linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2009 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/tcp.h>
  15#include <linux/ipv6.h>
  16#include <linux/slab.h>
  17#include <net/checksum.h>
  18#include <net/ip6_checksum.h>
  19#include <linux/mii.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/prefetch.h>
  23#include <linux/sctp.h>
  24
  25#include "igbvf.h"
  26
  27char igbvf_driver_name[] = "igbvf";
  28static const char igbvf_driver_string[] =
  29                  "Intel(R) Gigabit Virtual Function Network Driver";
  30static const char igbvf_copyright[] =
  31                  "Copyright (c) 2009 - 2012 Intel Corporation.";
  32
  33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  34static int debug = -1;
  35module_param(debug, int, 0);
  36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  37
  38static int igbvf_poll(struct napi_struct *napi, int budget);
  39static void igbvf_reset(struct igbvf_adapter *);
  40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  42
  43static struct igbvf_info igbvf_vf_info = {
  44        .mac            = e1000_vfadapt,
  45        .flags          = 0,
  46        .pba            = 10,
  47        .init_ops       = e1000_init_function_pointers_vf,
  48};
  49
  50static struct igbvf_info igbvf_i350_vf_info = {
  51        .mac            = e1000_vfadapt_i350,
  52        .flags          = 0,
  53        .pba            = 10,
  54        .init_ops       = e1000_init_function_pointers_vf,
  55};
  56
  57static const struct igbvf_info *igbvf_info_tbl[] = {
  58        [board_vf]      = &igbvf_vf_info,
  59        [board_i350_vf] = &igbvf_i350_vf_info,
  60};
  61
  62/**
  63 * igbvf_desc_unused - calculate if we have unused descriptors
  64 * @ring: address of receive ring structure
  65 **/
  66static int igbvf_desc_unused(struct igbvf_ring *ring)
  67{
  68        if (ring->next_to_clean > ring->next_to_use)
  69                return ring->next_to_clean - ring->next_to_use - 1;
  70
  71        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  72}
  73
  74/**
  75 * igbvf_receive_skb - helper function to handle Rx indications
  76 * @adapter: board private structure
  77 * @netdev: pointer to netdev struct
  78 * @skb: skb to indicate to stack
  79 * @status: descriptor status field as written by hardware
  80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  81 * @skb: pointer to sk_buff to be indicated to stack
  82 **/
  83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  84                              struct net_device *netdev,
  85                              struct sk_buff *skb,
  86                              u32 status, __le16 vlan)
  87{
  88        u16 vid;
  89
  90        if (status & E1000_RXD_STAT_VP) {
  91                if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
  92                    (status & E1000_RXDEXT_STATERR_LB))
  93                        vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
  94                else
  95                        vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
  96                if (test_bit(vid, adapter->active_vlans))
  97                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  98        }
  99
 100        napi_gro_receive(&adapter->rx_ring->napi, skb);
 101}
 102
 103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 104                                         u32 status_err, struct sk_buff *skb)
 105{
 106        skb_checksum_none_assert(skb);
 107
 108        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 109        if ((status_err & E1000_RXD_STAT_IXSM) ||
 110            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 111                return;
 112
 113        /* TCP/UDP checksum error bit is set */
 114        if (status_err &
 115            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 116                /* let the stack verify checksum errors */
 117                adapter->hw_csum_err++;
 118                return;
 119        }
 120
 121        /* It must be a TCP or UDP packet with a valid checksum */
 122        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 123                skb->ip_summed = CHECKSUM_UNNECESSARY;
 124
 125        adapter->hw_csum_good++;
 126}
 127
 128/**
 129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 130 * @rx_ring: address of ring structure to repopulate
 131 * @cleaned_count: number of buffers to repopulate
 132 **/
 133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 134                                   int cleaned_count)
 135{
 136        struct igbvf_adapter *adapter = rx_ring->adapter;
 137        struct net_device *netdev = adapter->netdev;
 138        struct pci_dev *pdev = adapter->pdev;
 139        union e1000_adv_rx_desc *rx_desc;
 140        struct igbvf_buffer *buffer_info;
 141        struct sk_buff *skb;
 142        unsigned int i;
 143        int bufsz;
 144
 145        i = rx_ring->next_to_use;
 146        buffer_info = &rx_ring->buffer_info[i];
 147
 148        if (adapter->rx_ps_hdr_size)
 149                bufsz = adapter->rx_ps_hdr_size;
 150        else
 151                bufsz = adapter->rx_buffer_len;
 152
 153        while (cleaned_count--) {
 154                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 155
 156                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 157                        if (!buffer_info->page) {
 158                                buffer_info->page = alloc_page(GFP_ATOMIC);
 159                                if (!buffer_info->page) {
 160                                        adapter->alloc_rx_buff_failed++;
 161                                        goto no_buffers;
 162                                }
 163                                buffer_info->page_offset = 0;
 164                        } else {
 165                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 166                        }
 167                        buffer_info->page_dma =
 168                                dma_map_page(&pdev->dev, buffer_info->page,
 169                                             buffer_info->page_offset,
 170                                             PAGE_SIZE / 2,
 171                                             DMA_FROM_DEVICE);
 172                        if (dma_mapping_error(&pdev->dev,
 173                                              buffer_info->page_dma)) {
 174                                __free_page(buffer_info->page);
 175                                buffer_info->page = NULL;
 176                                dev_err(&pdev->dev, "RX DMA map failed\n");
 177                                break;
 178                        }
 179                }
 180
 181                if (!buffer_info->skb) {
 182                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 183                        if (!skb) {
 184                                adapter->alloc_rx_buff_failed++;
 185                                goto no_buffers;
 186                        }
 187
 188                        buffer_info->skb = skb;
 189                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 190                                                          bufsz,
 191                                                          DMA_FROM_DEVICE);
 192                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 193                                dev_kfree_skb(buffer_info->skb);
 194                                buffer_info->skb = NULL;
 195                                dev_err(&pdev->dev, "RX DMA map failed\n");
 196                                goto no_buffers;
 197                        }
 198                }
 199                /* Refresh the desc even if buffer_addrs didn't change because
 200                 * each write-back erases this info.
 201                 */
 202                if (adapter->rx_ps_hdr_size) {
 203                        rx_desc->read.pkt_addr =
 204                             cpu_to_le64(buffer_info->page_dma);
 205                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 206                } else {
 207                        rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 208                        rx_desc->read.hdr_addr = 0;
 209                }
 210
 211                i++;
 212                if (i == rx_ring->count)
 213                        i = 0;
 214                buffer_info = &rx_ring->buffer_info[i];
 215        }
 216
 217no_buffers:
 218        if (rx_ring->next_to_use != i) {
 219                rx_ring->next_to_use = i;
 220                if (i == 0)
 221                        i = (rx_ring->count - 1);
 222                else
 223                        i--;
 224
 225                /* Force memory writes to complete before letting h/w
 226                 * know there are new descriptors to fetch.  (Only
 227                 * applicable for weak-ordered memory model archs,
 228                 * such as IA-64).
 229                */
 230                wmb();
 231                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 232        }
 233}
 234
 235/**
 236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 237 * @adapter: board private structure
 238 * @work_done: output parameter used to indicate completed work
 239 * @work_to_do: input parameter setting limit of work
 240 *
 241 * the return value indicates whether actual cleaning was done, there
 242 * is no guarantee that everything was cleaned
 243 **/
 244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 245                               int *work_done, int work_to_do)
 246{
 247        struct igbvf_ring *rx_ring = adapter->rx_ring;
 248        struct net_device *netdev = adapter->netdev;
 249        struct pci_dev *pdev = adapter->pdev;
 250        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 251        struct igbvf_buffer *buffer_info, *next_buffer;
 252        struct sk_buff *skb;
 253        bool cleaned = false;
 254        int cleaned_count = 0;
 255        unsigned int total_bytes = 0, total_packets = 0;
 256        unsigned int i;
 257        u32 length, hlen, staterr;
 258
 259        i = rx_ring->next_to_clean;
 260        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 261        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 262
 263        while (staterr & E1000_RXD_STAT_DD) {
 264                if (*work_done >= work_to_do)
 265                        break;
 266                (*work_done)++;
 267                rmb(); /* read descriptor and rx_buffer_info after status DD */
 268
 269                buffer_info = &rx_ring->buffer_info[i];
 270
 271                /* HW will not DMA in data larger than the given buffer, even
 272                 * if it parses the (NFS, of course) header to be larger.  In
 273                 * that case, it fills the header buffer and spills the rest
 274                 * into the page.
