, &adapter->state))) {
8187                        netif_wake_subqueue(tx_ring->netdev,
8188                                            tx_ring->queue_index);
8189
8190                        u64_stats_update_begin(&tx_ring->tx_syncp);
8191                        tx_ring->tx_stats.restart_queue++;
8192                        u64_stats_update_end(&tx_ring->tx_syncp);
8193                }
8194        }
8195
8196        return !!budget;
8197}
8198
8199/**
8200 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8201 *  @rx_ring: rx descriptor ring to store buffers on
8202 *  @old_buff: donor buffer to have page reused
8203 *
8204 *  Synchronizes page for reuse by the adapter
8205 **/
8206static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8207                              struct igb_rx_buffer *old_buff)
8208{
8209        struct igb_rx_buffer *new_buff;
8210        u16 nta = rx_ring->next_to_alloc;
8211
8212        new_buff = &rx_ring->rx_buffer_info[nta];
8213
8214        /* update, and store next to alloc */
8215        nta++;
8216        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8217
8218        /* Transfer page from old buffer to new buffer.
8219         * Move each member individually to avoid possible store
8220         * forwarding stalls.
8221         */
8222        new_buff->dma           = old_buff->dma;
8223        new_buff->page          = old_buff->page;
8224        new_buff->page_offset   = old_buff->page_offset;
8225        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8226}
8227
8228static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8229                                  int rx_buf_pgcnt)
8230{
8231        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8232        struct page *page = rx_buffer->page;
8233
8234        /* avoid re-using remote and pfmemalloc pages */
8235        if (!dev_page_is_reusable(page))
8236                return false;
8237
8238#if (PAGE_SIZE < 8192)
8239        /* if we are only owner of page we can reuse it */
8240        if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8241                return false;
8242#else
8243#define IGB_LAST_OFFSET \
8244        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8245
8246        if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8247                return false;
8248#endif
8249
8250        /* If we have drained the page fragment pool we need to update
8251         * the pagecnt_bias and page count so that we fully restock the
8252         * number of references the driver holds.
8253         */
8254        if (unlikely(pagecnt_bias == 1)) {
8255                page_ref_add(page, USHRT_MAX - 1);
8256                rx_buffer->pagecnt_bias = USHRT_MAX;
8257        }
8258
8259        return true;
8260}
8261
8262/**
8263 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8264 *  @rx_ring: rx descriptor ring to transact packets on
8265 *  @rx_buffer: buffer containing page to add
8266 *  @skb: sk_buff to place the data into
8267 *  @size: size of buffer to be added
8268 *
8269 *  This function will add the data contained in rx_buffer->page to the skb.
8270 **/
8271static void igb_add_rx_frag(struct igb_ring *rx_ring,
8272                            struct igb_rx_buffer *rx_buffer,
8273                            struct sk_buff *skb,
8274                            unsigned int size)
8275{
8276#if (PAGE_SIZE < 8192)
8277        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8278#else
8279        unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8280                                SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8281                                SKB_DATA_ALIGN(size);
8282#endif
8283        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8284                        rx_buffer->page_offset, size, truesize);
8285#if (PAGE_SIZE < 8192)
8286        rx_buffer->page_offset ^= truesize;
8287#else
8288        rx_buffer->page_offset += truesize;
8289#endif
8290}
8291
8292static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8293                                         struct igb_rx_buffer *rx_buffer,
8294                                         struct xdp_buff *xdp,
8295                                         ktime_t timestamp)
8296{
8297#if (PAGE_SIZE < 8192)
8298        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8299#else
8300        unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8301                                               xdp->data_hard_start);
8302#endif
8303        unsigned int size = xdp->data_end - xdp->data;
8304        unsigned int headlen;
8305        struct sk_buff *skb;
8306
8307        /* prefetch first cache line of first page */
8308        net_prefetch(xdp->data);
8309
8310        /* allocate a skb to store the frags */
8311        skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8312        if (unlikely(!skb))
8313                return NULL;
8314
8315        if (timestamp)
8316                skb_hwtstamps(skb)->hwtstamp = timestamp;
8317
8318        /* Determine available headroom for copy */
8319        headlen = size;
8320        if (headlen > IGB_RX_HDR_LEN)
8321                headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8322
8323        /* align pull length to size of long to optimize memcpy performance */
8324        memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8325
8326        /* update all of the pointers */
8327        size -= headlen;
8328        if (size) {
8329                skb_add_rx_frag(skb, 0, rx_buffer->page,
8330                                (xdp->data + headlen) - page_address(rx_buffer->page),
8331                                size, truesize);
8332#if (PAGE_SIZE < 8192)
8333                rx_buffer->page_offset ^= truesize;
8334#else
8335                rx_buffer->page_offset += truesize;
8336#endif
8337        } else {
8338                rx_buffer->pagecnt_bias++;
8339        }
8340
8341        return skb;
8342}
8343
8344static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8345                                     struct igb_rx_buffer *rx_buffer,
8346                                     struct xdp_buff *xdp,
8347                                     ktime_t timestamp)
8348{
8349#if (PAGE_SIZE < 8192)
8350        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8351#else
8352        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8353                                SKB_DATA_ALIGN(xdp->data_end -
8354                                               xdp->data_hard_start);
8355#endif
8356        unsigned int metasize = xdp->data - xdp->data_meta;
8357        struct sk_buff *skb;
8358
8359        /* prefetch first cache line of first page */
8360        net_prefetch(xdp->data_meta);
8361
8362        /* build an skb around the page buffer */
8363        skb = build_skb(xdp->data_hard_start, truesize);
8364        if (unlikely(!skb))
8365                return NULL;
8366
8367        /* update pointers within the skb to store the data */
8368        skb_reserve(skb, xdp->data - xdp->data_hard_start);
8369        __skb_put(skb, xdp->data_end - xdp->data);
8370
8371        if (metasize)
8372                skb_metadata_set(skb, metasize);
8373
8374        if (timestamp)
8375                skb_hwtstamps(skb)->hwtstamp = timestamp;
8376
8377        /* update buffer offset */
8378#if (PAGE_SIZE < 8192)
8379        rx_buffer->page_offset ^= truesize;
8380#else
8381        rx_buffer->page_offset += truesize;
8382#endif
8383
8384        return skb;
8385}
8386
8387static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8388                                   struct igb_ring *rx_ring,
8389                                   struct xdp_buff *xdp)
8390{
8391        int err, result = IGB_XDP_PASS;
8392        struct bpf_prog *xdp_prog;
8393        u32 act;
8394
8395        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8396
8397        if (!xdp_prog)
8398                goto xdp_out;
8399
8400        prefetchw(xdp->data_hard_start); /* xdp_frame write */
8401
8402        act = bpf_prog_run_xdp(xdp_prog, xdp);
8403        switch (act) {
8404        case XDP_PASS:
8405                break;
8406        case XDP_TX:
8407                result = igb_xdp_xmit_back(adapter, xdp);
8408                if (result == IGB_XDP_CONSUMED)
8409                        goto out_failure;
8410                break;
8411        case XDP_REDIRECT:
8412                err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8413                if (err)
8414                        goto out_failure;
8415                result = IGB_XDP_REDIR;
8416                break;
8417        default:
8418                bpf_warn_invalid_xdp_action(act);
8419                fallthrough;
8420        case XDP_ABORTED:
8421out_failure:
8422                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8423                fallthrough;
8424        case XDP_DROP:
8425                result = IGB_XDP_CONSUMED;
8426                break;
8427        }
8428xdp_out:
8429        return ERR_PTR(-result);
8430}
8431
8432static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8433                                          unsigned int size)
8434{
8435        unsigned int truesize;
8436
8437#if (PAGE_SIZE < 8192)
8438        truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8439#else
8440        truesize = ring_uses_build_skb(rx_ring) ?
