linux/drivers/net/ethernet/marvell/skge.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   4 * Ethernet adapters. Based on earlier sk98lin, e100 and
   5 * FreeBSD if_sk drivers.
   6 *
   7 * This driver intentionally does not support all the features
   8 * of the original driver such as link fail-over and link management because
   9 * those should be done at higher levels.
  10 *
  11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/in.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/ethtool.h>
  23#include <linux/pci.h>
  24#include <linux/if_vlan.h>
  25#include <linux/ip.h>
  26#include <linux/delay.h>
  27#include <linux/crc32.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/mii.h>
  33#include <linux/slab.h>
  34#include <linux/dmi.h>
  35#include <linux/prefetch.h>
  36#include <asm/irq.h>
  37
  38#include "skge.h"
  39
  40#define DRV_NAME                "skge"
  41#define DRV_VERSION             "1.14"
  42
  43#define DEFAULT_TX_RING_SIZE    128
  44#define DEFAULT_RX_RING_SIZE    512
  45#define MAX_TX_RING_SIZE        1024
  46#define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  47#define MAX_RX_RING_SIZE        4096
  48#define RX_COPY_THRESHOLD       128
  49#define RX_BUF_SIZE             1536
  50#define PHY_RETRIES             1000
  51#define ETH_JUMBO_MTU           9000
  52#define TX_WATCHDOG             (5 * HZ)
  53#define NAPI_WEIGHT             64
  54#define BLINK_MS                250
  55#define LINK_HZ                 HZ
  56
  57#define SKGE_EEPROM_MAGIC       0x9933aabb
  58
  59
  60MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62MODULE_LICENSE("GPL");
  63MODULE_VERSION(DRV_VERSION);
  64
  65static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67                                NETIF_MSG_IFDOWN);
  68
  69static int debug = -1;  /* defaults above */
  70module_param(debug, int, 0);
  71MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  72
  73static const struct pci_device_id skge_id_table[] = {
  74        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },       /* 3Com 3C940 */
  75        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },       /* 3Com 3C940B */
  76#ifdef CONFIG_SKGE_GENESIS
  77        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  78#endif
  79        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  80        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
  81        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
  82        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
  83        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
  84        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
  85        { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
  86        { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
  87        { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  88        { 0 }
  89};
  90MODULE_DEVICE_TABLE(pci, skge_id_table);
  91
  92static int skge_up(struct net_device *dev);
  93static int skge_down(struct net_device *dev);
  94static void skge_phy_reset(struct skge_port *skge);
  95static void skge_tx_clean(struct net_device *dev);
  96static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99static void yukon_get_stats(struct skge_port *skge, u64 *data);
 100static void yukon_init(struct skge_hw *hw, int port);
 101static void genesis_mac_init(struct skge_hw *hw, int port);
 102static void genesis_link_up(struct skge_port *skge);
 103static void skge_set_multicast(struct net_device *dev);
 104static irqreturn_t skge_intr(int irq, void *dev_id);
 105
 106/* Avoid conditionals by using array */
 107static const int txqaddr[] = { Q_XA1, Q_XA2 };
 108static const int rxqaddr[] = { Q_R1, Q_R2 };
 109static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 110static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 111static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 112static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 113
 114static inline bool is_genesis(const struct skge_hw *hw)
 115{
 116#ifdef CONFIG_SKGE_GENESIS
 117        return hw->chip_id == CHIP_ID_GENESIS;
 118#else
 119        return false;
 120#endif
 121}
 122
 123static int skge_get_regs_len(struct net_device *dev)
 124{
 125        return 0x4000;
 126}
 127
 128/*
 129 * Returns copy of whole control register region
 130 * Note: skip RAM address register because accessing it will
 131 *       cause bus hangs!
 132 */
 133static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 134                          void *p)
 135{
 136        const struct skge_port *skge = netdev_priv(dev);
 137        const void __iomem *io = skge->hw->regs;
 138
 139        regs->version = 1;
 140        memset(p, 0, regs->len);
 141        memcpy_fromio(p, io, B3_RAM_ADDR);
 142
 143        if (regs->len > B3_RI_WTO_R1) {
 144                memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 145                              regs->len - B3_RI_WTO_R1);
 146        }
 147}
 148
 149/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 150static u32 wol_supported(const struct skge_hw *hw)
 151{
 152        if (is_genesis(hw))
 153                return 0;
 154
 155        if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 156                return 0;
 157
 158        return WAKE_MAGIC | WAKE_PHY;
 159}
 160
 161static void skge_wol_init(struct skge_port *skge)
 162{
 163        struct skge_hw *hw = skge->hw;
 164        int port = skge->port;
 165        u16 ctrl;
 166
 167        skge_write16(hw, B0_CTST, CS_RST_CLR);
 168        skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 169
 170        /* Turn on Vaux */
 171        skge_write8(hw, B0_POWER_CTRL,
 172                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 173
 174        /* WA code for COMA mode -- clear PHY reset */
 175        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 176            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 177                u32 reg = skge_read32(hw, B2_GP_IO);
 178                reg |= GP_DIR_9;
 179                reg &= ~GP_IO_9;
 180                skge_write32(hw, B2_GP_IO, reg);
 181        }
 182
 183        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 184                     GPC_DIS_SLEEP |
 185                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 186                     GPC_ANEG_1 | GPC_RST_SET);
 187
 188        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 189                     GPC_DIS_SLEEP |
 190                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 191                     GPC_ANEG_1 | GPC_RST_CLR);
 192
 193        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 194
 195        /* Force to 10/100 skge_reset will re-enable on resume   */
 196        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 197                     (PHY_AN_100FULL | PHY_AN_100HALF |
 198                      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 199        /* no 1000 HD/FD */
 200        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 201        gm_phy_write(hw, port, PHY_MARV_CTRL,
 202                     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 203                     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 204
 205
 206        /* Set GMAC to no flow control and auto update for speed/duplex */
 207        gma_write16(hw, port, GM_GP_CTRL,
 208                    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 209                    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 210
 211        /* Set WOL address */
 212        memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 213                    skge->netdev->dev_addr, ETH_ALEN);
 214
 215        /* Turn on appropriate WOL control bits */
 216        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 217        ctrl = 0;
 218        if (skge->wol & WAKE_PHY)
 219                ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 220        else
 221                ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 222
 223        if (skge->wol & WAKE_MAGIC)
 224                ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 225        else
 226                ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 227
 228        ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 229        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 230
 231        /* block receiver */
 232        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 233}
 234
 235static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 236{
 237        struct skge_port *skge = netdev_priv(dev);
 238
 239        wol->supported = wol_supported(skge->hw);
 240        wol->wolopts = skge->wol;
 241}
 242
 243static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 244{
 245        struct skge_port *skge = netdev_priv(dev);
 246        struct skge_hw *hw = skge->hw;
 247
 248        if ((wol->wolopts & ~wol_supported(hw)) ||
 249            !device_can_wakeup(&hw->pdev->dev))
 250                return -EOPNOTSUPP;
 251
 252        skge->wol = wol->wolopts;
 253
 254        device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 255
 256        return 0;
 257}
 258
 259/* Determine supported/advertised modes based on hardware.
 260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 261 */
 262static u32 skge_supported_modes(const struct skge_hw *hw)
 263{
 264        u32 supported;
 265
 266        if (hw->copper) {
 267                supported = (SUPPORTED_10baseT_Half |
 268                             SUPPORTED_10baseT_Full |
 269                             SUPPORTED_100baseT_Half |
 270                             SUPPORTED_100baseT_Full |
 271                             SUPPORTED_1000baseT_Half |
 272                             SUPPORTED_1000baseT_Full |
 273                             SUPPORTED_Autoneg |
 274                             SUPPORTED_TP);
 275
 276                if (is_genesis(hw))
 277                        supported &= ~(SUPPORTED_10baseT_Half |
 278                                       SUPPORTED_10baseT_Full |
 279                                       SUPPORTED_100baseT_Half |
 280                                       SUPPORTED_100baseT_Full);
 281
 282                else if (hw->chip_id == CHIP_ID_YUKON)
 283                        supported &= ~SUPPORTED_1000baseT_Half;
 284        } else
 285                supported = (SUPPORTED_1000baseT_Full |
 286                             SUPPORTED_1000baseT_Half |
 287                             SUPPORTED_FIBRE |
 288                             SUPPORTED_Autoneg);
 289
 290        return supported;
 291}
 292
 293static int skge_get_link_ksettings(struct net_device *dev,
 294                                   struct ethtool_link_ksettings *cmd)
 295{
 296        struct skge_port *skge = netdev_priv(dev);
 297        struct skge_hw *hw = skge->hw;
 298        u32 supported, advertising;
 299
 300        supported = skge_supported_modes(hw);
 301
 302        if (hw->copper) {
 303                cmd->base.port = PORT_TP;
 304                cmd->base.phy_address = hw->phy_addr;
 305        } else
 306                cmd->base.port = PORT_FIBRE;
 307
 308        advertising = skge->advertising;
 309        cmd->base.autoneg = skge->autoneg;
 310        cmd->base.speed = skge->speed;
 311        cmd->base.duplex = skge->duplex;
 312
 313        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 314                                                supported);
 315        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 316                                                advertising);
 317
 318        return 0;
 319}
 320
 321static int skge_set_link_ksettings(struct net_device *dev,
 322                                   const struct ethtool_link_ksettings *cmd)
 323{
 324        struct skge_port *skge = netdev_priv(dev);
 325        const struct skge_hw *hw = skge->hw;
 326        u32 supported = skge_supported_modes(hw);
 327        int err = 0;
 328        u32 advertising;
 329
 330        ethtool_convert_link_mode_to_legacy_u32(&advertising,
 331                                                cmd->link_modes.advertising);
 332
 333        if (cmd->base.autoneg == AUTONEG_ENABLE) {
 334                advertising = supported;
 335                skge->duplex = -1;
 336                skge->speed = -1;
 337        } else {
 338                u32 setting;
 339                u32 speed = cmd->base.speed;
 340
 341                switch (speed) {
 342                case SPEED_1000:
 343                        if (cmd->base.duplex == DUPLEX_FULL)
 344                                setting = SUPPORTED_1000baseT_Full;
 345                        else if (cmd->base.duplex == DUPLEX_HALF)
 346                                setting = SUPPORTED_1000baseT_Half;
 347                        else
 348                                return -EINVAL;
 349                        break;
 350                case SPEED_100:
 351                        if (cmd->base.duplex == DUPLEX_FULL)
 352                                setting = SUPPORTED_100baseT_Full;
 353                        else if (cmd->base.duplex == DUPLEX_HALF)
 354                                setting = SUPPORTED_100baseT_Half;
 355                        else
 356                                return -EINVAL;
 357                        break;
 358
 359                case SPEED_10:
 360                        if (cmd->base.duplex == DUPLEX_FULL)
 361                                setting = SUPPORTED_10baseT_Full;
 362                        else if (cmd->base.duplex == DUPLEX_HALF)
 363                                setting = SUPPORTED_10baseT_Half;
 364                        else
 365                                return -EINVAL;
 366                        break;
 367                default:
 368                        return -EINVAL;
 369                }
 370
 371                if ((setting & supported) == 0)
 372                        return -EINVAL;
 373
 374                skge->speed = speed;
 375                skge->duplex = cmd->base.duplex;
 376        }
 377
 378        skge->autoneg = cmd->base.autoneg;
 379        skge->advertising = advertising;
 380
 381        if (netif_running(dev)) {
 382                skge_down(dev);
 383                err = skge_up(dev);
 384                if (err) {
 385                        dev_close(dev);
 386                        return err;
 387                }
 388        }
 389
 390        return 0;
 391}
 392
 393static void skge_get_drvinfo(struct net_device *dev,
 394                             struct ethtool_drvinfo *info)
 395{
 396        struct skge_port *skge = netdev_priv(dev);
 397
 398        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 399        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 400        strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 401                sizeof(info->bus_info));
 402}
 403
 404static const struct skge_stat {
 405        char       name[ETH_GSTRING_LEN];
 406        u16        xmac_offset;
 407        u16        gma_offset;
 408} skge_stats[] = {
 409        { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 410        { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 411
 412        { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 413        { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 414        { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 415        { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 416        { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 417        { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 418        { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 419        { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 420
 421        { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 422        { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 423        { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 424        { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 425        { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 426        { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 427
 428        { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 429        { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 430        { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 431        { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 432        { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 433};
 434
 435static int skge_get_sset_count(struct net_device *dev, int sset)
 436{
 437        switch (sset) {
 438        case ETH_SS_STATS:
 439                return ARRAY_SIZE(skge_stats);
 440        default:
 441                return -EOPNOTSUPP;
 442        }
 443}
 444
 445static void skge_get_ethtool_stats(struct net_device *dev,
 446                                   struct ethtool_stats *stats, u64 *data)
 447{
 448        struct skge_port *skge = netdev_priv(dev);
 449
 450        if (is_genesis(skge->hw))
 451                genesis_get_stats(skge, data);
 452        else
 453                yukon_get_stats(skge, data);
 454}
 455
 456/* Use hardware MIB variables for critical path statistics and
 457 * transmit feedback not reported at interrupt.
 458 * Other errors are accounted for in interrupt handler.
