linux/drivers/net/ethernet/natsemi/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <linux/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static const struct pci_device_id natsemi_pci_tbl[] = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        void __iomem *ioaddr;
 551        struct napi_struct napi;
 552        /* Media monitoring timer */
 553        struct timer_list timer;
 554        /* Frequently used values: keep some adjacent for cache effect */
 555        struct pci_dev *pci_dev;
 556        struct netdev_desc *rx_head_desc;
 557        /* Producer/consumer ring indices */
 558        unsigned int cur_rx, dirty_rx;
 559        unsigned int cur_tx, dirty_tx;
 560        /* Based on MTU+slack. */
 561        unsigned int rx_buf_sz;
 562        int oom;
 563        /* Interrupt status */
 564        u32 intr_status;
 565        /* Do not touch the nic registers */
 566        int hands_off;
 567        /* Don't pay attention to the reported link state. */
 568        int ignore_phy;
 569        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 570        int mii;
 571        int phy_addr_external;
 572        unsigned int full_duplex;
 573        /* Rx filter */
 574        u32 cur_rx_mode;
 575        u32 rx_filter[16];
 576        /* FIFO and PCI burst thresholds */
 577        u32 tx_config, rx_config;
 578        /* original contents of ClkRun register */
 579        u32 SavedClkRun;
 580        /* silicon revision */
 581        u32 srr;
 582        /* expected DSPCFG value */
 583        u16 dspcfg;
 584        int dspcfg_workaround;
 585        /* parms saved in ethtool format */
 586        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 587        u8      duplex;         /* Duplex, half or full */
 588        u8      autoneg;        /* Autonegotiation enabled */
 589        /* MII transceiver section */
 590        u16 advertising;
 591        unsigned int iosize;
 592        spinlock_t lock;
 593        u32 msg_enable;
 594        /* EEPROM data */
 595        int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(struct timer_list *t);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev,
 644                           struct ethtool_link_ksettings *ecmd);
 645static int netdev_set_ecmd(struct net_device *dev,
 646                           const struct ethtool_link_ksettings *ecmd);
 647static void enable_wol_mode(struct net_device *dev, int enable_intr);
 648static int netdev_close(struct net_device *dev);
 649static int netdev_get_regs(struct net_device *dev, u8 *buf);
 650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 651static const struct ethtool_ops ethtool_ops;
 652
 653#define NATSEMI_ATTR(_name) \
 654static ssize_t natsemi_show_##_name(struct device *dev, \
 655         struct device_attribute *attr, char *buf); \
 656         static ssize_t natsemi_set_##_name(struct device *dev, \
 657                struct device_attribute *attr, \
 658                const char *buf, size_t count); \
 659         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 660
 661#define NATSEMI_CREATE_FILE(_dev, _name) \
 662         device_create_file(&_dev->dev, &dev_attr_##_name)
 663#define NATSEMI_REMOVE_FILE(_dev, _name) \
 664         device_remove_file(&_dev->dev, &dev_attr_##_name)
 665
 666NATSEMI_ATTR(dspcfg_workaround);
 667
 668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 669                                              struct device_attribute *attr,
 670                                              char *buf)
 671{
 672        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 673
 674        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 675}
 676
 677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 678                                             struct device_attribute *attr,
 679                                             const char *buf, size_t count)
 680{
 681        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 682        int new_setting;
 683        unsigned long flags;
 684
 685        /* Find out the new setting */
 686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 687                new_setting = 1;
 688        else if (!strncmp("off", buf, count - 1) ||
 689                 !strncmp("0", buf, count - 1))
 690                new_setting = 0;
 691        else
 692                 return count;
 693
 694        spin_lock_irqsave(&np->lock, flags);
 695
 696        np->dspcfg_workaround = new_setting;
 697
 698        spin_unlock_irqrestore(&np->lock, flags);
 699
 700        return count;
 701}
 702
 703static inline void __iomem *ns_ioaddr(struct net_device *dev)
 704{
 705        struct netdev_private *np = netdev_priv(dev);
 706
 707        return np->ioaddr;
 708}
 709
 710static inline void natsemi_irq_enable(struct net_device *dev)
 711{
 712        writel(1, ns_ioaddr(dev) + IntrEnable);
 713        readl(ns_ioaddr(dev) + IntrEnable);
 714}
 715
 716static inline void natsemi_irq_disable(struct net_device *dev)
 717{
 718        writel(0, ns_ioaddr(dev) + IntrEnable);
 719        readl(ns_ioaddr(dev) + IntrEnable);
 720}
 721
 722static void move_int_phy(struct net_device *dev, int addr)
 723{
 724        struct netdev_private *np = netdev_priv(dev);
 725        void __iomem *ioaddr = ns_ioaddr(dev);
 726        int target = 31;
 727
 728        /*
 729         * The internal phy is visible on the external mii bus. Therefore we must
 730         * move it away before we can send commands to an external phy.
 731         * There are two addresses we must avoid:
 732         * - the address on the external phy that is used for transmission.
 733         * - the address that we want to access. User space can access phys
 734         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 735         *   phy that is used for transmission.
 736         */
 737
 738        if (target == addr)
 739                target--;
 740        if (target == np->phy_addr_external)
 741                target--;
 742        writew(target, ioaddr + PhyCtrl);
 743        readw(ioaddr + PhyCtrl);
 744        udelay(1);
 745}
 746
 747static void natsemi_init_media(struct net_device *dev)
 748{
 749        struct netdev_private *np = netdev_priv(dev);
 750        u32 tmp;
 751
 752        if (np->ignore_phy)
 753                netif_carrier_on(dev);
 754        else
 755                netif_carrier_off(dev);
 756
 757        /* get the initial settings from hardware */
 758        tmp            = mdio_read(dev, MII_BMCR);
 759        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 760        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 761        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 762        np->advertising= mdio_read(dev, MII_ADVERTISE);
 763
 764        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 765            netif_msg_probe(np)) {
 766                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 767                        "10%s %s duplex.\n",
 768                        pci_name(np->pci_dev),
 769                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 770                          "enabled, advertise" : "disabled, force",
 771                        (np->advertising &
 772                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 773                            "0" : "",
 774                        (np->advertising &
 775                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 776                            "full" : "half");
 777        }
 778        if (netif_msg_probe(np))
 779                printk(KERN_INFO
 780                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 781                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 782                        np->advertising);
 783
 784}
 785
 786static const struct net_device_ops natsemi_netdev_ops = {
 787        .ndo_open               = netdev_open,
 788        .ndo_stop               = netdev_close,
 789        .ndo_start_xmit         = start_tx,
 790        .ndo_get_stats          = get_stats,
 791        .ndo_set_rx_mode        = set_rx_mode,
 792        .ndo_change_mtu         = natsemi_change_mtu,
 793        .ndo_eth_ioctl          = netdev_ioctl,
 794        .ndo_tx_timeout         = ns_tx_timeout,
 795        .ndo_set_mac_address    = eth_mac_addr,
 796        .ndo_validate_addr      = eth_validate_addr,
 797#ifdef CONFIG_NET_POLL_CONTROLLER
 798        .ndo_poll_controller    = natsemi_poll_controller,
 799#endif
 800};
 801
 802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 803{
 804        struct net_device *dev;
 805        struct netdev_private *np;
 806        int i, option, irq, chip_idx = ent->driver_data;
 807        static int find_cnt = -1;
 808        resource_size_t iostart;
 809        unsigned long iosize;
 810        void __iomem *ioaddr;
 811        const int pcibar = 1; /* PCI base address register */
 812        int prev_eedata;
 813        u32 tmp;
 814
 815/* when built into the kernel, we only print version if device is found */
 816#ifndef MODULE
 817        static int printed_version;
 818        if (!printed_version++)
 819                printk(version);
 820#endif
 821
 822        i = pcim_enable_device(pdev);
 823        if (i) return i;
 824
 825        /* natsemi has a non-standard PM control register
 826         * in PCI config space.  Some boards apparently need
 827         * to be brought to D0 in this manner.
 828         */
 829        pci_read_config_dword(pdev, PCIPM, &tmp);
 830        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 831                /* D0 state, disable PME assertion */
 832                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 833                pci_write_config_dword(pdev, PCIPM, newtmp);
 834        }
 835
 836        find_cnt++;
 837        iostart = pci_resource_start(pdev, pcibar);
 838        iosize = pci_resource_len(pdev, pcibar);
 839        irq = pdev->irq;
 840
 841        pci_set_master(pdev);
 842
 843        dev = alloc_etherdev(sizeof (struct netdev_private));
 844        if (!dev)
 845                return -ENOMEM;
 846        SET_NETDEV_DEV(dev, &pdev->dev);
 847
 848        i = pci_request_regions(pdev, DRV_NAME);
 849        if (i)
 850                goto err_pci_request_regions;
 851
 852        ioaddr = ioremap(iostart, iosize);
 853        if (!ioaddr) {
 854                i = -ENOMEM;
 855                goto err_pci_request_regions;
 856        }
 857
 858        /* Work around the dropped serial bit. */
 859        prev_eedata = eeprom_read(ioaddr, 6);
 860        for (i = 0; i < 3; i++) {
 861                int eedata = eeprom_read(ioaddr, i + 7);
 862                dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 863                dev->dev_addr[i*2+1] = eedata >> 7;
 864                prev_eedata = eedata;
 865        }
 866
 867        np = netdev_priv(dev);
 868        np->ioaddr = ioaddr;
 869
 870        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 871        np->dev = dev;
 872
 873        np->pci_dev = pdev;
 874        pci_set_drvdata(pdev, dev);
 875        np->iosize = iosize;
 876        spin_lock_init(&np->lock);
 877        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 878        np->hands_off = 0;
 879        np->intr_status = 0;
 880        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 881        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 882                np->ignore_phy = 1;
 883        else
 884                np->ignore_phy = 0;
 885        np->dspcfg_workaround = dspcfg_workaround;
 886
 887        /* Initial port:
 888         * - If configured to ignore the PHY set up for external.
