linux/drivers/net/ethernet/intel/igb/igb_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK           0x7fffffff
  12#define ISGN                    0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  66#define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580                 40
  70
  71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72
  73/* SYSTIM read access for the 82576 */
  74static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75{
  76        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77        struct e1000_hw *hw = &igb->hw;
  78        u64 val;
  79        u32 lo, hi;
  80
  81        lo = rd32(E1000_SYSTIML);
  82        hi = rd32(E1000_SYSTIMH);
  83
  84        val = ((u64) hi) << 32;
  85        val |= lo;
  86
  87        return val;
  88}
  89
  90/* SYSTIM read access for the 82580 */
  91static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  92{
  93        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  94        struct e1000_hw *hw = &igb->hw;
  95        u32 lo, hi;
  96        u64 val;
  97
  98        /* The timestamp latches on lowest register read. For the 82580
  99         * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 100         * need to provide nanosecond resolution, so we just ignore it.
 101         */
 102        rd32(E1000_SYSTIMR);
 103        lo = rd32(E1000_SYSTIML);
 104        hi = rd32(E1000_SYSTIMH);
 105
 106        val = ((u64) hi) << 32;
 107        val |= lo;
 108
 109        return val;
 110}
 111
 112/* SYSTIM read access for I210/I211 */
 113static void igb_ptp_read_i210(struct igb_adapter *adapter,
 114                              struct timespec64 *ts)
 115{
 116        struct e1000_hw *hw = &adapter->hw;
 117        u32 sec, nsec;
 118
 119        /* The timestamp latches on lowest register read. For I210/I211, the
 120         * lowest register is SYSTIMR. Since we only need to provide nanosecond
 121         * resolution, we can ignore it.
 122         */
 123        rd32(E1000_SYSTIMR);
 124        nsec = rd32(E1000_SYSTIML);
 125        sec = rd32(E1000_SYSTIMH);
 126
 127        ts->tv_sec = sec;
 128        ts->tv_nsec = nsec;
 129}
 130
 131static void igb_ptp_write_i210(struct igb_adapter *adapter,
 132                               const struct timespec64 *ts)
 133{
 134        struct e1000_hw *hw = &adapter->hw;
 135
 136        /* Writing the SYSTIMR register is not necessary as it only provides
 137         * sub-nanosecond resolution.
 138         */
 139        wr32(E1000_SYSTIML, ts->tv_nsec);
 140        wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 141}
 142
 143/**
 144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 145 * @adapter: board private structure
 146 * @hwtstamps: timestamp structure to update
 147 * @systim: unsigned 64bit system time value.
 148 *
 149 * We need to convert the system time value stored in the RX/TXSTMP registers
 150 * into a hwtstamp which can be used by the upper level timestamping functions.
 151 *
 152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 153 * system time value. This is needed because reading the 64 bit time
 154 * value involves reading two (or three) 32 bit registers. The first
 155 * read latches the value. Ditto for writing.
 156 *
 157 * In addition, here have extended the system time with an overflow
 158 * counter in software.
 159 **/
 160static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 161                                       struct skb_shared_hwtstamps *hwtstamps,
 162                                       u64 systim)
 163{
 164        unsigned long flags;
 165        u64 ns;
 166
 167        switch (adapter->hw.mac.type) {
 168        case e1000_82576:
 169        case e1000_82580:
 170        case e1000_i354:
 171        case e1000_i350:
 172                spin_lock_irqsave(&adapter->tmreg_lock, flags);
 173
 174                ns = timecounter_cyc2time(&adapter->tc, systim);
 175
 176                spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 177
 178                memset(hwtstamps, 0, sizeof(*hwtstamps));
 179                hwtstamps->hwtstamp = ns_to_ktime(ns);
 180                break;
 181        case e1000_i210:
 182        case e1000_i211:
 183                memset(hwtstamps, 0, sizeof(*hwtstamps));
 184                /* Upper 32 bits contain s, lower 32 bits contain ns. */
 185                hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186                                                systim & 0xFFFFFFFF);
 187                break;
 188        default:
 189                break;
 190        }
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 195{
 196        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197                                               ptp_caps);
 198        struct e1000_hw *hw = &igb->hw;
 199        int neg_adj = 0;
 200        u64 rate;
 201        u32 incvalue;
 202
 203        if (ppb < 0) {
 204                neg_adj = 1;
 205                ppb = -ppb;
 206        }
 207        rate = ppb;
 208        rate <<= 14;
 209        rate = div_u64(rate, 1953125);
 210
 211        incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 212
 213        if (neg_adj)
 214                incvalue -= rate;
 215        else
 216                incvalue += rate;
 217
 218        wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 219
 220        return 0;
 221}
 222
 223static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 224{
 225        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 226                                               ptp_caps);
 227        struct e1000_hw *hw = &igb->hw;
 228        int neg_adj = 0;
 229        u64 rate;
 230        u32 inca;
 231
 232        if (scaled_ppm < 0) {
 233                neg_adj = 1;
 234                scaled_ppm = -scaled_ppm;
 235        }
 236        rate = scaled_ppm;
 237        rate <<= 13;
 238        rate = div_u64(rate, 15625);
 239
 240        inca = rate & INCVALUE_MASK;
 241        if (neg_adj)
 242                inca |= ISGN;
 243
 244        wr32(E1000_TIMINCA, inca);
 245
 246        return 0;
 247}
 248
 249static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 250{
 251        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 252                                               ptp_caps);
 253        unsigned long flags;