8441                SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8442                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8443                SKB_DATA_ALIGN(size);
8444#endif
8445        return truesize;
8446}
8447
8448static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8449                               struct igb_rx_buffer *rx_buffer,
8450                               unsigned int size)
8451{
8452        unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8453#if (PAGE_SIZE < 8192)
8454        rx_buffer->page_offset ^= truesize;
8455#else
8456        rx_buffer->page_offset += truesize;
8457#endif
8458}
8459
8460static inline void igb_rx_checksum(struct igb_ring *ring,
8461                                   union e1000_adv_rx_desc *rx_desc,
8462                                   struct sk_buff *skb)
8463{
8464        skb_checksum_none_assert(skb);
8465
8466        /* Ignore Checksum bit is set */
8467        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8468                return;
8469
8470        /* Rx checksum disabled via ethtool */
8471        if (!(ring->netdev->features & NETIF_F_RXCSUM))
8472                return;
8473
8474        /* TCP/UDP checksum error bit is set */
8475        if (igb_test_staterr(rx_desc,
8476                             E1000_RXDEXT_STATERR_TCPE |
8477                             E1000_RXDEXT_STATERR_IPE)) {
8478                /* work around errata with sctp packets where the TCPE aka
8479                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8480                 * packets, (aka let the stack check the crc32c)
8481                 */
8482                if (!((skb->len == 60) &&
8483                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8484                        u64_stats_update_begin(&ring->rx_syncp);
8485                        ring->rx_stats.csum_err++;
8486                        u64_stats_update_end(&ring->rx_syncp);
8487                }
8488                /* let the stack verify checksum errors */
8489                return;
8490        }
8491        /* It must be a TCP or UDP packet with a valid checksum */
8492        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8493                                      E1000_RXD_STAT_UDPCS))
8494                skb->ip_summed = CHECKSUM_UNNECESSARY;
8495
8496        dev_dbg(ring->dev, "cksum success: bits %08X\n",
8497                le32_to_cpu(rx_desc->wb.upper.status_error));
8498}
8499
8500static inline void igb_rx_hash(struct igb_ring *ring,
8501                               union e1000_adv_rx_desc *rx_desc,
8502                               struct sk_buff *skb)
8503{
8504        if (ring->netdev->features & NETIF_F_RXHASH)
8505                skb_set_hash(skb,
8506                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8507                             PKT_HASH_TYPE_L3);
8508}
8509
8510/**
8511 *  igb_is_non_eop - process handling of non-EOP buffers
8512 *  @rx_ring: Rx ring being processed
8513 *  @rx_desc: Rx descriptor for current buffer
8514 *
8515 *  This function updates next to clean.  If the buffer is an EOP buffer
8516 *  this function exits returning false, otherwise it will place the
8517 *  sk_buff in the next buffer to be chained and return true indicating
8518 *  that this is in fact a non-EOP buffer.
8519 **/
8520static bool igb_is_non_eop(struct igb_ring *rx_ring,
8521                           union e1000_adv_rx_desc *rx_desc)
8522{
8523        u32 ntc = rx_ring->next_to_clean + 1;
8524
8525        /* fetch, update, and store next to clean */
8526        ntc = (ntc < rx_ring->count) ? ntc : 0;
8527        rx_ring->next_to_clean = ntc;
8528
8529        prefetch(IGB_RX_DESC(rx_ring, ntc));
8530
8531        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8532                return false;
8533
8534        return true;
8535}
8536
8537/**
8538 *  igb_cleanup_headers - Correct corrupted or empty headers
8539 *  @rx_ring: rx descriptor ring packet is being transacted on
8540 *  @rx_desc: pointer to the EOP Rx descriptor
8541 *  @skb: pointer to current skb being fixed
8542 *
8543 *  Address the case where we are pulling data in on pages only
8544 *  and as such no data is present in the skb header.
8545 *
8546 *  In addition if skb is not at least 60 bytes we need to pad it so that
8547 *  it is large enough to qualify as a valid Ethernet frame.
8548 *
8549 *  Returns true if an error was encountered and skb was freed.
8550 **/
8551static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8552                                union e1000_adv_rx_desc *rx_desc,
8553                                struct sk_buff *skb)
8554{
8555        /* XDP packets use error pointer so abort at this point */
8556        if (IS_ERR(skb))
8557                return true;
8558
8559        if (unlikely((igb_test_staterr(rx_desc,
8560                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8561                struct net_device *netdev = rx_ring->netdev;
8562                if (!(netdev->features & NETIF_F_RXALL)) {
8563                        dev_kfree_skb_any(skb);
8564                        return true;
8565                }
8566        }
8567
8568        /* if eth_skb_pad returns an error the skb was freed */
8569        if (eth_skb_pad(skb))
8570                return true;
8571
8572        return false;
8573}
8574
8575/**
8576 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8577 *  @rx_ring: rx descriptor ring packet is being transacted on
8578 *  @rx_desc: pointer to the EOP Rx descriptor
8579 *  @skb: pointer to current skb being populated
8580 *
8581 *  This function checks the ring, descriptor, and packet information in
8582 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8583 *  other fields within the skb.