 889         * - If the nic was configured to use an external phy and if find_mii
 890         *   finds a phy: use external port, first phy that replies.
 891         * - Otherwise: internal port.
 892         * Note that the phy address for the internal phy doesn't matter:
 893         * The address would be used to access a phy over the mii bus, but
 894         * the internal phy is accessed through mapped registers.
 895         */
 896        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 897                dev->if_port = PORT_MII;
 898        else
 899                dev->if_port = PORT_TP;
 900        /* Reset the chip to erase previous misconfiguration. */
 901        natsemi_reload_eeprom(dev);
 902        natsemi_reset(dev);
 903
 904        if (dev->if_port != PORT_TP) {
 905                np->phy_addr_external = find_mii(dev);
 906                /* If we're ignoring the PHY it doesn't matter if we can't
 907                 * find one. */
 908                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 909                        dev->if_port = PORT_TP;
 910                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 911                }
 912        } else {
 913                np->phy_addr_external = PHY_ADDR_INTERNAL;
 914        }
 915
 916        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 917        /* The lower four bits are the media type. */
 918        if (option) {
 919                if (option & 0x200)
 920                        np->full_duplex = 1;
 921                if (option & 15)
 922                        printk(KERN_INFO
 923                                "natsemi %s: ignoring user supplied media type %d",
 924                                pci_name(np->pci_dev), option & 15);
 925        }
 926        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 927                np->full_duplex = 1;
 928
 929        dev->netdev_ops = &natsemi_netdev_ops;
 930        dev->watchdog_timeo = TX_TIMEOUT;
 931
 932        dev->ethtool_ops = &ethtool_ops;
 933
 934        /* MTU range: 64 - 2024 */
 935        dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
 936        dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
 937
 938        if (mtu)
 939                dev->mtu = mtu;
 940
 941        natsemi_init_media(dev);
 942
 943        /* save the silicon revision for later querying */
 944        np->srr = readl(ioaddr + SiliconRev);
 945        if (netif_msg_hw(np))
 946                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 947                                pci_name(np->pci_dev), np->srr);
 948
 949        i = register_netdev(dev);
 950        if (i)
 951                goto err_register_netdev;
 952        i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 953        if (i)
 954                goto err_create_file;
 955
 956        if (netif_msg_drv(np)) {
 957                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 958                       "(%s), %pM, IRQ %d",
 959                       dev->name, natsemi_pci_info[chip_idx].name,
 960                       (unsigned long long)iostart, pci_name(np->pci_dev),
 961                       dev->dev_addr, irq);
 962                if (dev->if_port == PORT_TP)
 963                        printk(", port TP.\n");
 964                else if (np->ignore_phy)
 965                        printk(", port MII, ignoring PHY\n");
 966                else
 967                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 968        }
 969        return 0;
 970
 971 err_create_file:
 972        unregister_netdev(dev);
 973
 974 err_register_netdev:
 975        iounmap(ioaddr);
 976
 977 err_pci_request_regions:
 978        free_netdev(dev);
 979        return i;
 980}
 981
 982
 983/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 984   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 985
 986/* Delay between EEPROM clock transitions.
 987   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 988   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 989   made udelay() unreliable.
 990   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 991   deprecated.
 992*/
 993#define eeprom_delay(ee_addr)   readl(ee_addr)
 994
 995#define EE_Write0 (EE_ChipSelect)
 996#define EE_Write1 (EE_ChipSelect | EE_DataIn)
 997
 998/* The EEPROM commands include the alway-set leading bit. */
 999enum EEPROM_Cmds {
1000        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001};
1002
1003static int eeprom_read(void __iomem *addr, int location)
1004{
1005        int i;
1006        int retval = 0;
1007        void __iomem *ee_addr = addr + EECtrl;
1008        int read_cmd = location | EE_ReadCmd;
1009
1010        writel(EE_Write0, ee_addr);
1011
1012        /* Shift the read command bits out. */
1013        for (i = 10; i >= 0; i--) {
1014                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015                writel(dataval, ee_addr);
1016                eeprom_delay(ee_addr);
1017                writel(dataval | EE_ShiftClk, ee_addr);
1018                eeprom_delay(ee_addr);
1019        }
1020        writel(EE_ChipSelect, ee_addr);
1021        eeprom_delay(ee_addr);
1022
1023        for (i = 0; i < 16; i++) {
1024                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1025                eeprom_delay(ee_addr);
1026                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1027                writel(EE_ChipSelect, ee_addr);
1028                eeprom_delay(ee_addr);
1029        }
1030
1031        /* Terminate the EEPROM access. */
1032        writel(EE_Write0, ee_addr);
1033        writel(0, ee_addr);
1034        return retval;
1035}
1036
1037/* MII transceiver control section.
1038 * The 83815 series has an internal transceiver, and we present the
1039 * internal management registers as if they were MII connected.
1040 * External Phy registers are referenced through the MII interface.
1041 */
1042
1043/* clock transitions >= 20ns (25MHz)
1044 * One readl should be good to PCI @ 100MHz
1045 */
1046#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1047
1048static int mii_getbit (struct net_device *dev)
1049{
1050        int data;
1051        void __iomem *ioaddr = ns_ioaddr(dev);
1052
1053        writel(MII_ShiftClk, ioaddr + EECtrl);
1054        data = readl(ioaddr + EECtrl);
1055        writel(0, ioaddr + EECtrl);
1056        mii_delay(ioaddr);
1057        return (data & MII_Data)? 1 : 0;
1058}
1059
1060static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061{
1062        u32 i;
1063        void __iomem *ioaddr = ns_ioaddr(dev);
1064
1065        for (i = (1 << (len-1)); i; i >>= 1)
1066        {
1067                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068                writel(mdio_val, ioaddr + EECtrl);
1069                mii_delay(ioaddr);
1070                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1071                mii_delay(ioaddr);
1072        }
1073        writel(0, ioaddr + EECtrl);
1074        mii_delay(ioaddr);
1075}
1076
1077static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078{
1079        u32 cmd;
1080        int i;
1081        u32 retval = 0;
1082
1083        /* Ensure sync */
1084        mii_send_bits (dev, 0xffffffff, 32);
1085        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086        /* ST,OP = 0110'b for read operation */
1087        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088        mii_send_bits (dev, cmd, 14);
1089        /* Turnaround */
1090        if (mii_getbit (dev))
1091                return 0;
1092        /* Read data */
1093        for (i = 0; i < 16; i++) {
1094                retval <<= 1;
1095                retval |= mii_getbit (dev);
1096        }
1097        /* End cycle */
1098        mii_getbit (dev);
1099        return retval;
1100}
1101
1102static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103{
1104        u32 cmd;
1105
1106        /* Ensure sync */
1107        mii_send_bits (dev, 0xffffffff, 32);
1108        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111        mii_send_bits (dev, cmd, 32);
1112        /* End cycle */
1113        mii_getbit (dev);
1114}
1115
1116static int mdio_read(struct net_device *dev, int reg)
1117{
1118        struct netdev_private *np = netdev_priv(dev);
1119        void __iomem *ioaddr = ns_ioaddr(dev);
1120
1121        /* The 83815 series has two ports:
1122         * - an internal transceiver
1123         * - an external mii bus
1124         */
1125        if (dev->if_port == PORT_TP)
1126                return readw(ioaddr+BasicControl+(reg<<2));
1127        else
1128                return miiport_read(dev, np->phy_addr_external, reg);
1129}
1130
1131static void mdio_write(struct net_device *dev, int reg, u16 data)
1132{
1133        struct netdev_private *np = netdev_priv(dev);
1134        void __iomem *ioaddr = ns_ioaddr(dev);
1135
1136        /* The 83815 series has an internal transceiver; handle separately */
1137        if (dev->if_port == PORT_TP)
1138                writew(data, ioaddr+BasicControl+(reg<<2));
1139        else
1140                miiport_write(dev, np->phy_addr_external, reg, data);
1141}
1142
1143static void init_phy_fixup(struct net_device *dev)
1144{
1145        struct netdev_private *np = netdev_priv(dev);
1146        void __iomem *ioaddr = ns_ioaddr(dev);
1147        int i;
1148        u32 cfg;
1149        u16 tmp;
1150
1151        /* restore stuff lost when power was out */
1152        tmp = mdio_read(dev, MII_BMCR);
1153        if (np->autoneg == AUTONEG_ENABLE) {
1154                /* renegotiate if something changed */
1155                if ((tmp & BMCR_ANENABLE) == 0 ||
1156                    np->advertising != mdio_read(dev, MII_ADVERTISE))
1157                {
1158                        /* turn on autonegotiation and force negotiation */
1159                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1161                }
1162        } else {
1163                /* turn off auto negotiation, set speed and duplexity */
1164                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165                if (np->speed == SPEED_100)
1166                        tmp |= BMCR_SPEED100;
1167                if (np->duplex == DUPLEX_FULL)
1168                        tmp |= BMCR_FULLDPLX;
1169                /*
1170                 * Note: there is no good way to inform the link partner
1171                 * that our capabilities changed. The user has to unplug
1172                 * and replug the network cable after some changes, e.g.
1173                 * after switching from 10HD, autoneg off to 100 HD,
1174                 * autoneg off.
1175                 */
1176        }
1177        mdio_write(dev, MII_BMCR, tmp);
1178        readl(ioaddr + ChipConfig);
1179        udelay(1);
1180
1181        /* find out what phy this is */
1182        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183                                + mdio_read(dev, MII_PHYSID2);
1184
1185        /* handle external phys here */
1186        switch (np->mii) {
1187        case PHYID_AM79C874:
1188                /* phy specific configuration for fibre/tp operation */
1189                tmp = mdio_read(dev, MII_MCTRL);
1190                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191                if (dev->if_port == PORT_FIBRE)
1192                        tmp |= MII_FX_SEL;
1193                else
1194                        tmp |= MII_EN_SCRM;
1195                mdio_write(dev, MII_MCTRL, tmp);
1196                break;
1197        default:
1198                break;
1199        }
1200        cfg = readl(ioaddr + ChipConfig);
1201        if (cfg & CfgExtPhy)
1202                return;
1203
1204        /* On page 78 of the spec, they recommend some settings for "optimum
1205           performance" to be done in sequence.  These settings optimize some
1206           of the 100Mbit autodetection circuitry.  They say we only want to
1207           do this for rev C of the chip, but engineers at NSC (Bradley
1208           Kennedy) recommends always setting them.  If you don't, you get
1209           errors on some autonegotiations that make the device unusable.