 254
 255        spin_lock_irqsave(&igb->tmreg_lock, flags);
 256        timecounter_adjtime(&igb->tc, delta);
 257        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 258
 259        return 0;
 260}
 261
 262static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 263{
 264        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 265                                               ptp_caps);
 266        unsigned long flags;
 267        struct timespec64 now, then = ns_to_timespec64(delta);
 268
 269        spin_lock_irqsave(&igb->tmreg_lock, flags);
 270
 271        igb_ptp_read_i210(igb, &now);
 272        now = timespec64_add(now, then);
 273        igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 274
 275        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 276
 277        return 0;
 278}
 279
 280static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 281                                  struct timespec64 *ts,
 282                                  struct ptp_system_timestamp *sts)
 283{
 284        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 285                                               ptp_caps);
 286        struct e1000_hw *hw = &igb->hw;
 287        unsigned long flags;
 288        u32 lo, hi;
 289        u64 ns;
 290
 291        spin_lock_irqsave(&igb->tmreg_lock, flags);
 292
 293        ptp_read_system_prets(sts);
 294        lo = rd32(E1000_SYSTIML);
 295        ptp_read_system_postts(sts);
 296        hi = rd32(E1000_SYSTIMH);
 297
 298        ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 299
 300        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 301
 302        *ts = ns_to_timespec64(ns);
 303
 304        return 0;
 305}
 306
 307static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 308                                  struct timespec64 *ts,
 309                                  struct ptp_system_timestamp *sts)
 310{
 311        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 312                                               ptp_caps);
 313        struct e1000_hw *hw = &igb->hw;
 314        unsigned long flags;
 315        u32 lo, hi;
 316        u64 ns;
 317
 318        spin_lock_irqsave(&igb->tmreg_lock, flags);
 319
 320        ptp_read_system_prets(sts);
 321        rd32(E1000_SYSTIMR);
 322        ptp_read_system_postts(sts);
 323        lo = rd32(E1000_SYSTIML);
 324        hi = rd32(E1000_SYSTIMH);
 325
 326        ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 327
 328        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 329
 330        *ts = ns_to_timespec64(ns);
 331
 332        return 0;
 333}
 334
 335static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 336                                 struct timespec64 *ts,
 337                                 struct ptp_system_timestamp *sts)
 338{
 339        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340                                               ptp_caps);
 341        struct e1000_hw *hw = &igb->hw;
 342        unsigned long flags;
 343
 344        spin_lock_irqsave(&igb->tmreg_lock, flags);
 345
 346        ptp_read_system_prets(sts);
 347        rd32(E1000_SYSTIMR);
 348        ptp_read_system_postts(sts);
 349        ts->tv_nsec = rd32(E1000_SYSTIML);
 350        ts->tv_sec = rd32(E1000_SYSTIMH);
 351
 352        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354        return 0;
 355}
 356
 357static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 358                                 const struct timespec64 *ts)
 359{
 360        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 361                                               ptp_caps);
 362        unsigned long flags;
 363        u64 ns;
 364
 365        ns = timespec64_to_ns(ts);
 366
 367        spin_lock_irqsave(&igb->tmreg_lock, flags);
 368
 369        timecounter_init(&igb->tc, &igb->cc, ns);
 370
 371        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372
 373        return 0;
 374}
 375
 376static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 377                                const struct timespec64 *ts)
 378{
 379        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 380                                               ptp_caps);
 381        unsigned long flags;
 382
 383        spin_lock_irqsave(&igb->tmreg_lock, flags);
 384
 385        igb_ptp_write_i210(igb, ts);
 386
 387        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 388
 389        return 0;
 390}
 391
 392static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 393{
 394        u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 395        static const u32 mask[IGB_N_SDP] = {
 396                E1000_CTRL_SDP0_DIR,
 397                E1000_CTRL_SDP1_DIR,
 398                E1000_CTRL_EXT_SDP2_DIR,
 399                E1000_CTRL_EXT_SDP3_DIR,
 400        };
 401
 402        if (input)
 403                *ptr &= ~mask[pin];
 404        else
 405                *ptr |= mask[pin];
 406}
 407
 408static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 409{
 410        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412        };
 413        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415        };
 416        static const u32 ts_sdp_en[IGB_N_SDP] = {
 417                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418        };
 419        struct e1000_hw *hw = &igb->hw;
 420        u32 ctrl, ctrl_ext, tssdp = 0;
 421
 422        ctrl = rd32(E1000_CTRL);
 423        ctrl_ext = rd32(E1000_CTRL_EXT);
 424        tssdp = rd32(E1000_TSSDP);
 425
 426        igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 427
 428        /* Make sure this pin is not enabled as an output. */
 429        tssdp &= ~ts_sdp_en[pin];
 430
 431        if (chan == 1) {
 432                tssdp &= ~AUX1_SEL_SDP3;
 433                tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 434        } else {
 435                tssdp &= ~AUX0_SEL_SDP3;
 436                tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 437        }
 438
 439        wr32(E1000_TSSDP, tssdp);
 440        wr32(E1000_CTRL, ctrl);
 441        wr32(E1000_CTRL_EXT, ctrl_ext);
 442}
 443
 444static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 445{
 446        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 447                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 448        };