 459 */
 460static struct net_device_stats *skge_get_stats(struct net_device *dev)
 461{
 462        struct skge_port *skge = netdev_priv(dev);
 463        u64 data[ARRAY_SIZE(skge_stats)];
 464
 465        if (is_genesis(skge->hw))
 466                genesis_get_stats(skge, data);
 467        else
 468                yukon_get_stats(skge, data);
 469
 470        dev->stats.tx_bytes = data[0];
 471        dev->stats.rx_bytes = data[1];
 472        dev->stats.tx_packets = data[2] + data[4] + data[6];
 473        dev->stats.rx_packets = data[3] + data[5] + data[7];
 474        dev->stats.multicast = data[3] + data[5];
 475        dev->stats.collisions = data[10];
 476        dev->stats.tx_aborted_errors = data[12];
 477
 478        return &dev->stats;
 479}
 480
 481static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 482{
 483        int i;
 484
 485        switch (stringset) {
 486        case ETH_SS_STATS:
 487                for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 488                        memcpy(data + i * ETH_GSTRING_LEN,
 489                               skge_stats[i].name, ETH_GSTRING_LEN);
 490                break;
 491        }
 492}
 493
 494static void skge_get_ring_param(struct net_device *dev,
 495                                struct ethtool_ringparam *p)
 496{
 497        struct skge_port *skge = netdev_priv(dev);
 498
 499        p->rx_max_pending = MAX_RX_RING_SIZE;
 500        p->tx_max_pending = MAX_TX_RING_SIZE;
 501
 502        p->rx_pending = skge->rx_ring.count;
 503        p->tx_pending = skge->tx_ring.count;
 504}
 505
 506static int skge_set_ring_param(struct net_device *dev,
 507                               struct ethtool_ringparam *p)
 508{
 509        struct skge_port *skge = netdev_priv(dev);
 510        int err = 0;
 511
 512        if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 513            p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 514                return -EINVAL;
 515
 516        skge->rx_ring.count = p->rx_pending;
 517        skge->tx_ring.count = p->tx_pending;
 518
 519        if (netif_running(dev)) {
 520                skge_down(dev);
 521                err = skge_up(dev);
 522                if (err)
 523                        dev_close(dev);
 524        }
 525
 526        return err;
 527}
 528
 529static u32 skge_get_msglevel(struct net_device *netdev)
 530{
 531        struct skge_port *skge = netdev_priv(netdev);
 532        return skge->msg_enable;
 533}
 534
 535static void skge_set_msglevel(struct net_device *netdev, u32 value)
 536{
 537        struct skge_port *skge = netdev_priv(netdev);
 538        skge->msg_enable = value;
 539}
 540
 541static int skge_nway_reset(struct net_device *dev)
 542{
 543        struct skge_port *skge = netdev_priv(dev);
 544
 545        if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 546                return -EINVAL;
 547
 548        skge_phy_reset(skge);
 549        return 0;
 550}
 551
 552static void skge_get_pauseparam(struct net_device *dev,
 553                                struct ethtool_pauseparam *ecmd)
 554{
 555        struct skge_port *skge = netdev_priv(dev);
 556
 557        ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 558                          (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 559        ecmd->tx_pause = (ecmd->rx_pause ||
 560                          (skge->flow_control == FLOW_MODE_LOC_SEND));
 561
 562        ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 563}
 564
 565static int skge_set_pauseparam(struct net_device *dev,
 566                               struct ethtool_pauseparam *ecmd)
 567{
 568        struct skge_port *skge = netdev_priv(dev);
 569        struct ethtool_pauseparam old;
 570        int err = 0;
 571
 572        skge_get_pauseparam(dev, &old);
 573
 574        if (ecmd->autoneg != old.autoneg)
 575                skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 576        else {
 577                if (ecmd->rx_pause && ecmd->tx_pause)
 578                        skge->flow_control = FLOW_MODE_SYMMETRIC;
 579                else if (ecmd->rx_pause && !ecmd->tx_pause)
 580                        skge->flow_control = FLOW_MODE_SYM_OR_REM;
 581                else if (!ecmd->rx_pause && ecmd->tx_pause)
 582                        skge->flow_control = FLOW_MODE_LOC_SEND;
 583                else
 584                        skge->flow_control = FLOW_MODE_NONE;
 585        }
 586
 587        if (netif_running(dev)) {
 588                skge_down(dev);
 589                err = skge_up(dev);
 590                if (err) {
 591                        dev_close(dev);
 592                        return err;
 593                }
 594        }
 595
 596        return 0;
 597}
 598
 599/* Chip internal frequency for clock calculations */
 600static inline u32 hwkhz(const struct skge_hw *hw)
 601{
 602        return is_genesis(hw) ? 53125 : 78125;
 603}
 604
 605/* Chip HZ to microseconds */
 606static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 607{
 608        return (ticks * 1000) / hwkhz(hw);
 609}
 610
 611/* Microseconds to chip HZ */
 612static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 613{
 614        return hwkhz(hw) * usec / 1000;
 615}
 616
 617static int skge_get_coalesce(struct net_device *dev,
 618                             struct ethtool_coalesce *ecmd,
 619                             struct kernel_ethtool_coalesce *kernel_coal,
 620                             struct netlink_ext_ack *extack)
 621{
 622        struct skge_port *skge = netdev_priv(dev);
 623        struct skge_hw *hw = skge->hw;
 624        int port = skge->port;
 625
 626        ecmd->rx_coalesce_usecs = 0;
 627        ecmd->tx_coalesce_usecs = 0;
 628
 629        if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 630                u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 631                u32 msk = skge_read32(hw, B2_IRQM_MSK);
 632
 633                if (msk & rxirqmask[port])
 634                        ecmd->rx_coalesce_usecs = delay;
 635                if (msk & txirqmask[port])
 636                        ecmd->tx_coalesce_usecs = delay;
 637        }
 638
 639        return 0;
 640}
 641
 642/* Note: interrupt timer is per board, but can turn on/off per port */
 643static int skge_set_coalesce(struct net_device *dev,
 644                             struct ethtool_coalesce *ecmd,
 645                             struct kernel_ethtool_coalesce *kernel_coal,
 646                             struct netlink_ext_ack *extack)
 647{
 648        struct skge_port *skge = netdev_priv(dev);
 649        struct skge_hw *hw = skge->hw;
 650        int port = skge->port;
 651        u32 msk = skge_read32(hw, B2_IRQM_MSK);
 652        u32 delay = 25;
 653
 654        if (ecmd->rx_coalesce_usecs == 0)
 655                msk &= ~rxirqmask[port];
 656        else if (ecmd->rx_coalesce_usecs < 25 ||
 657                 ecmd->rx_coalesce_usecs > 33333)
 658                return -EINVAL;
 659        else {
 660                msk |= rxirqmask[port];
 661                delay = ecmd->rx_coalesce_usecs;
 662        }
 663
 664        if (ecmd->tx_coalesce_usecs == 0)
 665                msk &= ~txirqmask[port];
 666        else if (ecmd->tx_coalesce_usecs < 25 ||
 667                 ecmd->tx_coalesce_usecs > 33333)
 668                return -EINVAL;
 669        else {
 670                msk |= txirqmask[port];
 671                delay = min(delay, ecmd->rx_coalesce_usecs);
 672        }
 673
 674        skge_write32(hw, B2_IRQM_MSK, msk);
 675        if (msk == 0)
 676                skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 677        else {
 678                skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 679                skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 680        }
 681        return 0;
 682}
 683
 684enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 685static void skge_led(struct skge_port *skge, enum led_mode mode)
 686{
 687        struct skge_hw *hw = skge->hw;
 688        int port = skge->port;
 689
 690        spin_lock_bh(&hw->phy_lock);
 691        if (is_genesis(hw)) {
 692                switch (mode) {
 693                case LED_MODE_OFF:
 694                        if (hw->phy_type == SK_PHY_BCOM)
 695                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 696                        else {
 697                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 698                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 699                        }
 700                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 701                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 702                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 703                        break;
 704
 705                case LED_MODE_ON:
 706                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 707                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 708
 709                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 710                        skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 711
 712                        break;
 713
 714                case LED_MODE_TST:
 715                        skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 716                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 717                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 718
 719                        if (hw->phy_type == SK_PHY_BCOM)
 720                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 721                        else {
 722                                skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 723                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 724                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 725                        }
 726
 727                }
 728        } else {
 729                switch (mode) {
 730                case LED_MODE_OFF:
 731                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 732                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 733                                     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 734                                     PHY_M_LED_MO_10(MO_LED_OFF)   |
 735                                     PHY_M_LED_MO_100(MO_LED_OFF)  |
 736                                     PHY_M_LED_MO_1000(MO_LED_OFF) |
 737                                     PHY_M_LED_MO_RX(MO_LED_OFF));
 738                        break;
 739                case LED_MODE_ON:
 740                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 741                                     PHY_M_LED_PULS_DUR(PULS_170MS) |
 742                                     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 743                                     PHY_M_LEDC_TX_CTRL |
 744                                     PHY_M_LEDC_DP_CTRL);
 745
 746                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 747                                     PHY_M_LED_MO_RX(MO_LED_OFF) |
 748                                     (skge->speed == SPEED_100 ?
 749                                      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 750                        break;
 751                case LED_MODE_TST:
 752                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 753                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 754                                     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 755                                     PHY_M_LED_MO_10(MO_LED_ON)   |
 756                                     PHY_M_LED_MO_100(MO_LED_ON)  |
 757                                     PHY_M_LED_MO_1000(MO_LED_ON) |
 758                                     PHY_M_LED_MO_RX(MO_LED_ON));
 759                }
 760        }
 761        spin_unlock_bh(&hw->phy_lock);
 762}
 763
 764/* blink LED's for finding board */
 765static int skge_set_phys_id(struct net_device *dev,
 766                            enum ethtool_phys_id_state state)
 767{
 768        struct skge_port *skge = netdev_priv(dev);
 769
 770        switch (state) {
 771        case ETHTOOL_ID_ACTIVE:
 772                return 2;       /* cycle on/off twice per second */
 773
 774        case ETHTOOL_ID_ON:
 775                skge_led(skge, LED_MODE_TST);
 776                break;
 777
 778        case ETHTOOL_ID_OFF:
 779                skge_led(skge, LED_MODE_OFF);
 780                break;
 781
 782        case ETHTOOL_ID_INACTIVE:
 783                /* back to regular LED state */
 784                skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 785        }
 786
 787        return 0;
 788}
 789
 790static int skge_get_eeprom_len(struct net_device *dev)
 791{
 792        struct skge_port *skge = netdev_priv(dev);
 793        u32 reg2;
 794
 795        pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 796        return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 797}
 798
 799static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 800{
 801        u32 val;
 802
 803        pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 804
 805        do {
 806                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 807        } while (!(offset & PCI_VPD_ADDR_F));
 808
 809        pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 810        return val;
 811}
 812
 813static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 814{
 815        pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 816        pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 817                              offset | PCI_VPD_ADDR_F);
 818
 819        do {
 820                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 821        } while (offset & PCI_VPD_ADDR_F);
 822}
 823
 824static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 825                           u8 *data)
 826{
 827        struct skge_port *skge = netdev_priv(dev);
 828        struct pci_dev *pdev = skge->hw->pdev;
 829        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 830        int length = eeprom->len;
 831        u16 offset = eeprom->offset;
 832
 833        if (!cap)
 834                return -EINVAL;
 835
 836        eeprom->magic = SKGE_EEPROM_MAGIC;
 837
 838        while (length > 0) {
 839                u32 val = skge_vpd_read(pdev, cap, offset);
 840                int n = min_t(int, length, sizeof(val));
 841
 842                memcpy(data, &val, n);
 843                length -= n;
 844                data += n;
 845                offset += n;
 846        }
 847        return 0;
 848}
 849
 850static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 851                           u8 *data)
 852{
 853        struct skge_port *skge = netdev_priv(dev);
 854        struct pci_dev *pdev = skge->hw->pdev;
 855        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 856        int length = eeprom->len;
 857        u16 offset = eeprom->offset;
 858
 859        if (!cap)
 860                return -EINVAL;
 861
 862        if (eeprom->magic != SKGE_EEPROM_MAGIC)
 863                return -EINVAL;
 864
 865        while (length > 0) {
 866                u32 val;
 867                int n = min_t(int, length, sizeof(val));
 868
 869                if (n < sizeof(val))
 870                        val = skge_vpd_read(pdev, cap, offset);
 871                memcpy(&val, data, n);
 872
 873                skge_vpd_write(pdev, cap, offset, val);
 874
 875                length -= n;
 876                data += n;
 877                offset += n;
 878        }
 879        return 0;
 880}
 881
 882static const struct ethtool_ops skge_ethtool_ops = {
 883        .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
 884        .get_drvinfo    = skge_get_drvinfo,
 885        .get_regs_len   = skge_get_regs_len,
 886        .get_regs       = skge_get_regs,
 887        .get_wol        = skge_get_wol,
 888        .set_wol        = skge_set_wol,
 889        .get_msglevel   = skge_get_msglevel,
 890        .set_msglevel   = skge_set_msglevel,
 891        .nway_reset     = skge_nway_reset,
 892        .get_link       = ethtool_op_get_link,
 893        .get_eeprom_len = skge_get_eeprom_len,
 894        .get_eeprom     = skge_get_eeprom,
 895        .set_eeprom     = skge_set_eeprom,
 896        .get_ringparam  = skge_get_ring_param,
 897        .set_ringparam  = skge_set_ring_param,
 898        .get_pauseparam = skge_get_pauseparam,
 899        .set_pauseparam = skge_set_pauseparam,
 900        .get_coalesce   = skge_get_coalesce,
 901        .set_coalesce   = skge_set_coalesce,
 902        .get_strings    = skge_get_strings,
 903        .set_phys_id    = skge_set_phys_id,
 904        .get_sset_count = skge_get_sset_count,
 905        .get_ethtool_stats = skge_get_ethtool_stats,
 906        .get_link_ksettings = skge_get_link_ksettings,
 907        .set_link_ksettings = skge_set_link_ksettings,
 908};
 909
 910/*
 911 * Allocate ring elements and chain them together
 912 * One-to-one association of board descriptors with ring elements
 913 */
 914static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 915{
 916        struct skge_tx_desc *d;
 917        struct skge_element *e;
 918        int i;
 919
 920        ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 921        if (!ring->start)
 922                return -ENOMEM;
 923
 924        for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 925                e->desc = d;
 926                if (i == ring->count - 1) {
 927                        e->next = ring->start;
 928                        d->next_offset = base;
 929                } else {
 930                        e->next = e + 1;
 931                        d->next_offset = base + (i+1) * sizeof(*d);
 932                }
 933        }
 934        ring->to_use = ring->to_clean = ring->start;
 935
 936        return 0;
 937}
 938
 939/* Allocate and setup a new buffer for receiving */
 940static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 941                         struct sk_buff *skb, unsigned int bufsize)
 942{
 943        struct skge_rx_desc *rd = e->desc;
 944        dma_addr_t map;
 945
 946        map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
 947                             DMA_FROM_DEVICE);
 948
 949        if (dma_mapping_error(&skge->hw->pdev->dev, map))
 950                return -1;
 951
 952        rd->dma_lo = lower_32_bits(map);
 953        rd->dma_hi = upper_32_bits(map);
 954        e->skb = skb;
 955        rd->csum1_start = ETH_HLEN;
 956        rd->csum2_start = ETH_HLEN;
 957        rd->csum1 = 0;
 958        rd->csum2 = 0;
 959
 960        wmb();
 961
 962        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 963        dma_unmap_addr_set(e, mapaddr, map);
 964        dma_unmap_len_set(e, maplen, bufsize);
 965        return 0;
 966}
 967
 968/* Resume receiving using existing skb,
 969 * Note: DMA address is not changed by chip.
 970 *       MTU not changed while receiver active.
 971 */
 972static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 973{
 974        struct skge_rx_desc *rd = e->desc;
 975
 976        rd->csum2 = 0;
 977        rd->csum2_start = ETH_HLEN;
 978
 979        wmb();
 980
 981        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 982}
 983
 984
 985/* Free all  buffers in receive ring, assumes receiver stopped */
 986static void skge_rx_clean(struct skge_port *skge)
 987{
 988        struct skge_hw *hw = skge->hw;
 989        struct skge_ring *ring = &skge->rx_ring;
 990        struct skge_element *e;
 991
 992        e = ring->start;
 993        do {
 994                struct skge_rx_desc *rd = e->desc;
 995                rd->control = 0;
 996                if (e->skb) {
 997                        dma_unmap_single(&hw->pdev->dev,
 998                                         dma_unmap_addr(e, mapaddr),
 999                                         dma_unmap_len(e, maplen),
1000                                         DMA_FROM_DEVICE);
1001                        dev_kfree_skb(e->skb);
1002                        e->skb = NULL;
1003                }
1004        } while ((e = e->next) != ring->start);
1005}
1006
1007
1008/* Allocate buffers for receive ring
1009 * For receive:  to_clean is next received frame.