8584 **/
8585static void igb_process_skb_fields(struct igb_ring *rx_ring,
8586                                   union e1000_adv_rx_desc *rx_desc,
8587                                   struct sk_buff *skb)
8588{
8589        struct net_device *dev = rx_ring->netdev;
8590
8591        igb_rx_hash(rx_ring, rx_desc, skb);
8592
8593        igb_rx_checksum(rx_ring, rx_desc, skb);
8594
8595        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8596            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8597                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8598
8599        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8600            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8601                u16 vid;
8602
8603                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8604                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8605                        vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8606                else
8607                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8608
8609                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8610        }
8611
8612        skb_record_rx_queue(skb, rx_ring->queue_index);
8613
8614        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8615}
8616
8617static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8618{
8619        return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8620}
8621
8622static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8623                                               const unsigned int size, int *rx_buf_pgcnt)
8624{
8625        struct igb_rx_buffer *rx_buffer;
8626
8627        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8628        *rx_buf_pgcnt =
8629#if (PAGE_SIZE < 8192)
8630                page_count(rx_buffer->page);
8631#else
8632                0;
8633#endif
8634        prefetchw(rx_buffer->page);
8635
8636        /* we are reusing so sync this buffer for CPU use */
8637        dma_sync_single_range_for_cpu(rx_ring->dev,
8638                                      rx_buffer->dma,
8639                                      rx_buffer->page_offset,
8640                                      size,
8641                                      DMA_FROM_DEVICE);
8642
8643        rx_buffer->pagecnt_bias--;
8644
8645        return rx_buffer;
8646}
8647
8648static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8649                              struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8650{
8651        if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8652                /* hand second half of page back to the ring */
8653                igb_reuse_rx_page(rx_ring, rx_buffer);
8654        } else {
8655                /* We are not reusing the buffer so unmap it and free
8656                 * any references we are holding to it
8657                 */
8658                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8659                                     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8660                                     IGB_RX_DMA_ATTR);
8661                __page_frag_cache_drain(rx_buffer->page,
8662                                        rx_buffer->pagecnt_bias);
8663        }
8664
8665        /* clear contents of rx_buffer */
8666        rx_buffer->page = NULL;
8667}
8668
8669static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8670{
8671        struct igb_adapter *adapter = q_vector->adapter;
8672        struct igb_ring *rx_ring = q_vector->rx.ring;
8673        struct sk_buff *skb = rx_ring->skb;
8674        unsigned int total_bytes = 0, total_packets = 0;
8675        u16 cleaned_count = igb_desc_unused(rx_ring);
8676        unsigned int xdp_xmit = 0;
8677        struct xdp_buff xdp;
8678        u32 frame_sz = 0;
8679        int rx_buf_pgcnt;
8680
8681        /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8682#if (PAGE_SIZE < 8192)
8683        frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8684#endif
8685        xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8686
8687        while (likely(total_packets < budget)) {
8688                union e1000_adv_rx_desc *rx_desc;
8689                struct igb_rx_buffer *rx_buffer;
8690                ktime_t timestamp = 0;
8691                int pkt_offset = 0;
8692                unsigned int size;
8693                void *pktbuf;
8694
8695                /* return some buffers to hardware, one at a time is too slow */
8696                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8697                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
8698                        cleaned_count = 0;
8699                }
8700
8701                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8702                size = le16_to_cpu(rx_desc->wb.upper.length);
8703                if (!size)
8704                        break;
8705
8706                /* This memory barrier is needed to keep us from reading
8707                 * any other fields out of the rx_desc until we know the
8708                 * descriptor has been written back
8709                 */
8710                dma_rmb();
8711
8712                rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8713                pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8714
8715                /* pull rx packet timestamp if available and valid */
8716                if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8717                        int ts_hdr_len;
8718
8719                        ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8720                                                         pktbuf, &timestamp);
8721
8722                        pkt_offset += ts_hdr_len;
8723                        size -= ts_hdr_len;
8724                }
8725
8726                /* retrieve a buffer from the ring */
8727                if (!skb) {
8728                        unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8729                        unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8730
8731                        xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8732#if (PAGE_SIZE > 4096)
8733                        /* At larger PAGE_SIZE, frame_sz depend on len size */
8734                        xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8735#endif
8736                        skb = igb_run_xdp(adapter, rx_ring, &xdp);
8737                }
8738
8739                if (IS_ERR(skb)) {
8740                        unsigned int xdp_res = -PTR_ERR(skb);
8741
8742                        if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8743                                xdp_xmit |= xdp_res;
8744                                igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8745                        } else {
8746                                rx_buffer->pagecnt_bias++;
8747                        }
8748                        total_packets++;
8749                        total_bytes += size;
8750                } else if (skb)
8751                        igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8752                else if (ring_uses_build_skb(rx_ring))
8753                        skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8754                                            timestamp);
8755                else
8756                        skb = igb_construct_skb(rx_ring, rx_buffer,
8757                                                &xdp, timestamp);
8758
8759                /* exit if we failed to retrieve a buffer */
8760                if (!skb) {
8761                        rx_ring->rx_stats.alloc_failed++;
8762                        rx_buffer->pagecnt_bias++;
8763                        break;
8764                }
8765
8766                igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8767                cleaned_count++;
8768
8769                /* fetch next buffer in frame if non-eop */
8770                if (igb_is_non_eop(rx_ring, rx_desc))
8771                        continue;
8772
8773                /* verify the packet layout is correct */
8774                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8775                        skb = NULL;
8776                        continue;
8777                }
8778
8779                /* probably a little skewed due to removing CRC */
8780                total_bytes += skb->len;
8781
8782                /* populate checksum, timestamp, VLAN, and protocol */
8783                igb_process_skb_fields(rx_ring, rx_desc, skb);
8784
8785                napi_gro_receive(&q_vector->napi, skb);
8786
8787                /* reset skb pointer */
8788                skb = NULL;
8789
8790                /* update budget accounting */
8791                total_packets++;
8792        }
8793
8794        /* place incomplete frames back on ring for completion */
8795        rx_ring->skb = skb;
8796
8797        if (xdp_xmit & IGB_XDP_REDIR)
8798                xdp_do_flush();
8799
8800        if (xdp_xmit & IGB_XDP_TX) {
8801                struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8802
8803                igb_xdp_ring_update_tail(tx_ring);
8804        }
8805
8806        u64_stats_update_begin(&rx_ring->rx_syncp);
8807        rx_ring->rx_stats.packets += total_packets;
8808        rx_ring->rx_stats.bytes += total_bytes;
8809        u64_stats_update_end(&rx_ring->rx_syncp);
8810        q_vector->rx.total_packets += total_packets;
8811        q_vector->rx.total_bytes += total_bytes;
8812
8813        if (cleaned_count)
8814                igb_alloc_rx_buffers(rx_ring, cleaned_count);
8815
8816        return total_packets;
8817}
8818
8819static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8820                                  struct igb_rx_buffer *bi)
8821{
8822        struct page *page = bi->page;
8823        dma_addr_t dma;
8824
8825        /* since we are recycling buffers we should seldom need to alloc */
8826        if (likely(page))
8827                return true;
8828
8829        /* alloc new page for storage */
8830        page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8831        if (unlikely(!page)) {
8832                rx_ring->rx_stats.alloc_failed++;
8833                return false;
8834        }
8835
8836        /* map page for use */
8837        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8838                                 igb_rx_pg_size(rx_ring),
8839                                 DMA_FROM_DEVICE,
8840                                 IGB_RX_DMA_ATTR);
8841
8842        /* if mapping failed free memory back to system since
8843         * there isn't much point in holding memory we can't use
8844         */
8845        if (dma_mapping_error(rx_ring->dev, dma)) {
8846                __free_pages(page, igb_rx_pg_order(rx_ring));
8847
8848                rx_ring->rx_stats.alloc_failed++;
8849                return false;
8850        }
8851
8852        bi->dma = dma;
8853        bi->page = page;
8854        bi->page_offset = igb_rx_offset(rx_ring);
8855        page_ref_add(page, USHRT_MAX - 1);
8856        bi->pagecnt_bias = USHRT_MAX;
8857
8858        return true;
8859}
8860
8861/**
8862 *  igb_alloc_rx_buffers - Replace used receive buffers
8863 *  @rx_ring: rx descriptor ring to allocate new receive buffers
8864 *  @cleaned_count: count of buffers to allocate
8865 **/
8866void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8867{
8868        union e1000_adv_rx_desc *rx_desc;
8869        struct igb_rx_buffer *bi;
8870        u16 i = rx_ring->next_to_use;
8871        u16 bufsz;
8872
8873        /* nothing to do */
8874        if (!cleaned_count)
8875                return;
8876
8877        rx_desc = IGB_RX_DESC(rx_ring, i);
8878        bi = &rx_ring->rx_buffer_info[i];
8879        i -= rx_ring->count;
8880
8881        bufsz = igb_rx_bufsz(rx_ring);
8882
8883        do {
8884                if (!igb_alloc_mapped_page(rx_ring, bi))
8885                        break;
8886
8887                /* sync the buffer for use by the device */
8888                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8889                                                 bi->page_offset, bufsz,
8890                                                 DMA_FROM_DEVICE);
8891
8892                /* Refresh the desc even if buffer_addrs didn't change
8893                 * because each write-back erases this info.