 275                 */
 276                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 277                       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 278                       E1000_RXDADV_HDRBUFLEN_SHIFT;
 279                if (hlen > adapter->rx_ps_hdr_size)
 280                        hlen = adapter->rx_ps_hdr_size;
 281
 282                length = le16_to_cpu(rx_desc->wb.upper.length);
 283                cleaned = true;
 284                cleaned_count++;
 285
 286                skb = buffer_info->skb;
 287                prefetch(skb->data - NET_IP_ALIGN);
 288                buffer_info->skb = NULL;
 289                if (!adapter->rx_ps_hdr_size) {
 290                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 291                                         adapter->rx_buffer_len,
 292                                         DMA_FROM_DEVICE);
 293                        buffer_info->dma = 0;
 294                        skb_put(skb, length);
 295                        goto send_up;
 296                }
 297
 298                if (!skb_shinfo(skb)->nr_frags) {
 299                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 300                                         adapter->rx_ps_hdr_size,
 301                                         DMA_FROM_DEVICE);
 302                        buffer_info->dma = 0;
 303                        skb_put(skb, hlen);
 304                }
 305
 306                if (length) {
 307                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 308                                       PAGE_SIZE / 2,
 309                                       DMA_FROM_DEVICE);
 310                        buffer_info->page_dma = 0;
 311
 312                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 313                                           buffer_info->page,
 314                                           buffer_info->page_offset,
 315                                           length);
 316
 317                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 318                            (page_count(buffer_info->page) != 1))
 319                                buffer_info->page = NULL;
 320                        else
 321                                get_page(buffer_info->page);
 322
 323                        skb->len += length;
 324                        skb->data_len += length;
 325                        skb->truesize += PAGE_SIZE / 2;
 326                }
 327send_up:
 328                i++;
 329                if (i == rx_ring->count)
 330                        i = 0;
 331                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 332                prefetch(next_rxd);
 333                next_buffer = &rx_ring->buffer_info[i];
 334
 335                if (!(staterr & E1000_RXD_STAT_EOP)) {
 336                        buffer_info->skb = next_buffer->skb;
 337                        buffer_info->dma = next_buffer->dma;
 338                        next_buffer->skb = skb;
 339                        next_buffer->dma = 0;
 340                        goto next_desc;
 341                }
 342
 343                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 344                        dev_kfree_skb_irq(skb);
 345                        goto next_desc;
 346                }
 347
 348                total_bytes += skb->len;
 349                total_packets++;
 350
 351                igbvf_rx_checksum_adv(adapter, staterr, skb);
 352
 353                skb->protocol = eth_type_trans(skb, netdev);
 354
 355                igbvf_receive_skb(adapter, netdev, skb, staterr,
 356                                  rx_desc->wb.upper.vlan);
 357
 358next_desc:
 359                rx_desc->wb.upper.status_error = 0;
 360
 361                /* return some buffers to hardware, one at a time is too slow */
 362                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 363                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 364                        cleaned_count = 0;
 365                }
 366
 367                /* use prefetched values */
 368                rx_desc = next_rxd;
 369                buffer_info = next_buffer;
 370
 371                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 372        }
 373
 374        rx_ring->next_to_clean = i;
 375        cleaned_count = igbvf_desc_unused(rx_ring);
 376
 377        if (cleaned_count)
 378                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 379
 380        adapter->total_rx_packets += total_packets;
 381        adapter->total_rx_bytes += total_bytes;
 382        netdev->stats.rx_bytes += total_bytes;
 383        netdev->stats.rx_packets += total_packets;
 384        return cleaned;
 385}
 386
 387static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 388                            struct igbvf_buffer *buffer_info)
 389{
 390        if (buffer_info->dma) {
 391                if (buffer_info->mapped_as_page)
 392                        dma_unmap_page(&adapter->pdev->dev,
 393                                       buffer_info->dma,
 394                                       buffer_info->length,
 395                                       DMA_TO_DEVICE);
 396                else
 397                        dma_unmap_single(&adapter->pdev->dev,
 398                                         buffer_info->dma,
 399                                         buffer_info->length,
 400                                         DMA_TO_DEVICE);
 401                buffer_info->dma = 0;
 402        }
 403        if (buffer_info->skb) {
 404                dev_kfree_skb_any(buffer_info->skb);
 405                buffer_info->skb = NULL;
 406        }
 407        buffer_info->time_stamp = 0;
 408}
 409
 410/**
 411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 412 * @adapter: board private structure
 413 * @tx_ring: ring being initialized
 414 *
 415 * Return 0 on success, negative on failure
 416 **/
 417int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 418                             struct igbvf_ring *tx_ring)
 419{
 420        struct pci_dev *pdev = adapter->pdev;
 421        int size;
 422
 423        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 424        tx_ring->buffer_info = vzalloc(size);
 425        if (!tx_ring->buffer_info)
 426                goto err;
 427
 428        /* round up to nearest 4K */
 429        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 430        tx_ring->size = ALIGN(tx_ring->size, 4096);
 431
 432        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 433                                           &tx_ring->dma, GFP_KERNEL);
 434        if (!tx_ring->desc)
 435                goto err;
 436
 437        tx_ring->adapter = adapter;
 438        tx_ring->next_to_use = 0;
 439        tx_ring->next_to_clean = 0;
 440
 441        return 0;
 442err:
 443        vfree(tx_ring->buffer_info);
 444        dev_err(&adapter->pdev->dev,
 445                "Unable to allocate memory for the transmit descriptor ring\n");
 446        return -ENOMEM;
 447}
 448
 449/**
 450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 451 * @adapter: board private structure
 452 * @rx_ring: ring being initialized
 453 *
 454 * Returns 0 on success, negative on failure
 455 **/
 456int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 457                             struct igbvf_ring *rx_ring)
 458{
 459        struct pci_dev *pdev = adapter->pdev;
 460        int size, desc_len;
 461
 462        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 463        rx_ring->buffer_info = vzalloc(size);
 464        if (!rx_ring->buffer_info)
 465                goto err;
 466
 467        desc_len = sizeof(union e1000_adv_rx_desc);
 468
 469        /* Round up to nearest 4K */
 470        rx_ring->size = rx_ring->count * desc_len;
 471        rx_ring->size = ALIGN(rx_ring->size, 4096);
 472
 473        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 474                                           &rx_ring->dma, GFP_KERNEL);
 475        if (!rx_ring->desc)
 476                goto err;
 477
 478        rx_ring->next_to_clean = 0;
 479        rx_ring->next_to_use = 0;
 480
 481        rx_ring->adapter = adapter;
 482
 483        return 0;
 484
 485err:
 486        vfree(rx_ring->buffer_info);
 487        rx_ring->buffer_info = NULL;
 488        dev_err(&adapter->pdev->dev,
 489                "Unable to allocate memory for the receive descriptor ring\n");
 490        return -ENOMEM;
 491}
 492
 493/**
 494 * igbvf_clean_tx_ring - Free Tx Buffers
 495 * @tx_ring: ring to be cleaned
 496 **/
 497static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 498{
 499        struct igbvf_adapter *adapter = tx_ring->adapter;
 500        struct igbvf_buffer *buffer_info;
 501        unsigned long size;
 502        unsigned int i;
 503
 504        if (!tx_ring->buffer_info)
 505                return;
 506
 507        /* Free all the Tx ring sk_buffs */
 508        for (i = 0; i < tx_ring->count; i++) {
 509                buffer_info = &tx_ring->buffer_info[i];
 510                igbvf_put_txbuf(adapter, buffer_info);
 511        }
 512
 513        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 514        memset(tx_ring->buffer_info, 0, size);
 515
 516        /* Zero out the descriptor ring */
 517        memset(tx_ring->desc, 0, tx_ring->size);
 518
 519        tx_ring->next_to_use = 0;
 520        tx_ring->next_to_clean = 0;
 521
 522        writel(0, adapter->hw.hw_addr + tx_ring->head);
 523        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 524}
 525
 526/**
 527 * igbvf_free_tx_resources - Free Tx Resources per Queue
 528 * @tx_ring: ring to free resources from
 529 *
 530 * Free all transmit software resources
 531 **/
 532void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 533{
 534        struct pci_dev *pdev = tx_ring->adapter->pdev;
 535
 536        igbvf_clean_tx_ring(tx_ring);
 537
 538        vfree(tx_ring->buffer_info);
 539        tx_ring->buffer_info = NULL;
 540
 541        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 542                          tx_ring->dma);
 543
 544        tx_ring->desc = NULL;
 545}
 546
 547/**
 548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 549 * @rx_ring: ring structure pointer to free buffers from
 550 **/
 551static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 552{
 553        struct igbvf_adapter *adapter = rx_ring->adapter;
 554        struct igbvf_buffer *buffer_info;
 555        struct pci_dev *pdev = adapter->pdev;
 556        unsigned long size;
 557        unsigned int i;
 558
 559        if (!rx_ring->buffer_info)
 560                return;
 561
 562        /* Free all the Rx ring sk_buffs */
 563        for (i = 0; i < rx_ring->count; i++) {
 564                buffer_info = &rx_ring->buffer_info[i];
 565                if (buffer_info->dma) {
 566                        if (adapter->rx_ps_hdr_size) {
 567                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 568                                                 adapter->rx_ps_hdr_size,
 569                                                 DMA_FROM_DEVICE);
 570                        } else {
 571                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 572                                                 adapter->rx_buffer_len,
 573                                                 DMA_FROM_DEVICE);
 574                        }
 575                        buffer_info->dma = 0;
 576                }
 577
 578                if (buffer_info->skb) {
 579                        dev_kfree_skb(buffer_info->skb);
 580                        buffer_info->skb = NULL;
 581                }
 582
 583                if (buffer_info->page) {
 584                        if (buffer_info->page_dma)
 585                                dma_unmap_page(&pdev->dev,
 586                                               buffer_info->page_dma,
 587                                               PAGE_SIZE / 2,
 588                                               DMA_FROM_DEVICE);
 589                        put_page(buffer_info->page);
 590                        buffer_info->page = NULL;
 591                        buffer_info->page_dma = 0;
 592                        buffer_info->page_offset = 0;
 593                }
 594        }
 595
 596        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 597        memset(rx_ring->buffer_info, 0, size);
 598
 599        /* Zero out the descriptor ring */
 600        memset(rx_ring->desc, 0, rx_ring->size);
 601
 602        rx_ring->next_to_clean = 0;
 603        rx_ring->next_to_use = 0;
 604
 605        writel(0, adapter->hw.hw_addr + rx_ring->head);
 606        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 607}
 608
 609/**
 610 * igbvf_free_rx_resources - Free Rx Resources
 611 * @rx_ring: ring to clean the resources from
 612 *
 613 * Free all receive software resources
 614 **/
 615
 616void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 617{
 618        struct pci_dev *pdev = rx_ring->adapter->pdev;
 619
 620        igbvf_clean_rx_ring(rx_ring);
 621
 622        vfree(rx_ring->buffer_info);
 623        rx_ring->buffer_info = NULL;
 624
 625        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 626                          rx_ring->dma);
 627        rx_ring->desc = NULL;
 628}
 629
 630/**
 631 * igbvf_update_itr - update the dynamic ITR value based on statistics
 632 * @adapter: pointer to adapter
 633 * @itr_setting: current adapter->itr
 634 * @packets: the number of packets during this measurement interval
 635 * @bytes: the number of bytes during this measurement interval
 636 *
 637 * Stores a new ITR value based on packets and byte counts during the last
 638 * interrupt.  The advantage of per interrupt computation is faster updates
 639 * and more accurate ITR for the current traffic pattern.  Constants in this
 640 * function were computed based on theoretical maximum wire speed and thresholds
 641 * were set based on testing data as well as attempting to minimize response
 642 * time while increasing bulk throughput.
 643 **/
 644static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 645                                           enum latency_range itr_setting,
 646                                           int packets, int bytes)
 647{
 648        enum latency_range retval = itr_setting;
 649
 650        if (packets == 0)
 651                goto update_itr_done;
 652
 653        switch (itr_setting) {
 654        case lowest_latency:
 655                /* handle TSO and jumbo frames */
 656                if (bytes/packets > 8000)
 657                        retval = bulk_latency;
 658                else if ((packets < 5) && (bytes > 512))
 659                        retval = low_latency;
 660                break;
 661        case low_latency:  /* 50 usec aka 20000 ints/s */
 662                if (bytes > 10000) {
 663                        /* this if handles the TSO accounting */
 664                        if (bytes/packets > 8000)
 665                                retval = bulk_latency;
 666                        else if ((packets < 10) || ((bytes/packets) > 1200))
 667                                retval = bulk_latency;
 668                        else if ((packets > 35))
 669                                retval = lowest_latency;
 670                } else if (bytes/packets > 2000) {
 671                        retval = bulk_latency;
 672                } else if (packets <= 2 && bytes < 512) {
 673                        retval = lowest_latency;
 674                }
 675                break;
 676        case bulk_latency: /* 250 usec aka 4000 ints/s */
 677                if (bytes > 25000) {
 678                        if (packets > 35)
 679                                retval = low_latency;
 680                } else if (bytes < 6000) {
 681                        retval = low_latency;
 682                }
 683                break;
 684        default:
 685                break;
 686        }
 687
 688update_itr_done:
 689        return retval;
 690}
 691
 692static int igbvf_range_to_itr(enum latency_range current_range)
 693{
 694        int new_itr;
 695
 696        switch (current_range) {
 697        /* counts and packets in update_itr are dependent on these numbers */
 698        case lowest_latency:
 699                new_itr = IGBVF_70K_ITR;
 700                break;
 701        case low_latency:
 702                new_itr = IGBVF_20K_ITR;
 703                break;
 704        case bulk_latency:
 705                new_itr = IGBVF_4K_ITR;
 706                break;
 707        default:
 708                new_itr = IGBVF_START_ITR;
 709                break;
 710        }
 711        return new_itr;
 712}
 713
 714static void igbvf_set_itr(struct igbvf_adapter *adapter)
 715{
 716        u32 new_itr;
 717
 718        adapter->tx_ring->itr_range =
 719                        igbvf_update_itr(adapter,
 720                                         adapter->tx_ring->itr_val,
 721                                         adapter->total_tx_packets,
 722                                         adapter->total_tx_bytes);
 723
 724        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 725        if (adapter->requested_itr == 3 &&
 726            adapter->tx_ring->itr_range == lowest_latency)
 727                adapter->tx_ring->itr_range = low_latency;
 728
 729        new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 730
 731        if (new_itr != adapter->tx_ring->itr_val) {
 732                u32 current_itr = adapter->tx_ring->itr_val;
 733                /* this attempts to bias the interrupt rate towards Bulk
 734                 * by adding intermediate steps when interrupt rate is
 735                 * increasing
 736                 */
 737                new_itr = new_itr > current_itr ?