1010 */
1011static int skge_rx_fill(struct net_device *dev)
1012{
1013        struct skge_port *skge = netdev_priv(dev);
1014        struct skge_ring *ring = &skge->rx_ring;
1015        struct skge_element *e;
1016
1017        e = ring->start;
1018        do {
1019                struct sk_buff *skb;
1020
1021                skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1022                                         GFP_KERNEL);
1023                if (!skb)
1024                        return -ENOMEM;
1025
1026                skb_reserve(skb, NET_IP_ALIGN);
1027                if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1028                        dev_kfree_skb(skb);
1029                        return -EIO;
1030                }
1031        } while ((e = e->next) != ring->start);
1032
1033        ring->to_clean = ring->start;
1034        return 0;
1035}
1036
1037static const char *skge_pause(enum pause_status status)
1038{
1039        switch (status) {
1040        case FLOW_STAT_NONE:
1041                return "none";
1042        case FLOW_STAT_REM_SEND:
1043                return "rx only";
1044        case FLOW_STAT_LOC_SEND:
1045                return "tx_only";
1046        case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1047                return "both";
1048        default:
1049                return "indeterminated";
1050        }
1051}
1052
1053
1054static void skge_link_up(struct skge_port *skge)
1055{
1056        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1057                    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1058
1059        netif_carrier_on(skge->netdev);
1060        netif_wake_queue(skge->netdev);
1061
1062        netif_info(skge, link, skge->netdev,
1063                   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1064                   skge->speed,
1065                   skge->duplex == DUPLEX_FULL ? "full" : "half",
1066                   skge_pause(skge->flow_status));
1067}
1068
1069static void skge_link_down(struct skge_port *skge)
1070{
1071        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1072        netif_carrier_off(skge->netdev);
1073        netif_stop_queue(skge->netdev);
1074
1075        netif_info(skge, link, skge->netdev, "Link is down\n");
1076}
1077
1078static void xm_link_down(struct skge_hw *hw, int port)
1079{
1080        struct net_device *dev = hw->dev[port];
1081        struct skge_port *skge = netdev_priv(dev);
1082
1083        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1084
1085        if (netif_carrier_ok(dev))
1086                skge_link_down(skge);
1087}
1088
1089static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1090{
1091        int i;
1092
1093        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1094        *val = xm_read16(hw, port, XM_PHY_DATA);
1095
1096        if (hw->phy_type == SK_PHY_XMAC)
1097                goto ready;
1098
1099        for (i = 0; i < PHY_RETRIES; i++) {
1100                if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1101                        goto ready;
1102                udelay(1);
1103        }
1104
1105        return -ETIMEDOUT;
1106 ready:
1107        *val = xm_read16(hw, port, XM_PHY_DATA);
1108
1109        return 0;
1110}
1111
1112static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1113{
1114        u16 v = 0;
1115        if (__xm_phy_read(hw, port, reg, &v))
1116                pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1117        return v;
1118}
1119
1120static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1121{
1122        int i;
1123
1124        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1125        for (i = 0; i < PHY_RETRIES; i++) {
1126                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1127                        goto ready;
1128                udelay(1);
1129        }
1130        return -EIO;
1131
1132 ready:
1133        xm_write16(hw, port, XM_PHY_DATA, val);
1134        for (i = 0; i < PHY_RETRIES; i++) {
1135                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1136                        return 0;
1137                udelay(1);
1138        }
1139        return -ETIMEDOUT;
1140}
1141
1142static void genesis_init(struct skge_hw *hw)
1143{
1144        /* set blink source counter */
1145        skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1146        skge_write8(hw, B2_BSC_CTRL, BSC_START);
1147
1148        /* configure mac arbiter */
1149        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1150
1151        /* configure mac arbiter timeout values */
1152        skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1153        skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1154        skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1155        skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1156
1157        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1158        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1159        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1160        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1161
1162        /* configure packet arbiter timeout */
1163        skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1164        skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1165        skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1166        skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1167        skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1168}
1169
1170static void genesis_reset(struct skge_hw *hw, int port)
1171{
1172        static const u8 zero[8]  = { 0 };
1173        u32 reg;
1174
1175        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1176
1177        /* reset the statistics module */
1178        xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1179        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1180        xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1181        xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1182        xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1183
1184        /* disable Broadcom PHY IRQ */
1185        if (hw->phy_type == SK_PHY_BCOM)
1186                xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1187
1188        xm_outhash(hw, port, XM_HSM, zero);
1189
1190        /* Flush TX and RX fifo */
1191        reg = xm_read32(hw, port, XM_MODE);
1192        xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1193        xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1194}
1195
1196/* Convert mode to MII values  */
1197static const u16 phy_pause_map[] = {
1198        [FLOW_MODE_NONE] =      0,
1199        [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1200        [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1201        [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1202};
1203
1204/* special defines for FIBER (88E1011S only) */
1205static const u16 fiber_pause_map[] = {
1206        [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1207        [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1208        [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1209        [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1210};
1211
1212
1213/* Check status of Broadcom phy link */
1214static void bcom_check_link(struct skge_hw *hw, int port)
1215{
1216        struct net_device *dev = hw->dev[port];
1217        struct skge_port *skge = netdev_priv(dev);
1218        u16 status;
1219
1220        /* read twice because of latch */
1221        xm_phy_read(hw, port, PHY_BCOM_STAT);
1222        status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1223
1224        if ((status & PHY_ST_LSYNC) == 0) {
1225                xm_link_down(hw, port);
1226                return;
1227        }
1228
1229        if (skge->autoneg == AUTONEG_ENABLE) {
1230                u16 lpa, aux;
1231
1232                if (!(status & PHY_ST_AN_OVER))
1233                        return;
1234
1235                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1236                if (lpa & PHY_B_AN_RF) {
1237                        netdev_notice(dev, "remote fault\n");
1238                        return;
1239                }
1240
1241                aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1242
1243                /* Check Duplex mismatch */
1244                switch (aux & PHY_B_AS_AN_RES_MSK) {
1245                case PHY_B_RES_1000FD:
1246                        skge->duplex = DUPLEX_FULL;
1247                        break;
1248                case PHY_B_RES_1000HD:
1249                        skge->duplex = DUPLEX_HALF;
1250                        break;
1251                default:
1252                        netdev_notice(dev, "duplex mismatch\n");
1253                        return;
1254                }
1255
1256                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1257                switch (aux & PHY_B_AS_PAUSE_MSK) {
1258                case PHY_B_AS_PAUSE_MSK:
1259                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1260                        break;
1261                case PHY_B_AS_PRR:
1262                        skge->flow_status = FLOW_STAT_REM_SEND;
1263                        break;
1264                case PHY_B_AS_PRT:
1265                        skge->flow_status = FLOW_STAT_LOC_SEND;
1266                        break;
1267                default:
1268                        skge->flow_status = FLOW_STAT_NONE;
1269                }
1270                skge->speed = SPEED_1000;
1271        }
1272
1273        if (!netif_carrier_ok(dev))
1274                genesis_link_up(skge);
1275}
1276
1277/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1278 * Phy on for 100 or 10Mbit operation
1279 */
1280static void bcom_phy_init(struct skge_port *skge)
1281{
1282        struct skge_hw *hw = skge->hw;
1283        int port = skge->port;
1284        int i;
1285        u16 id1, r, ext, ctl;
1286
1287        /* magic workaround patterns for Broadcom */
1288        static const struct {
1289                u16 reg;
1290                u16 val;
1291        } A1hack[] = {
1292                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1293                { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1294                { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1295                { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1296        }, C0hack[] = {
1297                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1298                { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1299        };
1300
1301        /* read Id from external PHY (all have the same address) */
1302        id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1303
1304        /* Optimize MDIO transfer by suppressing preamble. */
1305        r = xm_read16(hw, port, XM_MMU_CMD);
1306        r |=  XM_MMU_NO_PRE;
1307        xm_write16(hw, port, XM_MMU_CMD, r);
1308
1309        switch (id1) {
1310        case PHY_BCOM_ID1_C0:
1311                /*
1312                 * Workaround BCOM Errata for the C0 type.
1313                 * Write magic patterns to reserved registers.
1314                 */
1315                for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1316                        xm_phy_write(hw, port,
1317                                     C0hack[i].reg, C0hack[i].val);
1318
1319                break;
1320        case PHY_BCOM_ID1_A1:
1321                /*
1322                 * Workaround BCOM Errata for the A1 type.
1323                 * Write magic patterns to reserved registers.
1324                 */
1325                for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1326                        xm_phy_write(hw, port,
1327                                     A1hack[i].reg, A1hack[i].val);
1328                break;
1329        }
1330
1331        /*
1332         * Workaround BCOM Errata (#10523) for all BCom PHYs.
1333         * Disable Power Management after reset.
1334         */
1335        r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1336        r |= PHY_B_AC_DIS_PM;
1337        xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1338
1339        /* Dummy read */
1340        xm_read16(hw, port, XM_ISRC);
1341
1342        ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1343        ctl = PHY_CT_SP1000;    /* always 1000mbit */
1344
1345        if (skge->autoneg == AUTONEG_ENABLE) {
1346                /*
1347                 * Workaround BCOM Errata #1 for the C5 type.
1348                 * 1000Base-T Link Acquisition Failure in Slave Mode
1349                 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1350                 */
1351                u16 adv = PHY_B_1000C_RD;
1352                if (skge->advertising & ADVERTISED_1000baseT_Half)
1353                        adv |= PHY_B_1000C_AHD;
1354                if (skge->advertising & ADVERTISED_1000baseT_Full)
1355                        adv |= PHY_B_1000C_AFD;
1356                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1357
1358                ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1359        } else {
1360                if (skge->duplex == DUPLEX_FULL)
1361                        ctl |= PHY_CT_DUP_MD;
1362                /* Force to slave */
1363                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1364        }
1365
1366        /* Set autonegotiation pause parameters */
1367        xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1368                     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1369
1370        /* Handle Jumbo frames */
1371        if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1372                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1373                             PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1374
1375                ext |= PHY_B_PEC_HIGH_LA;
1376
1377        }
1378
1379        xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1380        xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1381
1382        /* Use link status change interrupt */
1383        xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1384}
1385
1386static void xm_phy_init(struct skge_port *skge)
1387{
1388        struct skge_hw *hw = skge->hw;
1389        int port = skge->port;
1390        u16 ctrl = 0;
1391
1392        if (skge->autoneg == AUTONEG_ENABLE) {
1393                if (skge->advertising & ADVERTISED_1000baseT_Half)
1394                        ctrl |= PHY_X_AN_HD;
1395                if (skge->advertising & ADVERTISED_1000baseT_Full)
1396                        ctrl |= PHY_X_AN_FD;
1397
1398                ctrl |= fiber_pause_map[skge->flow_control];
1399
1400                xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1401
1402                /* Restart Auto-negotiation */
1403                ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1404        } else {
1405                /* Set DuplexMode in Config register */
1406                if (skge->duplex == DUPLEX_FULL)
1407                        ctrl |= PHY_CT_DUP_MD;
1408                /*
1409                 * Do NOT enable Auto-negotiation here. This would hold
1410                 * the link down because no IDLEs are transmitted
1411                 */
1412        }
1413
1414        xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1415
1416        /* Poll PHY for status changes */
1417        mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1418}
1419
1420static int xm_check_link(struct net_device *dev)
1421{
1422        struct skge_port *skge = netdev_priv(dev);
1423        struct skge_hw *hw = skge->hw;
1424        int port = skge->port;
1425        u16 status;
1426
1427        /* read twice because of latch */
1428        xm_phy_read(hw, port, PHY_XMAC_STAT);
1429        status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1430
1431        if ((status & PHY_ST_LSYNC) == 0) {
1432                xm_link_down(hw, port);
1433                return 0;
1434        }
1435
1436        if (skge->autoneg == AUTONEG_ENABLE) {
1437                u16 lpa, res;
1438
1439                if (!(status & PHY_ST_AN_OVER))
1440                        return 0;
1441
1442                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1443                if (lpa & PHY_B_AN_RF) {
1444                        netdev_notice(dev, "remote fault\n");
1445                        return 0;
1446                }
1447
1448                res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1449
1450                /* Check Duplex mismatch */
1451                switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1452                case PHY_X_RS_FD:
1453                        skge->duplex = DUPLEX_FULL;
1454                        break;
1455                case PHY_X_RS_HD:
1456                        skge->duplex = DUPLEX_HALF;
1457                        break;
1458                default:
1459                        netdev_notice(dev, "duplex mismatch\n");
1460                        return 0;
1461                }
1462
1463                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1464                if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1465                     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1466                    (lpa & PHY_X_P_SYM_MD))
1467                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1468                else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1469                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1470                        /* Enable PAUSE receive, disable PAUSE transmit */
1471                        skge->flow_status  = FLOW_STAT_REM_SEND;
1472                else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1473                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1474                        /* Disable PAUSE receive, enable PAUSE transmit */
1475                        skge->flow_status = FLOW_STAT_LOC_SEND;
1476                else
1477                        skge->flow_status = FLOW_STAT_NONE;
1478
1479                skge->speed = SPEED_1000;
1480        }
1481
1482        if (!netif_carrier_ok(dev))
1483                genesis_link_up(skge);
1484        return 1;
1485}
1486
1487/* Poll to check for link coming up.
1488 *
1489 * Since internal PHY is wired to a level triggered pin, can't
1490 * get an interrupt when carrier is detected, need to poll for
1491 * link coming up.
1492 */
1493static void xm_link_timer(struct timer_list *t)
1494{
1495        struct skge_port *skge = from_timer(skge, t, link_timer);
1496        struct net_device *dev = skge->netdev;
1497        struct skge_hw *hw = skge->hw;
1498        int port = skge->port;
1499        int i;
1500        unsigned long flags;
1501
1502        if (!netif_running(dev))
1503                return;
1504
1505        spin_lock_irqsave(&hw->phy_lock, flags);
1506
1507        /*
1508         * Verify that the link by checking GPIO register three times.
1509         * This pin has the signal from the link_sync pin connected to it.
1510         */
1511        for (i = 0; i < 3; i++) {
1512                if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1513                        goto link_down;
1514        }
1515
1516        /* Re-enable interrupt to detect link down */
1517        if (xm_check_link(dev)) {
1518                u16 msk = xm_read16(hw, port, XM_IMSK);
1519                msk &= ~XM_IS_INP_ASS;
1520                xm_write16(hw, port, XM_IMSK, msk);
1521                xm_read16(hw, port, XM_ISRC);
1522        } else {
1523link_down:
1524                mod_timer(&skge->link_timer,
1525                          round_jiffies(jiffies + LINK_HZ));
1526        }
1527        spin_unlock_irqrestore(&hw->phy_lock, flags);
1528}
1529
1530static void genesis_mac_init(struct skge_hw *hw, int port)
1531{
1532        struct net_device *dev = hw->dev[port];
1533        struct skge_port *skge = netdev_priv(dev);
1534        int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1535        int i;
1536        u32 r;
1537        static const u8 zero[6]  = { 0 };
1538
1539        for (i = 0; i < 10; i++) {
1540                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1541                             MFF_SET_MAC_RST);
1542                if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1543                        goto reset_ok;
1544                udelay(1);
1545        }
1546
1547        netdev_warn(dev, "genesis reset failed\n");
1548
1549 reset_ok:
1550        /* Unreset the XMAC. */
1551        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1552
1553        /*
1554         * Perform additional initialization for external PHYs,
1555         * namely for the 1000baseTX cards that use the XMAC's
1556         * GMII mode.