8894                 */
8895                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8896
8897                rx_desc++;
8898                bi++;
8899                i++;
8900                if (unlikely(!i)) {
8901                        rx_desc = IGB_RX_DESC(rx_ring, 0);
8902                        bi = rx_ring->rx_buffer_info;
8903                        i -= rx_ring->count;
8904                }
8905
8906                /* clear the length for the next_to_use descriptor */
8907                rx_desc->wb.upper.length = 0;
8908
8909                cleaned_count--;
8910        } while (cleaned_count);
8911
8912        i += rx_ring->count;
8913
8914        if (rx_ring->next_to_use != i) {
8915                /* record the next descriptor to use */
8916                rx_ring->next_to_use = i;
8917
8918                /* update next to alloc since we have filled the ring */
8919                rx_ring->next_to_alloc = i;
8920
8921                /* Force memory writes to complete before letting h/w
8922                 * know there are new descriptors to fetch.  (Only
8923                 * applicable for weak-ordered memory model archs,
8924                 * such as IA-64).
8925                 */
8926                dma_wmb();
8927                writel(i, rx_ring->tail);
8928        }
8929}
8930
8931/**
8932 * igb_mii_ioctl -
8933 * @netdev: pointer to netdev struct
8934 * @ifr: interface structure
8935 * @cmd: ioctl command to execute
8936 **/
8937static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8938{
8939        struct igb_adapter *adapter = netdev_priv(netdev);
8940        struct mii_ioctl_data *data = if_mii(ifr);
8941
8942        if (adapter->hw.phy.media_type != e1000_media_type_copper)
8943                return -EOPNOTSUPP;
8944
8945        switch (cmd) {
8946        case SIOCGMIIPHY:
8947                data->phy_id = adapter->hw.phy.addr;
8948                break;
8949        case SIOCGMIIREG:
8950                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8951                                     &data->val_out))
8952                        return -EIO;
8953                break;
8954        case SIOCSMIIREG:
8955        default:
8956                return -EOPNOTSUPP;
8957        }
8958        return 0;
8959}
8960
8961/**
8962 * igb_ioctl -
8963 * @netdev: pointer to netdev struct
8964 * @ifr: interface structure
8965 * @cmd: ioctl command to execute
8966 **/
8967static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8968{
8969        switch (cmd) {
8970        case SIOCGMIIPHY:
8971        case SIOCGMIIREG:
8972        case SIOCSMIIREG:
8973                return igb_mii_ioctl(netdev, ifr, cmd);
8974        case SIOCGHWTSTAMP:
8975                return igb_ptp_get_ts_config(netdev, ifr);
8976        case SIOCSHWTSTAMP:
8977                return igb_ptp_set_ts_config(netdev, ifr);
8978        default:
8979                return -EOPNOTSUPP;
8980        }
8981}
8982
8983void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8984{
8985        struct igb_adapter *adapter = hw->back;
8986
8987        pci_read_config_word(adapter->pdev, reg, value);
8988}
8989
8990void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8991{
8992        struct igb_adapter *adapter = hw->back;
8993
8994        pci_write_config_word(adapter->pdev, reg, *value);
8995}
8996
8997s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8998{
8999        struct igb_adapter *adapter = hw->back;
9000
9001        if (pcie_capability_read_word(adapter->pdev, reg, value))
9002                return -E1000_ERR_CONFIG;
9003
9004        return 0;
9005}
9006
9007s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9008{
9009        struct igb_adapter *adapter = hw->back;
9010
9011        if (pcie_capability_write_word(adapter->pdev, reg, *value))
9012                return -E1000_ERR_CONFIG;
9013
9014        return 0;
9015}
9016
9017static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9018{
9019        struct igb_adapter *adapter = netdev_priv(netdev);
9020        struct e1000_hw *hw = &adapter->hw;
9021        u32 ctrl, rctl;
9022        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9023
9024        if (enable) {
9025                /* enable VLAN tag insert/strip */
9026                ctrl = rd32(E1000_CTRL);
9027                ctrl |= E1000_CTRL_VME;
9028                wr32(E1000_CTRL, ctrl);
9029
9030                /* Disable CFI check */
9031                rctl = rd32(E1000_RCTL);
9032                rctl &= ~E1000_RCTL_CFIEN;
9033                wr32(E1000_RCTL, rctl);
9034        } else {
9035                /* disable VLAN tag insert/strip */
9036                ctrl = rd32(E1000_CTRL);
9037                ctrl &= ~E1000_CTRL_VME;
9038                wr32(E1000_CTRL, ctrl);
9039        }
9040
9041        igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9042}
9043
9044static int igb_vlan_rx_add_vid(struct net_device *netdev,
9045                               __be16 proto, u16 vid)
9046{
9047        struct igb_adapter *adapter = netdev_priv(netdev);
9048        struct e1000_hw *hw = &adapter->hw;
9049        int pf_id = adapter->vfs_allocated_count;
9050
9051        /* add the filter since PF can receive vlans w/o entry in vlvf */
9052        if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9053                igb_vfta_set(hw, vid, pf_id, true, !!vid);
9054
9055        set_bit(vid, adapter->active_vlans);
9056
9057        return 0;
9058}
9059
9060static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9061                                __be16 proto, u16 vid)
9062{
9063        struct igb_adapter *adapter = netdev_priv(netdev);
9064        int pf_id = adapter->vfs_allocated_count;
9065        struct e1000_hw *hw = &adapter->hw;
9066
9067        /* remove VID from filter table */
9068        if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9069                igb_vfta_set(hw, vid, pf_id, false, true);
9070
9071        clear_bit(vid, adapter->active_vlans);
9072
9073        return 0;
9074}
9075
9076static void igb_restore_vlan(struct igb_adapter *adapter)
9077{
9078        u16 vid = 1;
9079
9080        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9081        igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9082
9083        for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9084                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9085}
9086
9087int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9088{
9089        struct pci_dev *pdev = adapter->pdev;
9090        struct e1000_mac_info *mac = &adapter->hw.mac;