1210
1211           It seems that the DSP needs a few usec to reinitialize after
1212           the start of the phy. Just retry writing these values until they
1213           stick.
1214        */
1215        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216
1217                int dspcfg;
1218                writew(1, ioaddr + PGSEL);
1219                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1220                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1221                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1223                writew(np->dspcfg, ioaddr + DSPCFG);
1224                writew(SDCFG_VAL, ioaddr + SDCFG);
1225                writew(0, ioaddr + PGSEL);
1226                readl(ioaddr + ChipConfig);
1227                udelay(10);
1228
1229                writew(1, ioaddr + PGSEL);
1230                dspcfg = readw(ioaddr + DSPCFG);
1231                writew(0, ioaddr + PGSEL);
1232                if (np->dspcfg == dspcfg)
1233                        break;
1234        }
1235
1236        if (netif_msg_link(np)) {
1237                if (i==NATSEMI_HW_TIMEOUT) {
1238                        printk(KERN_INFO
1239                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1240                                dev->name, i*10);
1241                } else {
1242                        printk(KERN_INFO
1243                                "%s: DSPCFG accepted after %d usec.\n",
1244                                dev->name, i*10);
1245                }
1246        }
1247        /*
1248         * Enable PHY Specific event based interrupts.  Link state change
1249         * and Auto-Negotiation Completion are among the affected.
1250         * Read the intr status to clear it (needed for wake events).
1251         */
1252        readw(ioaddr + MIntrStatus);
1253        writew(MICRIntEn, ioaddr + MIntrCtrl);
1254}
1255
1256static int switch_port_external(struct net_device *dev)
1257{
1258        struct netdev_private *np = netdev_priv(dev);
1259        void __iomem *ioaddr = ns_ioaddr(dev);
1260        u32 cfg;
1261
1262        cfg = readl(ioaddr + ChipConfig);
1263        if (cfg & CfgExtPhy)
1264                return 0;
1265
1266        if (netif_msg_link(np)) {
1267                printk(KERN_INFO "%s: switching to external transceiver.\n",
1268                                dev->name);
1269        }
1270
1271        /* 1) switch back to external phy */
1272        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1273        readl(ioaddr + ChipConfig);
1274        udelay(1);
1275
1276        /* 2) reset the external phy: */
1277        /* resetting the external PHY has been known to cause a hub supplying
1278         * power over Ethernet to kill the power.  We don't want to kill
1279         * power to this computer, so we avoid resetting the phy.
1280         */
1281
1282        /* 3) reinit the phy fixup, it got lost during power down. */
1283        move_int_phy(dev, np->phy_addr_external);
1284        init_phy_fixup(dev);
1285
1286        return 1;
1287}
1288
1289static int switch_port_internal(struct net_device *dev)
1290{
1291        struct netdev_private *np = netdev_priv(dev);
1292        void __iomem *ioaddr = ns_ioaddr(dev);
1293        int i;
1294        u32 cfg;
1295        u16 bmcr;
1296
1297        cfg = readl(ioaddr + ChipConfig);
1298        if (!(cfg &CfgExtPhy))
1299                return 0;
1300
1301        if (netif_msg_link(np)) {
1302                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303                                dev->name);
1304        }
1305        /* 1) switch back to internal phy: */
1306        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307        writel(cfg, ioaddr + ChipConfig);
1308        readl(ioaddr + ChipConfig);
1309        udelay(1);
1310
1311        /* 2) reset the internal phy: */
1312        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1314        readl(ioaddr + ChipConfig);
1315        udelay(10);
1316        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1318                if (!(bmcr & BMCR_RESET))
1319                        break;
1320                udelay(10);
1321        }
1322        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323                printk(KERN_INFO
1324                        "%s: phy reset did not complete in %d usec.\n",
1325                        dev->name, i*10);
1326        }
1327        /* 3) reinit the phy fixup, it got lost during power down. */
1328        init_phy_fixup(dev);
1329
1330        return 1;
1331}
1332
1333/* Scan for a PHY on the external mii bus.
1334 * There are two tricky points:
1335 * - Do not scan while the internal phy is enabled. The internal phy will
1336 *   crash: e.g. reads from the DSPCFG register will return odd values and
1337 *   the nasty random phy reset code will reset the nic every few seconds.
1338 * - The internal phy must be moved around, an external phy could
1339 *   have the same address as the internal phy.
1340 */
1341static int find_mii(struct net_device *dev)
1342{
1343        struct netdev_private *np = netdev_priv(dev);
1344        int tmp;
1345        int i;
1346        int did_switch;
1347
1348        /* Switch to external phy */
1349        did_switch = switch_port_external(dev);
1350
1351        /* Scan the possible phy addresses:
1352         *
1353         * PHY address 0 means that the phy is in isolate mode. Not yet
1354         * supported due to lack of test hardware. User space should
1355         * handle it through ethtool.
1356         */
1357        for (i = 1; i <= 31; i++) {
1358                move_int_phy(dev, i);
1359                tmp = miiport_read(dev, i, MII_BMSR);
1360                if (tmp != 0xffff && tmp != 0x0000) {
1361                        /* found something! */
1362                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363                                        + mdio_read(dev, MII_PHYSID2);
1364                        if (netif_msg_probe(np)) {
1365                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366                                                pci_name(np->pci_dev), np->mii, i);
1367                        }
1368                        break;
1369                }
1370        }
1371        /* And switch back to internal phy: */
1372        if (did_switch)
1373                switch_port_internal(dev);
1374        return i;
1375}
1376
1377/* CFG bits [13:16] [18:23] */
1378#define CFG_RESET_SAVE 0xfde000
1379/* WCSR bits [0:4] [9:10] */
1380#define WCSR_RESET_SAVE 0x61f
1381/* RFCR bits [20] [22] [27:31] */
1382#define RFCR_RESET_SAVE 0xf8500000
1383
1384static void natsemi_reset(struct net_device *dev)
1385{
1386        int i;
1387        u32 cfg;
1388        u32 wcsr;
1389        u32 rfcr;
1390        u16 pmatch[3];
1391        u16 sopass[3];
1392        struct netdev_private *np = netdev_priv(dev);
1393        void __iomem *ioaddr = ns_ioaddr(dev);
1394
1395        /*
1396         * Resetting the chip causes some registers to be lost.
1397         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398         * we save the state that would have been loaded from EEPROM
1399         * on a normal power-up (see the spec EEPROM map).  This assumes
1400         * whoever calls this will follow up with init_registers() eventually.
1401         */
1402
1403        /* CFG */
1404        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405        /* WCSR */
1406        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407        /* RFCR */
1408        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409        /* PMATCH */
1410        for (i = 0; i < 3; i++) {
1411                writel(i*2, ioaddr + RxFilterAddr);
1412                pmatch[i] = readw(ioaddr + RxFilterData);
1413        }
1414        /* SOPAS */
1415        for (i = 0; i < 3; i++) {
1416                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1417                sopass[i] = readw(ioaddr + RxFilterData);
1418        }
1419
1420        /* now whack the chip */
1421        writel(ChipReset, ioaddr + ChipCmd);
1422        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1424                        break;
1425                udelay(5);
1426        }
1427        if (i==NATSEMI_HW_TIMEOUT) {
1428                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429                        dev->name, i*5);
1430        } else if (netif_msg_hw(np)) {
1431                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432                        dev->name, i*5);
1433        }
1434
1435        /* restore CFG */
1436        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437        /* turn on external phy if it was selected */
1438        if (dev->if_port == PORT_TP)
1439                cfg &= ~(CfgExtPhy | CfgPhyDis);
1440        else
1441                cfg |= (CfgExtPhy | CfgPhyDis);
1442        writel(cfg, ioaddr + ChipConfig);
1443        /* restore WCSR */
1444        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445        writel(wcsr, ioaddr + WOLCmd);
1446        /* read RFCR */
1447        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448        /* restore PMATCH */
1449        for (i = 0; i < 3; i++) {
1450                writel(i*2, ioaddr + RxFilterAddr);
1451                writew(pmatch[i], ioaddr + RxFilterData);
1452        }
1453        for (i = 0; i < 3; i++) {
1454                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1455                writew(sopass[i], ioaddr + RxFilterData);
1456        }
1457        /* restore RFCR */
1458        writel(rfcr, ioaddr + RxFilterAddr);
1459}
1460
1461static void reset_rx(struct net_device *dev)
1462{
1463        int i;
1464        struct netdev_private *np = netdev_priv(dev);
1465        void __iomem *ioaddr = ns_ioaddr(dev);
1466
1467        np->intr_status &= ~RxResetDone;
1468
1469        writel(RxReset, ioaddr + ChipCmd);
1470
1471        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472                np->intr_status |= readl(ioaddr + IntrStatus);
1473                if (np->intr_status & RxResetDone)
1474                        break;
1475                udelay(15);
1476        }
1477        if (i==NATSEMI_HW_TIMEOUT) {
1478                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479                       dev->name, i*15);
1480        } else if (netif_msg_hw(np)) {
1481                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482                       dev->name, i*15);
1483        }
1484}
1485
1486static void natsemi_reload_eeprom(struct net_device *dev)
1487{
1488        struct netdev_private *np = netdev_priv(dev);
1489        void __iomem *ioaddr = ns_ioaddr(dev);
1490        int i;
1491
1492        writel(EepromReload, ioaddr + PCIBusCfg);
1493        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494                udelay(50);
1495                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1496                        break;
1497        }
1498        if (i==NATSEMI_HW_TIMEOUT) {
1499                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500                        pci_name(np->pci_dev), i*50);
1501        } else if (netif_msg_hw(np)) {
1502                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503                        pci_name(np->pci_dev), i*50);
1504        }
1505}
1506
1507static void natsemi_stop_rxtx(struct net_device *dev)
1508{
1509        void __iomem * ioaddr = ns_ioaddr(dev);
1510        struct netdev_private *np = netdev_priv(dev);
1511        int i;
1512
1513        writel(RxOff | TxOff, ioaddr + ChipCmd);
1514        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516                        break;
1517                udelay(5);
1518        }
1519        if (i==NATSEMI_HW_TIMEOUT) {
1520                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521                        dev->name, i*5);
1522        } else if (netif_msg_hw(np)) {
1523                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524                        dev->name, i*5);
1525        }
1526}
1527
1528static int netdev_open(struct net_device *dev)
1529{
1530        struct netdev_private *np = netdev_priv(dev);
1531        void __iomem * ioaddr = ns_ioaddr(dev);
1532        const int irq = np->pci_dev->irq;
1533        int i;
1534
1535        /* Reset the chip, just in case. */
1536        natsemi_reset(dev);
1537
1538        i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1539        if (i) return i;
1540
1541        if (netif_msg_ifup(np))
1542                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543                        dev->name, irq);
1544        i = alloc_ring(dev);
1545        if (i < 0) {
1546                free_irq(irq, dev);
1547                return i;
1548        }
1549        napi_enable(&np->napi);
1550
1551        init_ring(dev);
1552        spin_lock_irq(&np->lock);
1553        init_registers(dev);
1554        /* now set the MAC address according to dev->dev_addr */
1555        for (i = 0; i < 3; i++) {
1556                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558                writel(i*2, ioaddr + RxFilterAddr);
1559                writew(mac, ioaddr + RxFilterData);
1560        }
1561        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562        spin_unlock_irq(&np->lock);
1563
1564        netif_start_queue(dev);
1565
1566        if (netif_msg_ifup(np))
1567                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568                        dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570        /* Set the timer to check for link beat. */
1571        timer_setup(&np->timer, netdev_timer, 0);
1572        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573        add_timer(&np->timer);
1574
1575        return 0;
1576}
1577
1578static void do_cable_magic(struct net_device *dev)
1579{
1580        struct netdev_private *np = netdev_priv(dev);
1581        void __iomem *ioaddr = ns_ioaddr(dev);
1582
1583        if (dev->if_port != PORT_TP)
1584                return;
1585
1586        if (np->srr >= SRR_DP83816_A5)
1587                return;
1588
1589        /*
1590         * 100 MBit links with short cables can trip an issue with the chip.