 449        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 450                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 451        };
 452        static const u32 ts_sdp_en[IGB_N_SDP] = {
 453                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 454        };
 455        static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 456                TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 457                TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 458        };
 459        static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 460                TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 461                TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 462        };
 463        static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 464                TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 465                TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 466        };
 467        static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 468                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 469                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 470        };
 471        static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 472                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 473                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 474        };
 475        struct e1000_hw *hw = &igb->hw;
 476        u32 ctrl, ctrl_ext, tssdp = 0;
 477
 478        ctrl = rd32(E1000_CTRL);
 479        ctrl_ext = rd32(E1000_CTRL_EXT);
 480        tssdp = rd32(E1000_TSSDP);
 481
 482        igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 483
 484        /* Make sure this pin is not enabled as an input. */
 485        if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 486                tssdp &= ~AUX0_TS_SDP_EN;
 487
 488        if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 489                tssdp &= ~AUX1_TS_SDP_EN;
 490
 491        tssdp &= ~ts_sdp_sel_clr[pin];
 492        if (freq) {
 493                if (chan == 1)
 494                        tssdp |= ts_sdp_sel_fc1[pin];
 495                else
 496                        tssdp |= ts_sdp_sel_fc0[pin];
 497        } else {
 498                if (chan == 1)
 499                        tssdp |= ts_sdp_sel_tt1[pin];
 500                else
 501                        tssdp |= ts_sdp_sel_tt0[pin];
 502        }
 503        tssdp |= ts_sdp_en[pin];
 504
 505        wr32(E1000_TSSDP, tssdp);
 506        wr32(E1000_CTRL, ctrl);
 507        wr32(E1000_CTRL_EXT, ctrl_ext);
 508}
 509
 510static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 511                                       struct ptp_clock_request *rq, int on)
 512{
 513        struct igb_adapter *igb =
 514                container_of(ptp, struct igb_adapter, ptp_caps);
 515        struct e1000_hw *hw = &igb->hw;
 516        u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 517        unsigned long flags;
 518        struct timespec64 ts;
 519        int use_freq = 0, pin = -1;
 520        s64 ns;
 521
 522        switch (rq->type) {
 523        case PTP_CLK_REQ_EXTTS:
 524                /* Reject requests with unsupported flags */
 525                if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 526                                        PTP_RISING_EDGE |
 527                                        PTP_FALLING_EDGE |
 528                                        PTP_STRICT_FLAGS))
 529                        return -EOPNOTSUPP;
 530
 531                /* Reject requests failing to enable both edges. */
 532                if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 533                    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 534                    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 535                        return -EOPNOTSUPP;
 536
 537                if (on) {
 538                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 539                                           rq->extts.index);
 540                        if (pin < 0)
 541                                return -EBUSY;
 542                }
 543                if (rq->extts.index == 1) {
 544                        tsauxc_mask = TSAUXC_EN_TS1;
 545                        tsim_mask = TSINTR_AUTT1;
 546                } else {
 547                        tsauxc_mask = TSAUXC_EN_TS0;
 548                        tsim_mask = TSINTR_AUTT0;
 549                }
 550                spin_lock_irqsave(&igb->tmreg_lock, flags);
 551                tsauxc = rd32(E1000_TSAUXC);
 552                tsim = rd32(E1000_TSIM);
 553                if (on) {
 554                        igb_pin_extts(igb, rq->extts.index, pin);
 555                        tsauxc |= tsauxc_mask;
 556                        tsim |= tsim_mask;
 557                } else {
 558                        tsauxc &= ~tsauxc_mask;
 559                        tsim &= ~tsim_mask;
 560                }
 561                wr32(E1000_TSAUXC, tsauxc);
 562                wr32(E1000_TSIM, tsim);
 563                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 564                return 0;
 565
 566        case PTP_CLK_REQ_PEROUT:
 567                /* Reject requests with unsupported flags */
 568                if (rq->perout.flags)
 569                        return -EOPNOTSUPP;
 570
 571                if (on) {
 572                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 573                                           rq->perout.index);
 574                        if (pin < 0)
 575                                return -EBUSY;
 576                }
 577                ts.tv_sec = rq->perout.period.sec;
 578                ts.tv_nsec = rq->perout.period.nsec;
 579                ns = timespec64_to_ns(&ts);
 580                ns = ns >> 1;
 581                if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 582                           (ns == 250000000LL) || (ns == 500000000LL))) {
 583                        if (ns < 8LL)
 584                                return -EINVAL;
 585                        use_freq = 1;
 586                }
 587                ts = ns_to_timespec64(ns);