9091
9092        mac->autoneg = 0;
9093
9094        /* Make sure dplx is at most 1 bit and lsb of speed is not set
9095         * for the switch() below to work
9096         */
9097        if ((spd & 1) || (dplx & ~1))
9098                goto err_inval;
9099
9100        /* Fiber NIC's only allow 1000 gbps Full duplex
9101         * and 100Mbps Full duplex for 100baseFx sfp
9102         */
9103        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9104                switch (spd + dplx) {
9105                case SPEED_10 + DUPLEX_HALF:
9106                case SPEED_10 + DUPLEX_FULL:
9107                case SPEED_100 + DUPLEX_HALF:
9108                        goto err_inval;
9109                default:
9110                        break;
9111                }
9112        }
9113
9114        switch (spd + dplx) {
9115        case SPEED_10 + DUPLEX_HALF:
9116                mac->forced_speed_duplex = ADVERTISE_10_HALF;
9117                break;
9118        case SPEED_10 + DUPLEX_FULL:
9119                mac->forced_speed_duplex = ADVERTISE_10_FULL;
9120                break;
9121        case SPEED_100 + DUPLEX_HALF:
9122                mac->forced_speed_duplex = ADVERTISE_100_HALF;
9123                break;
9124        case SPEED_100 + DUPLEX_FULL:
9125                mac->forced_speed_duplex = ADVERTISE_100_FULL;
9126                break;
9127        case SPEED_1000 + DUPLEX_FULL:
9128                mac->autoneg = 1;
9129                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9130                break;
9131        case SPEED_1000 + DUPLEX_HALF: /* not supported */
9132        default:
9133                goto err_inval;
9134        }
9135
9136        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9137        adapter->hw.phy.mdix = AUTO_ALL_MODES;
9138
9139        return 0;
9140
9141err_inval:
9142        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9143        return -EINVAL;
9144}
9145
9146static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9147                          bool runtime)
9148{
9149        struct net_device *netdev = pci_get_drvdata(pdev);
9150        struct igb_adapter *adapter = netdev_priv(netdev);
9151        struct e1000_hw *hw = &adapter->hw;
9152        u32 ctrl, rctl, status;
9153        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9154        bool wake;
9155
9156        rtnl_lock();
9157        netif_device_detach(netdev);
9158
9159        if (netif_running(netdev))
9160                __igb_close(netdev, true);
9161
9162        igb_ptp_suspend(adapter);
9163
9164        igb_clear_interrupt_scheme(adapter);
9165        rtnl_unlock();
9166
9167        status = rd32(E1000_STATUS);
9168        if (status & E1000_STATUS_LU)
9169                wufc &= ~E1000_WUFC_LNKC;
9170
9171        if (wufc) {
9172                igb_setup_rctl(adapter);
9173                igb_set_rx_mode(netdev);
9174
9175                /* turn on all-multi mode if wake on multicast is enabled */
9176                if (wufc & E1000_WUFC_MC) {
9177                        rctl = rd32(E1000_RCTL);
9178                        rctl |= E1000_RCTL_MPE;
9179                        wr32(E1000_RCTL, rctl);
9180                }
9181
9182                ctrl = rd32(E1000_CTRL);
9183                ctrl |= E1000_CTRL_ADVD3WUC;
9184                wr32(E1000_CTRL, ctrl);
9185
9186                /* Allow time for pending master requests to run */
9187                igb_disable_pcie_master(hw);
9188
9189                wr32(E1000_WUC, E1000_WUC_PME_EN);
9190                wr32(E1000_WUFC, wufc);
9191        } else {
9192                wr32(E1000_WUC, 0);
9193                wr32(E1000_WUFC, 0);
9194        }
9195
9196        wake = wufc || adapter->en_mng_pt;
9197        if (!wake)
9198                igb_power_down_link(adapter);
9199        else
9200                igb_power_up_link(adapter);
9201
9202        if (enable_wake)
9203                *enable_wake = wake;
9204
9205        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9206         * would have already happened in close and is redundant.
9207         */
9208        igb_release_hw_control(adapter);
9209
9210        pci_disable_device(pdev);
9211
9212        return 0;
9213}
9214
9215static void igb_deliver_wake_packet(struct net_device *netdev)
9216{
9217        struct igb_adapter *adapter = netdev_priv(netdev);
9218        struct e1000_hw *hw = &adapter->hw;
9219        struct sk_buff *skb;
9220        u32 wupl;
9221
9222        wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9223
9224        /* WUPM stores only the first 128 bytes of the wake packet.
9225         * Read the packet only if we have the whole thing.
9226         */
9227        if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9228                return;
9229
9230        skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9231        if (!skb)
9232                return;
9233
9234        skb_put(skb, wupl);
9235
9236        /* Ensure reads are 32-bit aligned */
9237        wupl = roundup(wupl, 4);
9238
9239        memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9240
9241        skb->protocol = eth_type_trans(skb, netdev);
9242        netif_rx(skb);
9243}
9244
9245static int __maybe_unused igb_suspend(struct device *dev)
9246{
9247        return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9248}
9249
9250static int __maybe_unused igb_resume(struct device *dev)
9251{
9252        struct pci_dev *pdev = to_pci_dev(dev);
9253        struct net_device *netdev = pci_get_drvdata(pdev);
9254        struct igb_adapter *adapter = netdev_priv(netdev);
9255        struct e1000_hw *hw = &adapter->hw;
9256        u32 err, val;
9257
9258        pci_set_power_state(pdev, PCI_D0);
9259        pci_restore_state(pdev);
9260        pci_save_state(pdev);
9261
9262        if (!pci_device_is_present(pdev))
9263                return -ENODEV;
9264        err = pci_enable_device_mem(pdev);
9265        if (err) {
9266                dev_err(&pdev->dev,
9267                        "igb: Cannot enable PCI device from suspend\n");
9268                return err;
9269        }
9270        pci_set_master(pdev);
9271
9272        pci_enable_wake(pdev, PCI_D3hot, 0);
9273        pci_enable_wake(pdev, PCI_D3cold, 0);
9274
9275        if (igb_init_interrupt_scheme(adapter, true)) {
9276                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9277                return -ENOMEM;
9278        }
9279
9280        igb_reset(adapter);
9281
9282        /* let the f/w know that the h/w is now under the control of the
9283         * driver.