1557         */
1558        if (hw->phy_type != SK_PHY_XMAC) {
1559                /* Take external Phy out of reset */
1560                r = skge_read32(hw, B2_GP_IO);
1561                if (port == 0)
1562                        r |= GP_DIR_0|GP_IO_0;
1563                else
1564                        r |= GP_DIR_2|GP_IO_2;
1565
1566                skge_write32(hw, B2_GP_IO, r);
1567
1568                /* Enable GMII interface */
1569                xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1570        }
1571
1572
1573        switch (hw->phy_type) {
1574        case SK_PHY_XMAC:
1575                xm_phy_init(skge);
1576                break;
1577        case SK_PHY_BCOM:
1578                bcom_phy_init(skge);
1579                bcom_check_link(hw, port);
1580        }
1581
1582        /* Set Station Address */
1583        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1584
1585        /* We don't use match addresses so clear */
1586        for (i = 1; i < 16; i++)
1587                xm_outaddr(hw, port, XM_EXM(i), zero);
1588
1589        /* Clear MIB counters */
1590        xm_write16(hw, port, XM_STAT_CMD,
1591                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1592        /* Clear two times according to Errata #3 */
1593        xm_write16(hw, port, XM_STAT_CMD,
1594                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1595
1596        /* configure Rx High Water Mark (XM_RX_HI_WM) */
1597        xm_write16(hw, port, XM_RX_HI_WM, 1450);
1598
1599        /* We don't need the FCS appended to the packet. */
1600        r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1601        if (jumbo)
1602                r |= XM_RX_BIG_PK_OK;
1603
1604        if (skge->duplex == DUPLEX_HALF) {
1605                /*
1606                 * If in manual half duplex mode the other side might be in
1607                 * full duplex mode, so ignore if a carrier extension is not seen
1608                 * on frames received
1609                 */
1610                r |= XM_RX_DIS_CEXT;
1611        }
1612        xm_write16(hw, port, XM_RX_CMD, r);
1613
1614        /* We want short frames padded to 60 bytes. */
1615        xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1616
1617        /* Increase threshold for jumbo frames on dual port */
1618        if (hw->ports > 1 && jumbo)
1619                xm_write16(hw, port, XM_TX_THR, 1020);
1620        else
1621                xm_write16(hw, port, XM_TX_THR, 512);
1622
1623        /*
1624         * Enable the reception of all error frames. This is
1625         * a necessary evil due to the design of the XMAC. The
1626         * XMAC's receive FIFO is only 8K in size, however jumbo
1627         * frames can be up to 9000 bytes in length. When bad
1628         * frame filtering is enabled, the XMAC's RX FIFO operates
1629         * in 'store and forward' mode. For this to work, the
1630         * entire frame has to fit into the FIFO, but that means
1631         * that jumbo frames larger than 8192 bytes will be
1632         * truncated. Disabling all bad frame filtering causes
1633         * the RX FIFO to operate in streaming mode, in which
1634         * case the XMAC will start transferring frames out of the
1635         * RX FIFO as soon as the FIFO threshold is reached.
1636         */
1637        xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1638
1639
1640        /*
1641         * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1642         *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1643         *        and 'Octets Rx OK Hi Cnt Ov'.
1644         */
1645        xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1646
1647        /*
1648         * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1649         *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1650         *        and 'Octets Tx OK Hi Cnt Ov'.
1651         */
1652        xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1653
1654        /* Configure MAC arbiter */
1655        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1656
1657        /* configure timeout values */
1658        skge_write8(hw, B3_MA_TOINI_RX1, 72);
1659        skge_write8(hw, B3_MA_TOINI_RX2, 72);
1660        skge_write8(hw, B3_MA_TOINI_TX1, 72);
1661        skge_write8(hw, B3_MA_TOINI_TX2, 72);
1662
1663        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1664        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1665        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1666        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1667
1668        /* Configure Rx MAC FIFO */
1669        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1670        skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1671        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1672
1673        /* Configure Tx MAC FIFO */
1674        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1675        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1676        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1677
1678        if (jumbo) {
1679                /* Enable frame flushing if jumbo frames used */
1680                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1681        } else {
1682                /* enable timeout timers if normal frames */
1683                skge_write16(hw, B3_PA_CTRL,
1684                             (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1685        }
1686}
1687
1688static void genesis_stop(struct skge_port *skge)
1689{
1690        struct skge_hw *hw = skge->hw;
1691        int port = skge->port;
1692        unsigned retries = 1000;
1693        u16 cmd;
1694
1695        /* Disable Tx and Rx */
1696        cmd = xm_read16(hw, port, XM_MMU_CMD);
1697        cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1698        xm_write16(hw, port, XM_MMU_CMD, cmd);
1699
1700        genesis_reset(hw, port);
1701
1702        /* Clear Tx packet arbiter timeout IRQ */
1703        skge_write16(hw, B3_PA_CTRL,
1704                     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1705
1706        /* Reset the MAC */
1707        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1708        do {
1709                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1710                if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1711                        break;
1712        } while (--retries > 0);
1713
1714        /* For external PHYs there must be special handling */
1715        if (hw->phy_type != SK_PHY_XMAC) {
1716                u32 reg = skge_read32(hw, B2_GP_IO);
1717                if (port == 0) {
1718                        reg |= GP_DIR_0;
1719                        reg &= ~GP_IO_0;
1720                } else {
1721                        reg |= GP_DIR_2;
1722                        reg &= ~GP_IO_2;
1723                }
1724                skge_write32(hw, B2_GP_IO, reg);
1725                skge_read32(hw, B2_GP_IO);
1726        }
1727
1728        xm_write16(hw, port, XM_MMU_CMD,
1729                        xm_read16(hw, port, XM_MMU_CMD)
1730                        & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1731
1732        xm_read16(hw, port, XM_MMU_CMD);
1733}
1734
1735
1736static void genesis_get_stats(struct skge_port *skge, u64 *data)
1737{
1738        struct skge_hw *hw = skge->hw;
1739        int port = skge->port;
1740        int i;
1741        unsigned long timeout = jiffies + HZ;
1742
1743        xm_write16(hw, port,
1744                        XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1745
1746        /* wait for update to complete */
1747        while (xm_read16(hw, port, XM_STAT_CMD)
1748               & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1749                if (time_after(jiffies, timeout))
1750                        break;
1751                udelay(10);
1752        }
1753
1754        /* special case for 64 bit octet counter */
1755        data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1756                | xm_read32(hw, port, XM_TXO_OK_LO);
1757        data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1758                | xm_read32(hw, port, XM_RXO_OK_LO);
1759
1760        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1761                data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1762}
1763
1764static void genesis_mac_intr(struct skge_hw *hw, int port)
1765{
1766        struct net_device *dev = hw->dev[port];
1767        struct skge_port *skge = netdev_priv(dev);
1768        u16 status = xm_read16(hw, port, XM_ISRC);
1769
1770        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1771                     "mac interrupt status 0x%x\n", status);
1772
1773        if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1774                xm_link_down(hw, port);
1775                mod_timer(&skge->link_timer, jiffies + 1);
1776        }
1777
1778        if (status & XM_IS_TXF_UR) {
1779                xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1780                ++dev->stats.tx_fifo_errors;
1781        }
1782}
1783
1784static void genesis_link_up(struct skge_port *skge)
1785{
1786        struct skge_hw *hw = skge->hw;
1787        int port = skge->port;
1788        u16 cmd, msk;
1789        u32 mode;
1790
1791        cmd = xm_read16(hw, port, XM_MMU_CMD);
1792
1793        /*
1794         * enabling pause frame reception is required for 1000BT
1795         * because the XMAC is not reset if the link is going down
1796         */
1797        if (skge->flow_status == FLOW_STAT_NONE ||
1798            skge->flow_status == FLOW_STAT_LOC_SEND)
1799                /* Disable Pause Frame Reception */
1800                cmd |= XM_MMU_IGN_PF;
1801        else
1802                /* Enable Pause Frame Reception */
1803                cmd &= ~XM_MMU_IGN_PF;
1804
1805        xm_write16(hw, port, XM_MMU_CMD, cmd);
1806
1807        mode = xm_read32(hw, port, XM_MODE);
1808        if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1809            skge->flow_status == FLOW_STAT_LOC_SEND) {
1810                /*
1811                 * Configure Pause Frame Generation
1812                 * Use internal and external Pause Frame Generation.
1813                 * Sending pause frames is edge triggered.
1814                 * Send a Pause frame with the maximum pause time if
1815                 * internal oder external FIFO full condition occurs.
1816                 * Send a zero pause time frame to re-start transmission.
1817                 */
1818                /* XM_PAUSE_DA = '010000C28001' (default) */
1819                /* XM_MAC_PTIME = 0xffff (maximum) */
1820                /* remember this value is defined in big endian (!) */
1821                xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1822
1823                mode |= XM_PAUSE_MODE;
1824                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1825        } else {
1826                /*
1827                 * disable pause frame generation is required for 1000BT
1828                 * because the XMAC is not reset if the link is going down
1829                 */
1830                /* Disable Pause Mode in Mode Register */
1831                mode &= ~XM_PAUSE_MODE;
1832
1833                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1834        }
1835
1836        xm_write32(hw, port, XM_MODE, mode);
1837
1838        /* Turn on detection of Tx underrun */
1839        msk = xm_read16(hw, port, XM_IMSK);
1840        msk &= ~XM_IS_TXF_UR;
1841        xm_write16(hw, port, XM_IMSK, msk);
1842
1843        xm_read16(hw, port, XM_ISRC);
1844
1845        /* get MMU Command Reg. */
1846        cmd = xm_read16(hw, port, XM_MMU_CMD);
1847        if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1848                cmd |= XM_MMU_GMII_FD;
1849
1850        /*
1851         * Workaround BCOM Errata (#10523) for all BCom Phys
1852         * Enable Power Management after link up
1853         */
1854        if (hw->phy_type == SK_PHY_BCOM) {
1855                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1856                             xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1857                             & ~PHY_B_AC_DIS_PM);
1858                xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1859        }
1860
1861        /* enable Rx/Tx */
1862        xm_write16(hw, port, XM_MMU_CMD,
1863                        cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1864        skge_link_up(skge);
1865}
1866
1867
1868static inline void bcom_phy_intr(struct skge_port *skge)
1869{
1870        struct skge_hw *hw = skge->hw;
1871        int port = skge->port;
1872        u16 isrc;
1873
1874        isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1875        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1876                     "phy interrupt status 0x%x\n", isrc);
1877
1878        if (isrc & PHY_B_IS_PSE)
1879                pr_err("%s: uncorrectable pair swap error\n",
1880                       hw->dev[port]->name);
1881
1882        /* Workaround BCom Errata:
1883         *      enable and disable loopback mode if "NO HCD" occurs.
1884         */
1885        if (isrc & PHY_B_IS_NO_HDCL) {
1886                u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1887                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1888                                  ctrl | PHY_CT_LOOP);
1889                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1890                                  ctrl & ~PHY_CT_LOOP);
1891        }
1892
1893        if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1894                bcom_check_link(hw, port);
1895
1896}
1897
1898static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1899{
1900        int i;
1901
1902        gma_write16(hw, port, GM_SMI_DATA, val);
1903        gma_write16(hw, port, GM_SMI_CTRL,
1904                         GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1905        for (i = 0; i < PHY_RETRIES; i++) {
1906                udelay(1);
1907
1908                if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1909                        return 0;
1910        }
1911
1912        pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1913        return -EIO;
1914}
1915
1916static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1917{
1918        int i;
1919
1920        gma_write16(hw, port, GM_SMI_CTRL,
1921                         GM_SMI_CT_PHY_AD(hw->phy_addr)
1922                         | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1923
1924        for (i = 0; i < PHY_RETRIES; i++) {
1925                udelay(1);
1926                if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1927                        goto ready;
1928        }
1929
1930        return -ETIMEDOUT;
1931 ready:
1932        *val = gma_read16(hw, port, GM_SMI_DATA);
1933        return 0;
1934}
1935
1936static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1937{
1938        u16 v = 0;
1939        if (__gm_phy_read(hw, port, reg, &v))
1940                pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1941        return v;
1942}
1943
1944/* Marvell Phy Initialization */
1945static void yukon_init(struct skge_hw *hw, int port)
1946{
1947        struct skge_port *skge = netdev_priv(hw->dev[port]);
1948        u16 ctrl, ct1000, adv;
1949
1950        if (skge->autoneg == AUTONEG_ENABLE) {
1951                u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1952
1953                ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1954                          PHY_M_EC_MAC_S_MSK);
1955                ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1956
1957                ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1958
1959                gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1960        }
1961
1962        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1963        if (skge->autoneg == AUTONEG_DISABLE)
1964                ctrl &= ~PHY_CT_ANE;
1965
1966        ctrl |= PHY_CT_RESET;
1967        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1968
1969        ctrl = 0;
1970        ct1000 = 0;
1971        adv = PHY_AN_CSMA;
1972
1973        if (skge->autoneg == AUTONEG_ENABLE) {
1974                if (hw->copper) {
1975                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1976                                ct1000 |= PHY_M_1000C_AFD;
1977                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1978                                ct1000 |= PHY_M_1000C_AHD;
1979                        if (skge->advertising & ADVERTISED_100baseT_Full)
1980                                adv |= PHY_M_AN_100_FD;
1981                        if (skge->advertising & ADVERTISED_100baseT_Half)
1982                                adv |= PHY_M_AN_100_HD;
1983                        if (skge->advertising & ADVERTISED_10baseT_Full)
1984                                adv |= PHY_M_AN_10_FD;
1985                        if (skge->advertising & ADVERTISED_10baseT_Half)
1986                                adv |= PHY_M_AN_10_HD;
1987
1988                        /* Set Flow-control capabilities */
1989                        adv |= phy_pause_map[skge->flow_control];
1990                } else {
1991                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1992                                adv |= PHY_M_AN_1000X_AFD;
1993                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1994                                adv |= PHY_M_AN_1000X_AHD;
1995
1996                        adv |= fiber_pause_map[skge->flow_control];
1997                }
1998
1999                /* Restart Auto-negotiation */
2000                ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2001        } else {
2002                /* forced speed/duplex settings */
2003                ct1000 = PHY_M_1000C_MSE;
2004
2005                if (skge->duplex == DUPLEX_FULL)
2006                        ctrl |= PHY_CT_DUP_MD;
2007
2008                switch (skge->speed) {
2009                case SPEED_1000:
2010                        ctrl |= PHY_CT_SP1000;
2011                        break;
2012                case SPEED_100:
2013                        ctrl |= PHY_CT_SP100;
2014                        break;
2015                }
2016
2017                ctrl |= PHY_CT_RESET;
2018        }
2019
2020        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2021
2022        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2023        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2024
2025        /* Enable phy interrupt on autonegotiation complete (or link up) */
2026        if (skge->autoneg == AUTONEG_ENABLE)
2027                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2028        else
2029                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2030}
2031
2032static void yukon_reset(struct skge_hw *hw, int port)
2033{
2034        gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2035        gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2036        gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2037        gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2038        gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2039
2040        gma_write16(hw, port, GM_RX_CTRL,
2041                         gma_read16(hw, port, GM_RX_CTRL)
2042                         | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2043}
2044
2045/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2046static int is_yukon_lite_a0(struct skge_hw *hw)
2047{
2048        u32 reg;
2049        int ret;
2050
2051        if (hw->chip_id != CHIP_ID_YUKON)
2052                return 0;
2053
2054        reg = skge_read32(hw, B2_FAR);
2055        skge_write8(hw, B2_FAR + 3, 0xff);
2056        ret = (skge_read8(hw, B2_FAR + 3) != 0);
2057        skge_write32(hw, B2_FAR, reg);
2058        return ret;
2059}
2060
2061static void yukon_mac_init(struct skge_hw *hw, int port)
2062{
2063        struct skge_port *skge = netdev_priv(hw->dev[port]);
2064        int i;
2065        u32 reg;
2066        const u8 *addr = hw->dev[port]->dev_addr;
2067
2068        /* WA code for COMA mode -- set PHY reset */
2069        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2070            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2071                reg = skge_read32(hw, B2_GP_IO);
2072                reg |= GP_DIR_9 | GP_IO_9;
2073                skge_write32(hw, B2_GP_IO, reg);
2074        }
2075
2076        /* hard reset */
2077        skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2078        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2079
2080        /* WA code for COMA mode -- clear PHY reset */
2081        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2082            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2083                reg = skge_read32(hw, B2_GP_IO);
2084                reg |= GP_DIR_9;
2085                reg &= ~GP_IO_9;
2086                skge_write32(hw, B2_GP_IO, reg);
2087        }
2088
2089        /* Set hardware config mode */
2090        reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2091                GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2092        reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2093
2094        /* Clear GMC reset */
2095        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2096        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2097        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2098
2099        if (skge->autoneg == AUTONEG_DISABLE) {
2100                reg = GM_GPCR_AU_ALL_DIS;
2101                gma_write16(hw, port, GM_GP_CTRL,
2102                                 gma_read16(hw, port, GM_GP_CTRL) | reg);
2103
2104                switch (skge->speed) {
2105                case SPEED_1000:
2106                        reg &= ~GM_GPCR_SPEED_100;
2107                        reg |= GM_GPCR_SPEED_1000;
2108                        break;
2109                case SPEED_100:
2110                        reg &= ~GM_GPCR_SPEED_1000;
2111                        reg |= GM_GPCR_SPEED_100;
2112                        break;
2113                case SPEED_10:
2114                        reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2115                        break;
2116                }
2117
2118                if (skge->duplex == DUPLEX_FULL)
2119                        reg |= GM_GPCR_DUP_FULL;
2120        } else
2121                reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2122
2123        switch (skge->flow_control) {
2124        case FLOW_MODE_NONE:
2125                skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2126                reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2127                break;
2128        case FLOW_MODE_LOC_SEND:
2129                /* disable Rx flow-control */
2130                reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2131                break;
2132        case FLOW_MODE_SYMMETRIC:
2133        case FLOW_MODE_SYM_OR_REM:
2134                /* enable Tx & Rx flow-control */
2135                break;
2136        }
2137
2138        gma_write16(hw, port, GM_GP_CTRL, reg);
2139        skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2140
2141        yukon_init(hw, port);
2142
2143        /* MIB clear */