 588                if (rq->perout.index == 1) {
 589                        if (use_freq) {
 590                                tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 591                                tsim_mask = 0;
 592                        } else {
 593                                tsauxc_mask = TSAUXC_EN_TT1;
 594                                tsim_mask = TSINTR_TT1;
 595                        }
 596                        trgttiml = E1000_TRGTTIML1;
 597                        trgttimh = E1000_TRGTTIMH1;
 598                        freqout = E1000_FREQOUT1;
 599                } else {
 600                        if (use_freq) {
 601                                tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 602                                tsim_mask = 0;
 603                        } else {
 604                                tsauxc_mask = TSAUXC_EN_TT0;
 605                                tsim_mask = TSINTR_TT0;
 606                        }
 607                        trgttiml = E1000_TRGTTIML0;
 608                        trgttimh = E1000_TRGTTIMH0;
 609                        freqout = E1000_FREQOUT0;
 610                }
 611                spin_lock_irqsave(&igb->tmreg_lock, flags);
 612                tsauxc = rd32(E1000_TSAUXC);
 613                tsim = rd32(E1000_TSIM);
 614                if (rq->perout.index == 1) {
 615                        tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 616                        tsim &= ~TSINTR_TT1;
 617                } else {
 618                        tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 619                        tsim &= ~TSINTR_TT0;
 620                }
 621                if (on) {
 622                        int i = rq->perout.index;
 623                        igb_pin_perout(igb, i, pin, use_freq);
 624                        igb->perout[i].start.tv_sec = rq->perout.start.sec;
 625                        igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 626                        igb->perout[i].period.tv_sec = ts.tv_sec;
 627                        igb->perout[i].period.tv_nsec = ts.tv_nsec;
 628                        wr32(trgttimh, rq->perout.start.sec);
 629                        wr32(trgttiml, rq->perout.start.nsec);
 630                        if (use_freq)
 631                                wr32(freqout, ns);
 632                        tsauxc |= tsauxc_mask;
 633                        tsim |= tsim_mask;
 634                }
 635                wr32(E1000_TSAUXC, tsauxc);
 636                wr32(E1000_TSIM, tsim);
 637                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 638                return 0;
 639
 640        case PTP_CLK_REQ_PPS:
 641                spin_lock_irqsave(&igb->tmreg_lock, flags);
 642                tsim = rd32(E1000_TSIM);
 643                if (on)
 644                        tsim |= TSINTR_SYS_WRAP;
 645                else
 646                        tsim &= ~TSINTR_SYS_WRAP;
 647                igb->pps_sys_wrap_on = !!on;
 648                wr32(E1000_TSIM, tsim);
 649                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 650                return 0;
 651        }
 652
 653        return -EOPNOTSUPP;
 654}
 655
 656static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 657                                  struct ptp_clock_request *rq, int on)
 658{
 659        return -EOPNOTSUPP;
 660}
 661
 662static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 663                              enum ptp_pin_function func, unsigned int chan)
 664{
 665        switch (func) {
 666        case PTP_PF_NONE:
 667        case PTP_PF_EXTTS:
 668        case PTP_PF_PEROUT:
 669                break;
 670        case PTP_PF_PHYSYNC:
 671                return -1;
 672        }
 673        return 0;
 674}
 675
 676/**
 677 * igb_ptp_tx_work
 678 * @work: pointer to work struct
 679 *
 680 * This work function polls the TSYNCTXCTL valid bit to determine when a
 681 * timestamp has been taken for the current stored skb.
 682 **/
 683static void igb_ptp_tx_work(struct work_struct *work)
 684{
 685        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 686                                                   ptp_tx_work);
 687        struct e1000_hw *hw = &adapter->hw;
 688        u32 tsynctxctl;
 689
 690        if (!adapter->ptp_tx_skb)
 691                return;
 692
 693        if (time_is_before_jiffies(adapter->ptp_tx_start +
 694                                   IGB_PTP_TX_TIMEOUT)) {
 695                dev_kfree_skb_any(adapter->ptp_tx_skb);
 696                adapter->ptp_tx_skb = NULL;
 697                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 698                adapter->tx_hwtstamp_timeouts++;
 699                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 700                 * interrupt
 701                 */
 702                rd32(E1000_TXSTMPH);
 703                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 704                return;
 705        }
 706
 707        tsynctxctl = rd32(E1000_TSYNCTXCTL);
 708        if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 709                igb_ptp_tx_hwtstamp(adapter);
 710        else
 711                /* reschedule to check later */
 712                schedule_work(&adapter->ptp_tx_work);
 713}
 714
 715static void igb_ptp_overflow_check(struct work_struct *work)
 716{
 717        struct igb_adapter *igb =
 718                container_of(work, struct igb_adapter, ptp_overflow_work.work);
 719        struct timespec64 ts;
 720        u64 ns;
 721
 722        /* Update the timecounter */
 723        ns = timecounter_read(&igb->tc);
 724
 725        ts = ns_to_timespec64(ns);
 726        pr_debug("igb overflow check at %lld.%09lu\n",
 727                 (long long) ts.tv_sec, ts.tv_nsec);
 728
 729        schedule_delayed_work(&igb->ptp_overflow_work,
 730                              IGB_SYSTIM_OVERFLOW_PERIOD);
 731}
 732
 733/**
 734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 735 * @adapter: private network adapter structure
 736 *
 737 * This watchdog task is scheduled to detect error case where hardware has
 738 * dropped an Rx packet that was timestamped when the ring is full. The
 739 * particular error is rare but leaves the device in a state unable to timestamp
 740 * any future packets.