9284         */
9285        igb_get_hw_control(adapter);
9286
9287        val = rd32(E1000_WUS);
9288        if (val & WAKE_PKT_WUS)
9289                igb_deliver_wake_packet(netdev);
9290
9291        wr32(E1000_WUS, ~0);
9292
9293        rtnl_lock();
9294        if (!err && netif_running(netdev))
9295                err = __igb_open(netdev, true);
9296
9297        if (!err)
9298                netif_device_attach(netdev);
9299        rtnl_unlock();
9300
9301        return err;
9302}
9303
9304static int __maybe_unused igb_runtime_idle(struct device *dev)
9305{
9306        struct net_device *netdev = dev_get_drvdata(dev);
9307        struct igb_adapter *adapter = netdev_priv(netdev);
9308
9309        if (!igb_has_link(adapter))
9310                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9311
9312        return -EBUSY;
9313}
9314
9315static int __maybe_unused igb_runtime_suspend(struct device *dev)
9316{
9317        return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9318}
9319
9320static int __maybe_unused igb_runtime_resume(struct device *dev)
9321{
9322        return igb_resume(dev);
9323}
9324
9325static void igb_shutdown(struct pci_dev *pdev)
9326{
9327        bool wake;
9328
9329        __igb_shutdown(pdev, &wake, 0);
9330
9331        if (system_state == SYSTEM_POWER_OFF) {
9332                pci_wake_from_d3(pdev, wake);
9333                pci_set_power_state(pdev, PCI_D3hot);
9334        }
9335}
9336
9337#ifdef CONFIG_PCI_IOV
9338static int igb_sriov_reinit(struct pci_dev *dev)
9339{
9340        struct net_device *netdev = pci_get_drvdata(dev);
9341        struct igb_adapter *adapter = netdev_priv(netdev);
9342        struct pci_dev *pdev = adapter->pdev;
9343
9344        rtnl_lock();
9345
9346        if (netif_running(netdev))
9347                igb_close(netdev);
9348        else
9349                igb_reset(adapter);
9350
9351        igb_clear_interrupt_scheme(adapter);
9352
9353        igb_init_queue_configuration(adapter);
9354
9355        if (igb_init_interrupt_scheme(adapter, true)) {
9356                rtnl_unlock();
9357                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9358                return -ENOMEM;
9359        }
9360
9361        if (netif_running(netdev))
9362                igb_open(netdev);
9363
9364        rtnl_unlock();
9365
9366        return 0;
9367}
9368
9369static int igb_pci_disable_sriov(struct pci_dev *dev)
9370{
9371        int err = igb_disable_sriov(dev);
9372
9373        if (!err)
9374                err = igb_sriov_reinit(dev);
9375
9376        return err;
9377}
9378
9379static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9380{
9381        int err = igb_enable_sriov(dev, num_vfs);
9382
9383        if (err)
9384                goto out;
9385
9386        err = igb_sriov_reinit(dev);
9387        if (!err)
9388                return num_vfs;
9389
9390out:
9391        return err;
9392}
9393
9394#endif
9395static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9396{
9397#ifdef CONFIG_PCI_IOV
9398        if (num_vfs == 0)
9399                return igb_pci_disable_sriov(dev);
9400        else
9401                return igb_pci_enable_sriov(dev, num_vfs);
9402#endif
9403        return 0;
9404}
9405
9406/**
9407 *  igb_io_error_detected - called when PCI error is detected
9408 *  @pdev: Pointer to PCI device
9409 *  @state: The current pci connection state
9410 *
9411 *  This function is called after a PCI bus error affecting
9412 *  this device has been detected.
9413 **/
9414static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9415                                              pci_channel_state_t state)
9416{
9417        struct net_device *netdev = pci_get_drvdata(pdev);
9418        struct igb_adapter *adapter = netdev_priv(netdev);
9419
9420        netif_device_detach(netdev);
9421
9422        if (state == pci_channel_io_perm_failure)
9423                return PCI_ERS_RESULT_DISCONNECT;
9424
9425        if (netif_running(netdev))
9426                igb_down(adapter);
9427        pci_disable_device(pdev);
9428
9429        /* Request a slot slot reset. */
9430        return PCI_ERS_RESULT_NEED_RESET;
9431}
9432
9433/**
9434 *  igb_io_slot_reset - called after the pci bus has been reset.
9435 *  @pdev: Pointer to PCI device
9436 *
9437 *  Restart the card from scratch, as if from a cold-boot. Implementation
9438 *  resembles the first-half of the igb_resume routine.
9439 **/
9440static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9441{
9442        struct net_device *netdev = pci_get_drvdata(pdev);
9443        struct igb_adapter *adapter = netdev_priv(netdev);
9444        struct e1000_hw *hw = &adapter->hw;
9445        pci_ers_result_t result;
9446
9447        if (pci_enable_device_mem(pdev)) {
9448                dev_err(&pdev->dev,
9449                        "Cannot re-enable PCI device after reset.\n");
9450                result = PCI_ERS_RESULT_DISCONNECT;
9451        } else {
9452                pci_set_master(pdev);
9453                pci_restore_state(pdev);
9454                pci_save_state(pdev);
9455
9456                pci_enable_wake(pdev, PCI_D3hot, 0);
9457                pci_enable_wake(pdev, PCI_D3cold, 0);
9458
9459                /* In case of PCI error, adapter lose its HW address
9460                 * so we should re-assign it here.
9461                 */
9462                hw->hw_addr = adapter->io_addr;
9463
9464                igb_reset(adapter);
9465                wr32(E1000_WUS, ~0);
9466                result = PCI_ERS_RESULT_RECOVERED;
9467        }
9468
9469        return result;
9470}
9471
9472/**
9473 *  igb_io_resume - called when traffic can start flowing again.
9474 *  @pdev: Pointer to PCI device
9475 *
9476 *  This callback is called when the error recovery driver tells us that
9477 *  its OK to resume normal operation. Implementation resembles the
9478 *  second-half of the igb_resume routine.
9479 */
9480static void igb_io_resume(struct pci_dev *pdev)
9481{
9482        struct net_device *netdev = pci_get_drvdata(pdev);
9483        struct igb_adapter *adapter = netdev_priv(netdev);
9484
9485        if (netif_running(netdev)) {
9486                if (igb_up(adapter)) {
9487                        dev_err(&pdev->dev, "igb_up failed after reset\n");
9488                        return;
9489                }
9490        }
9491
9492        netif_device_attach(netdev);
9493
9494        /* let the f/w know that the h/w is now under the control of the
9495         * driver.
9496         */
9497        igb_get_hw_control(adapter);
9498}
9499
9500/**
9501 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9502 *  @adapter: Pointer to adapter structure
9503 *  @index: Index of the RAR entry which need to be synced with MAC table
9504 **/
9505static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9506{
9507        struct e1000_hw *hw = &adapter->hw;
9508        u32 rar_low, rar_high;
9509        u8 *addr = adapter->mac_table[index].addr;
9510
9511        /* HW expects these to be in network order when they are plugged
9512         * into the registers which are little endian.  In order to guarantee
9513         * that ordering we need to do an leXX_to_cpup here in order to be
9514         * ready for the byteswap that occurs with writel
9515         */
9516        rar_low = le32_to_cpup((__le32 *)(addr));
9517        rar_high = le16_to_cpup((__le16 *)(addr + 4));
9518
9519        /* Indicate to hardware the Address is Valid. */
9520        if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9521                if (is_valid_ether_addr(addr))
9522                        rar_high |= E1000_RAH_AV;
9523
9524                if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9525                        rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9526
9527                switch (hw->mac.type) {
9528                case e1000_82575:
9529                case e1000_i210:
9530                        if (adapter->mac_table[index].state &
9531                            IGB_MAC_STATE_QUEUE_STEERING)
9532                                rar_high |= E1000_RAH_QSEL_ENABLE;
9533
9534                        rar_high |= E1000_RAH_POOL_1 *
9535                                    adapter->mac_table[index].queue;
9536                        break;
9537                default:
9538                        rar_high |= E1000_RAH_POOL_1 <<
9539                                    adapter->mac_table[index].queue;
9540                        break;
9541                }
9542        }
9543
9544        wr32(E1000_RAL(index), rar_low);
9545        wrfl();
9546        wr32(E1000_RAH(index), rar_high);
9547        wrfl();
9548}
9549
9550static int igb_set_vf_mac(struct igb_adapter *adapter,
9551                          int vf, unsigned char *mac_addr)
9552{
9553        struct e1000_hw *hw = &adapter->hw;
9554        /* VF MAC addresses start at end of receive addresses and moves
9555         * towards the first, as a result a collision should not be possible
9556         */
9557        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9558        unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9559
9560        ether_addr_copy(vf_mac_addr, mac_addr);
9561        ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9562        adapter->mac_table[rar_entry].queue = vf;
9563        adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9564        igb_rar_set_index(adapter, rar_entry);
9565
9566        return 0;
9567}
9568
9569static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9570{
9571        struct igb_adapter *adapter = netdev_priv(netdev);
9572
9573        if (vf >= adapter->vfs_allocated_count)
9574                return -EINVAL;
9575
9576        /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9577         * flag and allows to overwrite the MAC via VF netdev.  This
9578         * is necessary to allow libvirt a way to restore the original
9579         * MAC after unbinding vfio-pci and reloading igbvf after shutting
9580         * down a VM.