1591         * The problem manifests as lots of CRC errors and/or flickering
1592         * activity LED while idle.  This process is based on instructions
1593         * from engineers at National.
1594         */
1595        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596                u16 data;
1597
1598                writew(1, ioaddr + PGSEL);
1599                /*
1600                 * coefficient visibility should already be enabled via
1601                 * DSPCFG | 0x1000
1602                 */
1603                data = readw(ioaddr + TSTDAT) & 0xff;
1604                /*
1605                 * the value must be negative, and within certain values
1606                 * (these values all come from National)
1607                 */
1608                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609                        np = netdev_priv(dev);
1610
1611                        /* the bug has been triggered - fix the coefficient */
1612                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613                        /* lock the value */
1614                        data = readw(ioaddr + DSPCFG);
1615                        np->dspcfg = data | DSPCFG_LOCK;
1616                        writew(np->dspcfg, ioaddr + DSPCFG);
1617                }
1618                writew(0, ioaddr + PGSEL);
1619        }
1620}
1621
1622static void undo_cable_magic(struct net_device *dev)
1623{
1624        u16 data;
1625        struct netdev_private *np = netdev_priv(dev);
1626        void __iomem * ioaddr = ns_ioaddr(dev);
1627
1628        if (dev->if_port != PORT_TP)
1629                return;
1630
1631        if (np->srr >= SRR_DP83816_A5)
1632                return;
1633
1634        writew(1, ioaddr + PGSEL);
1635        /* make sure the lock bit is clear */
1636        data = readw(ioaddr + DSPCFG);
1637        np->dspcfg = data & ~DSPCFG_LOCK;
1638        writew(np->dspcfg, ioaddr + DSPCFG);
1639        writew(0, ioaddr + PGSEL);
1640}
1641
1642static void check_link(struct net_device *dev)
1643{
1644        struct netdev_private *np = netdev_priv(dev);
1645        void __iomem * ioaddr = ns_ioaddr(dev);
1646        int duplex = np->duplex;
1647        u16 bmsr;
1648
1649        /* If we are ignoring the PHY then don't try reading it. */
1650        if (np->ignore_phy)
1651                goto propagate_state;
1652
1653        /* The link status field is latched: it remains low after a temporary
1654         * link failure until it's read. We need the current link status,
1655         * thus read twice.
1656         */
1657        mdio_read(dev, MII_BMSR);
1658        bmsr = mdio_read(dev, MII_BMSR);
1659
1660        if (!(bmsr & BMSR_LSTATUS)) {
1661                if (netif_carrier_ok(dev)) {
1662                        if (netif_msg_link(np))
1663                                printk(KERN_NOTICE "%s: link down.\n",
1664                                       dev->name);
1665                        netif_carrier_off(dev);
1666                        undo_cable_magic(dev);
1667                }
1668                return;
1669        }
1670        if (!netif_carrier_ok(dev)) {
1671                if (netif_msg_link(np))
1672                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673                netif_carrier_on(dev);
1674                do_cable_magic(dev);
1675        }
1676
1677        duplex = np->full_duplex;
1678        if (!duplex) {
1679                if (bmsr & BMSR_ANEGCOMPLETE) {
1680                        int tmp = mii_nway_result(
1681                                np->advertising & mdio_read(dev, MII_LPA));
1682                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683                                duplex = 1;
1684                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685                        duplex = 1;
1686        }
1687
1688propagate_state:
1689        /* if duplex is set then bit 28 must be set, too */
1690        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691                if (netif_msg_link(np))
1692                        printk(KERN_INFO
1693                                "%s: Setting %s-duplex based on negotiated "
1694                                "link capability.\n", dev->name,
1695                                duplex ? "full" : "half");
1696                if (duplex) {
1697                        np->rx_config |= RxAcceptTx;
1698                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699                } else {
1700                        np->rx_config &= ~RxAcceptTx;
1701                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702                }
1703                writel(np->tx_config, ioaddr + TxConfig);
1704                writel(np->rx_config, ioaddr + RxConfig);
1705        }
1706}
1707
1708static void init_registers(struct net_device *dev)
1709{
1710        struct netdev_private *np = netdev_priv(dev);
1711        void __iomem * ioaddr = ns_ioaddr(dev);
1712
1713        init_phy_fixup(dev);
1714
1715        /* clear any interrupts that are pending, such as wake events */
1716        readl(ioaddr + IntrStatus);
1717
1718        writel(np->ring_dma, ioaddr + RxRingPtr);
1719        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720                ioaddr + TxRingPtr);
1721
1722        /* Initialize other registers.
1723         * Configure the PCI bus bursts and FIFO thresholds.
1724         * Configure for standard, in-spec Ethernet.
1725         * Start with half-duplex. check_link will update
1726         * to the correct settings.
1727         */
1728
1729        /* DRTH: 2: start tx if 64 bytes are in the fifo
1730         * FLTH: 0x10: refill with next packet if 512 bytes are free
1731         * MXDMA: 0: up to 256 byte bursts.
1732         *      MXDMA must be <= FLTH
1733         * ECRETRY=1
1734         * ATP=1
1735         */
1736        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1738        writel(np->tx_config, ioaddr + TxConfig);
1739
1740        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741         * MXDMA 0: up to 256 byte bursts
1742         */
1743        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744        /* if receive ring now has bigger buffers than normal, enable jumbo */
1745        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746                np->rx_config |= RxAcceptLong;
1747
1748        writel(np->rx_config, ioaddr + RxConfig);
1749
1750        /* Disable PME:
1751         * The PME bit is initialized from the EEPROM contents.
1752         * PCI cards probably have PME disabled, but motherboard
1753         * implementations may have PME set to enable WakeOnLan.
1754         * With PME set the chip will scan incoming packets but
1755         * nothing will be written to memory. */
1756        np->SavedClkRun = readl(ioaddr + ClkRun);
1757        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760                        dev->name, readl(ioaddr + WOLCmd));
1761        }
1762
1763        check_link(dev);
1764        __set_rx_mode(dev);
1765
1766        /* Enable interrupts by setting the interrupt mask. */
1767        writel(DEFAULT_INTR, ioaddr + IntrMask);
1768        natsemi_irq_enable(dev);
1769
1770        writel(RxOn | TxOn, ioaddr + ChipCmd);
1771        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772}
1773
1774/*
1775 * netdev_timer:
1776 * Purpose:
1777 * 1) check for link changes. Usually they are handled by the MII interrupt
1778 *    but it doesn't hurt to check twice.
1779 * 2) check for sudden death of the NIC:
1780 *    It seems that a reference set for this chip went out with incorrect info,
1781 *    and there exist boards that aren't quite right.  An unexpected voltage
1782 *    drop can cause the PHY to get itself in a weird state (basically reset).
1783 *    NOTE: this only seems to affect revC chips.  The user can disable
1784 *    this check via dspcfg_workaround sysfs option.
1785 * 3) check of death of the RX path due to OOM
1786 */
1787static void netdev_timer(struct timer_list *t)
1788{
1789        struct netdev_private *np = from_timer(np, t, timer);
1790        struct net_device *dev = np->dev;
1791        void __iomem * ioaddr = ns_ioaddr(dev);
1792        int next_tick = NATSEMI_TIMER_FREQ;
1793        const int irq = np->pci_dev->irq;
1794
1795        if (netif_msg_timer(np)) {
1796                /* DO NOT read the IntrStatus register,
1797                 * a read clears any pending interrupts.