 738                          min(current_itr + (new_itr >> 2), new_itr) :
 739                          new_itr;
 740                adapter->tx_ring->itr_val = new_itr;
 741
 742                adapter->tx_ring->set_itr = 1;
 743        }
 744
 745        adapter->rx_ring->itr_range =
 746                        igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 747                                         adapter->total_rx_packets,
 748                                         adapter->total_rx_bytes);
 749        if (adapter->requested_itr == 3 &&
 750            adapter->rx_ring->itr_range == lowest_latency)
 751                adapter->rx_ring->itr_range = low_latency;
 752
 753        new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 754
 755        if (new_itr != adapter->rx_ring->itr_val) {
 756                u32 current_itr = adapter->rx_ring->itr_val;
 757
 758                new_itr = new_itr > current_itr ?
 759                          min(current_itr + (new_itr >> 2), new_itr) :
 760                          new_itr;
 761                adapter->rx_ring->itr_val = new_itr;
 762
 763                adapter->rx_ring->set_itr = 1;
 764        }
 765}
 766
 767/**
 768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 769 * @tx_ring: ring structure to clean descriptors from
 770 *
 771 * returns true if ring is completely cleaned
 772 **/
 773static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 774{
 775        struct igbvf_adapter *adapter = tx_ring->adapter;
 776        struct net_device *netdev = adapter->netdev;
 777        struct igbvf_buffer *buffer_info;
 778        struct sk_buff *skb;
 779        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 780        unsigned int total_bytes = 0, total_packets = 0;
 781        unsigned int i, count = 0;
 782        bool cleaned = false;
 783
 784        i = tx_ring->next_to_clean;
 785        buffer_info = &tx_ring->buffer_info[i];
 786        eop_desc = buffer_info->next_to_watch;
 787
 788        do {
 789                /* if next_to_watch is not set then there is no work pending */
 790                if (!eop_desc)
 791                        break;
 792
 793                /* prevent any other reads prior to eop_desc */
 794                smp_rmb();
 795
 796                /* if DD is not set pending work has not been completed */
 797                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 798                        break;
 799
 800                /* clear next_to_watch to prevent false hangs */
 801                buffer_info->next_to_watch = NULL;
 802
 803                for (cleaned = false; !cleaned; count++) {
 804                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 805                        cleaned = (tx_desc == eop_desc);
 806                        skb = buffer_info->skb;
 807
 808                        if (skb) {
 809                                unsigned int segs, bytecount;
 810
 811                                /* gso_segs is currently only valid for tcp */
 812                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 813                                /* multiply data chunks by size of headers */
 814                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 815                                            skb->len;
 816                                total_packets += segs;
 817                                total_bytes += bytecount;
 818                        }
 819
 820                        igbvf_put_txbuf(adapter, buffer_info);
 821                        tx_desc->wb.status = 0;
 822
 823                        i++;
 824                        if (i == tx_ring->count)
 825                                i = 0;
 826
 827                        buffer_info = &tx_ring->buffer_info[i];
 828                }
 829
 830                eop_desc = buffer_info->next_to_watch;
 831        } while (count < tx_ring->count);
 832
 833        tx_ring->next_to_clean = i;
 834
 835        if (unlikely(count && netif_carrier_ok(netdev) &&
 836            igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 837                /* Make sure that anybody stopping the queue after this
 838                 * sees the new next_to_clean.
 839                 */
 840                smp_mb();
 841                if (netif_queue_stopped(netdev) &&
 842                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 843                        netif_wake_queue(netdev);
 844                        ++adapter->restart_queue;
 845                }
 846        }
 847
 848        netdev->stats.tx_bytes += total_bytes;
 849        netdev->stats.tx_packets += total_packets;
 850        return count < tx_ring->count;
 851}
 852
 853static irqreturn_t igbvf_msix_other(int irq, void *data)
 854{
 855        struct net_device *netdev = data;
 856        struct igbvf_adapter *adapter = netdev_priv(netdev);
 857        struct e1000_hw *hw = &adapter->hw;
 858
 859        adapter->int_counter1++;
 860
 861        hw->mac.get_link_status = 1;
 862        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 863                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 864
 865        ew32(EIMS, adapter->eims_other);
 866
 867        return IRQ_HANDLED;
 868}
 869
 870static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 871{
 872        struct net_device *netdev = data;
 873        struct igbvf_adapter *adapter = netdev_priv(netdev);
 874        struct e1000_hw *hw = &adapter->hw;
 875        struct igbvf_ring *tx_ring = adapter->tx_ring;
 876
 877        if (tx_ring->set_itr) {
 878                writel(tx_ring->itr_val,
 879                       adapter->hw.hw_addr + tx_ring->itr_register);
 880                adapter->tx_ring->set_itr = 0;
 881        }
 882
 883        adapter->total_tx_bytes = 0;
 884        adapter->total_tx_packets = 0;
 885
 886        /* auto mask will automatically re-enable the interrupt when we write
 887         * EICS
 888         */
 889        if (!igbvf_clean_tx_irq(tx_ring))
 890                /* Ring was not completely cleaned, so fire another interrupt */
 891                ew32(EICS, tx_ring->eims_value);
 892        else
 893                ew32(EIMS, tx_ring->eims_value);
 894
 895        return IRQ_HANDLED;
 896}
 897
 898static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 899{
 900        struct net_device *netdev = data;
 901        struct igbvf_adapter *adapter = netdev_priv(netdev);
 902
 903        adapter->int_counter0++;
 904
 905        /* Write the ITR value calculated at the end of the
 906         * previous interrupt.
 907         */
 908        if (adapter->rx_ring->set_itr) {
 909                writel(adapter->rx_ring->itr_val,
 910                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 911                adapter->rx_ring->set_itr = 0;
 912        }
 913
 914        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 915                adapter->total_rx_bytes = 0;
 916                adapter->total_rx_packets = 0;
 917                __napi_schedule(&adapter->rx_ring->napi);
 918        }
 919
 920        return IRQ_HANDLED;
 921}
 922
 923#define IGBVF_NO_QUEUE -1
 924
 925static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 926                                int tx_queue, int msix_vector)
 927{
 928        struct e1000_hw *hw = &adapter->hw;
 929        u32 ivar, index;
 930
 931        /* 82576 uses a table-based method for assigning vectors.
 932         * Each queue has a single entry in the table to which we write
 933         * a vector number along with a "valid" bit.  Sadly, the layout
 934         * of the table is somewhat counterintuitive.
 935         */
 936        if (rx_queue > IGBVF_NO_QUEUE) {
 937                index = (rx_queue >> 1);
 938                ivar = array_er32(IVAR0, index);
 939                if (rx_queue & 0x1) {
 940                        /* vector goes into third byte of register */
 941                        ivar = ivar & 0xFF00FFFF;
 942                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 943                } else {
 944                        /* vector goes into low byte of register */
 945                        ivar = ivar & 0xFFFFFF00;
 946                        ivar |= msix_vector | E1000_IVAR_VALID;
 947                }
 948                adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
 949                array_ew32(IVAR0, index, ivar);
 950        }
 951        if (tx_queue > IGBVF_NO_QUEUE) {
 952                index = (tx_queue >> 1);
 953                ivar = array_er32(IVAR0, index);
 954                if (tx_queue & 0x1) {
 955                        /* vector goes into high byte of register */
 956                        ivar = ivar & 0x00FFFFFF;
 957                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 958                } else {
 959                        /* vector goes into second byte of register */
 960                        ivar = ivar & 0xFFFF00FF;
 961                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 962                }
 963                adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
 964                array_ew32(IVAR0, index, ivar);
 965        }
 966}
 967
 968/**
 969 * igbvf_configure_msix - Configure MSI-X hardware
 970 * @adapter: board private structure
 971 *
 972 * igbvf_configure_msix sets up the hardware to properly
 973 * generate MSI-X interrupts.