2144        reg = gma_read16(hw, port, GM_PHY_ADDR);
2145        gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2146
2147        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2148                gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2149        gma_write16(hw, port, GM_PHY_ADDR, reg);
2150
2151        /* transmit control */
2152        gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2153
2154        /* receive control reg: unicast + multicast + no FCS  */
2155        gma_write16(hw, port, GM_RX_CTRL,
2156                         GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2157
2158        /* transmit flow control */
2159        gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2160
2161        /* transmit parameter */
2162        gma_write16(hw, port, GM_TX_PARAM,
2163                         TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2164                         TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2165                         TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2166
2167        /* configure the Serial Mode Register */
2168        reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2169                | GM_SMOD_VLAN_ENA
2170                | IPG_DATA_VAL(IPG_DATA_DEF);
2171
2172        if (hw->dev[port]->mtu > ETH_DATA_LEN)
2173                reg |= GM_SMOD_JUMBO_ENA;
2174
2175        gma_write16(hw, port, GM_SERIAL_MODE, reg);
2176
2177        /* physical address: used for pause frames */
2178        gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2179        /* virtual address for data */
2180        gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2181
2182        /* enable interrupt mask for counter overflows */
2183        gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2184        gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2185        gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2186
2187        /* Initialize Mac Fifo */
2188
2189        /* Configure Rx MAC FIFO */
2190        skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2191        reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2192
2193        /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2194        if (is_yukon_lite_a0(hw))
2195                reg &= ~GMF_RX_F_FL_ON;
2196
2197        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2198        skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2199        /*
2200         * because Pause Packet Truncation in GMAC is not working
2201         * we have to increase the Flush Threshold to 64 bytes
2202         * in order to flush pause packets in Rx FIFO on Yukon-1
2203         */
2204        skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2205
2206        /* Configure Tx MAC FIFO */
2207        skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2208        skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2209}
2210
2211/* Go into power down mode */
2212static void yukon_suspend(struct skge_hw *hw, int port)
2213{
2214        u16 ctrl;
2215
2216        ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2217        ctrl |= PHY_M_PC_POL_R_DIS;
2218        gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2219
2220        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2221        ctrl |= PHY_CT_RESET;
2222        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2223
2224        /* switch IEEE compatible power down mode on */
2225        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2226        ctrl |= PHY_CT_PDOWN;
2227        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2228}
2229
2230static void yukon_stop(struct skge_port *skge)
2231{
2232        struct skge_hw *hw = skge->hw;
2233        int port = skge->port;
2234
2235        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2236        yukon_reset(hw, port);
2237
2238        gma_write16(hw, port, GM_GP_CTRL,
2239                         gma_read16(hw, port, GM_GP_CTRL)
2240                         & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2241        gma_read16(hw, port, GM_GP_CTRL);
2242
2243        yukon_suspend(hw, port);
2244
2245        /* set GPHY Control reset */
2246        skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2247        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2248}
2249
2250static void yukon_get_stats(struct skge_port *skge, u64 *data)
2251{
2252        struct skge_hw *hw = skge->hw;
2253        int port = skge->port;
2254        int i;
2255
2256        data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2257                | gma_read32(hw, port, GM_TXO_OK_LO);
2258        data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2259                | gma_read32(hw, port, GM_RXO_OK_LO);
2260
2261        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2262                data[i] = gma_read32(hw, port,
2263                                          skge_stats[i].gma_offset);
2264}
2265
2266static void yukon_mac_intr(struct skge_hw *hw, int port)
2267{
2268        struct net_device *dev = hw->dev[port];
2269        struct skge_port *skge = netdev_priv(dev);
2270        u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2271
2272        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2273                     "mac interrupt status 0x%x\n", status);
2274
2275        if (status & GM_IS_RX_FF_OR) {
2276                ++dev->stats.rx_fifo_errors;
2277                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2278        }
2279
2280        if (status & GM_IS_TX_FF_UR) {
2281                ++dev->stats.tx_fifo_errors;
2282                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2283        }
2284
2285}
2286
2287static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2288{
2289        switch (aux & PHY_M_PS_SPEED_MSK) {
2290        case PHY_M_PS_SPEED_1000:
2291                return SPEED_1000;
2292        case PHY_M_PS_SPEED_100:
2293                return SPEED_100;
2294        default:
2295                return SPEED_10;
2296        }
2297}
2298
2299static void yukon_link_up(struct skge_port *skge)
2300{
2301        struct skge_hw *hw = skge->hw;
2302        int port = skge->port;
2303        u16 reg;
2304
2305        /* Enable Transmit FIFO Underrun */
2306        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2307
2308        reg = gma_read16(hw, port, GM_GP_CTRL);
2309        if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2310                reg |= GM_GPCR_DUP_FULL;
2311
2312        /* enable Rx/Tx */
2313        reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2314        gma_write16(hw, port, GM_GP_CTRL, reg);
2315
2316        gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2317        skge_link_up(skge);
2318}
2319
2320static void yukon_link_down(struct skge_port *skge)
2321{
2322        struct skge_hw *hw = skge->hw;
2323        int port = skge->port;
2324        u16 ctrl;
2325
2326        ctrl = gma_read16(hw, port, GM_GP_CTRL);
2327        ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2328        gma_write16(hw, port, GM_GP_CTRL, ctrl);
2329
2330        if (skge->flow_status == FLOW_STAT_REM_SEND) {
2331                ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2332                ctrl |= PHY_M_AN_ASP;
2333                /* restore Asymmetric Pause bit */
2334                gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2335        }
2336
2337        skge_link_down(skge);
2338
2339        yukon_init(hw, port);
2340}
2341
2342static void yukon_phy_intr(struct skge_port *skge)
2343{
2344        struct skge_hw *hw = skge->hw;
2345        int port = skge->port;
2346        const char *reason = NULL;
2347        u16 istatus, phystat;
2348
2349        istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2350        phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2351
2352        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2353                     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2354
2355        if (istatus & PHY_M_IS_AN_COMPL) {
2356                if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2357                    & PHY_M_AN_RF) {
2358                        reason = "remote fault";
2359                        goto failed;
2360                }
2361
2362                if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2363                        reason = "master/slave fault";
2364                        goto failed;
2365                }
2366
2367                if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2368                        reason = "speed/duplex";
2369                        goto failed;
2370                }
2371
2372                skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2373                        ? DUPLEX_FULL : DUPLEX_HALF;
2374                skge->speed = yukon_speed(hw, phystat);
2375
2376                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2377                switch (phystat & PHY_M_PS_PAUSE_MSK) {
2378                case PHY_M_PS_PAUSE_MSK:
2379                        skge->flow_status = FLOW_STAT_SYMMETRIC;
2380                        break;
2381                case PHY_M_PS_RX_P_EN:
2382                        skge->flow_status = FLOW_STAT_REM_SEND;
2383                        break;
2384                case PHY_M_PS_TX_P_EN:
2385                        skge->flow_status = FLOW_STAT_LOC_SEND;
2386                        break;
2387                default:
2388                        skge->flow_status = FLOW_STAT_NONE;
2389                }
2390
2391                if (skge->flow_status == FLOW_STAT_NONE ||
2392                    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2393                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2394                else
2395                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2396                yukon_link_up(skge);
2397                return;
2398        }
2399
2400        if (istatus & PHY_M_IS_LSP_CHANGE)
2401                skge->speed = yukon_speed(hw, phystat);
2402
2403        if (istatus & PHY_M_IS_DUP_CHANGE)
2404                skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2405        if (istatus & PHY_M_IS_LST_CHANGE) {
2406                if (phystat & PHY_M_PS_LINK_UP)
2407                        yukon_link_up(skge);
2408                else
2409                        yukon_link_down(skge);
2410        }
2411        return;
2412 failed:
2413        pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2414
2415        /* XXX restart autonegotiation? */
2416}
2417
2418static void skge_phy_reset(struct skge_port *skge)
2419{
2420        struct skge_hw *hw = skge->hw;
2421        int port = skge->port;
2422        struct net_device *dev = hw->dev[port];
2423
2424        netif_stop_queue(skge->netdev);
2425        netif_carrier_off(skge->netdev);
2426
2427        spin_lock_bh(&hw->phy_lock);
2428        if (is_genesis(hw)) {
2429                genesis_reset(hw, port);
2430                genesis_mac_init(hw, port);
2431        } else {
2432                yukon_reset(hw, port);
2433                yukon_init(hw, port);
2434        }
2435        spin_unlock_bh(&hw->phy_lock);
2436
2437        skge_set_multicast(dev);
2438}
2439
2440/* Basic MII support */
2441static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2442{
2443        struct mii_ioctl_data *data = if_mii(ifr);
2444        struct skge_port *skge = netdev_priv(dev);
2445        struct skge_hw *hw = skge->hw;
2446        int err = -EOPNOTSUPP;
2447
2448        if (!netif_running(dev))
2449                return -ENODEV; /* Phy still in reset */
2450
2451        switch (cmd) {
2452        case SIOCGMIIPHY:
2453                data->phy_id = hw->phy_addr;
2454
2455                fallthrough;
2456        case SIOCGMIIREG: {
2457                u16 val = 0;
2458                spin_lock_bh(&hw->phy_lock);
2459
2460                if (is_genesis(hw))
2461                        err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2462                else
2463                        err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2464                spin_unlock_bh(&hw->phy_lock);
2465                data->val_out = val;
2466                break;
2467        }
2468
2469        case SIOCSMIIREG:
2470                spin_lock_bh(&hw->phy_lock);
2471                if (is_genesis(hw))
2472                        err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2473                                   data->val_in);
2474                else
2475                        err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2476                                   data->val_in);
2477                spin_unlock_bh(&hw->phy_lock);
2478                break;
2479        }
2480        return err;
2481}
2482
2483static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2484{
2485        u32 end;
2486
2487        start /= 8;
2488        len /= 8;
2489        end = start + len - 1;
2490
2491        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2492        skge_write32(hw, RB_ADDR(q, RB_START), start);
2493        skge_write32(hw, RB_ADDR(q, RB_WP), start);
2494        skge_write32(hw, RB_ADDR(q, RB_RP), start);
2495        skge_write32(hw, RB_ADDR(q, RB_END), end);
2496
2497        if (q == Q_R1 || q == Q_R2) {
2498                /* Set thresholds on receive queue's */
2499                skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2500                             start + (2*len)/3);
2501                skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2502                             start + (len/3));
2503        } else {
2504                /* Enable store & forward on Tx queue's because
2505                 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2506                 */
2507                skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2508        }
2509
2510        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2511}
2512
2513/* Setup Bus Memory Interface */
2514static void skge_qset(struct skge_port *skge, u16 q,
2515                      const struct skge_element *e)
2516{
2517        struct skge_hw *hw = skge->hw;
2518        u32 watermark = 0x600;
2519        u64 base = skge->dma + (e->desc - skge->mem);
2520
2521        /* optimization to reduce window on 32bit/33mhz */
2522        if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2523                watermark /= 2;
2524
2525        skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2526        skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2527        skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2528        skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2529}
2530
2531static int skge_up(struct net_device *dev)
2532{
2533        struct skge_port *skge = netdev_priv(dev);
2534        struct skge_hw *hw = skge->hw;
2535        int port = skge->port;
2536        u32 chunk, ram_addr;
2537        size_t rx_size, tx_size;
2538        int err;
2539
2540        if (!is_valid_ether_addr(dev->dev_addr))
2541                return -EINVAL;
2542
2543        netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2544
2545        if (dev->mtu > RX_BUF_SIZE)
2546                skge->rx_buf_size = dev->mtu + ETH_HLEN;
2547        else
2548                skge->rx_buf_size = RX_BUF_SIZE;
2549
2550
2551        rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2552        tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2553        skge->mem_size = tx_size + rx_size;
2554        skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2555                                       &skge->dma, GFP_KERNEL);
2556        if (!skge->mem)
2557                return -ENOMEM;
2558
2559        BUG_ON(skge->dma & 7);
2560
2561        if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2562                dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2563                err = -EINVAL;
2564                goto free_pci_mem;
2565        }
2566
2567        err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2568        if (err)
2569                goto free_pci_mem;
2570
2571        err = skge_rx_fill(dev);
2572        if (err)
2573                goto free_rx_ring;
2574
2575        err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2576                              skge->dma + rx_size);
2577        if (err)
2578                goto free_rx_ring;
2579
2580        if (hw->ports == 1) {
2581                err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2582                                  dev->name, hw);
2583                if (err) {
2584                        netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2585                                   hw->pdev->irq, err);
2586                        goto free_tx_ring;
2587                }
2588        }
2589
2590        /* Initialize MAC */
2591        netif_carrier_off(dev);
2592        spin_lock_bh(&hw->phy_lock);
2593        if (is_genesis(hw))
2594                genesis_mac_init(hw, port);
2595        else
2596                yukon_mac_init(hw, port);
2597        spin_unlock_bh(&hw->phy_lock);
2598
2599        /* Configure RAMbuffers - equally between ports and tx/rx */
2600        chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2601        ram_addr = hw->ram_offset + 2 * chunk * port;
2602
2603        skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2604        skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2605
2606        BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2607        skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2608        skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2609
2610        /* Start receiver BMU */
2611        wmb();
2612        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2613        skge_led(skge, LED_MODE_ON);
2614
2615        spin_lock_irq(&hw->hw_lock);
2616        hw->intr_mask |= portmask[port];
2617        skge_write32(hw, B0_IMSK, hw->intr_mask);
2618        skge_read32(hw, B0_IMSK);
2619        spin_unlock_irq(&hw->hw_lock);
2620
2621        napi_enable(&skge->napi);
2622
2623        skge_set_multicast(dev);
2624
2625        return 0;
2626
2627 free_tx_ring:
2628        kfree(skge->tx_ring.start);
2629 free_rx_ring:
2630        skge_rx_clean(skge);
2631        kfree(skge->rx_ring.start);
2632 free_pci_mem:
2633        dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2634                          skge->dma);
2635        skge->mem = NULL;
2636
2637        return err;
2638}
2639
2640/* stop receiver */
2641static void skge_rx_stop(struct skge_hw *hw, int port)
2642{
2643        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2644        skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2645                     RB_RST_SET|RB_DIS_OP_MD);
2646        skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2647}
2648
2649static int skge_down(struct net_device *dev)
2650{
2651        struct skge_port *skge = netdev_priv(dev);
2652        struct skge_hw *hw = skge->hw;
2653        int port = skge->port;
2654
2655        if (!skge->mem)
2656                return 0;
2657
2658        netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2659
2660        netif_tx_disable(dev);
2661
2662        if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2663                del_timer_sync(&skge->link_timer);
2664
2665        napi_disable(&skge->napi);
2666        netif_carrier_off(dev);
2667
2668        spin_lock_irq(&hw->hw_lock);
2669        hw->intr_mask &= ~portmask[port];
2670        skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2671        skge_read32(hw, B0_IMSK);
2672        spin_unlock_irq(&hw->hw_lock);
2673
2674        if (hw->ports == 1)
2675                free_irq(hw->pdev->irq, hw);
2676
2677        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2678        if (is_genesis(hw))
2679                genesis_stop(skge);
2680        else
2681                yukon_stop(skge);
2682
2683        /* Stop transmitter */
2684        skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2685        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2686                     RB_RST_SET|RB_DIS_OP_MD);
2687
2688
2689        /* Disable Force Sync bit and Enable Alloc bit */
2690        skge_write8(hw, SK_REG(port, TXA_CTRL),
2691                    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2692
2693        /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2694        skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2695        skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2696
2697        /* Reset PCI FIFO */
2698        skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2699        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2700
2701        /* Reset the RAM Buffer async Tx queue */
2702        skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2703
2704        skge_rx_stop(hw, port);
2705
2706        if (is_genesis(hw)) {
2707                skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2708                skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2709        } else {
2710                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2711                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2712        }
2713
2714        skge_led(skge, LED_MODE_OFF);
2715
2716        netif_tx_lock_bh(dev);
2717        skge_tx_clean(dev);
2718        netif_tx_unlock_bh(dev);
2719
2720        skge_rx_clean(skge);
2721
2722        kfree(skge->rx_ring.start);
2723        kfree(skge->tx_ring.start);
2724        dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2725                          skge->dma);
2726        skge->mem = NULL;
2727        return 0;
2728}
2729
2730static inline int skge_avail(const struct skge_ring *ring)
2731{
2732        smp_mb();
2733        return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2734                + (ring->to_clean - ring->to_use) - 1;
2735}
2736
2737static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2738                                   struct net_device *dev)
2739{
2740        struct skge_port *skge = netdev_priv(dev);
2741        struct skge_hw *hw = skge->hw;
2742        struct skge_element *e;
2743        struct skge_tx_desc *td;
2744        int i;
2745        u32 control, len;
2746        dma_addr_t map;
2747
2748        if (skb_padto(skb, ETH_ZLEN))
2749                return NETDEV_TX_OK;
2750
2751        if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2752                return NETDEV_TX_BUSY;
2753
2754        e = skge->tx_ring.to_use;
2755        td = e->desc;
2756        BUG_ON(td->control & BMU_OWN);
2757        e->skb = skb;
2758        len = skb_headlen(skb);
2759        map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2760        if (dma_mapping_error(&hw->pdev->dev, map))
2761                goto mapping_error;
2762
2763        dma_unmap_addr_set(e, mapaddr, map);
2764        dma_unmap_len_set(e, maplen, len);
2765
2766        td->dma_lo = lower_32_bits(map);
2767        td->dma_hi = upper_32_bits(map);
2768
2769        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2770                const int offset = skb_checksum_start_offset(skb);
2771
2772                /* This seems backwards, but it is what the sk98lin
2773                 * does.  Looks like hardware is wrong?