1798                 */
1799                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800                        dev->name);
1801        }
1802
1803        if (dev->if_port == PORT_TP) {
1804                u16 dspcfg;
1805
1806                spin_lock_irq(&np->lock);
1807                /* check for a nasty random phy-reset - use dspcfg as a flag */
1808                writew(1, ioaddr+PGSEL);
1809                dspcfg = readw(ioaddr+DSPCFG);
1810                writew(0, ioaddr+PGSEL);
1811                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812                        if (!netif_queue_stopped(dev)) {
1813                                spin_unlock_irq(&np->lock);
1814                                if (netif_msg_drv(np))
1815                                        printk(KERN_NOTICE "%s: possible phy reset: "
1816                                                "re-initializing\n", dev->name);
1817                                disable_irq(irq);
1818                                spin_lock_irq(&np->lock);
1819                                natsemi_stop_rxtx(dev);
1820                                dump_ring(dev);
1821                                reinit_ring(dev);
1822                                init_registers(dev);
1823                                spin_unlock_irq(&np->lock);
1824                                enable_irq(irq);
1825                        } else {
1826                                /* hurry back */
1827                                next_tick = HZ;
1828                                spin_unlock_irq(&np->lock);
1829                        }
1830                } else {
1831                        /* init_registers() calls check_link() for the above case */
1832                        check_link(dev);
1833                        spin_unlock_irq(&np->lock);
1834                }
1835        } else {
1836                spin_lock_irq(&np->lock);
1837                check_link(dev);
1838                spin_unlock_irq(&np->lock);
1839        }
1840        if (np->oom) {
1841                disable_irq(irq);
1842                np->oom = 0;
1843                refill_rx(dev);
1844                enable_irq(irq);
1845                if (!np->oom) {
1846                        writel(RxOn, ioaddr + ChipCmd);
1847                } else {
1848                        next_tick = 1;
1849                }
1850        }
1851
1852        if (next_tick > 1)
1853                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854        else
1855                mod_timer(&np->timer, jiffies + next_tick);
1856}
1857
1858static void dump_ring(struct net_device *dev)
1859{
1860        struct netdev_private *np = netdev_priv(dev);
1861
1862        if (netif_msg_pktdata(np)) {
1863                int i;
1864                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865                for (i = 0; i < TX_RING_SIZE; i++) {
1866                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867                                i, np->tx_ring[i].next_desc,
1868                                np->tx_ring[i].cmd_status,
1869                                np->tx_ring[i].addr);
1870                }
1871                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872                for (i = 0; i < RX_RING_SIZE; i++) {
1873                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874                                i, np->rx_ring[i].next_desc,
1875                                np->rx_ring[i].cmd_status,
1876                                np->rx_ring[i].addr);
1877                }
1878        }
1879}
1880
1881static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882{
1883        struct netdev_private *np = netdev_priv(dev);
1884        void __iomem * ioaddr = ns_ioaddr(dev);
1885        const int irq = np->pci_dev->irq;
1886
1887        disable_irq(irq);
1888        spin_lock_irq(&np->lock);
1889        if (!np->hands_off) {
1890                if (netif_msg_tx_err(np))
1891                        printk(KERN_WARNING
1892                                "%s: Transmit timed out, status %#08x,"
1893                                " resetting...\n",
1894                                dev->name, readl(ioaddr + IntrStatus));
1895                dump_ring(dev);
1896
1897                natsemi_reset(dev);
1898                reinit_ring(dev);
1899                init_registers(dev);
1900        } else {
1901                printk(KERN_WARNING
1902                        "%s: tx_timeout while in hands_off state?\n",
1903                        dev->name);
1904        }
1905        spin_unlock_irq(&np->lock);
1906        enable_irq(irq);
1907
1908        netif_trans_update(dev); /* prevent tx timeout */
1909        dev->stats.tx_errors++;
1910        netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915        struct netdev_private *np = netdev_priv(dev);
1916        np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1917                                         sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918                                         &np->ring_dma, GFP_KERNEL);
1919        if (!np->rx_ring)
1920                return -ENOMEM;
1921        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922        return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927        struct netdev_private *np = netdev_priv(dev);
1928
1929        /* Refill the Rx ring buffers. */
1930        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931                struct sk_buff *skb;
1932                int entry = np->dirty_rx % RX_RING_SIZE;
1933                if (np->rx_skbuff[entry] == NULL) {
1934                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935                        skb = netdev_alloc_skb(dev, buflen);
1936                        np->rx_skbuff[entry] = skb;
1937                        if (skb == NULL)
1938                                break; /* Better luck next round. */
1939                        np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940                                                           skb->data, buflen,
1941                                                           DMA_FROM_DEVICE);
1942                        if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1943                                dev_kfree_skb_any(skb);
1944                                np->rx_skbuff[entry] = NULL;
1945                                break; /* Better luck next round. */
1946                        }
1947                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948                }
1949                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950        }
1951        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952                if (netif_msg_rx_err(np))
1953                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954                np->oom = 1;
1955        }
1956}
1957
1958static void set_bufsize(struct net_device *dev)
1959{
1960        struct netdev_private *np = netdev_priv(dev);
1961        if (dev->mtu <= ETH_DATA_LEN)
1962                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963        else
1964                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965}
1966
1967/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968static void init_ring(struct net_device *dev)
1969{
1970        struct netdev_private *np = netdev_priv(dev);
1971        int i;
1972
1973        /* 1) TX ring */
1974        np->dirty_tx = np->cur_tx = 0;
1975        for (i = 0; i < TX_RING_SIZE; i++) {
1976                np->tx_skbuff[i] = NULL;
1977                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978                        +sizeof(struct netdev_desc)
1979                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980                np->tx_ring[i].cmd_status = 0;
1981        }
1982
1983        /* 2) RX ring */
1984        np->dirty_rx = 0;
1985        np->cur_rx = RX_RING_SIZE;
1986        np->oom = 0;
1987        set_bufsize(dev);
1988
1989        np->rx_head_desc = &np->rx_ring[0];
1990
1991        /* Please be careful before changing this loop - at least gcc-2.95.1
1992         * miscompiles it otherwise.
1993         */
1994        /* Initialize all Rx descriptors. */
1995        for (i = 0; i < RX_RING_SIZE; i++) {
1996                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997                                +sizeof(struct netdev_desc)
1998                                *((i+1)%RX_RING_SIZE));
1999                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000                np->rx_skbuff[i] = NULL;
2001        }
2002        refill_rx(dev);
2003        dump_ring(dev);
2004}
2005
2006static void drain_tx(struct net_device *dev)
2007{
2008        struct netdev_private *np = netdev_priv(dev);
2009        int i;
2010
2011        for (i = 0; i < TX_RING_SIZE; i++) {
2012                if (np->tx_skbuff[i]) {
2013                        dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014                                         np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2015                        dev_kfree_skb(np->tx_skbuff[i]);
2016                        dev->stats.tx_dropped++;
2017                }
2018                np->tx_skbuff[i] = NULL;
2019        }
2020}
2021
2022static void drain_rx(struct net_device *dev)
2023{
2024        struct netdev_private *np = netdev_priv(dev);
2025        unsigned int buflen = np->rx_buf_sz;
2026        int i;
2027
2028        /* Free all the skbuffs in the Rx queue. */
2029        for (i = 0; i < RX_RING_SIZE; i++) {
2030                np->rx_ring[i].cmd_status = 0;
2031                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032                if (np->rx_skbuff[i]) {
2033                        dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034                                         buflen + NATSEMI_PADDING,
2035                                         DMA_FROM_DEVICE);
2036                        dev_kfree_skb(np->rx_skbuff[i]);
2037                }
2038                np->rx_skbuff[i] = NULL;
2039        }
2040}
2041
2042static void drain_ring(struct net_device *dev)
2043{
2044        drain_rx(dev);
2045        drain_tx(dev);
2046}
2047
2048static void free_ring(struct net_device *dev)
2049{
2050        struct netdev_private *np = netdev_priv(dev);
2051        dma_free_coherent(&np->pci_dev->dev,
2052                          sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053                          np->rx_ring, np->ring_dma);
2054}
2055
2056static void reinit_rx(struct net_device *dev)
2057{
2058        struct netdev_private *np = netdev_priv(dev);
2059        int i;
2060
2061        /* RX Ring */
2062        np->dirty_rx = 0;
2063        np->cur_rx = RX_RING_SIZE;
2064        np->rx_head_desc = &np->rx_ring[0];
2065        /* Initialize all Rx descriptors. */
2066        for (i = 0; i < RX_RING_SIZE; i++)
2067                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068
2069        refill_rx(dev);
2070}
2071
2072static void reinit_ring(struct net_device *dev)
2073{
2074        struct netdev_private *np = netdev_priv(dev);
2075        int i;
2076
2077        /* drain TX ring */
2078        drain_tx(dev);
2079        np->dirty_tx = np->cur_tx = 0;
2080        for (i=0;i<TX_RING_SIZE;i++)
2081                np->tx_ring[i].cmd_status = 0;
2082
2083        reinit_rx(dev);
2084}
2085
2086static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087{
2088        struct netdev_private *np = netdev_priv(dev);
2089        void __iomem * ioaddr = ns_ioaddr(dev);
2090        unsigned entry;
2091        unsigned long flags;
2092