9581         */
9582        if (is_zero_ether_addr(mac)) {
9583                adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9584                dev_info(&adapter->pdev->dev,
9585                         "remove administratively set MAC on VF %d\n",
9586                         vf);
9587        } else if (is_valid_ether_addr(mac)) {
9588                adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9589                dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9590                         mac, vf);
9591                dev_info(&adapter->pdev->dev,
9592                         "Reload the VF driver to make this change effective.");
9593                /* Generate additional warning if PF is down */
9594                if (test_bit(__IGB_DOWN, &adapter->state)) {
9595                        dev_warn(&adapter->pdev->dev,
9596                                 "The VF MAC address has been set, but the PF device is not up.\n");
9597                        dev_warn(&adapter->pdev->dev,
9598                                 "Bring the PF device up before attempting to use the VF device.\n");
9599                }
9600        } else {
9601                return -EINVAL;
9602        }
9603        return igb_set_vf_mac(adapter, vf, mac);
9604}
9605
9606static int igb_link_mbps(int internal_link_speed)
9607{
9608        switch (internal_link_speed) {
9609        case SPEED_100:
9610                return 100;
9611        case SPEED_1000:
9612                return 1000;
9613        default:
9614                return 0;
9615        }
9616}
9617
9618static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9619                                  int link_speed)
9620{
9621        int rf_dec, rf_int;
9622        u32 bcnrc_val;
9623
9624        if (tx_rate != 0) {
9625                /* Calculate the rate factor values to set */
9626                rf_int = link_speed / tx_rate;
9627                rf_dec = (link_speed - (rf_int * tx_rate));
9628                rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9629                         tx_rate;
9630
9631                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9632                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9633                              E1000_RTTBCNRC_RF_INT_MASK);
9634                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9635        } else {
9636                bcnrc_val = 0;
9637        }
9638
9639        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9640        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9641         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9642         */
9643        wr32(E1000_RTTBCNRM, 0x14);
9644        wr32(E1000_RTTBCNRC, bcnrc_val);
9645}
9646
9647static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9648{
9649        int actual_link_speed, i;
9650        bool reset_rate = false;
9651
9652        /* VF TX rate limit was not set or not supported */
9653        if ((adapter->vf_rate_link_speed == 0) ||
9654            (adapter->hw.mac.type != e1000_82576))
9655                return;
9656
9657        actual_link_speed = igb_link_mbps(adapter->link_speed);
9658        if (actual_link_speed != adapter->vf_rate_link_speed) {
9659                reset_rate = true;
9660                adapter->vf_rate_link_speed = 0;
9661                dev_info(&adapter->pdev->dev,
9662                         "Link speed has been changed. VF Transmit rate is disabled\n");
9663        }
9664
9665        for (i = 0; i < adapter->vfs_allocated_count; i++) {
9666                if (reset_rate)
9667                        adapter->vf_data[i].tx_rate = 0;
9668
9669                igb_set_vf_rate_limit(&adapter->hw, i,
9670                                      adapter->vf_data[i].tx_rate,
9671                                      actual_link_speed);
9672        }
9673}
9674
9675static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9676                             int min_tx_rate, int max_tx_rate)
9677{
9678        struct igb_adapter *adapter = netdev_priv(netdev);
9679        struct e1000_hw *hw = &adapter->hw;
9680        int actual_link_speed;
9681
9682        if (hw->mac.type != e1000_82576)
9683                return -EOPNOTSUPP;
9684
9685        if (min_tx_rate)
9686                return -EINVAL;
9687
9688        actual_link_speed = igb_link_mbps(adapter->link_speed);
9689        if ((vf >= adapter->vfs_allocated_count) ||
9690            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9691            (max_tx_rate < 0) ||
9692            (max_tx_rate > actual_link_speed))
9693                return -EINVAL;
9694
9695        adapter->vf_rate_link_speed = actual_link_speed;
9696        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9697        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9698
9699        return 0;
9700}
9701
9702static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9703                                   bool setting)
9704{
9705        struct igb_adapter *adapter = netdev_priv(netdev);
9706        struct e1000_hw *hw = &adapter->hw;
9707        u32 reg_val, reg_offset;
9708
9709        if (!adapter->vfs_allocated_count)
9710                return -EOPNOTSUPP;
9711
9712        if (vf >= adapter->vfs_allocated_count)
9713                return -EINVAL;
9714
9715        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9716        reg_val = rd32(reg_offset);
9717        if (setting)
9718                reg_val |= (BIT(vf) |
9719                            BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9720        else
9721                reg_val &= ~(BIT(vf) |
9722                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9723        wr32(reg_offset, reg_val);
9724
9725        adapter->vf_data[vf].spoofchk_enabled = setting;
9726        return 0;
9727}
9728
9729static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9730{
9731        struct igb_adapter *adapter = netdev_priv(netdev);
9732
9733        if (vf >= adapter->vfs_allocated_count)
9734                return -EINVAL;
9735        if (adapter->vf_data[vf].trusted == setting)
9736                return 0;
9737
9738        adapter->vf_data[vf].trusted = setting;
9739
9740        dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9741                 vf, setting ? "" : "not ");
9742        return 0;
9743}
9744
9745static int igb_ndo_get_vf_config(struct net_device *netdev,
9746                                 int vf, struct ifla_vf_info *ivi)
9747{
9748        struct igb_adapter *adapter = netdev_priv(netdev);
9749        if (vf >= adapter->vfs_allocated_count)
9750                return -EINVAL;
9751        ivi->vf = vf;
9752        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9753        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9754        ivi->min_tx_rate = 0;
9755        ivi->vlan = adapter->vf_data[vf].pf_vlan;
9756        ivi->qos = adapter->vf_data[vf].pf_qos;
9757        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9758        ivi->trusted = adapter->vf_data[vf].trusted;
9759        return 0;
9760}
9761
9762static void igb_vmm_control(struct igb_adapter *adapter)
9763{
9764        struct e1000_hw *hw = &adapter->hw;
9765        u32 reg;
9766
9767        switch (hw->mac.type) {
9768        case e1000_82575:
9769        case e1000_i210:
9770        case e1000_i211:
9771        case e1000_i354:
9772        default:
9773                /* replication is not supported for 82575 */
9774                return;
9775        case e1000_82576:
9776                /* notify HW that the MAC is adding vlan tags */
9777                reg = rd32(E1000_DTXCTL);
9778                reg |= E1000_DTXCTL_VLAN_ADDED;
9779                wr32(E1000_DTXCTL, reg);
9780                fallthrough;
9781        case e1000_82580:
9782                /* enable replication vlan tag stripping */
9783                reg = rd32(E1000_RPLOLR);
9784                reg |= E1000_RPLOLR_STRVLAN;
9785                wr32(E1000_RPLOLR, reg);
9786                fallthrough;
9787        case e1000_i350:
9788                /* none of the above registers are supported by i350 */
9789                break;
9790        }
9791
9792        if (adapter->vfs_allocated_count) {
9793                igb_vmdq_set_loopback_pf(hw, true);
9794                igb_vmdq_set_replication_pf(hw, true);
9795                igb_vmdq_set_anti_spoofing_pf(hw, true,
9796                                              adapter->vfs_allocated_count);
9797        } else {
9798                igb_vmdq_set_loopback_pf(hw, false);
9799                igb_vmdq_set_replication_pf(hw, false);
9800        }
9801}
9802
9803static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9804{
9805        struct e1000_hw *hw = &adapter->hw;
9806        u32 dmac_thr;
9807        u16 hwm;
9808
9809        if (hw->mac.type > e1000_82580) {
9810                if (adapter->flags & IGB_FLAG_DMAC) {
9811                        u32 reg;
9812
9813                        /* force threshold to 0. */
9814                        wr32(E1000_DMCTXTH, 0);
9815
9816                        /* DMA Coalescing high water mark needs to be greater
9817                         * than the Rx threshold. Set hwm to PBA - max frame
9818                         * size in 16B units, capping it at PBA - 6KB.