 974 **/
 975static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 976{
 977        u32 tmp;
 978        struct e1000_hw *hw = &adapter->hw;
 979        struct igbvf_ring *tx_ring = adapter->tx_ring;
 980        struct igbvf_ring *rx_ring = adapter->rx_ring;
 981        int vector = 0;
 982
 983        adapter->eims_enable_mask = 0;
 984
 985        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 986        adapter->eims_enable_mask |= tx_ring->eims_value;
 987        writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
 988        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 989        adapter->eims_enable_mask |= rx_ring->eims_value;
 990        writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
 991
 992        /* set vector for other causes, i.e. link changes */
 993
 994        tmp = (vector++ | E1000_IVAR_VALID);
 995
 996        ew32(IVAR_MISC, tmp);
 997
 998        adapter->eims_enable_mask = GENMASK(vector - 1, 0);
 999        adapter->eims_other = BIT(vector - 1);
1000        e1e_flush();
1001}
1002
1003static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004{
1005        if (adapter->msix_entries) {
1006                pci_disable_msix(adapter->pdev);
1007                kfree(adapter->msix_entries);
1008                adapter->msix_entries = NULL;
1009        }
1010}
1011
1012/**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
1019static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021        int err = -ENOMEM;
1022        int i;
1023
1024        /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026                                        GFP_KERNEL);
1027        if (adapter->msix_entries) {
1028                for (i = 0; i < 3; i++)
1029                        adapter->msix_entries[i].entry = i;
1030
1031                err = pci_enable_msix_range(adapter->pdev,
1032                                            adapter->msix_entries, 3, 3);
1033        }
1034
1035        if (err < 0) {
1036                /* MSI-X failed */
1037                dev_err(&adapter->pdev->dev,
1038                        "Failed to initialize MSI-X interrupts.\n");
1039                igbvf_reset_interrupt_capability(adapter);
1040        }
1041}
1042
1043/**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
1050static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051{
1052        struct net_device *netdev = adapter->netdev;
1053        int err = 0, vector = 0;
1054
1055        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058        } else {
1059                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061        }
1062
1063        err = request_irq(adapter->msix_entries[vector].vector,
1064                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065                          netdev);
1066        if (err)
1067                goto out;
1068
1069        adapter->tx_ring->itr_register = E1000_EITR(vector);
1070        adapter->tx_ring->itr_val = adapter->current_itr;
1071        vector++;
1072
1073        err = request_irq(adapter->msix_entries[vector].vector,
1074                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075                          netdev);
1076        if (err)
1077                goto out;
1078
1079        adapter->rx_ring->itr_register = E1000_EITR(vector);
1080        adapter->rx_ring->itr_val = adapter->current_itr;
1081        vector++;
1082
1083        err = request_irq(adapter->msix_entries[vector].vector,
1084                          igbvf_msix_other, 0, netdev->name, netdev);
1085        if (err)
1086                goto out;
1087
1088        igbvf_configure_msix(adapter);
1089        return 0;
1090out:
1091        return err;
1092}
1093
1094/**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
1098static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099{
1100        struct net_device *netdev = adapter->netdev;
1101
1102        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103        if (!adapter->tx_ring)
1104                return -ENOMEM;
1105
1106        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107        if (!adapter->rx_ring) {
1108                kfree(adapter->tx_ring);
1109                return -ENOMEM;
1110        }
1111
1112        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1113
1114        return 0;
1115}
1116
1117/**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
1124static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125{
1126        int err = -1;
1127
1128        /* igbvf supports msi-x only */
1129        if (adapter->msix_entries)
1130                err = igbvf_request_msix(adapter);
1131
1132        if (!err)
1133                return err;
1134
1135        dev_err(&adapter->pdev->dev,
1136                "Unable to allocate interrupt, Error: %d\n", err);
1137
1138        return err;
1139}
1140
1141static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142{
1143        struct net_device *netdev = adapter->netdev;
1144        int vector;
1145
1146        if (adapter->msix_entries) {
1147                for (vector = 0; vector < 3; vector++)
1148                        free_irq(adapter->msix_entries[vector].vector, netdev);
1149        }
1150}
1151
1152/**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
1156static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157{
1158        struct e1000_hw *hw = &adapter->hw;
1159
1160        ew32(EIMC, ~0);
1161
1162        if (adapter->msix_entries)
1163                ew32(EIAC, 0);
1164}
1165
1166/**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172        struct e1000_hw *hw = &adapter->hw;
1173
1174        ew32(EIAC, adapter->eims_enable_mask);
1175        ew32(EIAM, adapter->eims_enable_mask);
1176        ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187        struct igbvf_adapter *adapter = rx_ring->adapter;
1188        struct e1000_hw *hw = &adapter->hw;
1189        int work_done = 0;
1190
1191        igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193        if (work_done == budget)
1194                return budget;
1195
1196        /* Exit the polling mode, but don't re-enable interrupts if stack might
1197         * poll us due to busy-polling
1198         */
1199        if (likely(napi_complete_done(napi, work_done))) {
1200                if (adapter->requested_itr & 3)
1201                        igbvf_set_itr(adapter);
1202
1203                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204                        ew32(EIMS, adapter->rx_ring->eims_value);
1205        }
1206
1207        return work_done;
1208}
1209
1210/**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
1216static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217{
1218        int max_frame_size;
1219        struct e1000_hw *hw = &adapter->hw;
1220
1221        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223        spin_lock_bh(&hw->mbx_lock);
1224
1225        e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227        spin_unlock_bh(&hw->mbx_lock);
1228}
1229
1230static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231                                 __be16 proto, u16 vid)
1232{
1233        struct igbvf_adapter *adapter = netdev_priv(netdev);
1234        struct e1000_hw *hw = &adapter->hw;
1235
1236        spin_lock_bh(&hw->mbx_lock);
1237
1238        if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239                dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240                spin_unlock_bh(&hw->mbx_lock);
1241                return -EINVAL;
1242        }
1243
1244        spin_unlock_bh(&hw->mbx_lock);
1245
1246        set_bit(vid, adapter->active_vlans);
1247        return 0;
1248}
1249
1250static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251                                  __be16 proto, u16 vid)
1252{
1253        struct igbvf_adapter *adapter = netdev_priv(netdev);
1254        struct e1000_hw *hw = &adapter->hw;
1255
1256        spin_lock_bh(&hw->mbx_lock);
1257
1258        if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259                dev_err(&adapter->pdev->dev,
1260                        "Failed to remove vlan id %d\n", vid);
1261                spin_unlock_bh(&hw->mbx_lock);
1262                return -EINVAL;
1263        }
1264
1265        spin_unlock_bh(&hw->mbx_lock);
1266
1267        clear_bit(vid, adapter->active_vlans);
1268        return 0;
1269}
1270
1271static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272{
1273        u16 vid;
1274
1275        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276                igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277}
1278
1279/**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
1285static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286{
1287        struct e1000_hw *hw = &adapter->hw;
1288        struct igbvf_ring *tx_ring = adapter->tx_ring;
1289        u64 tdba;
1290        u32 txdctl, dca_txctrl;
1291
1292        /* disable transmits */
1293        txdctl = er32(TXDCTL(0));
1294        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295        e1e_flush();
1296        msleep(10);
1297
1298        /* Setup the HW Tx Head and Tail descriptor pointers */
1299        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300        tdba = tx_ring->dma;
1301        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302        ew32(TDBAH(0), (tdba >> 32));
1303        ew32(TDH(0), 0);
1304        ew32(TDT(0), 0);
1305        tx_ring->head = E1000_TDH(0);
1306        tx_ring->tail = E1000_TDT(0);
1307
1308        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1309         * MUST be delivered in order or it will completely screw up
1310         * our bookkeeping.
1311         */
1312        dca_txctrl = er32(DCA_TXCTRL(0));
1313        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314        ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316        /* enable transmits */
1317        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318        ew32(TXDCTL(0), txdctl);
1319
1320        /* Setup Transmit Descriptor Settings for eop descriptor */
1321        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323        /* enable Report Status bit */
1324        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325}
1326
1327/**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
1331static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332{
1333        struct e1000_hw *hw = &adapter->hw;
1334        u32 srrctl = 0;
1335
1336        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337                    E1000_SRRCTL_BSIZEHDR_MASK |
1338                    E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340        /* Enable queue drop to avoid head of line blocking */
1341        srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343        /* Setup buffer sizes */
1344        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347        if (adapter->rx_buffer_len < 2048) {
1348                adapter->rx_ps_hdr_size = 0;
1349                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350        } else {
1351                adapter->rx_ps_hdr_size = 128;
1352                srrctl |= adapter->rx_ps_hdr_size <<
1353                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355        }
1356
1357        ew32(SRRCTL(0), srrctl);
1358}
1359
1360/**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
1366static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367{
1368        struct e1000_hw *hw = &adapter->hw;
1369        struct igbvf_ring *rx_ring = adapter->rx_ring;
1370        u64 rdba;
1371        u32 rxdctl;
1372
1373        /* disable receives */
1374        rxdctl = er32(RXDCTL(0));
1375        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376        e1e_flush();
1377        msleep(10);
1378
1379        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380         * the Base and Length of the Rx Descriptor Ring
1381         */
1382        rdba = rx_ring->dma;
1383        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384        ew32(RDBAH(0), (rdba >> 32));
1385        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386        rx_ring->head = E1000_RDH(0);
1387        rx_ring->tail = E1000_RDT(0);
1388        ew32(RDH(0), 0);
1389        ew32(RDT(0), 0);
1390
1391        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392        rxdctl &= 0xFFF00000;
1393        rxdctl |= IGBVF_RX_PTHRESH;
1394        rxdctl |= IGBVF_RX_HTHRESH << 8;
1395        rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397        igbvf_set_rlpml(adapter);
1398
1399        /* enable receives */
1400        ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated.  This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414        struct igbvf_adapter *adapter = netdev_priv(netdev);
1415        struct e1000_hw *hw = &adapter->hw;
1416        struct netdev_hw_addr *ha;
1417        u8  *mta_list = NULL;
1418        int i;
1419
1420        if (!netdev_mc_empty(netdev)) {
1421                mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422                                         GFP_ATOMIC);
1423                if (!mta_list)
1424                        return;
1425        }
1426
1427        /* prepare a packed array of only addresses. */
1428        i = 0;
1429        netdev_for_each_mc_addr(ha, netdev)
1430                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432        spin_lock_bh(&hw->mbx_lock);
1433
1434        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436        spin_unlock_bh(&hw->mbx_lock);
1437        kfree(mta_list);
1438}
1439
1440/**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
1447static int igbvf_set_uni(struct net_device *netdev)
1448{
1449        struct igbvf_adapter *adapter = netdev_priv(netdev);
1450        struct e1000_hw *hw = &adapter->hw;
1451
1452        if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453                pr_err("Too many unicast filters - No Space\n");
1454                return -ENOSPC;
1455        }
1456
1457        spin_lock_bh(&hw->mbx_lock);
1458
1459        /* Clear all unicast MAC filters */
1460        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462        spin_unlock_bh(&hw->mbx_lock);
1463
1464        if (!netdev_uc_empty(netdev)) {
1465                struct netdev_hw_addr *ha;
1466
1467                /* Add MAC filters one by one */
1468                netdev_for_each_uc_addr(ha, netdev) {
1469                        spin_lock_bh(&hw->mbx_lock);
1470
1471                        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472                                                ha->addr);
1473
1474                        spin_unlock_bh(&hw->mbx_lock);
1475                        udelay(200);
1476                }
1477        }
1478
1479        return 0;
1480}
1481
1482static void igbvf_set_rx_mode(struct net_device *netdev)
1483{
1484        igbvf_set_multi(netdev);
1485        igbvf_set_uni(netdev);
1486}
1487
1488/**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
1492static void igbvf_configure(struct igbvf_adapter *adapter)
1493{
1494        igbvf_set_rx_mode(adapter->netdev);
1495
1496        igbvf_restore_vlan(adapter);
1497
1498        igbvf_configure_tx(adapter);
1499        igbvf_setup_srrctl(adapter);
1500        igbvf_configure_rx(adapter);
1501        igbvf_alloc_rx_buffers(adapter->rx_ring,
1502                               igbvf_desc_unused(adapter->rx_ring));
1503}
1504
1505/* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
1513static void igbvf_reset(struct igbvf_adapter *adapter)
1514{
1515        struct e1000_mac_info *mac = &adapter->hw.mac;
1516        struct net_device *netdev = adapter->netdev;
1517        struct e1000_hw *hw = &adapter->hw;
1518
1519        spin_lock_bh(&hw->mbx_lock);
1520
1521        /* Allow time for pending master requests to run */
1522        if (mac->ops.reset_hw(hw))
1523                dev_warn(&adapter->pdev->dev, "PF still resetting\n");
1524
1525        mac->ops.init_hw(hw);
1526
1527        spin_unlock_bh(&hw->mbx_lock);
1528
1529        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1531                       netdev->addr_len);
1532                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1533                       netdev->addr_len);
1534        }
1535
1536        adapter->last_reset = jiffies;
1537}
1538
1539int igbvf_up(struct igbvf_adapter *adapter)
1540{
1541        struct e1000_hw *hw = &adapter->hw;
1542
1543        /* hardware has been reset, we need to reload some things */
1544        igbvf_configure(adapter);
1545
1546        clear_bit(__IGBVF_DOWN, &adapter->state);
1547
1548        napi_enable(&adapter->rx_ring->napi);
1549        if (adapter->msix_entries)
1550                igbvf_configure_msix(adapter);
1551
1552        /* Clear any pending interrupts. */
1553        er32(EICR);
1554        igbvf_irq_enable(adapter);
1555
1556        /* start the watchdog */
1557        hw->mac.get_link_status = 1;
1558        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1559
1560        return 0;
1561}
1562
1563void igbvf_down(struct igbvf_adapter *adapter)
1564{
1565        struct net_device *netdev = adapter->netdev;
1566        struct e1000_hw *hw = &adapter->hw;
1567        u32 rxdctl, txdctl;
1568
1569        /* signal that we're down so the interrupt handler does not
1570         * reschedule our watchdog timer
1571         */
1572        set_bit(__IGBVF_DOWN, &adapter->state);
1573
1574        /* disable receives in the hardware */
1575        rxdctl = er32(RXDCTL(0));
1576        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1577
1578        netif_carrier_off(netdev);
1579        netif_stop_queue(netdev);
1580
1581        /* disable transmits in the hardware */
1582        txdctl = er32(TXDCTL(0));
1583        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1584
1585        /* flush both disables and wait for them to finish */
1586        e1e_flush();
1587        msleep(10);
1588
1589        napi_disable(&adapter->rx_ring->napi);
1590
1591        igbvf_irq_disable(adapter);
1592
1593        del_timer_sync(&adapter->watchdog_timer);
1594
1595        /* record the stats before reset*/
1596        igbvf_update_stats(adapter);
1597
1598        adapter->link_speed = 0;
1599        adapter->link_duplex = 0;
1600
1601        igbvf_reset(adapter);
1602        igbvf_clean_tx_ring(adapter->tx_ring);
1603        igbvf_clean_rx_ring(adapter->rx_ring);
1604}
1605
1606void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1607{
1608        might_sleep();
1609        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1610                usleep_range(1000, 2000);
1611        igbvf_down(adapter);
1612        igbvf_up(adapter);
1613        clear_bit(__IGBVF_RESETTING, &adapter->state);
1614}
1615
1616/**
1617 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1618 * @adapter: board private structure to initialize
1619 *
1620 * igbvf_sw_init initializes the Adapter private data structure.