2093        /* Note: Ordering is important here, set the field with the
2094           "ownership" bit last, and only then increment cur_tx. */
2095
2096        /* Calculate the next Tx descriptor entry. */
2097        entry = np->cur_tx % TX_RING_SIZE;
2098
2099        np->tx_skbuff[entry] = skb;
2100        np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101                                           skb->len, DMA_TO_DEVICE);
2102        if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2103                np->tx_skbuff[entry] = NULL;
2104                dev_kfree_skb_irq(skb);
2105                dev->stats.tx_dropped++;
2106                return NETDEV_TX_OK;
2107        }
2108
2109        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110
2111        spin_lock_irqsave(&np->lock, flags);
2112
2113        if (!np->hands_off) {
2114                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115                /* StrongARM: Explicitly cache flush np->tx_ring and
2116                 * skb->data,skb->len. */
2117                wmb();
2118                np->cur_tx++;
2119                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120                        netdev_tx_done(dev);
2121                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122                                netif_stop_queue(dev);
2123                }
2124                /* Wake the potentially-idle transmit channel. */
2125                writel(TxOn, ioaddr + ChipCmd);
2126        } else {
2127                dev_kfree_skb_irq(skb);
2128                dev->stats.tx_dropped++;
2129        }
2130        spin_unlock_irqrestore(&np->lock, flags);
2131
2132        if (netif_msg_tx_queued(np)) {
2133                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134                        dev->name, np->cur_tx, entry);
2135        }
2136        return NETDEV_TX_OK;
2137}
2138
2139static void netdev_tx_done(struct net_device *dev)
2140{
2141        struct netdev_private *np = netdev_priv(dev);
2142
2143        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144                int entry = np->dirty_tx % TX_RING_SIZE;
2145                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146                        break;
2147                if (netif_msg_tx_done(np))
2148                        printk(KERN_DEBUG
2149                                "%s: tx frame #%d finished, status %#08x.\n",
2150                                        dev->name, np->dirty_tx,
2151                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2152                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153                        dev->stats.tx_packets++;
2154                        dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155                } else { /* Various Tx errors */
2156                        int tx_status =
2157                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2158                        if (tx_status & (DescTxAbort|DescTxExcColl))
2159                                dev->stats.tx_aborted_errors++;
2160                        if (tx_status & DescTxFIFO)
2161                                dev->stats.tx_fifo_errors++;
2162                        if (tx_status & DescTxCarrier)
2163                                dev->stats.tx_carrier_errors++;
2164                        if (tx_status & DescTxOOWCol)
2165                                dev->stats.tx_window_errors++;
2166                        dev->stats.tx_errors++;
2167                }
2168                dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169                                 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2170                /* Free the original skb. */
2171                dev_consume_skb_irq(np->tx_skbuff[entry]);
2172                np->tx_skbuff[entry] = NULL;
2173        }
2174        if (netif_queue_stopped(dev) &&
2175            np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176                /* The ring is no longer full, wake queue. */
2177                netif_wake_queue(dev);
2178        }
2179}
2180
2181/* The interrupt handler doesn't actually handle interrupts itself, it
2182 * schedules a NAPI poll if there is anything to do. */
2183static irqreturn_t intr_handler(int irq, void *dev_instance)
2184{
2185        struct net_device *dev = dev_instance;
2186        struct netdev_private *np = netdev_priv(dev);
2187        void __iomem * ioaddr = ns_ioaddr(dev);
2188
2189        /* Reading IntrStatus automatically acknowledges so don't do
2190         * that while interrupts are disabled, (for example, while a
2191         * poll is scheduled).  */
2192        if (np->hands_off || !readl(ioaddr + IntrEnable))
2193                return IRQ_NONE;
2194
2195        np->intr_status = readl(ioaddr + IntrStatus);
2196
2197        if (!np->intr_status)
2198                return IRQ_NONE;
2199
2200        if (netif_msg_intr(np))
2201                printk(KERN_DEBUG
2202                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2203                       dev->name, np->intr_status,
2204                       readl(ioaddr + IntrMask));
2205
2206        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207
2208        if (napi_schedule_prep(&np->napi)) {
2209                /* Disable interrupts and register for poll */
2210                natsemi_irq_disable(dev);
2211                __napi_schedule(&np->napi);
2212        } else
2213                printk(KERN_WARNING
2214                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215                       dev->name, np->intr_status,
2216                       readl(ioaddr + IntrMask));
2217
2218        return IRQ_HANDLED;
2219}
2220
2221/* This is the NAPI poll routine.  As well as the standard RX handling
2222 * it also handles all other interrupts that the chip might raise.
2223 */
2224static int natsemi_poll(struct napi_struct *napi, int budget)
2225{
2226        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227        struct net_device *dev = np->dev;
2228        void __iomem * ioaddr = ns_ioaddr(dev);
2229        int work_done = 0;
2230
2231        do {
2232                if (netif_msg_intr(np))
2233                        printk(KERN_DEBUG
2234                               "%s: Poll, status %#08x, mask %#08x.\n",
2235                               dev->name, np->intr_status,
2236                               readl(ioaddr + IntrMask));
2237
2238                /* netdev_rx() may read IntrStatus again if the RX state
2239                 * machine falls over so do it first. */
2240                if (np->intr_status &
2241                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242                     IntrRxErr | IntrRxOverrun)) {
2243                        netdev_rx(dev, &work_done, budget);
2244                }
2245
2246                if (np->intr_status &
2247                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248                        spin_lock(&np->lock);
2249                        netdev_tx_done(dev);
2250                        spin_unlock(&np->lock);
2251                }
2252
2253                /* Abnormal error summary/uncommon events handlers. */
2254                if (np->intr_status & IntrAbnormalSummary)
2255                        netdev_error(dev, np->intr_status);
2256
2257                if (work_done >= budget)
2258                        return work_done;
2259
2260                np->intr_status = readl(ioaddr + IntrStatus);
2261        } while (np->intr_status);
2262
2263        napi_complete_done(napi, work_done);
2264
2265        /* Reenable interrupts providing nothing is trying to shut
2266         * the chip down. */
2267        spin_lock(&np->lock);
2268        if (!np->hands_off)
2269                natsemi_irq_enable(dev);
2270        spin_unlock(&np->lock);
2271
2272        return work_done;
2273}
2274
2275/* This routine is logically part of the interrupt handler, but separated
2276   for clarity and better register allocation. */
2277static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278{
2279        struct netdev_private *np = netdev_priv(dev);
2280        int entry = np->cur_rx % RX_RING_SIZE;
2281        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283        unsigned int buflen = np->rx_buf_sz;
2284        void __iomem * ioaddr = ns_ioaddr(dev);
2285
2286        /* If the driver owns the next entry it's a new packet. Send it up. */
2287        while (desc_status < 0) { /* e.g. & DescOwn */
2288                int pkt_len;
2289                if (netif_msg_rx_status(np))
2290                        printk(KERN_DEBUG
2291                                "  netdev_rx() entry %d status was %#08x.\n",
2292                                entry, desc_status);
2293                if (--boguscnt < 0)
2294                        break;
2295
2296                if (*work_done >= work_to_do)
2297                        break;
2298
2299                (*work_done)++;
2300
2301                pkt_len = (desc_status & DescSizeMask) - 4;
2302                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303                        if (desc_status & DescMore) {
2304                                unsigned long flags;
2305
2306                                if (netif_msg_rx_err(np))
2307                                        printk(KERN_WARNING
2308                                                "%s: Oversized(?) Ethernet "
2309                                                "frame spanned multiple "
2310                                                "buffers, entry %#08x "
2311                                                "status %#08x.\n", dev->name,
2312                                                np->cur_rx, desc_status);
2313                                dev->stats.rx_length_errors++;
2314
2315                                /* The RX state machine has probably
2316                                 * locked up beneath us.  Follow the
2317                                 * reset procedure documented in
2318                                 * AN-1287. */
2319
2320                                spin_lock_irqsave(&np->lock, flags);
2321                                reset_rx(dev);
2322                                reinit_rx(dev);
2323                                writel(np->ring_dma, ioaddr + RxRingPtr);
2324                                check_link(dev);
2325                                spin_unlock_irqrestore(&np->lock, flags);
2326
2327                                /* We'll enable RX on exit from this
2328                                 * function. */
2329                                break;
2330
2331                        } else {
2332                                /* There was an error. */
2333                                dev->stats.rx_errors++;
2334                                if (desc_status & (DescRxAbort|DescRxOver))
2335                                        dev->stats.rx_over_errors++;
2336                                if (desc_status & (DescRxLong|DescRxRunt))
2337                                        dev->stats.rx_length_errors++;
2338                                if (desc_status & (DescRxInvalid|DescRxAlign))
2339                                        dev->stats.rx_frame_errors++;
2340                                if (desc_status & DescRxCRC)
2341                                        dev->stats.rx_crc_errors++;
2342                        }
2343                } else if (pkt_len > np->rx_buf_sz) {
2344                        /* if this is the tail of a double buffer
2345                         * packet, we've already counted the error
2346                         * on the first part.  Ignore the second half.