 741 **/
 742void igb_ptp_rx_hang(struct igb_adapter *adapter)
 743{
 744        struct e1000_hw *hw = &adapter->hw;
 745        u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 746        unsigned long rx_event;
 747
 748        /* Other hardware uses per-packet timestamps */
 749        if (hw->mac.type != e1000_82576)
 750                return;
 751
 752        /* If we don't have a valid timestamp in the registers, just update the
 753         * timeout counter and exit
 754         */
 755        if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 756                adapter->last_rx_ptp_check = jiffies;
 757                return;
 758        }
 759
 760        /* Determine the most recent watchdog or rx_timestamp event */
 761        rx_event = adapter->last_rx_ptp_check;
 762        if (time_after(adapter->last_rx_timestamp, rx_event))
 763                rx_event = adapter->last_rx_timestamp;
 764
 765        /* Only need to read the high RXSTMP register to clear the lock */
 766        if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 767                rd32(E1000_RXSTMPH);
 768                adapter->last_rx_ptp_check = jiffies;
 769                adapter->rx_hwtstamp_cleared++;
 770                dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 771        }
 772}
 773
 774/**
 775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 776 * @adapter: private network adapter structure
 777 */
 778void igb_ptp_tx_hang(struct igb_adapter *adapter)
 779{
 780        struct e1000_hw *hw = &adapter->hw;
 781        bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 782                                              IGB_PTP_TX_TIMEOUT);
 783
 784        if (!adapter->ptp_tx_skb)
 785                return;
 786
 787        if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 788                return;
 789
 790        /* If we haven't received a timestamp within the timeout, it is
 791         * reasonable to assume that it will never occur, so we can unlock the
 792         * timestamp bit when this occurs.
 793         */
 794        if (timeout) {
 795                cancel_work_sync(&adapter->ptp_tx_work);
 796                dev_kfree_skb_any(adapter->ptp_tx_skb);
 797                adapter->ptp_tx_skb = NULL;
 798                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 799                adapter->tx_hwtstamp_timeouts++;
 800                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 801                 * interrupt
 802                 */
 803                rd32(E1000_TXSTMPH);
 804                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 805        }
 806}
 807
 808/**
 809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 810 * @adapter: Board private structure.
 811 *
 812 * If we were asked to do hardware stamping and such a time stamp is
 813 * available, then it must have been for this skb here because we only
 814 * allow only one such packet into the queue.
 815 **/
 816static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 817{
 818        struct sk_buff *skb = adapter->ptp_tx_skb;
 819        struct e1000_hw *hw = &adapter->hw;
 820        struct skb_shared_hwtstamps shhwtstamps;
 821        u64 regval;
 822        int adjust = 0;
 823
 824        regval = rd32(E1000_TXSTMPL);
 825        regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 826
 827        igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 828        /* adjust timestamp for the TX latency based on link speed */
 829        if (adapter->hw.mac.type == e1000_i210) {
 830                switch (adapter->link_speed) {
 831                case SPEED_10:
 832                        adjust = IGB_I210_TX_LATENCY_10;
 833                        break;
 834                case SPEED_100:
 835                        adjust = IGB_I210_TX_LATENCY_100;
 836                        break;
 837                case SPEED_1000:
 838                        adjust = IGB_I210_TX_LATENCY_1000;
 839                        break;
 840                }
 841        }
 842
 843        shhwtstamps.hwtstamp =
 844                ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 845
 846        /* Clear the lock early before calling skb_tstamp_tx so that
 847         * applications are not woken up before the lock bit is clear. We use
 848         * a copy of the skb pointer to ensure other threads can't change it
 849         * while we're notifying the stack.
 850         */
 851        adapter->ptp_tx_skb = NULL;
 852        clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 853
 854        /* Notify the stack and free the skb after we've unlocked */
 855        skb_tstamp_tx(skb, &shhwtstamps);
 856        dev_kfree_skb_any(skb);
 857}
 858
 859/**
 860 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 861 * @q_vector: Pointer to interrupt specific structure
 862 * @va: Pointer to address containing Rx buffer
 863 * @timestamp: Pointer where timestamp will be stored
 864 *
 865 * This function is meant to retrieve a timestamp from the first buffer of an
 866 * incoming frame.  The value is stored in little endian format starting on
 867 * byte 8
 868 *
 869 * Returns: The timestamp header length or 0 if not available
 870 **/
 871int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 872                        ktime_t *timestamp)
 873{
 874        struct igb_adapter *adapter = q_vector->adapter;
 875        struct skb_shared_hwtstamps ts;
 876        __le64 *regval = (__le64 *)va;
 877        int adjust = 0;
 878
 879        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
 880                return 0;
 881
 882        /* The timestamp is recorded in little endian format.