1621 * Fields are initialized based on PCI device information and
1622 * OS network device settings (MTU size).
1623 **/
1624static int igbvf_sw_init(struct igbvf_adapter *adapter)
1625{
1626        struct net_device *netdev = adapter->netdev;
1627        s32 rc;
1628
1629        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1630        adapter->rx_ps_hdr_size = 0;
1631        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1632        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1633
1634        adapter->tx_int_delay = 8;
1635        adapter->tx_abs_int_delay = 32;
1636        adapter->rx_int_delay = 0;
1637        adapter->rx_abs_int_delay = 8;
1638        adapter->requested_itr = 3;
1639        adapter->current_itr = IGBVF_START_ITR;
1640
1641        /* Set various function pointers */
1642        adapter->ei->init_ops(&adapter->hw);
1643
1644        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1645        if (rc)
1646                return rc;
1647
1648        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1649        if (rc)
1650                return rc;
1651
1652        igbvf_set_interrupt_capability(adapter);
1653
1654        if (igbvf_alloc_queues(adapter))
1655                return -ENOMEM;
1656
1657        spin_lock_init(&adapter->tx_queue_lock);
1658
1659        /* Explicitly disable IRQ since the NIC can be in any state. */
1660        igbvf_irq_disable(adapter);
1661
1662        spin_lock_init(&adapter->stats_lock);
1663        spin_lock_init(&adapter->hw.mbx_lock);
1664
1665        set_bit(__IGBVF_DOWN, &adapter->state);
1666        return 0;
1667}
1668
1669static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1670{
1671        struct e1000_hw *hw = &adapter->hw;
1672
1673        adapter->stats.last_gprc = er32(VFGPRC);
1674        adapter->stats.last_gorc = er32(VFGORC);
1675        adapter->stats.last_gptc = er32(VFGPTC);
1676        adapter->stats.last_gotc = er32(VFGOTC);
1677        adapter->stats.last_mprc = er32(VFMPRC);
1678        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1679        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1680        adapter->stats.last_gorlbc = er32(VFGORLBC);
1681        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1682
1683        adapter->stats.base_gprc = er32(VFGPRC);
1684        adapter->stats.base_gorc = er32(VFGORC);
1685        adapter->stats.base_gptc = er32(VFGPTC);
1686        adapter->stats.base_gotc = er32(VFGOTC);
1687        adapter->stats.base_mprc = er32(VFMPRC);
1688        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1689        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1690        adapter->stats.base_gorlbc = er32(VFGORLBC);
1691        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1692}
1693
1694/**
1695 * igbvf_open - Called when a network interface is made active
1696 * @netdev: network interface device structure
1697 *
1698 * Returns 0 on success, negative value on failure
1699 *
1700 * The open entry point is called when a network interface is made
1701 * active by the system (IFF_UP).  At this point all resources needed
1702 * for transmit and receive operations are allocated, the interrupt
1703 * handler is registered with the OS, the watchdog timer is started,
1704 * and the stack is notified that the interface is ready.
1705 **/
1706static int igbvf_open(struct net_device *netdev)
1707{
1708        struct igbvf_adapter *adapter = netdev_priv(netdev);
1709        struct e1000_hw *hw = &adapter->hw;
1710        int err;
1711
1712        /* disallow open during test */
1713        if (test_bit(__IGBVF_TESTING, &adapter->state))
1714                return -EBUSY;
1715
1716        /* allocate transmit descriptors */
1717        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1718        if (err)
1719                goto err_setup_tx;
1720
1721        /* allocate receive descriptors */
1722        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1723        if (err)
1724                goto err_setup_rx;
1725
1726        /* before we allocate an interrupt, we must be ready to handle it.
1727         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1728         * as soon as we call pci_request_irq, so we have to setup our
1729         * clean_rx handler before we do so.
1730         */
1731        igbvf_configure(adapter);
1732
1733        err = igbvf_request_irq(adapter);
1734        if (err)
1735                goto err_req_irq;
1736
1737        /* From here on the code is the same as igbvf_up() */
1738        clear_bit(__IGBVF_DOWN, &adapter->state);
1739
1740        napi_enable(&adapter->rx_ring->napi);
1741
1742        /* clear any pending interrupts */
1743        er32(EICR);
1744
1745        igbvf_irq_enable(adapter);
1746
1747        /* start the watchdog */
1748        hw->mac.get_link_status = 1;
1749        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1750
1751        return 0;
1752
1753err_req_irq:
1754        igbvf_free_rx_resources(adapter->rx_ring);
1755err_setup_rx:
1756        igbvf_free_tx_resources(adapter->tx_ring);
1757err_setup_tx:
1758        igbvf_reset(adapter);
1759
1760        return err;
1761}
1762
1763/**
1764 * igbvf_close - Disables a network interface
1765 * @netdev: network interface device structure
1766 *
1767 * Returns 0, this is not allowed to fail
1768 *
1769 * The close entry point is called when an interface is de-activated
1770 * by the OS.  The hardware is still under the drivers control, but
1771 * needs to be disabled.  A global MAC reset is issued to stop the
1772 * hardware, and all transmit and receive resources are freed.
1773 **/
1774static int igbvf_close(struct net_device *netdev)
1775{
1776        struct igbvf_adapter *adapter = netdev_priv(netdev);
1777
1778        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1779        igbvf_down(adapter);
1780
1781        igbvf_free_irq(adapter);
1782
1783        igbvf_free_tx_resources(adapter->tx_ring);
1784        igbvf_free_rx_resources(adapter->rx_ring);
1785
1786        return 0;
1787}
1788
1789/**
1790 * igbvf_set_mac - Change the Ethernet Address of the NIC
1791 * @netdev: network interface device structure
1792 * @p: pointer to an address structure
1793 *
1794 * Returns 0 on success, negative on failure
1795 **/
1796static int igbvf_set_mac(struct net_device *netdev, void *p)
1797{
1798        struct igbvf_adapter *adapter = netdev_priv(netdev);
1799        struct e1000_hw *hw = &adapter->hw;
1800        struct sockaddr *addr = p;
1801
1802        if (!is_valid_ether_addr(addr->sa_data))
1803                return -EADDRNOTAVAIL;
1804
1805        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1806
1807        spin_lock_bh(&hw->mbx_lock);
1808
1809        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1810
1811        spin_unlock_bh(&hw->mbx_lock);
1812
1813        if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1814                return -EADDRNOTAVAIL;
1815
1816        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1817
1818        return 0;
1819}
1820
1821#define UPDATE_VF_COUNTER(reg, name) \
1822{ \
1823        u32 current_counter = er32(reg); \
1824        if (current_counter < adapter->stats.last_##name) \
1825                adapter->stats.name += 0x100000000LL; \
1826        adapter->stats.last_##name = current_counter; \
1827        adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1828        adapter->stats.name |= current_counter; \
1829}
1830
1831/**
1832 * igbvf_update_stats - Update the board statistics counters
1833 * @adapter: board private structure
1834**/
1835void igbvf_update_stats(struct igbvf_adapter *adapter)
1836{
1837        struct e1000_hw *hw = &adapter->hw;
1838        struct pci_dev *pdev = adapter->pdev;
1839
1840        /* Prevent stats update while adapter is being reset, link is down
1841         * or if the pci connection is down.
1842         */
1843        if (adapter->link_speed == 0)
1844                return;
1845
1846        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1847                return;
1848
1849        if (pci_channel_offline(pdev))
1850                return;
1851
1852        UPDATE_VF_COUNTER(VFGPRC, gprc);
1853        UPDATE_VF_COUNTER(VFGORC, gorc);
1854        UPDATE_VF_COUNTER(VFGPTC, gptc);
1855        UPDATE_VF_COUNTER(VFGOTC, gotc);
1856        UPDATE_VF_COUNTER(VFMPRC, mprc);
1857        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1858        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1859        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1860        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1861
1862        /* Fill out the OS statistics structure */
1863        adapter->netdev->stats.multicast = adapter->stats.mprc;
1864}
1865
1866static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1867{
1868        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1869                 adapter->link_speed,
1870                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1871}
1872
1873static bool igbvf_has_link(struct igbvf_adapter *adapter)
1874{
1875        struct e1000_hw *hw = &adapter->hw;
1876        s32 ret_val = E1000_SUCCESS;
1877        bool link_active;
1878
1879        /* If interface is down, stay link down */
1880        if (test_bit(__IGBVF_DOWN, &adapter->state))
1881                return false;
1882
1883        spin_lock_bh(&hw->mbx_lock);
1884
1885        ret_val = hw->mac.ops.check_for_link(hw);
1886
1887        spin_unlock_bh(&hw->mbx_lock);
1888
1889        link_active = !hw->mac.get_link_status;
1890
1891        /* if check for link returns error we will need to reset */
1892        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1893                schedule_work(&adapter->reset_task);
1894
1895        return link_active;
1896}
1897
1898/**
1899 * igbvf_watchdog - Timer Call-back
1900 * @t: timer list pointer containing private struct
1901 **/
1902static void igbvf_watchdog(struct timer_list *t)
1903{
1904        struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1905
1906        /* Do the rest outside of interrupt context */
1907        schedule_work(&adapter->watchdog_task);
1908}
1909
1910static void igbvf_watchdog_task(struct work_struct *work)
1911{
1912        struct igbvf_adapter *adapter = container_of(work,
1913                                                     struct igbvf_adapter,
1914                                                     watchdog_task);
1915        struct net_device *netdev = adapter->netdev;
1916        struct e1000_mac_info *mac = &adapter->hw.mac;
1917        struct igbvf_ring *tx_ring = adapter->tx_ring;
1918        struct e1000_hw *hw = &adapter->hw;
1919        u32 link;
1920        int tx_pending = 0;
1921
1922        link = igbvf_has_link(adapter);
1923
1924        if (link) {
1925                if (!netif_carrier_ok(netdev)) {
1926                        mac->ops.get_link_up_info(&adapter->hw,
1927                                                  &adapter->link_speed,
1928                                                  &adapter->link_duplex);
1929                        igbvf_print_link_info(adapter);
1930
1931                        netif_carrier_on(netdev);
1932                        netif_wake_queue(netdev);
1933                }
1934        } else {
1935                if (netif_carrier_ok(netdev)) {
1936                        adapter->link_speed = 0;
1937                        adapter->link_duplex = 0;
1938                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1939                        netif_carrier_off(netdev);
1940                        netif_stop_queue(netdev);
1941                }
1942        }
1943
1944        if (netif_carrier_ok(netdev)) {
1945                igbvf_update_stats(adapter);
1946        } else {
1947                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1948                              tx_ring->count);
1949                if (tx_pending) {
1950                        /* We've lost link, so the controller stops DMA,
1951                         * but we've got queued Tx work that's never going
1952                         * to get done, so reset controller to flush Tx.