2347                         */
2348                } else {
2349                        struct sk_buff *skb;
2350                        /* Omit CRC size. */
2351                        /* Check if the packet is long enough to accept
2352                         * without copying to a minimally-sized skbuff. */
2353                        if (pkt_len < rx_copybreak &&
2354                            (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2355                                /* 16 byte align the IP header */
2356                                skb_reserve(skb, RX_OFFSET);
2357                                dma_sync_single_for_cpu(&np->pci_dev->dev,
2358                                                        np->rx_dma[entry],
2359                                                        buflen,
2360                                                        DMA_FROM_DEVICE);
2361                                skb_copy_to_linear_data(skb,
2362                                        np->rx_skbuff[entry]->data, pkt_len);
2363                                skb_put(skb, pkt_len);
2364                                dma_sync_single_for_device(&np->pci_dev->dev,
2365                                                           np->rx_dma[entry],
2366                                                           buflen,
2367                                                           DMA_FROM_DEVICE);
2368                        } else {
2369                                dma_unmap_single(&np->pci_dev->dev,
2370                                                 np->rx_dma[entry],
2371                                                 buflen + NATSEMI_PADDING,
2372                                                 DMA_FROM_DEVICE);
2373                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374                                np->rx_skbuff[entry] = NULL;
2375                        }
2376                        skb->protocol = eth_type_trans(skb, dev);
2377                        netif_receive_skb(skb);
2378                        dev->stats.rx_packets++;
2379                        dev->stats.rx_bytes += pkt_len;
2380                }
2381                entry = (++np->cur_rx) % RX_RING_SIZE;
2382                np->rx_head_desc = &np->rx_ring[entry];
2383                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384        }
2385        refill_rx(dev);
2386
2387        /* Restart Rx engine if stopped. */
2388        if (np->oom)
2389                mod_timer(&np->timer, jiffies + 1);
2390        else
2391                writel(RxOn, ioaddr + ChipCmd);
2392}
2393
2394static void netdev_error(struct net_device *dev, int intr_status)
2395{
2396        struct netdev_private *np = netdev_priv(dev);
2397        void __iomem * ioaddr = ns_ioaddr(dev);
2398
2399        spin_lock(&np->lock);
2400        if (intr_status & LinkChange) {
2401                u16 lpa = mdio_read(dev, MII_LPA);
2402                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403                    netif_msg_link(np)) {
2404                        printk(KERN_INFO
2405                                "%s: Autonegotiation advertising"
2406                                " %#04x  partner %#04x.\n", dev->name,
2407                                np->advertising, lpa);
2408                }
2409
2410                /* read MII int status to clear the flag */
2411                readw(ioaddr + MIntrStatus);
2412                check_link(dev);
2413        }
2414        if (intr_status & StatsMax) {
2415                __get_stats(dev);
2416        }
2417        if (intr_status & IntrTxUnderrun) {
2418                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419                        np->tx_config += TX_DRTH_VAL_INC;
2420                        if (netif_msg_tx_err(np))
2421                                printk(KERN_NOTICE
2422                                        "%s: increased tx threshold, txcfg %#08x.\n",
2423                                        dev->name, np->tx_config);
2424                } else {
2425                        if (netif_msg_tx_err(np))
2426                                printk(KERN_NOTICE
2427                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428                                        dev->name, np->tx_config);
2429                }
2430                writel(np->tx_config, ioaddr + TxConfig);
2431        }
2432        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433                int wol_status = readl(ioaddr + WOLCmd);
2434                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435                        dev->name, wol_status);
2436        }
2437        if (intr_status & RxStatusFIFOOver) {
2438                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440                                dev->name);
2441                }
2442                dev->stats.rx_fifo_errors++;
2443                dev->stats.rx_errors++;
2444        }
2445        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2446        if (intr_status & IntrPCIErr) {
2447                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448                        intr_status & IntrPCIErr);
2449                dev->stats.tx_fifo_errors++;
2450                dev->stats.tx_errors++;
2451                dev->stats.rx_fifo_errors++;
2452                dev->stats.rx_errors++;
2453        }
2454        spin_unlock(&np->lock);
2455}
2456
2457static void __get_stats(struct net_device *dev)
2458{
2459        void __iomem * ioaddr = ns_ioaddr(dev);
2460
2461        /* The chip only need report frame silently dropped. */
2462        dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463        dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2464}
2465
2466static struct net_device_stats *get_stats(struct net_device *dev)
2467{
2468        struct netdev_private *np = netdev_priv(dev);
2469
2470        /* The chip only need report frame silently dropped. */
2471        spin_lock_irq(&np->lock);
2472        if (netif_running(dev) && !np->hands_off)
2473                __get_stats(dev);
2474        spin_unlock_irq(&np->lock);
2475
2476        return &dev->stats;
2477}
2478
2479#ifdef CONFIG_NET_POLL_CONTROLLER
2480static void natsemi_poll_controller(struct net_device *dev)
2481{
2482        struct netdev_private *np = netdev_priv(dev);
2483        const int irq = np->pci_dev->irq;
2484
2485        disable_irq(irq);
2486        intr_handler(irq, dev);
2487        enable_irq(irq);
2488}
2489#endif
2490
2491#define HASH_TABLE      0x200
2492static void __set_rx_mode(struct net_device *dev)
2493{
2494        void __iomem * ioaddr = ns_ioaddr(dev);
2495        struct netdev_private *np = netdev_priv(dev);
2496        u8 mc_filter[64]; /* Multicast hash filter */
2497        u32 rx_mode;
2498
2499        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500                rx_mode = RxFilterEnable | AcceptBroadcast
2501                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503                   (dev->flags & IFF_ALLMULTI)) {
2504                rx_mode = RxFilterEnable | AcceptBroadcast
2505                        | AcceptAllMulticast | AcceptMyPhys;
2506        } else {
2507                struct netdev_hw_addr *ha;
2508                int i;
2509
2510                memset(mc_filter, 0, sizeof(mc_filter));
2511                netdev_for_each_mc_addr(ha, dev) {
2512                        int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513                        mc_filter[b/8] |= (1 << (b & 0x07));
2514                }
2515                rx_mode = RxFilterEnable | AcceptBroadcast
2516                        | AcceptMulticast | AcceptMyPhys;
2517                for (i = 0; i < 64; i += 2) {
2518                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520                               ioaddr + RxFilterData);
2521                }
2522        }
2523        writel(rx_mode, ioaddr + RxFilterAddr);
2524        np->cur_rx_mode = rx_mode;
2525}
2526
2527static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528{
2529        dev->mtu = new_mtu;
2530
2531        /* synchronized against open : rtnl_lock() held by caller */
2532        if (netif_running(dev)) {
2533                struct netdev_private *np = netdev_priv(dev);
2534                void __iomem * ioaddr = ns_ioaddr(dev);
2535                const int irq = np->pci_dev->irq;
2536
2537                disable_irq(irq);
2538                spin_lock(&np->lock);
2539                /* stop engines */
2540                natsemi_stop_rxtx(dev);
2541                /* drain rx queue */
2542                drain_rx(dev);
2543                /* change buffers */
2544                set_bufsize(dev);
2545                reinit_rx(dev);
2546                writel(np->ring_dma, ioaddr + RxRingPtr);
2547                /* restart engines */
2548                writel(RxOn | TxOn, ioaddr + ChipCmd);
2549                spin_unlock(&np->lock);
2550                enable_irq(irq);
2551        }
2552        return 0;
2553}
2554
2555static void set_rx_mode(struct net_device *dev)
2556{
2557        struct netdev_private *np = netdev_priv(dev);
2558        spin_lock_irq(&np->lock);
2559        if (!np->hands_off)
2560                __set_rx_mode(dev);
2561        spin_unlock_irq(&np->lock);
2562}
2563
2564static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565{
2566        struct netdev_private *np = netdev_priv(dev);
2567        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2568        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2569        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2570}
2571
2572static int get_regs_len(struct net_device *dev)
2573{
2574        return NATSEMI_REGS_SIZE;
2575}
2576
2577static int get_eeprom_len(struct net_device *dev)
2578{
2579        struct netdev_private *np = netdev_priv(dev);
2580        return np->eeprom_size;
2581}
2582
2583static int get_link_ksettings(struct net_device *dev,
2584                              struct ethtool_link_ksettings *ecmd)
2585{
2586        struct netdev_private *np = netdev_priv(dev);
2587        spin_lock_irq(&np->lock);
2588        netdev_get_ecmd(dev, ecmd);
2589        spin_unlock_irq(&np->lock);
2590        return 0;
2591}
2592
2593static int set_link_ksettings(struct net_device *dev,
2594                              const struct ethtool_link_ksettings *ecmd)
2595{
2596        struct netdev_private *np = netdev_priv(dev);
2597        int res;
2598        spin_lock_irq(&np->lock);
2599        res = netdev_set_ecmd(dev, ecmd);
2600        spin_unlock_irq(&np->lock);
2601        return res;
2602}
2603
2604static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605{
2606        struct netdev_private *np = netdev_priv(dev);
2607        spin_lock_irq(&np->lock);
2608        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2609        netdev_get_sopass(dev, wol->sopass);
2610        spin_unlock_irq(&np->lock);
2611}
2612
2613static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614{
2615        struct netdev_private *np = netdev_priv(dev);
2616        int res;
2617        spin_lock_irq(&np->lock);
2618        netdev_set_wol(dev, wol->wolopts);
2619        res = netdev_set_sopass(dev, wol->sopass);
2620        spin_unlock_irq(&np->lock);
2621        return res;
2622}
2623
2624static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625{
2626        struct netdev_private *np = netdev_priv(dev);
2627        regs->version = NATSEMI_REGS_VER;
2628        spin_lock_irq(&np->lock);
2629        netdev_get_regs(dev, buf);
2630        spin_unlock_irq(&np->lock);
2631}
2632
2633static u32 get_msglevel(struct net_device *dev)
2634{
2635        struct netdev_private *np = netdev_priv(dev);
2636        return np->msg_enable;
2637}
2638
2639static void set_msglevel(struct net_device *dev, u32 val)
2640{
2641        struct netdev_private *np = netdev_priv(dev);
2642        np->msg_enable = val;
2643}
2644
2645static int nway_reset(struct net_device *dev)
2646{
2647        int tmp;
2648        int r = -EINVAL;
2649        /* if autoneg is off, it's an error */
2650        tmp = mdio_read(dev, MII_BMCR);
2651        if (tmp & BMCR_ANENABLE) {
2652                tmp |= (BMCR_ANRESTART);
2653                mdio_write(dev, MII_BMCR, tmp);
2654                r = 0;
2655        }
2656        return r;