 883         * DWORD: 0        1        2        3
 884         * Field: Reserved Reserved SYSTIML  SYSTIMH
 885         */
 886
 887        /* check reserved dwords are zero, be/le doesn't matter for zero */
 888        if (regval[0])
 889                return 0;
 890
 891        igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
 892
 893        /* adjust timestamp for the RX latency based on link speed */
 894        if (adapter->hw.mac.type == e1000_i210) {
 895                switch (adapter->link_speed) {
 896                case SPEED_10:
 897                        adjust = IGB_I210_RX_LATENCY_10;
 898                        break;
 899                case SPEED_100:
 900                        adjust = IGB_I210_RX_LATENCY_100;
 901                        break;
 902                case SPEED_1000:
 903                        adjust = IGB_I210_RX_LATENCY_1000;
 904                        break;
 905                }
 906        }
 907
 908        *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
 909
 910        return IGB_TS_HDR_LEN;
 911}
 912
 913/**
 914 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 915 * @q_vector: Pointer to interrupt specific structure
 916 * @skb: Buffer containing timestamp and packet
 917 *
 918 * This function is meant to retrieve a timestamp from the internal registers
 919 * of the adapter and store it in the skb.
 920 **/
 921void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
 922{
 923        struct igb_adapter *adapter = q_vector->adapter;
 924        struct e1000_hw *hw = &adapter->hw;
 925        int adjust = 0;
 926        u64 regval;
 927
 928        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
 929                return;
 930
 931        /* If this bit is set, then the RX registers contain the time stamp. No
 932         * other packet will be time stamped until we read these registers, so
 933         * read the registers to make them available again. Because only one
 934         * packet can be time stamped at a time, we know that the register
 935         * values must belong to this one here and therefore we don't need to
 936         * compare any of the additional attributes stored for it.
 937         *
 938         * If nothing went wrong, then it should have a shared tx_flags that we
 939         * can turn into a skb_shared_hwtstamps.
 940         */
 941        if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 942                return;
 943
 944        regval = rd32(E1000_RXSTMPL);
 945        regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 946
 947        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 948
 949        /* adjust timestamp for the RX latency based on link speed */
 950        if (adapter->hw.mac.type == e1000_i210) {
 951                switch (adapter->link_speed) {
 952                case SPEED_10:
 953                        adjust = IGB_I210_RX_LATENCY_10;
 954                        break;
 955                case SPEED_100:
 956                        adjust = IGB_I210_RX_LATENCY_100;
 957                        break;
 958                case SPEED_1000:
 959                        adjust = IGB_I210_RX_LATENCY_1000;
 960                        break;
 961                }
 962        }
 963        skb_hwtstamps(skb)->hwtstamp =
 964                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 965
 966        /* Update the last_rx_timestamp timer in order to enable watchdog check
 967         * for error case of latched timestamp on a dropped packet.
 968         */
 969        adapter->last_rx_timestamp = jiffies;
 970}
 971
 972/**
 973 * igb_ptp_get_ts_config - get hardware time stamping config
 974 * @netdev: netdev struct
 975 * @ifr: interface struct
 976 *
 977 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 978 * to deconstruct the settings from the registers, just return a shadow copy
 979 * of the last known settings.
 980 **/
 981int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 982{
 983        struct igb_adapter *adapter = netdev_priv(netdev);
 984        struct hwtstamp_config *config = &adapter->tstamp_config;
 985
 986        return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 987                -EFAULT : 0;
 988}
 989
 990/**
 991 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 992 * @adapter: networking device structure
 993 * @config: hwtstamp configuration
 994 *
 995 * Outgoing time stamping can be enabled and disabled. Play nice and
 996 * disable it when requested, although it shouldn't case any overhead
 997 * when no packet needs it. At most one packet in the queue may be
 998 * marked for time stamping, otherwise it would be impossible to tell
 999 * for sure to which packet the hardware time stamp belongs.
1000 *
1001 * Incoming time stamping has to be configured via the hardware
1002 * filters. Not all combinations are supported, in particular event
1003 * type has to be specified. Matching the kind of event packet is
1004 * not supported, with the exception of "all V2 events regardless of
1005 * level 2 or 4".