1953                         * (Do the reset outside of interrupt context).
1954                         */
1955                        adapter->tx_timeout_count++;
1956                        schedule_work(&adapter->reset_task);
1957                }
1958        }
1959
1960        /* Cause software interrupt to ensure Rx ring is cleaned */
1961        ew32(EICS, adapter->rx_ring->eims_value);
1962
1963        /* Reset the timer */
1964        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1965                mod_timer(&adapter->watchdog_timer,
1966                          round_jiffies(jiffies + (2 * HZ)));
1967}
1968
1969#define IGBVF_TX_FLAGS_CSUM             0x00000001
1970#define IGBVF_TX_FLAGS_VLAN             0x00000002
1971#define IGBVF_TX_FLAGS_TSO              0x00000004
1972#define IGBVF_TX_FLAGS_IPV4             0x00000008
1973#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1974#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1975
1976static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1977                              u32 type_tucmd, u32 mss_l4len_idx)
1978{
1979        struct e1000_adv_tx_context_desc *context_desc;
1980        struct igbvf_buffer *buffer_info;
1981        u16 i = tx_ring->next_to_use;
1982
1983        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1984        buffer_info = &tx_ring->buffer_info[i];
1985
1986        i++;
1987        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988
1989        /* set bits to identify this as an advanced context descriptor */
1990        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1991
1992        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1993        context_desc->seqnum_seed       = 0;
1994        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1995        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1996
1997        buffer_info->time_stamp = jiffies;
1998        buffer_info->dma = 0;
1999}
2000
2001static int igbvf_tso(struct igbvf_ring *tx_ring,
2002                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2003{
2004        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2005        union {
2006                struct iphdr *v4;
2007                struct ipv6hdr *v6;
2008                unsigned char *hdr;
2009        } ip;
2010        union {
2011                struct tcphdr *tcp;
2012                unsigned char *hdr;
2013        } l4;
2014        u32 paylen, l4_offset;
2015        int err;
2016
2017        if (skb->ip_summed != CHECKSUM_PARTIAL)
2018                return 0;
2019
2020        if (!skb_is_gso(skb))
2021                return 0;
2022
2023        err = skb_cow_head(skb, 0);
2024        if (err < 0)
2025                return err;
2026
2027        ip.hdr = skb_network_header(skb);
2028        l4.hdr = skb_checksum_start(skb);
2029
2030        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2031        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2032
2033        /* initialize outer IP header fields */
2034        if (ip.v4->version == 4) {
2035                unsigned char *csum_start = skb_checksum_start(skb);
2036                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2037
2038                /* IP header will have to cancel out any data that
2039                 * is not a part of the outer IP header
2040                 */
2041                ip.v4->check = csum_fold(csum_partial(trans_start,
2042                                                      csum_start - trans_start,
2043                                                      0));
2044                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2045
2046                ip.v4->tot_len = 0;
2047        } else {
2048                ip.v6->payload_len = 0;
2049        }
2050
2051        /* determine offset of inner transport header */
2052        l4_offset = l4.hdr - skb->data;
2053
2054        /* compute length of segmentation header */
2055        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2056
2057        /* remove payload length from inner checksum */
2058        paylen = skb->len - l4_offset;
2059        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2060
2061        /* MSS L4LEN IDX */
2062        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2063        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2064
2065        /* VLAN MACLEN IPLEN */
2066        vlan_macip_lens = l4.hdr - ip.hdr;
2067        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2068        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2069
2070        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2071
2072        return 1;
2073}
2074
2075static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2076                          u32 tx_flags, __be16 protocol)
2077{
2078        u32 vlan_macip_lens = 0;
2079        u32 type_tucmd = 0;
2080
2081        if (skb->ip_summed != CHECKSUM_PARTIAL) {
2082csum_failed:
2083                if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2084                        return false;
2085                goto no_csum;
2086        }
2087
2088        switch (skb->csum_offset) {
2089        case offsetof(struct tcphdr, check):
2090                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2091                fallthrough;
2092        case offsetof(struct udphdr, check):
2093                break;
2094        case offsetof(struct sctphdr, checksum):
2095                /* validate that this is actually an SCTP request */
2096                if (skb_csum_is_sctp(skb)) {
2097                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2098                        break;
2099                }
2100                fallthrough;
2101        default:
2102                skb_checksum_help(skb);
2103                goto csum_failed;
2104        }
2105
2106        vlan_macip_lens = skb_checksum_start_offset(skb) -
2107                          skb_network_offset(skb);
2108no_csum:
2109        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2110        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2111
2112        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2113        return true;
2114}
2115
2116static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2117{
2118        struct igbvf_adapter *adapter = netdev_priv(netdev);
2119
2120        /* there is enough descriptors then we don't need to worry  */
2121        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2122                return 0;
2123
2124        netif_stop_queue(netdev);
2125
2126        /* Herbert's original patch had:
2127         *  smp_mb__after_netif_stop_queue();
2128         * but since that doesn't exist yet, just open code it.
2129         */
2130        smp_mb();
2131
2132        /* We need to check again just in case room has been made available */
2133        if (igbvf_desc_unused(adapter->tx_ring) < size)
2134                return -EBUSY;
2135
2136        netif_wake_queue(netdev);
2137
2138        ++adapter->restart_queue;
2139        return 0;
2140}
2141
2142#define IGBVF_MAX_TXD_PWR       16
2143#define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2144
2145static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2146                                   struct igbvf_ring *tx_ring,
2147                                   struct sk_buff *skb)
2148{
2149        struct igbvf_buffer *buffer_info;
2150        struct pci_dev *pdev = adapter->pdev;
2151        unsigned int len = skb_headlen(skb);
2152        unsigned int count = 0, i;
2153        unsigned int f;
2154
2155        i = tx_ring->next_to_use;
2156
2157        buffer_info = &tx_ring->buffer_info[i];
2158        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2159        buffer_info->length = len;
2160        /* set time_stamp *before* dma to help avoid a possible race */
2161        buffer_info->time_stamp = jiffies;
2162        buffer_info->mapped_as_page = false;
2163        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2164                                          DMA_TO_DEVICE);
2165        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2166                goto dma_error;
2167
2168        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2169                const skb_frag_t *frag;
2170
2171                count++;
2172                i++;
2173                if (i == tx_ring->count)
2174                        i = 0;
2175
2176                frag = &skb_shinfo(skb)->frags[f];
2177                len = skb_frag_size(frag);
2178
2179                buffer_info = &tx_ring->buffer_info[i];
2180                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2181                buffer_info->length = len;
2182                buffer_info->time_stamp = jiffies;
2183                buffer_info->mapped_as_page = true;
2184                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2185                                                    DMA_TO_DEVICE);
2186                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2187                        goto dma_error;
2188        }
2189
2190        tx_ring->buffer_info[i].skb = skb;
2191
2192        return ++count;
2193
2194dma_error:
2195        dev_err(&pdev->dev, "TX DMA map failed\n");
2196
2197        /* clear timestamp and dma mappings for failed buffer_info mapping */
2198        buffer_info->dma = 0;
2199        buffer_info->time_stamp = 0;
2200        buffer_info->length = 0;
2201        buffer_info->mapped_as_page = false;
2202        if (count)
2203                count--;
2204
2205        /* clear timestamp and dma mappings for remaining portion of packet */
2206        while (count--) {
2207                if (i == 0)
2208                        i += tx_ring->count;
2209                i--;
2210                buffer_info = &tx_ring->buffer_info[i];
2211                igbvf_put_txbuf(adapter, buffer_info);
2212        }
2213
2214        return 0;
2215}
2216
2217static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2218                                      struct igbvf_ring *tx_ring,
2219                                      int tx_flags, int count,
2220                                      unsigned int first, u32 paylen,
2221                                      u8 hdr_len)
2222{
2223        union e1000_adv_tx_desc *tx_desc = NULL;
2224        struct igbvf_buffer *buffer_info;
2225        u32 olinfo_status = 0, cmd_type_len;
2226        unsigned int i;
2227
2228        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2229                        E1000_ADVTXD_DCMD_DEXT);
2230
2231        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2232                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2233
2234        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2235                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2236
2237                /* insert tcp checksum */
2238                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2239
2240                /* insert ip checksum */
2241                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2242                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2243
2244        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2245                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2246        }
2247
2248        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2249
2250        i = tx_ring->next_to_use;
2251        while (count--) {
2252                buffer_info = &tx_ring->buffer_info[i];
2253                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2254                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2255                tx_desc->read.cmd_type_len =
2256                         cpu_to_le32(cmd_type_len | buffer_info->length);
2257                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2258                i++;
2259                if (i == tx_ring->count)
2260                        i = 0;
2261        }
2262
2263        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2264        /* Force memory writes to complete before letting h/w
2265         * know there are new descriptors to fetch.  (Only
2266         * applicable for weak-ordered memory model archs,
2267         * such as IA-64).