2774                 */
2775                if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2776                    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2777                        control = BMU_TCP_CHECK;
2778                else
2779                        control = BMU_UDP_CHECK;
2780
2781                td->csum_offs = 0;
2782                td->csum_start = offset;
2783                td->csum_write = offset + skb->csum_offset;
2784        } else
2785                control = BMU_CHECK;
2786
2787        if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2788                control |= BMU_EOF | BMU_IRQ_EOF;
2789        else {
2790                struct skge_tx_desc *tf = td;
2791
2792                control |= BMU_STFWD;
2793                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2794                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2795
2796                        map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2797                                               skb_frag_size(frag), DMA_TO_DEVICE);
2798                        if (dma_mapping_error(&hw->pdev->dev, map))
2799                                goto mapping_unwind;
2800
2801                        e = e->next;
2802                        e->skb = skb;
2803                        tf = e->desc;
2804                        BUG_ON(tf->control & BMU_OWN);
2805
2806                        tf->dma_lo = lower_32_bits(map);
2807                        tf->dma_hi = upper_32_bits(map);
2808                        dma_unmap_addr_set(e, mapaddr, map);
2809                        dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2810
2811                        tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2812                }
2813                tf->control |= BMU_EOF | BMU_IRQ_EOF;
2814        }
2815        /* Make sure all the descriptors written */
2816        wmb();
2817        td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2818        wmb();
2819
2820        netdev_sent_queue(dev, skb->len);
2821
2822        skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2823
2824        netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2825                     "tx queued, slot %td, len %d\n",
2826                     e - skge->tx_ring.start, skb->len);
2827
2828        skge->tx_ring.to_use = e->next;
2829        smp_wmb();
2830
2831        if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2832                netdev_dbg(dev, "transmit queue full\n");
2833                netif_stop_queue(dev);
2834        }
2835
2836        return NETDEV_TX_OK;
2837
2838mapping_unwind:
2839        e = skge->tx_ring.to_use;
2840        dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2841                         dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2842        while (i-- > 0) {
2843                e = e->next;
2844                dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2845                               dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2846        }
2847
2848mapping_error:
2849        if (net_ratelimit())
2850                dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2851        dev_kfree_skb_any(skb);
2852        return NETDEV_TX_OK;
2853}
2854
2855
2856/* Free resources associated with this reing element */
2857static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2858                                 u32 control)
2859{
2860        /* skb header vs. fragment */
2861        if (control & BMU_STF)
2862                dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2863                                 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2864        else
2865                dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2866                               dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867}
2868
2869/* Free all buffers in transmit ring */
2870static void skge_tx_clean(struct net_device *dev)
2871{
2872        struct skge_port *skge = netdev_priv(dev);
2873        struct skge_element *e;
2874
2875        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2876                struct skge_tx_desc *td = e->desc;
2877
2878                skge_tx_unmap(skge->hw->pdev, e, td->control);
2879
2880                if (td->control & BMU_EOF)
2881                        dev_kfree_skb(e->skb);
2882                td->control = 0;
2883        }
2884
2885        netdev_reset_queue(dev);
2886        skge->tx_ring.to_clean = e;
2887}
2888
2889static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2890{
2891        struct skge_port *skge = netdev_priv(dev);
2892
2893        netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2894
2895        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2896        skge_tx_clean(dev);
2897        netif_wake_queue(dev);
2898}
2899
2900static int skge_change_mtu(struct net_device *dev, int new_mtu)
2901{
2902        int err;
2903
2904        if (!netif_running(dev)) {
2905                dev->mtu = new_mtu;
2906                return 0;
2907        }
2908
2909        skge_down(dev);
2910
2911        dev->mtu = new_mtu;
2912
2913        err = skge_up(dev);
2914        if (err)
2915                dev_close(dev);
2916
2917        return err;
2918}
2919
2920static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2921
2922static void genesis_add_filter(u8 filter[8], const u8 *addr)
2923{
2924        u32 crc, bit;
2925
2926        crc = ether_crc_le(ETH_ALEN, addr);
2927        bit = ~crc & 0x3f;
2928        filter[bit/8] |= 1 << (bit%8);
2929}
2930
2931static void genesis_set_multicast(struct net_device *dev)
2932{
2933        struct skge_port *skge = netdev_priv(dev);
2934        struct skge_hw *hw = skge->hw;
2935        int port = skge->port;
2936        struct netdev_hw_addr *ha;
2937        u32 mode;
2938        u8 filter[8];
2939
2940        mode = xm_read32(hw, port, XM_MODE);
2941        mode |= XM_MD_ENA_HASH;
2942        if (dev->flags & IFF_PROMISC)
2943                mode |= XM_MD_ENA_PROM;
2944        else
2945                mode &= ~XM_MD_ENA_PROM;
2946
2947        if (dev->flags & IFF_ALLMULTI)
2948                memset(filter, 0xff, sizeof(filter));
2949        else {
2950                memset(filter, 0, sizeof(filter));
2951
2952                if (skge->flow_status == FLOW_STAT_REM_SEND ||
2953                    skge->flow_status == FLOW_STAT_SYMMETRIC)
2954                        genesis_add_filter(filter, pause_mc_addr);
2955
2956                netdev_for_each_mc_addr(ha, dev)
2957                        genesis_add_filter(filter, ha->addr);
2958        }
2959
2960        xm_write32(hw, port, XM_MODE, mode);
2961        xm_outhash(hw, port, XM_HSM, filter);
2962}
2963
2964static void yukon_add_filter(u8 filter[8], const u8 *addr)
2965{
2966        u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2967
2968        filter[bit / 8] |= 1 << (bit % 8);
2969}
2970
2971static void yukon_set_multicast(struct net_device *dev)
2972{
2973        struct skge_port *skge = netdev_priv(dev);
2974        struct skge_hw *hw = skge->hw;
2975        int port = skge->port;
2976        struct netdev_hw_addr *ha;
2977        int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2978                        skge->flow_status == FLOW_STAT_SYMMETRIC);
2979        u16 reg;
2980        u8 filter[8];
2981
2982        memset(filter, 0, sizeof(filter));
2983
2984        reg = gma_read16(hw, port, GM_RX_CTRL);
2985        reg |= GM_RXCR_UCF_ENA;
2986
2987        if (dev->flags & IFF_PROMISC)           /* promiscuous */
2988                reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2989        else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2990                memset(filter, 0xff, sizeof(filter));
2991        else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2992                reg &= ~GM_RXCR_MCF_ENA;
2993        else {
2994                reg |= GM_RXCR_MCF_ENA;
2995
2996                if (rx_pause)
2997                        yukon_add_filter(filter, pause_mc_addr);
2998
2999                netdev_for_each_mc_addr(ha, dev)
3000                        yukon_add_filter(filter, ha->addr);
3001        }
3002
3003
3004        gma_write16(hw, port, GM_MC_ADDR_H1,
3005                         (u16)filter[0] | ((u16)filter[1] << 8));
3006        gma_write16(hw, port, GM_MC_ADDR_H2,
3007                         (u16)filter[2] | ((u16)filter[3] << 8));
3008        gma_write16(hw, port, GM_MC_ADDR_H3,
3009                         (u16)filter[4] | ((u16)filter[5] << 8));
3010        gma_write16(hw, port, GM_MC_ADDR_H4,
3011                         (u16)filter[6] | ((u16)filter[7] << 8));
3012
3013        gma_write16(hw, port, GM_RX_CTRL, reg);
3014}
3015
3016static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3017{
3018        if (is_genesis(hw))
3019                return status >> XMR_FS_LEN_SHIFT;
3020        else
3021                return status >> GMR_FS_LEN_SHIFT;
3022}
3023
3024static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3025{
3026        if (is_genesis(hw))
3027                return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3028        else
3029                return (status & GMR_FS_ANY_ERR) ||
3030                        (status & GMR_FS_RX_OK) == 0;
3031}
3032
3033static void skge_set_multicast(struct net_device *dev)
3034{
3035        struct skge_port *skge = netdev_priv(dev);
3036
3037        if (is_genesis(skge->hw))
3038                genesis_set_multicast(dev);
3039        else
3040                yukon_set_multicast(dev);
3041
3042}
3043
3044
3045/* Get receive buffer from descriptor.