1006 */
1007static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1008                                      struct hwtstamp_config *config)
1009{
1010        struct e1000_hw *hw = &adapter->hw;
1011        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1012        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1013        u32 tsync_rx_cfg = 0;
1014        bool is_l4 = false;
1015        bool is_l2 = false;
1016        u32 regval;
1017
1018        /* reserved for future extensions */
1019        if (config->flags)
1020                return -EINVAL;
1021
1022        switch (config->tx_type) {
1023        case HWTSTAMP_TX_OFF:
1024                tsync_tx_ctl = 0;
1025                break;
1026        case HWTSTAMP_TX_ON:
1027                break;
1028        default:
1029                return -ERANGE;
1030        }
1031
1032        switch (config->rx_filter) {
1033        case HWTSTAMP_FILTER_NONE:
1034                tsync_rx_ctl = 0;
1035                break;
1036        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1037                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1038                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1039                is_l4 = true;
1040                break;
1041        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1042                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1043                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1044                is_l4 = true;
1045                break;
1046        case HWTSTAMP_FILTER_PTP_V2_EVENT:
1047        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1048        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1049        case HWTSTAMP_FILTER_PTP_V2_SYNC:
1050        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1051        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1052        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1053        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1054        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1055                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1056                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1057                is_l2 = true;
1058                is_l4 = true;
1059                break;
1060        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1061        case HWTSTAMP_FILTER_NTP_ALL:
1062        case HWTSTAMP_FILTER_ALL:
1063                /* 82576 cannot timestamp all packets, which it needs to do to
1064                 * support both V1 Sync and Delay_Req messages
1065                 */
1066                if (hw->mac.type != e1000_82576) {
1067                        tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1068                        config->rx_filter = HWTSTAMP_FILTER_ALL;
1069                        break;
1070                }
1071                fallthrough;
1072        default:
1073                config->rx_filter = HWTSTAMP_FILTER_NONE;
1074                return -ERANGE;
1075        }
1076
1077        if (hw->mac.type == e1000_82575) {
1078                if (tsync_rx_ctl | tsync_tx_ctl)
1079                        return -EINVAL;
1080                return 0;
1081        }
1082
1083        /* Per-packet timestamping only works if all packets are
1084         * timestamped, so enable timestamping in all packets as
1085         * long as one Rx filter was configured.
1086         */
1087        if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1088                tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1089                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1090                config->rx_filter = HWTSTAMP_FILTER_ALL;
1091                is_l2 = true;
1092                is_l4 = true;
1093
1094                if ((hw->mac.type == e1000_i210) ||
1095                    (hw->mac.type == e1000_i211)) {
1096                        regval = rd32(E1000_RXPBS);
1097                        regval |= E1000_RXPBS_CFG_TS_EN;
1098                        wr32(E1000_RXPBS, regval);
1099                }
1100        }
1101
1102        /* enable/disable TX */
1103        regval = rd32(E1000_TSYNCTXCTL);
1104        regval &= ~E1000_TSYNCTXCTL_ENABLED;
1105        regval |= tsync_tx_ctl;
1106        wr32(E1000_TSYNCTXCTL, regval);
1107
1108        /* enable/disable RX */
1109        regval = rd32(E1000_TSYNCRXCTL);
1110        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1111        regval |= tsync_rx_ctl;
1112        wr32(E1000_TSYNCRXCTL, regval);
1113
1114        /* define which PTP packets are time stamped */
1115        wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1116
1117        /* define ethertype filter for timestamped packets */
1118        if (is_l2)
1119                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1120                     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1121                      E1000_ETQF_1588 | /* enable timestamping */
1122                      ETH_P_1588));     /* 1588 eth protocol type */
1123        else
1124                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1125
1126        /* L4 Queue Filter[3]: filter by destination port and protocol */
1127        if (is_l4) {
1128                u32 ftqf = (IPPROTO_UDP /* UDP */
1129                        | E1000_FTQF_VF_BP /* VF not compared */
1130                        | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1131                        | E1000_FTQF_MASK); /* mask all inputs */
1132                ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1133
1134                wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1135                wr32(E1000_IMIREXT(3),
1136                     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1137                if (hw->mac.type == e1000_82576) {
1138                        /* enable source port check */
1139                        wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1140                        ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1141                }
1142                wr32(E1000_FTQF(3), ftqf);
1143        } else {
1144                wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1145        }
1146        wrfl();
1147
1148        /* clear TX/RX time stamp registers, just to be sure */
1149        regval = rd32(E1000_TXSTMPL);
1150        regval = rd32(E1000_TXSTMPH);
1151        regval = rd32(E1000_RXSTMPL);
1152        regval = rd32(E1000_RXSTMPH);
1153
1154        return 0;
1155}
1156
1157/**
1158 * igb_ptp_set_ts_config - set hardware time stamping config
1159 * @netdev: netdev struct
1160 * @ifr: interface struct
1161 *
1162 **/
1163int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1164{
1165        struct igb_adapter *adapter = netdev_priv(netdev);
1166        struct hwtstamp_config config;
1167        int err;
1168
1169        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1170                return -EFAULT;
1171
1172        err = igb_ptp_set_timestamp_mode(adapter, &config);
1173        if (err)
1174                return err;
1175
1176        /* save these settings for future reference */
1177        memcpy(&adapter->tstamp_config, &config,
1178               sizeof(adapter->tstamp_config));
1179
1180        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1181                -EFAULT : 0;
1182}
1183
1184/**
1185 * igb_ptp_init - Initialize PTP functionality
1186 * @adapter: Board private structure
1187 *
1188 * This function is called at device probe to initialize the PTP
1189 * functionality.