2268         */
2269        wmb();
2270
2271        tx_ring->buffer_info[first].next_to_watch = tx_desc;
2272        tx_ring->next_to_use = i;
2273        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2274}
2275
2276static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2277                                             struct net_device *netdev,
2278                                             struct igbvf_ring *tx_ring)
2279{
2280        struct igbvf_adapter *adapter = netdev_priv(netdev);
2281        unsigned int first, tx_flags = 0;
2282        u8 hdr_len = 0;
2283        int count = 0;
2284        int tso = 0;
2285        __be16 protocol = vlan_get_protocol(skb);
2286
2287        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2288                dev_kfree_skb_any(skb);
2289                return NETDEV_TX_OK;
2290        }
2291
2292        if (skb->len <= 0) {
2293                dev_kfree_skb_any(skb);
2294                return NETDEV_TX_OK;
2295        }
2296
2297        /* need: count + 4 desc gap to keep tail from touching
2298         *       + 2 desc gap to keep tail from touching head,
2299         *       + 1 desc for skb->data,
2300         *       + 1 desc for context descriptor,
2301         * head, otherwise try next time
2302         */
2303        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2304                /* this is a hard error */
2305                return NETDEV_TX_BUSY;
2306        }
2307
2308        if (skb_vlan_tag_present(skb)) {
2309                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2310                tx_flags |= (skb_vlan_tag_get(skb) <<
2311                             IGBVF_TX_FLAGS_VLAN_SHIFT);
2312        }
2313
2314        if (protocol == htons(ETH_P_IP))
2315                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2316
2317        first = tx_ring->next_to_use;
2318
2319        tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2320        if (unlikely(tso < 0)) {
2321                dev_kfree_skb_any(skb);
2322                return NETDEV_TX_OK;
2323        }
2324
2325        if (tso)
2326                tx_flags |= IGBVF_TX_FLAGS_TSO;
2327        else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2328                 (skb->ip_summed == CHECKSUM_PARTIAL))
2329                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2330
2331        /* count reflects descriptors mapped, if 0 then mapping error
2332         * has occurred and we need to rewind the descriptor queue
2333         */
2334        count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2335
2336        if (count) {
2337                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2338                                   first, skb->len, hdr_len);
2339                /* Make sure there is space in the ring for the next send. */
2340                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2341        } else {
2342                dev_kfree_skb_any(skb);
2343                tx_ring->buffer_info[first].time_stamp = 0;
2344                tx_ring->next_to_use = first;
2345        }
2346
2347        return NETDEV_TX_OK;
2348}
2349
2350static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2351                                    struct net_device *netdev)
2352{
2353        struct igbvf_adapter *adapter = netdev_priv(netdev);
2354        struct igbvf_ring *tx_ring;
2355
2356        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2357                dev_kfree_skb_any(skb);
2358                return NETDEV_TX_OK;
2359        }
2360
2361        tx_ring = &adapter->tx_ring[0];
2362
2363        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2364}
2365
2366/**
2367 * igbvf_tx_timeout - Respond to a Tx Hang
2368 * @netdev: network interface device structure
2369 * @txqueue: queue timing out (unused)
2370 **/
2371static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2372{
2373        struct igbvf_adapter *adapter = netdev_priv(netdev);
2374
2375        /* Do the reset outside of interrupt context */
2376        adapter->tx_timeout_count++;
2377        schedule_work(&adapter->reset_task);
2378}
2379
2380static void igbvf_reset_task(struct work_struct *work)
2381{
2382        struct igbvf_adapter *adapter;
2383
2384        adapter = container_of(work, struct igbvf_adapter, reset_task);
2385
2386        igbvf_reinit_locked(adapter);
2387}
2388
2389/**
2390 * igbvf_change_mtu - Change the Maximum Transfer Unit
2391 * @netdev: network interface device structure
2392 * @new_mtu: new value for maximum frame size
2393 *
2394 * Returns 0 on success, negative on failure
2395 **/
2396static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2397{
2398        struct igbvf_adapter *adapter = netdev_priv(netdev);
2399        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2400
2401        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2402                usleep_range(1000, 2000);
2403        /* igbvf_down has a dependency on max_frame_size */
2404        adapter->max_frame_size = max_frame;
2405        if (netif_running(netdev))
2406                igbvf_down(adapter);
2407
2408        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2409         * means we reserve 2 more, this pushes us to allocate from the next
2410         * larger slab size.
2411         * i.e. RXBUFFER_2048 --> size-4096 slab
2412         * However with the new *_jumbo_rx* routines, jumbo receives will use
2413         * fragmented skbs
2414         */
2415
2416        if (max_frame <= 1024)
2417                adapter->rx_buffer_len = 1024;
2418        else if (max_frame <= 2048)
2419                adapter->rx_buffer_len = 2048;
2420        else
2421#if (PAGE_SIZE / 2) > 16384
2422                adapter->rx_buffer_len = 16384;
2423#else
2424                adapter->rx_buffer_len = PAGE_SIZE / 2;
2425#endif
2426
2427        /* adjust allocation if LPE protects us, and we aren't using SBP */
2428        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2429            (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2430                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2431                                         ETH_FCS_LEN;
2432
2433        netdev_dbg(netdev, "changing MTU from %d to %d\n",
2434                   netdev->mtu, new_mtu);
2435        netdev->mtu = new_mtu;
2436
2437        if (netif_running(netdev))
2438                igbvf_up(adapter);
2439        else
2440                igbvf_reset(adapter);
2441
2442        clear_bit(__IGBVF_RESETTING, &adapter->state);
2443
2444        return 0;
2445}
2446
2447static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2448{
2449        switch (cmd) {
2450        default:
2451                return -EOPNOTSUPP;
2452        }
2453}
2454
2455static int igbvf_suspend(struct device *dev_d)
2456{
2457        struct net_device *netdev = dev_get_drvdata(dev_d);
2458        struct igbvf_adapter *adapter = netdev_priv(netdev);
2459
2460        netif_device_detach(netdev);
2461
2462        if (netif_running(netdev)) {
2463                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2464                igbvf_down(adapter);
2465                igbvf_free_irq(adapter);
2466        }
2467
2468        return 0;
2469}
2470
2471static int __maybe_unused igbvf_resume(struct device *dev_d)
2472{
2473        struct pci_dev *pdev = to_pci_dev(dev_d);
2474        struct net_device *netdev = pci_get_drvdata(pdev);
2475        struct igbvf_adapter *adapter = netdev_priv(netdev);
2476        u32 err;
2477
2478        pci_set_master(pdev);
2479
2480        if (netif_running(netdev)) {
2481                err = igbvf_request_irq(adapter);
2482                if (err)
2483                        return err;
2484        }
2485
2486        igbvf_reset(adapter);
2487
2488        if (netif_running(netdev))
2489                igbvf_up(adapter);
2490
2491        netif_device_attach(netdev);
2492
2493        return 0;
2494}
2495
2496static void igbvf_shutdown(struct pci_dev *pdev)
2497{
2498        igbvf_suspend(&pdev->dev);
2499}
2500
2501#ifdef CONFIG_NET_POLL_CONTROLLER
2502/* Polling 'interrupt' - used by things like netconsole to send skbs
2503 * without having to re-enable interrupts. It's not called while
2504 * the interrupt routine is executing.
2505 */
2506static void igbvf_netpoll(struct net_device *netdev)
2507{
2508        struct igbvf_adapter *adapter = netdev_priv(netdev);
2509
2510        disable_irq(adapter->pdev->irq);
2511
2512        igbvf_clean_tx_irq(adapter->tx_ring);
2513
2514        enable_irq(adapter->pdev->irq);
2515}
2516#endif
2517
2518/**
2519 * igbvf_io_error_detected - called when PCI error is detected
2520 * @pdev: Pointer to PCI device
2521 * @state: The current pci connection state
2522 *
2523 * This function is called after a PCI bus error affecting
2524 * this device has been detected.
2525 */
2526static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2527                                                pci_channel_state_t state)
2528{
2529        struct net_device *netdev = pci_get_drvdata(pdev);
2530        struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532        netif_device_detach(netdev);
2533
2534        if (state == pci_channel_io_perm_failure)
2535                return PCI_ERS_RESULT_DISCONNECT;
2536
2537        if (netif_running(netdev))
2538                igbvf_down(adapter);
2539        pci_disable_device(pdev);
2540
2541        /* Request a slot slot reset. */
2542        return PCI_ERS_RESULT_NEED_RESET;
2543}
2544
2545/**
2546 * igbvf_io_slot_reset - called after the pci bus has been reset.
2547 * @pdev: Pointer to PCI device
2548 *
2549 * Restart the card from scratch, as if from a cold-boot. Implementation
2550 * resembles the first-half of the igbvf_resume routine.
2551 */
2552static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2553{
2554        struct net_device *netdev = pci_get_drvdata(pdev);
2555        struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557        if (pci_enable_device_mem(pdev)) {
2558                dev_err(&pdev->dev,
2559                        "Cannot re-enable PCI device after reset.\n");
2560                return PCI_ERS_RESULT_DISCONNECT;
2561        }
2562        pci_set_master(pdev);
2563
2564        igbvf_reset(adapter);
2565
2566        return PCI_ERS_RESULT_RECOVERED;
2567}
2568
2569/**
2570 * igbvf_io_resume - called when traffic can start flowing again.
2571 * @pdev: Pointer to PCI device
2572 *
2573 * This callback is called when the error recovery driver tells us that
2574 * its OK to resume normal operation. Implementation resembles the
2575 * second-half of the igbvf_resume routine.
2576 */
2577static void igbvf_io_resume(struct pci_dev *pdev)
2578{
2579        struct net_device *netdev = pci_get_drvdata(pdev);
2580        struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582        if (netif_running(netdev)) {
2583                if (igbvf_up(adapter)) {
2584                        dev_err(&pdev->dev,
2585                                "can't bring device back up after reset\n");
2586                        return;
2587                }
2588        }
2589
2590        netif_device_attach(netdev);
2591}
2592
2593static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2594{
2595        struct e1000_hw *hw = &adapter->hw;
2596        struct net_device *netdev = adapter->netdev;
2597        struct pci_dev *pdev = adapter->pdev;
2598
2599        if (hw->mac.type == e1000_vfadapt_i350)
2600                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2601        else
2602                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2603        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2604}
2605
2606static int igbvf_set_features(struct net_device *netdev,
2607                              netdev_features_t features)
2608{
2609        struct igbvf_adapter *adapter = netdev_priv(netdev);
2610
2611        if (features & NETIF_F_RXCSUM)
2612                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2613        else
2614                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2615
2616        return 0;
2617}
2618
2619#define IGBVF_MAX_MAC_HDR_LEN           127
2620#define IGBVF_MAX_NETWORK_HDR_LEN       511
2621
2622static netdev_features_t
2623igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2624                     netdev_features_t features)
2625{
2626        unsigned int network_hdr_len, mac_hdr_len;
2627
2628        /* Make certain the headers can be described by a context descriptor */
2629        mac_hdr_len = skb_network_header(skb) - skb->data;
2630        if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2631                return features & ~(NETIF_F_HW_CSUM |
2632                                    NETIF_F_SCTP_CRC |
2633                                    NETIF_F_HW_VLAN_CTAG_TX |
2634                                    NETIF_F_TSO |
2635                                    NETIF_F_TSO6);
2636
2637        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2638        if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2639                return features & ~(NETIF_F_HW_CSUM |
2640                                    NETIF_F_SCTP_CRC |
2641                                    NETIF_F_TSO |
2642                                    NETIF_F_TSO6);
2643
2644        /* We can only support IPV4 TSO in tunnels if we can mangle the
2645         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2646         */
2647        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2648                features &= ~NETIF_F_TSO;
2649
2650        return features;
2651}
2652
2653static const struct net_device_ops igbvf_netdev_ops = {
2654        .ndo_open               = igbvf_open,
2655        .ndo_stop               = igbvf_close,
2656        .ndo_start_xmit         = igbvf_xmit_frame,
2657        .ndo_set_rx_mode        = igbvf_set_rx_mode,
2658        .ndo_set_mac_address    = igbvf_set_mac,
2659        .ndo_change_mtu         = igbvf_change_mtu,
2660        .ndo_eth_ioctl          = igbvf_ioctl,
2661        .ndo_tx_timeout         = igbvf_tx_timeout,
2662        .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2663        .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2664#ifdef CONFIG_NET_POLL_CONTROLLER
2665        .ndo_poll_controller    = igbvf_netpoll,
2666#endif
2667        .ndo_set_features       = igbvf_set_features,
2668        .ndo_features_check     = igbvf_features_check,
2669};
2670
2671/**
2672 * igbvf_probe - Device Initialization Routine
2673 * @pdev: PCI device information struct
2674 * @ent: entry in igbvf_pci_tbl
2675 *
2676 * Returns 0 on success, negative on failure
2677 *
2678 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2679 * The OS initialization, configuring of the adapter private structure,
2680 * and a hardware reset occur.