3046 * Handles copy of small buffers and reallocation failures
3047 */
3048static struct sk_buff *skge_rx_get(struct net_device *dev,
3049                                   struct skge_element *e,
3050                                   u32 control, u32 status, u16 csum)
3051{
3052        struct skge_port *skge = netdev_priv(dev);
3053        struct sk_buff *skb;
3054        u16 len = control & BMU_BBC;
3055
3056        netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3057                     "rx slot %td status 0x%x len %d\n",
3058                     e - skge->rx_ring.start, status, len);
3059
3060        if (len > skge->rx_buf_size)
3061                goto error;
3062
3063        if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3064                goto error;
3065
3066        if (bad_phy_status(skge->hw, status))
3067                goto error;
3068
3069        if (phy_length(skge->hw, status) != len)
3070                goto error;
3071
3072        if (len < RX_COPY_THRESHOLD) {
3073                skb = netdev_alloc_skb_ip_align(dev, len);
3074                if (!skb)
3075                        goto resubmit;
3076
3077                dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3078                                        dma_unmap_addr(e, mapaddr),
3079                                        dma_unmap_len(e, maplen),
3080                                        DMA_FROM_DEVICE);
3081                skb_copy_from_linear_data(e->skb, skb->data, len);
3082                dma_sync_single_for_device(&skge->hw->pdev->dev,
3083                                           dma_unmap_addr(e, mapaddr),
3084                                           dma_unmap_len(e, maplen),
3085                                           DMA_FROM_DEVICE);
3086                skge_rx_reuse(e, skge->rx_buf_size);
3087        } else {
3088                struct skge_element ee;
3089                struct sk_buff *nskb;
3090
3091                nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3092                if (!nskb)
3093                        goto resubmit;
3094
3095                ee = *e;
3096
3097                skb = ee.skb;
3098                prefetch(skb->data);
3099
3100                if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3101                        dev_kfree_skb(nskb);
3102                        goto resubmit;
3103                }
3104
3105                dma_unmap_single(&skge->hw->pdev->dev,
3106                                 dma_unmap_addr(&ee, mapaddr),
3107                                 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3108        }
3109
3110        skb_put(skb, len);
3111
3112        if (dev->features & NETIF_F_RXCSUM) {
3113                skb->csum = le16_to_cpu(csum);
3114                skb->ip_summed = CHECKSUM_COMPLETE;
3115        }
3116
3117        skb->protocol = eth_type_trans(skb, dev);
3118
3119        return skb;
3120error:
3121
3122        netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3123                     "rx err, slot %td control 0x%x status 0x%x\n",
3124                     e - skge->rx_ring.start, control, status);
3125
3126        if (is_genesis(skge->hw)) {
3127                if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3128                        dev->stats.rx_length_errors++;
3129                if (status & XMR_FS_FRA_ERR)
3130                        dev->stats.rx_frame_errors++;
3131                if (status & XMR_FS_FCS_ERR)
3132                        dev->stats.rx_crc_errors++;
3133        } else {
3134                if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3135                        dev->stats.rx_length_errors++;
3136                if (status & GMR_FS_FRAGMENT)
3137                        dev->stats.rx_frame_errors++;
3138                if (status & GMR_FS_CRC_ERR)
3139                        dev->stats.rx_crc_errors++;
3140        }
3141
3142resubmit:
3143        skge_rx_reuse(e, skge->rx_buf_size);
3144        return NULL;
3145}
3146
3147/* Free all buffers in Tx ring which are no longer owned by device */
3148static void skge_tx_done(struct net_device *dev)
3149{
3150        struct skge_port *skge = netdev_priv(dev);
3151        struct skge_ring *ring = &skge->tx_ring;
3152        struct skge_element *e;
3153        unsigned int bytes_compl = 0, pkts_compl = 0;
3154
3155        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3156
3157        for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3158                u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3159
3160                if (control & BMU_OWN)
3161                        break;
3162
3163                skge_tx_unmap(skge->hw->pdev, e, control);
3164
3165                if (control & BMU_EOF) {
3166                        netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3167                                     "tx done slot %td\n",
3168                                     e - skge->tx_ring.start);
3169
3170                        pkts_compl++;
3171                        bytes_compl += e->skb->len;
3172
3173                        dev_consume_skb_any(e->skb);
3174                }
3175        }
3176        netdev_completed_queue(dev, pkts_compl, bytes_compl);
3177        skge->tx_ring.to_clean = e;
3178
3179        /* Can run lockless until we need to synchronize to restart queue. */
3180        smp_mb();
3181
3182        if (unlikely(netif_queue_stopped(dev) &&
3183                     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3184                netif_tx_lock(dev);
3185                if (unlikely(netif_queue_stopped(dev) &&
3186                             skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187                        netif_wake_queue(dev);
3188
3189                }
3190                netif_tx_unlock(dev);
3191        }
3192}
3193
3194static int skge_poll(struct napi_struct *napi, int budget)
3195{
3196        struct skge_port *skge = container_of(napi, struct skge_port, napi);
3197        struct net_device *dev = skge->netdev;
3198        struct skge_hw *hw = skge->hw;
3199        struct skge_ring *ring = &skge->rx_ring;
3200        struct skge_element *e;
3201        int work_done = 0;
3202
3203        skge_tx_done(dev);
3204
3205        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3206
3207        for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3208                struct skge_rx_desc *rd = e->desc;
3209                struct sk_buff *skb;
3210                u32 control;
3211
3212                rmb();
3213                control = rd->control;
3214                if (control & BMU_OWN)
3215                        break;
3216
3217                skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3218                if (likely(skb)) {
3219                        napi_gro_receive(napi, skb);
3220                        ++work_done;
3221                }
3222        }
3223        ring->to_clean = e;
3224
3225        /* restart receiver */
3226        wmb();
3227        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3228
3229        if (work_done < budget && napi_complete_done(napi, work_done)) {
3230                unsigned long flags;
3231
3232                spin_lock_irqsave(&hw->hw_lock, flags);
3233                hw->intr_mask |= napimask[skge->port];
3234                skge_write32(hw, B0_IMSK, hw->intr_mask);
3235                skge_read32(hw, B0_IMSK);
3236                spin_unlock_irqrestore(&hw->hw_lock, flags);
3237        }
3238
3239        return work_done;
3240}
3241
3242/* Parity errors seem to happen when Genesis is connected to a switch
3243 * with no other ports present. Heartbeat error??
3244 */
3245static void skge_mac_parity(struct skge_hw *hw, int port)
3246{
3247        struct net_device *dev = hw->dev[port];
3248
3249        ++dev->stats.tx_heartbeat_errors;
3250
3251        if (is_genesis(hw))
3252                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3253                             MFF_CLR_PERR);
3254        else
3255                /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3256                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3257                            (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3258                            ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3259}
3260
3261static void skge_mac_intr(struct skge_hw *hw, int port)
3262{
3263        if (is_genesis(hw))
3264                genesis_mac_intr(hw, port);
3265        else
3266                yukon_mac_intr(hw, port);
3267}
3268
3269/* Handle device specific framing and timeout interrupts */
3270static void skge_error_irq(struct skge_hw *hw)
3271{
3272        struct pci_dev *pdev = hw->pdev;
3273        u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3274
3275        if (is_genesis(hw)) {
3276                /* clear xmac errors */
3277                if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3278                        skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3279                if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3280                        skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3281        } else {
3282                /* Timestamp (unused) overflow */
3283                if (hwstatus & IS_IRQ_TIST_OV)
3284                        skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3285        }
3286
3287        if (hwstatus & IS_RAM_RD_PAR) {
3288                dev_err(&pdev->dev, "Ram read data parity error\n");
3289                skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3290        }
3291
3292        if (hwstatus & IS_RAM_WR_PAR) {
3293                dev_err(&pdev->dev, "Ram write data parity error\n");
3294                skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3295        }
3296
3297        if (hwstatus & IS_M1_PAR_ERR)
3298                skge_mac_parity(hw, 0);
3299
3300        if (hwstatus & IS_M2_PAR_ERR)
3301                skge_mac_parity(hw, 1);
3302
3303        if (hwstatus & IS_R1_PAR_ERR) {
3304                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3305                        hw->dev[0]->name);
3306                skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3307        }
3308
3309        if (hwstatus & IS_R2_PAR_ERR) {
3310                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3311                        hw->dev[1]->name);
3312                skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3313        }
3314
3315        if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3316                u16 pci_status, pci_cmd;
3317
3318                pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3319                pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3320
3321                dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3322                        pci_cmd, pci_status);
3323
3324                /* Write the error bits back to clear them. */
3325                pci_status &= PCI_STATUS_ERROR_BITS;
3326                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3327                pci_write_config_word(pdev, PCI_COMMAND,
3328                                      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3329                pci_write_config_word(pdev, PCI_STATUS, pci_status);
3330                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3331
3332                /* if error still set then just ignore it */
3333                hwstatus = skge_read32(hw, B0_HWE_ISRC);
3334                if (hwstatus & IS_IRQ_STAT) {
3335                        dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3336                        hw->intr_mask &= ~IS_HW_ERR;
3337                }
3338        }
3339}
3340
3341/*
3342 * Interrupt from PHY are handled in tasklet (softirq)
3343 * because accessing phy registers requires spin wait which might
3344 * cause excess interrupt latency.
3345 */
3346static void skge_extirq(struct tasklet_struct *t)
3347{
3348        struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3349        int port;
3350
3351        for (port = 0; port < hw->ports; port++) {
3352                struct net_device *dev = hw->dev[port];
3353
3354                if (netif_running(dev)) {
3355                        struct skge_port *skge = netdev_priv(dev);
3356
3357                        spin_lock(&hw->phy_lock);
3358                        if (!is_genesis(hw))
3359                                yukon_phy_intr(skge);
3360                        else if (hw->phy_type == SK_PHY_BCOM)
3361                                bcom_phy_intr(skge);
3362                        spin_unlock(&hw->phy_lock);
3363                }
3364        }
3365
3366        spin_lock_irq(&hw->hw_lock);
3367        hw->intr_mask |= IS_EXT_REG;
3368        skge_write32(hw, B0_IMSK, hw->intr_mask);
3369        skge_read32(hw, B0_IMSK);
3370        spin_unlock_irq(&hw->hw_lock);
3371}
3372
3373static irqreturn_t skge_intr(int irq, void *dev_id)
3374{
3375        struct skge_hw *hw = dev_id;
3376        u32 status;
3377        int handled = 0;
3378
3379        spin_lock(&hw->hw_lock);
3380        /* Reading this register masks IRQ */
3381        status = skge_read32(hw, B0_SP_ISRC);
3382        if (status == 0 || status == ~0)
3383                goto out;
3384
3385        handled = 1;
3386        status &= hw->intr_mask;
3387        if (status & IS_EXT_REG) {
3388                hw->intr_mask &= ~IS_EXT_REG;
3389                tasklet_schedule(&hw->phy_task);
3390        }
3391
3392        if (status & (IS_XA1_F|IS_R1_F)) {
3393                struct skge_port *skge = netdev_priv(hw->dev[0]);
3394                hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3395                napi_schedule(&skge->napi);
3396        }
3397
3398        if (status & IS_PA_TO_TX1)
3399                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3400
3401        if (status & IS_PA_TO_RX1) {
3402                ++hw->dev[0]->stats.rx_over_errors;
3403                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3404        }
3405
3406
3407        if (status & IS_MAC1)
3408                skge_mac_intr(hw, 0);
3409
3410        if (hw->dev[1]) {
3411                struct skge_port *skge = netdev_priv(hw->dev[1]);
3412
3413                if (status & (IS_XA2_F|IS_R2_F)) {
3414                        hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3415                        napi_schedule(&skge->napi);
3416                }
3417
3418                if (status & IS_PA_TO_RX2) {
3419                        ++hw->dev[1]->stats.rx_over_errors;
3420                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3421                }
3422
3423                if (status & IS_PA_TO_TX2)
3424                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3425
3426                if (status & IS_MAC2)
3427                        skge_mac_intr(hw, 1);
3428        }
3429
3430        if (status & IS_HW_ERR)
3431                skge_error_irq(hw);
3432out:
3433        skge_write32(hw, B0_IMSK, hw->intr_mask);
3434        skge_read32(hw, B0_IMSK);
3435        spin_unlock(&hw->hw_lock);
3436
3437        return IRQ_RETVAL(handled);
3438}
3439
3440#ifdef CONFIG_NET_POLL_CONTROLLER
3441static void skge_netpoll(struct net_device *dev)
3442{
3443        struct skge_port *skge = netdev_priv(dev);
3444
3445        disable_irq(dev->irq);
3446        skge_intr(dev->irq, skge->hw);
3447        enable_irq(dev->irq);
3448}
3449#endif
3450
3451static int skge_set_mac_address(struct net_device *dev, void *p)
3452{
3453        struct skge_port *skge = netdev_priv(dev);
3454        struct skge_hw *hw = skge->hw;
3455        unsigned port = skge->port;
3456        const struct sockaddr *addr = p;
3457        u16 ctrl;
3458
3459        if (!is_valid_ether_addr(addr->sa_data))
3460                return -EADDRNOTAVAIL;
3461
3462        memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3463
3464        if (!netif_running(dev)) {
3465                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3466                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3467        } else {
3468                /* disable Rx */
3469                spin_lock_bh(&hw->phy_lock);
3470                ctrl = gma_read16(hw, port, GM_GP_CTRL);
3471                gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3472
3473                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3474                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3475
3476                if (is_genesis(hw))
3477                        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3478                else {
3479                        gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3480                        gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3481                }
3482
3483                gma_write16(hw, port, GM_GP_CTRL, ctrl);
3484                spin_unlock_bh(&hw->phy_lock);
3485        }
3486
3487        return 0;
3488}
3489
3490static const struct {
3491        u8 id;
3492        const char *name;
3493} skge_chips[] = {
3494        { CHIP_ID_GENESIS,      "Genesis" },
3495        { CHIP_ID_YUKON,         "Yukon" },
3496        { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3497        { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3498};
3499
3500static const char *skge_board_name(const struct skge_hw *hw)
3501{
3502        int i;
3503        static char buf[16];
3504
3505        for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3506                if (skge_chips[i].id == hw->chip_id)
3507                        return skge_chips[i].name;
3508
3509        snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3510        return buf;
3511}
3512
3513
3514/*
3515 * Setup the board data structure, but don't bring up
3516 * the port(s)
3517 */
3518static int skge_reset(struct skge_hw *hw)
3519{
3520        u32 reg;
3521        u16 ctst, pci_status;
3522        u8 t8, mac_cfg, pmd_type;
3523        int i;
3524
3525        ctst = skge_read16(hw, B0_CTST);
3526
3527        /* do a SW reset */
3528        skge_write8(hw, B0_CTST, CS_RST_SET);
3529        skge_write8(hw, B0_CTST, CS_RST_CLR);
3530
3531        /* clear PCI errors, if any */
3532        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3533        skge_write8(hw, B2_TST_CTRL2, 0);
3534
3535        pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3536        pci_write_config_word(hw->pdev, PCI_STATUS,
3537                              pci_status | PCI_STATUS_ERROR_BITS);
3538        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3539        skge_write8(hw, B0_CTST, CS_MRST_CLR);
3540
3541        /* restore CLK_RUN bits (for Yukon-Lite) */
3542        skge_write16(hw, B0_CTST,
3543                     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3544
3545        hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3546        hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3547        pmd_type = skge_read8(hw, B2_PMD_TYP);
3548        hw->copper = (pmd_type == 'T' || pmd_type == '1');
3549
3550        switch (hw->chip_id) {
3551        case CHIP_ID_GENESIS:
3552#ifdef CONFIG_SKGE_GENESIS
3553                switch (hw->phy_type) {
3554                case SK_PHY_XMAC:
3555                        hw->phy_addr = PHY_ADDR_XMAC;
3556                        break;
3557                case SK_PHY_BCOM:
3558                        hw->phy_addr = PHY_ADDR_BCOM;
3559                        break;
3560                default:
3561                        dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3562                               hw->phy_type);
3563                        return -EOPNOTSUPP;
3564                }
3565                break;
3566#else
3567                dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3568                return -EOPNOTSUPP;
3569#endif
3570
3571        case CHIP_ID_YUKON:
3572        case CHIP_ID_YUKON_LITE:
3573        case CHIP_ID_YUKON_LP:
3574                if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3575                        hw->copper = 1;
3576
3577                hw->phy_addr = PHY_ADDR_MARV;
3578                break;
3579
3580        default:
3581                dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3582                       hw->chip_id);
3583                return -EOPNOTSUPP;
3584        }
3585
3586        mac_cfg = skge_read8(hw, B2_MAC_CFG);
3587        hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3588        hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3589