1190 */
1191void igb_ptp_init(struct igb_adapter *adapter)
1192{
1193        struct e1000_hw *hw = &adapter->hw;
1194        struct net_device *netdev = adapter->netdev;
1195        int i;
1196
1197        switch (hw->mac.type) {
1198        case e1000_82576:
1199                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1200                adapter->ptp_caps.owner = THIS_MODULE;
1201                adapter->ptp_caps.max_adj = 999999881;
1202                adapter->ptp_caps.n_ext_ts = 0;
1203                adapter->ptp_caps.pps = 0;
1204                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1205                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1206                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1207                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1208                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1209                adapter->cc.read = igb_ptp_read_82576;
1210                adapter->cc.mask = CYCLECOUNTER_MASK(64);
1211                adapter->cc.mult = 1;
1212                adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1213                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1214                break;
1215        case e1000_82580:
1216        case e1000_i354:
1217        case e1000_i350:
1218                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1219                adapter->ptp_caps.owner = THIS_MODULE;
1220                adapter->ptp_caps.max_adj = 62499999;
1221                adapter->ptp_caps.n_ext_ts = 0;
1222                adapter->ptp_caps.pps = 0;
1223                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1224                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1225                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1226                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1227                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1228                adapter->cc.read = igb_ptp_read_82580;
1229                adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1230                adapter->cc.mult = 1;
1231                adapter->cc.shift = 0;
1232                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1233                break;
1234        case e1000_i210:
1235        case e1000_i211:
1236                for (i = 0; i < IGB_N_SDP; i++) {
1237                        struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1238
1239                        snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1240                        ppd->index = i;
1241                        ppd->func = PTP_PF_NONE;
1242                }
1243                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1244                adapter->ptp_caps.owner = THIS_MODULE;
1245                adapter->ptp_caps.max_adj = 62499999;
1246                adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1247                adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1248                adapter->ptp_caps.n_pins = IGB_N_SDP;
1249                adapter->ptp_caps.pps = 1;
1250                adapter->ptp_caps.pin_config = adapter->sdp_config;
1251                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1252                adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1253                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1254                adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1255                adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1256                adapter->ptp_caps.verify = igb_ptp_verify_pin;
1257                break;
1258        default:
1259                adapter->ptp_clock = NULL;
1260                return;
1261        }
1262
1263        spin_lock_init(&adapter->tmreg_lock);
1264        INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1265
1266        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1267                INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1268                                  igb_ptp_overflow_check);
1269
1270        adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1271        adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1272
1273        igb_ptp_reset(adapter);
1274
1275        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1276                                                &adapter->pdev->dev);
1277        if (IS_ERR(adapter->ptp_clock)) {
1278                adapter->ptp_clock = NULL;
1279                dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1280        } else if (adapter->ptp_clock) {
1281                dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1282                         adapter->netdev->name);
1283                adapter->ptp_flags |= IGB_PTP_ENABLED;
1284        }
1285}
1286
1287/**
1288 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1289 * @adapter: Board private structure
1290 *
1291 * This function stops the overflow check work and PTP Tx timestamp work, and
1292 * will prepare the device for OS suspend.
1293 */
1294void igb_ptp_suspend(struct igb_adapter *adapter)
1295{
1296        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1297                return;
1298
1299        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1300                cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1301
1302        cancel_work_sync(&adapter->ptp_tx_work);
1303        if (adapter->ptp_tx_skb) {
1304                dev_kfree_skb_any(adapter->ptp_tx_skb);
1305                adapter->ptp_tx_skb = NULL;
1306                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1307        }
1308}
1309
1310/**
1311 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1312 * @adapter: Board private structure.
1313 *
1314 * This function stops the PTP support and cancels the delayed work.
1315 **/
1316void igb_ptp_stop(struct igb_adapter *adapter)
1317{
1318        igb_ptp_suspend(adapter);
1319
1320        if (adapter->ptp_clock) {
1321                ptp_clock_unregister(adapter->ptp_clock);
1322                dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1323                         adapter->netdev->name);
1324                adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1325        }
1326}
1327
1328/**
1329 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1330 * @adapter: Board private structure.
1331 *
1332 * This function handles the reset work required to re-enable the PTP device.
1333 **/
1334void igb_ptp_reset(struct igb_adapter *adapter)
1335{
1336        struct e1000_hw *hw = &adapter->hw;
1337        unsigned long flags;
1338
1339        /* reset the tstamp_config */
1340        igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1341
1342        spin_lock_irqsave(&adapter->tmreg_lock, flags);
1343
1344        switch (adapter->hw.mac.type) {
1345        case e1000_82576:
1346                /* Dial the nominal frequency. */
1347                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1348                break;
1349        case e1000_82580:
1350        case e1000_i354:
1351        case e1000_i350:
1352        case e1000_i210:
1353        case e1000_i211:
1354                wr32(E1000_TSAUXC, 0x0);
1355                wr32(E1000_TSSDP, 0x0);
1356                wr32(E1000_TSIM,
1357                     TSYNC_INTERRUPTS |
1358                     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1359                wr32(E1000_IMS, E1000_IMS_TS);
1360                break;
1361        default:
1362                /* No work to do. */
1363                goto out;
1364        }
1365
1366        /* Re-initialize the timer. */
1367        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1368                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1369
1370                igb_ptp_write_i210(adapter, &ts);
1371        } else {
1372                timecounter_init(&adapter->tc, &adapter->cc,
1373                                 ktime_to_ns(ktime_get_real()));
1374        }
1375out:
1376        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1377
1378        wrfl();
1379
1380        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1381                schedule_delayed_work(&adapter->ptp_overflow_work,
1382                                      IGB_SYSTIM_OVERFLOW_PERIOD);
1383}
1384