2681 **/
2682static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2683{
2684        struct net_device *netdev;
2685        struct igbvf_adapter *adapter;
2686        struct e1000_hw *hw;
2687        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2688
2689        static int cards_found;
2690        int err, pci_using_dac;
2691
2692        err = pci_enable_device_mem(pdev);
2693        if (err)
2694                return err;
2695
2696        pci_using_dac = 0;
2697        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2698        if (!err) {
2699                pci_using_dac = 1;
2700        } else {
2701                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2702                if (err) {
2703                        dev_err(&pdev->dev,
2704                                "No usable DMA configuration, aborting\n");
2705                        goto err_dma;
2706                }
2707        }
2708
2709        err = pci_request_regions(pdev, igbvf_driver_name);
2710        if (err)
2711                goto err_pci_reg;
2712
2713        pci_set_master(pdev);
2714
2715        err = -ENOMEM;
2716        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2717        if (!netdev)
2718                goto err_alloc_etherdev;
2719
2720        SET_NETDEV_DEV(netdev, &pdev->dev);
2721
2722        pci_set_drvdata(pdev, netdev);
2723        adapter = netdev_priv(netdev);
2724        hw = &adapter->hw;
2725        adapter->netdev = netdev;
2726        adapter->pdev = pdev;
2727        adapter->ei = ei;
2728        adapter->pba = ei->pba;
2729        adapter->flags = ei->flags;
2730        adapter->hw.back = adapter;
2731        adapter->hw.mac.type = ei->mac;
2732        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2733
2734        /* PCI config space info */
2735
2736        hw->vendor_id = pdev->vendor;
2737        hw->device_id = pdev->device;
2738        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2739        hw->subsystem_device_id = pdev->subsystem_device;
2740        hw->revision_id = pdev->revision;
2741
2742        err = -EIO;
2743        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2744                                      pci_resource_len(pdev, 0));
2745
2746        if (!adapter->hw.hw_addr)
2747                goto err_ioremap;
2748
2749        if (ei->get_variants) {
2750                err = ei->get_variants(adapter);
2751                if (err)
2752                        goto err_get_variants;
2753        }
2754
2755        /* setup adapter struct */
2756        err = igbvf_sw_init(adapter);
2757        if (err)
2758                goto err_sw_init;
2759
2760        /* construct the net_device struct */
2761        netdev->netdev_ops = &igbvf_netdev_ops;
2762
2763        igbvf_set_ethtool_ops(netdev);
2764        netdev->watchdog_timeo = 5 * HZ;
2765        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2766
2767        adapter->bd_number = cards_found++;
2768
2769        netdev->hw_features = NETIF_F_SG |
2770                              NETIF_F_TSO |
2771                              NETIF_F_TSO6 |
2772                              NETIF_F_RXCSUM |
2773                              NETIF_F_HW_CSUM |
2774                              NETIF_F_SCTP_CRC;
2775
2776#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2777                                    NETIF_F_GSO_GRE_CSUM | \
2778                                    NETIF_F_GSO_IPXIP4 | \
2779                                    NETIF_F_GSO_IPXIP6 | \
2780                                    NETIF_F_GSO_UDP_TUNNEL | \
2781                                    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2782
2783        netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2784        netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2785                               IGBVF_GSO_PARTIAL_FEATURES;
2786
2787        netdev->features = netdev->hw_features;
2788
2789        if (pci_using_dac)
2790                netdev->features |= NETIF_F_HIGHDMA;
2791
2792        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2793        netdev->mpls_features |= NETIF_F_HW_CSUM;
2794        netdev->hw_enc_features |= netdev->vlan_features;
2795
2796        /* set this bit last since it cannot be part of vlan_features */
2797        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2798                            NETIF_F_HW_VLAN_CTAG_RX |
2799                            NETIF_F_HW_VLAN_CTAG_TX;
2800
2801        /* MTU range: 68 - 9216 */
2802        netdev->min_mtu = ETH_MIN_MTU;
2803        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2804
2805        spin_lock_bh(&hw->mbx_lock);
2806
2807        /*reset the controller to put the device in a known good state */
2808        err = hw->mac.ops.reset_hw(hw);
2809        if (err) {
2810                dev_info(&pdev->dev,
2811                         "PF still in reset state. Is the PF interface up?\n");
2812        } else {
2813                err = hw->mac.ops.read_mac_addr(hw);
2814                if (err)
2815                        dev_info(&pdev->dev, "Error reading MAC address.\n");
2816                else if (is_zero_ether_addr(adapter->hw.mac.addr))
2817                        dev_info(&pdev->dev,
2818                                 "MAC address not assigned by administrator.\n");
2819                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2820                       netdev->addr_len);
2821        }
2822
2823        spin_unlock_bh(&hw->mbx_lock);
2824
2825        if (!is_valid_ether_addr(netdev->dev_addr)) {
2826                dev_info(&pdev->dev, "Assigning random MAC address.\n");
2827                eth_hw_addr_random(netdev);
2828                memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2829                       netdev->addr_len);
2830        }
2831
2832        timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2833
2834        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2835        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2836
2837        /* ring size defaults */
2838        adapter->rx_ring->count = 1024;
2839        adapter->tx_ring->count = 1024;
2840
2841        /* reset the hardware with the new settings */
2842        igbvf_reset(adapter);
2843
2844        /* set hardware-specific flags */
2845        if (adapter->hw.mac.type == e1000_vfadapt_i350)
2846                adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2847
2848        strcpy(netdev->name, "eth%d");
2849        err = register_netdev(netdev);
2850        if (err)
2851                goto err_hw_init;
2852
2853        /* tell the stack to leave us alone until igbvf_open() is called */
2854        netif_carrier_off(netdev);
2855        netif_stop_queue(netdev);
2856
2857        igbvf_print_device_info(adapter);
2858
2859        igbvf_initialize_last_counter_stats(adapter);
2860
2861        return 0;
2862
2863err_hw_init:
2864        kfree(adapter->tx_ring);
2865        kfree(adapter->rx_ring);
2866err_sw_init:
2867        igbvf_reset_interrupt_capability(adapter);
2868err_get_variants:
2869        iounmap(adapter->hw.hw_addr);
2870err_ioremap:
2871        free_netdev(netdev);
2872err_alloc_etherdev:
2873        pci_release_regions(pdev);
2874err_pci_reg:
2875err_dma:
2876        pci_disable_device(pdev);
2877        return err;
2878}
2879
2880/**
2881 * igbvf_remove - Device Removal Routine
2882 * @pdev: PCI device information struct
2883 *
2884 * igbvf_remove is called by the PCI subsystem to alert the driver
2885 * that it should release a PCI device.  The could be caused by a
2886 * Hot-Plug event, or because the driver is going to be removed from
2887 * memory.
2888 **/
2889static void igbvf_remove(struct pci_dev *pdev)
2890{
2891        struct net_device *netdev = pci_get_drvdata(pdev);
2892        struct igbvf_adapter *adapter = netdev_priv(netdev);
2893        struct e1000_hw *hw = &adapter->hw;
2894
2895        /* The watchdog timer may be rescheduled, so explicitly
2896         * disable it from being rescheduled.
2897         */
2898        set_bit(__IGBVF_DOWN, &adapter->state);
2899        del_timer_sync(&adapter->watchdog_timer);
2900
2901        cancel_work_sync(&adapter->reset_task);
2902        cancel_work_sync(&adapter->watchdog_task);
2903
2904        unregister_netdev(netdev);
2905
2906        igbvf_reset_interrupt_capability(adapter);
2907
2908        /* it is important to delete the NAPI struct prior to freeing the
2909         * Rx ring so that you do not end up with null pointer refs
2910         */
2911        netif_napi_del(&adapter->rx_ring->napi);
2912        kfree(adapter->tx_ring);
2913        kfree(adapter->rx_ring);
2914
2915        iounmap(hw->hw_addr);
2916        if (hw->flash_address)
2917                iounmap(hw->flash_address);
2918        pci_release_regions(pdev);
2919
2920        free_netdev(netdev);
2921
2922        pci_disable_device(pdev);
2923}
2924
2925/* PCI Error Recovery (ERS) */
2926static const struct pci_error_handlers igbvf_err_handler = {
2927        .error_detected = igbvf_io_error_detected,
2928        .slot_reset = igbvf_io_slot_reset,
2929        .resume = igbvf_io_resume,
2930};
2931
2932static const struct pci_device_id igbvf_pci_tbl[] = {
2933        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2934        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2935        { } /* terminate list */
2936};
2937MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2938
2939static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2940
2941/* PCI Device API Driver */
2942static struct pci_driver igbvf_driver = {
2943        .name           = igbvf_driver_name,
2944        .id_table       = igbvf_pci_tbl,
2945        .probe          = igbvf_probe,
2946        .remove         = igbvf_remove,
2947        .driver.pm      = &igbvf_pm_ops,
2948        .shutdown       = igbvf_shutdown,
2949        .err_handler    = &igbvf_err_handler
2950};
2951
2952/**
2953 * igbvf_init_module - Driver Registration Routine
2954 *
2955 * igbvf_init_module is the first routine called when the driver is
2956 * loaded. All it does is register with the PCI subsystem.
2957 **/
2958static int __init igbvf_init_module(void)
2959{
2960        int ret;
2961
2962        pr_info("%s\n", igbvf_driver_string);
2963        pr_info("%s\n", igbvf_copyright);
2964
2965        ret = pci_register_driver(&igbvf_driver);
2966
2967        return ret;
2968}
2969module_init(igbvf_init_module);
2970
2971/**
2972 * igbvf_exit_module - Driver Exit Cleanup Routine
2973 *
2974 * igbvf_exit_module is called just before the driver is removed
2975 * from memory.
2976 **/
2977static void __exit igbvf_exit_module(void)
2978{
2979        pci_unregister_driver(&igbvf_driver);
2980}
2981module_exit(igbvf_exit_module);
2982
2983MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2984MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2985MODULE_LICENSE("GPL v2");
2986
2987/* netdev.c */
2988