3590        /* read the adapters RAM size */
3591        t8 = skge_read8(hw, B2_E_0);
3592        if (is_genesis(hw)) {
3593                if (t8 == 3) {
3594                        /* special case: 4 x 64k x 36, offset = 0x80000 */
3595                        hw->ram_size = 0x100000;
3596                        hw->ram_offset = 0x80000;
3597                } else
3598                        hw->ram_size = t8 * 512;
3599        } else if (t8 == 0)
3600                hw->ram_size = 0x20000;
3601        else
3602                hw->ram_size = t8 * 4096;
3603
3604        hw->intr_mask = IS_HW_ERR;
3605
3606        /* Use PHY IRQ for all but fiber based Genesis board */
3607        if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3608                hw->intr_mask |= IS_EXT_REG;
3609
3610        if (is_genesis(hw))
3611                genesis_init(hw);
3612        else {
3613                /* switch power to VCC (WA for VAUX problem) */
3614                skge_write8(hw, B0_POWER_CTRL,
3615                            PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3616
3617                /* avoid boards with stuck Hardware error bits */
3618                if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3619                    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3620                        dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3621                        hw->intr_mask &= ~IS_HW_ERR;
3622                }
3623
3624                /* Clear PHY COMA */
3625                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3626                pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3627                reg &= ~PCI_PHY_COMA;
3628                pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3629                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3630
3631
3632                for (i = 0; i < hw->ports; i++) {
3633                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3634                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3635                }
3636        }
3637
3638        /* turn off hardware timer (unused) */
3639        skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3640        skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3641        skge_write8(hw, B0_LED, LED_STAT_ON);
3642
3643        /* enable the Tx Arbiters */
3644        for (i = 0; i < hw->ports; i++)
3645                skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3646
3647        /* Initialize ram interface */
3648        skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3649
3650        skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3651        skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3652        skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3653        skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3654        skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3655        skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3656        skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3657        skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3658        skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3659        skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3660        skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3661        skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3662
3663        skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3664
3665        /* Set interrupt moderation for Transmit only
3666         * Receive interrupts avoided by NAPI
3667         */
3668        skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3669        skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3670        skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3671
3672        /* Leave irq disabled until first port is brought up. */
3673        skge_write32(hw, B0_IMSK, 0);
3674
3675        for (i = 0; i < hw->ports; i++) {
3676                if (is_genesis(hw))
3677                        genesis_reset(hw, i);
3678                else
3679                        yukon_reset(hw, i);
3680        }
3681
3682        return 0;
3683}
3684
3685
3686#ifdef CONFIG_SKGE_DEBUG
3687
3688static struct dentry *skge_debug;
3689
3690static int skge_debug_show(struct seq_file *seq, void *v)
3691{
3692        struct net_device *dev = seq->private;
3693        const struct skge_port *skge = netdev_priv(dev);
3694        const struct skge_hw *hw = skge->hw;
3695        const struct skge_element *e;
3696
3697        if (!netif_running(dev))
3698                return -ENETDOWN;
3699
3700        seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3701                   skge_read32(hw, B0_IMSK));
3702
3703        seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3704        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3705                const struct skge_tx_desc *t = e->desc;
3706                seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3707                           t->control, t->dma_hi, t->dma_lo, t->status,
3708                           t->csum_offs, t->csum_write, t->csum_start);
3709        }
3710
3711        seq_puts(seq, "\nRx Ring:\n");
3712        for (e = skge->rx_ring.to_clean; ; e = e->next) {
3713                const struct skge_rx_desc *r = e->desc;
3714
3715                if (r->control & BMU_OWN)
3716                        break;
3717
3718                seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3719                           r->control, r->dma_hi, r->dma_lo, r->status,
3720                           r->timestamp, r->csum1, r->csum1_start);
3721        }
3722
3723        return 0;
3724}
3725DEFINE_SHOW_ATTRIBUTE(skge_debug);
3726
3727/*
3728 * Use network device events to create/remove/rename
3729 * debugfs file entries
3730 */
3731static int skge_device_event(struct notifier_block *unused,
3732                             unsigned long event, void *ptr)
3733{
3734        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3735        struct skge_port *skge;
3736
3737        if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3738                goto done;
3739
3740        skge = netdev_priv(dev);
3741        switch (event) {
3742        case NETDEV_CHANGENAME:
3743                if (skge->debugfs)
3744                        skge->debugfs = debugfs_rename(skge_debug,
3745                                                       skge->debugfs,
3746                                                       skge_debug, dev->name);
3747                break;
3748
3749        case NETDEV_GOING_DOWN:
3750                debugfs_remove(skge->debugfs);
3751                skge->debugfs = NULL;
3752                break;
3753
3754        case NETDEV_UP:
3755                skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3756                                                    dev, &skge_debug_fops);
3757                break;
3758        }
3759
3760done:
3761        return NOTIFY_DONE;
3762}
3763
3764static struct notifier_block skge_notifier = {
3765        .notifier_call = skge_device_event,
3766};
3767
3768
3769static __init void skge_debug_init(void)
3770{
3771        skge_debug = debugfs_create_dir("skge", NULL);
3772
3773        register_netdevice_notifier(&skge_notifier);
3774}
3775
3776static __exit void skge_debug_cleanup(void)
3777{
3778        if (skge_debug) {
3779                unregister_netdevice_notifier(&skge_notifier);
3780                debugfs_remove(skge_debug);
3781                skge_debug = NULL;
3782        }
3783}
3784
3785#else
3786#define skge_debug_init()
3787#define skge_debug_cleanup()
3788#endif
3789
3790static const struct net_device_ops skge_netdev_ops = {
3791        .ndo_open               = skge_up,
3792        .ndo_stop               = skge_down,
3793        .ndo_start_xmit         = skge_xmit_frame,
3794        .ndo_eth_ioctl          = skge_ioctl,
3795        .ndo_get_stats          = skge_get_stats,
3796        .ndo_tx_timeout         = skge_tx_timeout,
3797        .ndo_change_mtu         = skge_change_mtu,
3798        .ndo_validate_addr      = eth_validate_addr,
3799        .ndo_set_rx_mode        = skge_set_multicast,
3800        .ndo_set_mac_address    = skge_set_mac_address,
3801#ifdef CONFIG_NET_POLL_CONTROLLER
3802        .ndo_poll_controller    = skge_netpoll,
3803#endif
3804};
3805
3806
3807/* Initialize network device */
3808static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3809                                       int highmem)
3810{
3811        struct skge_port *skge;
3812        struct net_device *dev = alloc_etherdev(sizeof(*skge));
3813
3814        if (!dev)
3815                return NULL;
3816
3817        SET_NETDEV_DEV(dev, &hw->pdev->dev);
3818        dev->netdev_ops = &skge_netdev_ops;
3819        dev->ethtool_ops = &skge_ethtool_ops;
3820        dev->watchdog_timeo = TX_WATCHDOG;
3821        dev->irq = hw->pdev->irq;
3822
3823        /* MTU range: 60 - 9000 */
3824        dev->min_mtu = ETH_ZLEN;
3825        dev->max_mtu = ETH_JUMBO_MTU;
3826
3827        if (highmem)
3828                dev->features |= NETIF_F_HIGHDMA;
3829
3830        skge = netdev_priv(dev);
3831        netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3832        skge->netdev = dev;
3833        skge->hw = hw;
3834        skge->msg_enable = netif_msg_init(debug, default_msg);
3835
3836        skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3837        skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3838
3839        /* Auto speed and flow control */
3840        skge->autoneg = AUTONEG_ENABLE;
3841        skge->flow_control = FLOW_MODE_SYM_OR_REM;
3842        skge->duplex = -1;
3843        skge->speed = -1;
3844        skge->advertising = skge_supported_modes(hw);
3845
3846        if (device_can_wakeup(&hw->pdev->dev)) {
3847                skge->wol = wol_supported(hw) & WAKE_MAGIC;
3848                device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3849        }
3850
3851        hw->dev[port] = dev;
3852
3853        skge->port = port;
3854
3855        /* Only used for Genesis XMAC */
3856        if (is_genesis(hw))
3857                timer_setup(&skge->link_timer, xm_link_timer, 0);
3858        else {
3859                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3860                                   NETIF_F_RXCSUM;
3861                dev->features |= dev->hw_features;
3862        }
3863
3864        /* read the mac address */
3865        memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3866
3867        return dev;
3868}
3869
3870static void skge_show_addr(struct net_device *dev)
3871{
3872        const struct skge_port *skge = netdev_priv(dev);
3873
3874        netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3875}
3876
3877static int only_32bit_dma;
3878
3879static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3880{
3881        struct net_device *dev, *dev1;
3882        struct skge_hw *hw;
3883        int err, using_dac = 0;
3884
3885        err = pci_enable_device(pdev);
3886        if (err) {
3887                dev_err(&pdev->dev, "cannot enable PCI device\n");
3888                goto err_out;
3889        }
3890
3891        err = pci_request_regions(pdev, DRV_NAME);
3892        if (err) {
3893                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3894                goto err_out_disable_pdev;
3895        }
3896
3897        pci_set_master(pdev);
3898
3899        if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3900                using_dac = 1;
3901                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3902        } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3903                using_dac = 0;
3904                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3905        }
3906
3907        if (err) {
3908                dev_err(&pdev->dev, "no usable DMA configuration\n");
3909                goto err_out_free_regions;
3910        }
3911
3912#ifdef __BIG_ENDIAN
3913        /* byte swap descriptors in hardware */
3914        {
3915                u32 reg;
3916
3917                pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3918                reg |= PCI_REV_DESC;
3919                pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3920        }
3921#endif
3922
3923        err = -ENOMEM;
3924        /* space for skge@pci:0000:04:00.0 */
3925        hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3926                     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3927        if (!hw)
3928                goto err_out_free_regions;
3929
3930        sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3931
3932        hw->pdev = pdev;
3933        spin_lock_init(&hw->hw_lock);
3934        spin_lock_init(&hw->phy_lock);
3935        tasklet_setup(&hw->phy_task, skge_extirq);
3936
3937        hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3938        if (!hw->regs) {
3939                dev_err(&pdev->dev, "cannot map device registers\n");
3940                goto err_out_free_hw;
3941        }
3942
3943        err = skge_reset(hw);
3944        if (err)
3945                goto err_out_iounmap;
3946
3947        pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3948                DRV_VERSION,
3949                (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3950                skge_board_name(hw), hw->chip_rev);
3951
3952        dev = skge_devinit(hw, 0, using_dac);
3953        if (!dev) {
3954                err = -ENOMEM;
3955                goto err_out_led_off;
3956        }
3957
3958        /* Some motherboards are broken and has zero in ROM. */
3959        if (!is_valid_ether_addr(dev->dev_addr))
3960                dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3961
3962        err = register_netdev(dev);
3963        if (err) {
3964                dev_err(&pdev->dev, "cannot register net device\n");
3965                goto err_out_free_netdev;
3966        }
3967
3968        skge_show_addr(dev);
3969
3970        if (hw->ports > 1) {
3971                dev1 = skge_devinit(hw, 1, using_dac);
3972                if (!dev1) {
3973                        err = -ENOMEM;
3974                        goto err_out_unregister;
3975                }
3976
3977                err = register_netdev(dev1);
3978                if (err) {
3979                        dev_err(&pdev->dev, "cannot register second net device\n");
3980                        goto err_out_free_dev1;
3981                }
3982
3983                err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3984                                  hw->irq_name, hw);
3985                if (err) {
3986                        dev_err(&pdev->dev, "cannot assign irq %d\n",
3987                                pdev->irq);
3988                        goto err_out_unregister_dev1;
3989                }
3990
3991                skge_show_addr(dev1);
3992        }
3993        pci_set_drvdata(pdev, hw);
3994
3995        return 0;
3996
3997err_out_unregister_dev1:
3998        unregister_netdev(dev1);
3999err_out_free_dev1:
4000        free_netdev(dev1);
4001err_out_unregister:
4002        unregister_netdev(dev);
4003err_out_free_netdev:
4004        free_netdev(dev);
4005err_out_led_off:
4006        skge_write16(hw, B0_LED, LED_STAT_OFF);
4007err_out_iounmap:
4008        iounmap(hw->regs);
4009err_out_free_hw:
4010        kfree(hw);
4011err_out_free_regions:
4012        pci_release_regions(pdev);
4013err_out_disable_pdev:
4014        pci_disable_device(pdev);
4015err_out:
4016        return err;
4017}
4018
4019static void skge_remove(struct pci_dev *pdev)
4020{
4021        struct skge_hw *hw  = pci_get_drvdata(pdev);
4022        struct net_device *dev0, *dev1;
4023
4024        if (!hw)
4025                return;
4026
4027        dev1 = hw->dev[1];
4028        if (dev1)
4029                unregister_netdev(dev1);
4030        dev0 = hw->dev[0];
4031        unregister_netdev(dev0);
4032
4033        tasklet_kill(&hw->phy_task);
4034
4035        spin_lock_irq(&hw->hw_lock);
4036        hw->intr_mask = 0;
4037
4038        if (hw->ports > 1) {
4039                skge_write32(hw, B0_IMSK, 0);
4040                skge_read32(hw, B0_IMSK);
4041        }
4042        spin_unlock_irq(&hw->hw_lock);
4043
4044        skge_write16(hw, B0_LED, LED_STAT_OFF);
4045        skge_write8(hw, B0_CTST, CS_RST_SET);
4046
4047        if (hw->ports > 1)
4048                free_irq(pdev->irq, hw);
4049        pci_release_regions(pdev);
4050        pci_disable_device(pdev);
4051        if (dev1)
4052                free_netdev(dev1);
4053        free_netdev(dev0);
4054
4055        iounmap(hw->regs);
4056        kfree(hw);
4057}
4058
4059#ifdef CONFIG_PM_SLEEP
4060static int skge_suspend(struct device *dev)
4061{
4062        struct skge_hw *hw  = dev_get_drvdata(dev);
4063        int i;
4064
4065        if (!hw)
4066                return 0;
4067
4068        for (i = 0; i < hw->ports; i++) {
4069                struct net_device *dev = hw->dev[i];
4070                struct skge_port *skge = netdev_priv(dev);
4071
4072                if (netif_running(dev))
4073                        skge_down(dev);
4074
4075                if (skge->wol)
4076                        skge_wol_init(skge);
4077        }
4078
4079        skge_write32(hw, B0_IMSK, 0);
4080
4081        return 0;
4082}
4083
4084static int skge_resume(struct device *dev)
4085{
4086        struct skge_hw *hw  = dev_get_drvdata(dev);
4087        int i, err;
4088
4089        if (!hw)
4090                return 0;
4091
4092        err = skge_reset(hw);
4093        if (err)
4094                goto out;
4095
4096        for (i = 0; i < hw->ports; i++) {
4097                struct net_device *dev = hw->dev[i];
4098
4099                if (netif_running(dev)) {
4100                        err = skge_up(dev);
4101
4102                        if (err) {
4103                                netdev_err(dev, "could not up: %d\n", err);
4104                                dev_close(dev);
4105                                goto out;
4106                        }
4107                }
4108        }
4109out:
4110        return err;
4111}
4112
4113static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4114#define SKGE_PM_OPS (&skge_pm_ops)
4115
4116#else
4117
4118#define SKGE_PM_OPS NULL
4119#endif /* CONFIG_PM_SLEEP */
4120
4121static void skge_shutdown(struct pci_dev *pdev)
4122{
4123        struct skge_hw *hw  = pci_get_drvdata(pdev);
4124        int i;
4125
4126        if (!hw)
4127                return;
4128
4129        for (i = 0; i < hw->ports; i++) {
4130                struct net_device *dev = hw->dev[i];
4131                struct skge_port *skge = netdev_priv(dev);
4132
4133                if (skge->wol)
4134                        skge_wol_init(skge);
4135        }
4136
4137        pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4138        pci_set_power_state(pdev, PCI_D3hot);
4139}
4140
4141static struct pci_driver skge_driver = {
4142        .name =         DRV_NAME,
4143        .id_table =     skge_id_table,
4144        .probe =        skge_probe,
4145        .remove =       skge_remove,
4146        .shutdown =     skge_shutdown,
4147        .driver.pm =    SKGE_PM_OPS,
4148};
4149
4150static const struct dmi_system_id skge_32bit_dma_boards[] = {
4151        {
4152                .ident = "Gigabyte nForce boards",
4153                .matches = {
4154                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4155                        DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4156                },
4157        },
4158        {
4159                .ident = "ASUS P5NSLI",
4160                .matches = {
4161                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4162                        DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4163                },
4164        },
4165        {
4166                .ident = "FUJITSU SIEMENS A8NE-FM",
4167                .matches = {
4168                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4169                        DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4170                },
4171        },
4172        {}
4173};
4174
4175static int __init skge_init_module(void)
4176{
4177        if (dmi_check_system(skge_32bit_dma_boards))
4178                only_32bit_dma = 1;
4179        skge_debug_init();
4180        return pci_register_driver(&skge_driver);
4181}
4182
4183static void __exit skge_cleanup_module(void)
4184{
4185        pci_unregister_driver(&skge_driver);
4186        skge_debug_cleanup();
4187}
4188
4189module_init(skge_init_module);
4190module_exit(skge_cleanup_module);
4191