9819                         */
9820                        hwm = 64 * (pba - 6);
9821                        reg = rd32(E1000_FCRTC);
9822                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9823                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9824                                & E1000_FCRTC_RTH_COAL_MASK);
9825                        wr32(E1000_FCRTC, reg);
9826
9827                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9828                         * frame size, capping it at PBA - 10KB.
9829                         */
9830                        dmac_thr = pba - 10;
9831                        reg = rd32(E1000_DMACR);
9832                        reg &= ~E1000_DMACR_DMACTHR_MASK;
9833                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9834                                & E1000_DMACR_DMACTHR_MASK);
9835
9836                        /* transition to L0x or L1 if available..*/
9837                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9838
9839                        /* watchdog timer= +-1000 usec in 32usec intervals */
9840                        reg |= (1000 >> 5);
9841
9842                        /* Disable BMC-to-OS Watchdog Enable */
9843                        if (hw->mac.type != e1000_i354)
9844                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9845
9846                        wr32(E1000_DMACR, reg);
9847
9848                        /* no lower threshold to disable
9849                         * coalescing(smart fifb)-UTRESH=0
9850                         */
9851                        wr32(E1000_DMCRTRH, 0);
9852
9853                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9854
9855                        wr32(E1000_DMCTLX, reg);
9856
9857                        /* free space in tx packet buffer to wake from
9858                         * DMA coal
9859                         */
9860                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9861                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9862
9863                        /* make low power state decision controlled
9864                         * by DMA coal
9865                         */
9866                        reg = rd32(E1000_PCIEMISC);
9867                        reg &= ~E1000_PCIEMISC_LX_DECISION;
9868                        wr32(E1000_PCIEMISC, reg);
9869                } /* endif adapter->dmac is not disabled */
9870        } else if (hw->mac.type == e1000_82580) {
9871                u32 reg = rd32(E1000_PCIEMISC);
9872
9873                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9874                wr32(E1000_DMACR, 0);
9875        }
9876}
9877
9878/**
9879 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9880 *  @hw: pointer to hardware structure
9881 *  @byte_offset: byte offset to read
9882 *  @dev_addr: device address
9883 *  @data: value read
9884 *
9885 *  Performs byte read operation over I2C interface at
9886 *  a specified device address.
9887 **/
9888s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9889                      u8 dev_addr, u8 *data)
9890{
9891        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9892        struct i2c_client *this_client = adapter->i2c_client;
9893        s32 status;
9894        u16 swfw_mask = 0;
9895
9896        if (!this_client)
9897                return E1000_ERR_I2C;
9898
9899        swfw_mask = E1000_SWFW_PHY0_SM;
9900
9901        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9902                return E1000_ERR_SWFW_SYNC;
9903
9904        status = i2c_smbus_read_byte_data(this_client, byte_offset);
9905        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9906
9907        if (status < 0)
9908                return E1000_ERR_I2C;
9909        else {
9910                *data = status;
9911                return 0;
9912        }
9913}
9914
9915/**
9916 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9917 *  @hw: pointer to hardware structure
9918 *  @byte_offset: byte offset to write
9919 *  @dev_addr: device address
9920 *  @data: value to write
9921 *
9922 *  Performs byte write operation over I2C interface at
9923 *  a specified device address.
9924 **/
9925s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9926                       u8 dev_addr, u8 data)
9927{
9928        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9929        struct i2c_client *this_client = adapter->i2c_client;
9930        s32 status;
9931        u16 swfw_mask = E1000_SWFW_PHY0_SM;
9932
9933        if (!this_client)
9934                return E1000_ERR_I2C;
9935
9936        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9937                return E1000_ERR_SWFW_SYNC;
9938        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9939        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9940
9941        if (status)
9942                return E1000_ERR_I2C;
9943        else
9944                return 0;
9945
9946}
9947
9948int igb_reinit_queues(struct igb_adapter *adapter)
9949{
9950        struct net_device *netdev = adapter->netdev;
9951        struct pci_dev *pdev = adapter->pdev;
9952        int err = 0;
9953
9954        if (netif_running(netdev))
9955                igb_close(netdev);
9956
9957        igb_reset_interrupt_capability(adapter);
9958
9959        if (igb_init_interrupt_scheme(adapter, true)) {
9960                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9961                return -ENOMEM;
9962        }
9963
9964        if (netif_running(netdev))
9965                err = igb_open(netdev);
9966
9967        return err;
9968}
9969
9970static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9971{
9972        struct igb_nfc_filter *rule;
9973
9974        spin_lock(&adapter->nfc_lock);
9975
9976        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9977                igb_erase_filter(adapter, rule);
9978
9979        hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9980                igb_erase_filter(adapter, rule);
9981
9982        spin_unlock(&adapter->nfc_lock);
9983}
9984
9985static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9986{
9987        struct igb_nfc_filter *rule;
9988
9989        spin_lock(&adapter->nfc_lock);
9990
9991        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9992                igb_add_filter(adapter, rule);
9993
9994        spin_unlock(&adapter->nfc_lock);
9995}
9996/* igb_main.c */
9997