2657}
2658
2659static u32 get_link(struct net_device *dev)
2660{
2661        /* LSTATUS is latched low until a read - so read twice */
2662        mdio_read(dev, MII_BMSR);
2663        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664}
2665
2666static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667{
2668        struct netdev_private *np = netdev_priv(dev);
2669        u8 *eebuf;
2670        int res;
2671
2672        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2673        if (!eebuf)
2674                return -ENOMEM;
2675
2676        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677        spin_lock_irq(&np->lock);
2678        res = netdev_get_eeprom(dev, eebuf);
2679        spin_unlock_irq(&np->lock);
2680        if (!res)
2681                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682        kfree(eebuf);
2683        return res;
2684}
2685
2686static const struct ethtool_ops ethtool_ops = {
2687        .get_drvinfo = get_drvinfo,
2688        .get_regs_len = get_regs_len,
2689        .get_eeprom_len = get_eeprom_len,
2690        .get_wol = get_wol,
2691        .set_wol = set_wol,
2692        .get_regs = get_regs,
2693        .get_msglevel = get_msglevel,
2694        .set_msglevel = set_msglevel,
2695        .nway_reset = nway_reset,
2696        .get_link = get_link,
2697        .get_eeprom = get_eeprom,
2698        .get_link_ksettings = get_link_ksettings,
2699        .set_link_ksettings = set_link_ksettings,
2700};
2701
2702static int netdev_set_wol(struct net_device *dev, u32 newval)
2703{
2704        struct netdev_private *np = netdev_priv(dev);
2705        void __iomem * ioaddr = ns_ioaddr(dev);
2706        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2707
2708        /* translate to bitmasks this chip understands */
2709        if (newval & WAKE_PHY)
2710                data |= WakePhy;
2711        if (newval & WAKE_UCAST)
2712                data |= WakeUnicast;
2713        if (newval & WAKE_MCAST)
2714                data |= WakeMulticast;
2715        if (newval & WAKE_BCAST)
2716                data |= WakeBroadcast;
2717        if (newval & WAKE_ARP)
2718                data |= WakeArp;
2719        if (newval & WAKE_MAGIC)
2720                data |= WakeMagic;
2721        if (np->srr >= SRR_DP83815_D) {
2722                if (newval & WAKE_MAGICSECURE) {
2723                        data |= WakeMagicSecure;
2724                }
2725        }
2726
2727        writel(data, ioaddr + WOLCmd);
2728
2729        return 0;
2730}
2731
2732static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733{
2734        struct netdev_private *np = netdev_priv(dev);
2735        void __iomem * ioaddr = ns_ioaddr(dev);
2736        u32 regval = readl(ioaddr + WOLCmd);
2737
2738        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739                        | WAKE_ARP | WAKE_MAGIC);
2740
2741        if (np->srr >= SRR_DP83815_D) {
2742                /* SOPASS works on revD and higher */
2743                *supported |= WAKE_MAGICSECURE;
2744        }
2745        *cur = 0;
2746
2747        /* translate from chip bitmasks */
2748        if (regval & WakePhy)
2749                *cur |= WAKE_PHY;
2750        if (regval & WakeUnicast)
2751                *cur |= WAKE_UCAST;
2752        if (regval & WakeMulticast)
2753                *cur |= WAKE_MCAST;
2754        if (regval & WakeBroadcast)
2755                *cur |= WAKE_BCAST;
2756        if (regval & WakeArp)
2757                *cur |= WAKE_ARP;
2758        if (regval & WakeMagic)
2759                *cur |= WAKE_MAGIC;
2760        if (regval & WakeMagicSecure) {
2761                /* this can be on in revC, but it's broken */
2762                *cur |= WAKE_MAGICSECURE;
2763        }
2764
2765        return 0;
2766}
2767
2768static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769{
2770        struct netdev_private *np = netdev_priv(dev);
2771        void __iomem * ioaddr = ns_ioaddr(dev);
2772        u16 *sval = (u16 *)newval;
2773        u32 addr;
2774
2775        if (np->srr < SRR_DP83815_D) {
2776                return 0;
2777        }
2778
2779        /* enable writing to these registers by disabling the RX filter */
2780        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781        addr &= ~RxFilterEnable;
2782        writel(addr, ioaddr + RxFilterAddr);
2783
2784        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785        writel(addr | 0xa, ioaddr + RxFilterAddr);
2786        writew(sval[0], ioaddr + RxFilterData);
2787
2788        writel(addr | 0xc, ioaddr + RxFilterAddr);
2789        writew(sval[1], ioaddr + RxFilterData);
2790
2791        writel(addr | 0xe, ioaddr + RxFilterAddr);
2792        writew(sval[2], ioaddr + RxFilterData);
2793
2794        /* re-enable the RX filter */
2795        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2796
2797        return 0;
2798}
2799
2800static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801{
2802        struct netdev_private *np = netdev_priv(dev);
2803        void __iomem * ioaddr = ns_ioaddr(dev);
2804        u16 *sval = (u16 *)data;
2805        u32 addr;
2806
2807        if (np->srr < SRR_DP83815_D) {
2808                sval[0] = sval[1] = sval[2] = 0;
2809                return 0;
2810        }
2811
2812        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814
2815        writel(addr | 0xa, ioaddr + RxFilterAddr);
2816        sval[0] = readw(ioaddr + RxFilterData);
2817
2818        writel(addr | 0xc, ioaddr + RxFilterAddr);
2819        sval[1] = readw(ioaddr + RxFilterData);
2820
2821        writel(addr | 0xe, ioaddr + RxFilterAddr);
2822        sval[2] = readw(ioaddr + RxFilterData);
2823
2824        writel(addr, ioaddr + RxFilterAddr);
2825
2826        return 0;
2827}
2828
2829static int netdev_get_ecmd(struct net_device *dev,
2830                           struct ethtool_link_ksettings *ecmd)
2831{
2832        struct netdev_private *np = netdev_priv(dev);
2833        u32 supported, advertising;
2834        u32 tmp;
2835
2836        ecmd->base.port   = dev->if_port;
2837        ecmd->base.speed  = np->speed;
2838        ecmd->base.duplex = np->duplex;
2839        ecmd->base.autoneg = np->autoneg;
2840        advertising = 0;
2841
2842        if (np->advertising & ADVERTISE_10HALF)
2843                advertising |= ADVERTISED_10baseT_Half;
2844        if (np->advertising & ADVERTISE_10FULL)
2845                advertising |= ADVERTISED_10baseT_Full;
2846        if (np->advertising & ADVERTISE_100HALF)
2847                advertising |= ADVERTISED_100baseT_Half;
2848        if (np->advertising & ADVERTISE_100FULL)
2849                advertising |= ADVERTISED_100baseT_Full;
2850        supported   = (SUPPORTED_Autoneg |
2851                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2852                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854        ecmd->base.phy_address = np->phy_addr_external;
2855        /*
2856         * We intentionally report the phy address of the external
2857         * phy, even if the internal phy is used. This is necessary
2858         * to work around a deficiency of the ethtool interface:
2859         * It's only possible to query the settings of the active
2860         * port. Therefore
2861         * # ethtool -s ethX port mii
2862         * actually sends an ioctl to switch to port mii with the
2863         * settings that are used for the current active port.
2864         * If we would report a different phy address in this
2865         * command, then
2866         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867         * would unintentionally change the phy address.
2868         *
2869         * Fortunately the phy address doesn't matter with the
2870         * internal phy...
2871         */
2872
2873        /* set information based on active port type */
2874        switch (ecmd->base.port) {
2875        default:
2876        case PORT_TP:
2877                advertising |= ADVERTISED_TP;
2878                break;
2879        case PORT_MII:
2880                advertising |= ADVERTISED_MII;
2881                break;
2882        case PORT_FIBRE:
2883                advertising |= ADVERTISED_FIBRE;
2884                break;
2885        }
2886
2887        /* if autonegotiation is on, try to return the active speed/duplex */
2888        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889                advertising |= ADVERTISED_Autoneg;
2890                tmp = mii_nway_result(
2891                        np->advertising & mdio_read(dev, MII_LPA));
2892                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893                        ecmd->base.speed = SPEED_100;
2894                else
2895                        ecmd->base.speed = SPEED_10;
2896                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897                        ecmd->base.duplex = DUPLEX_FULL;
2898                else
2899                        ecmd->base.duplex = DUPLEX_HALF;
2900        }
2901
2902        /* ignore maxtxpkt, maxrxpkt for now */
2903
2904        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2905                                                supported);
2906        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2907                                                advertising);
2908
2909        return 0;
2910}
2911
2912static int netdev_set_ecmd(struct net_device *dev,
2913                           const struct ethtool_link_ksettings *ecmd)
2914{
2915        struct netdev_private *np = netdev_priv(dev);
2916        u32 advertising;
2917
2918        ethtool_convert_link_mode_to_legacy_u32(&advertising,
2919                                                ecmd->link_modes.advertising);
2920
2921        if (ecmd->base.port != PORT_TP &&
2922            ecmd->base.port != PORT_MII &&
2923            ecmd->base.port != PORT_FIBRE)
2924                return -EINVAL;
2925        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926                if ((advertising & (ADVERTISED_10baseT_Half |
2927                                          ADVERTISED_10baseT_Full |
2928                                          ADVERTISED_100baseT_Half |
2929                                          ADVERTISED_100baseT_Full)) == 0) {
2930                        return -EINVAL;
2931                }
2932        } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933                u32 speed = ecmd->base.speed;
2934                if (speed != SPEED_10 && speed != SPEED_100)
2935                        return -EINVAL;
2936                if (ecmd->base.duplex != DUPLEX_HALF &&
2937                    ecmd->base.duplex != DUPLEX_FULL)
2938                        return -EINVAL;
2939        } else {
2940                return -EINVAL;
2941        }
2942
2943        /*
2944         * If we're ignoring the PHY then autoneg and the internal
2945         * transceiver are really not going to work so don't let the
2946         * user select them.
2947         */
2948        if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949                               ecmd->base.port == PORT_TP))
2950                return -EINVAL;
2951
2952        /*
2953         * maxtxpkt, maxrxpkt: ignored for now.
2954         *
2955         * transceiver:
2956         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958         * selects based on ecmd->port.
2959         *
2960         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961         * phys that are connected to the mii bus. It's used to apply fibre
2962         * specific updates.
2963         */
2964
2965        /* WHEW! now lets bang some bits */
2966
2967        /* save the parms */
2968        dev->if_port          = ecmd->base.port;
2969        np->autoneg           = ecmd->base.autoneg;
2970        np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971        if (np->autoneg == AUTONEG_ENABLE) {
2972                /* advertise only what has been requested */
2973                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974                if (advertising & ADVERTISED_10baseT_Half)
2975                        np->advertising |= ADVERTISE_10HALF;
2976                if (advertising & ADVERTISED_10baseT_Full)
2977                        np->advertising |= ADVERTISE_10FULL;
2978                if (advertising & ADVERTISED_100baseT_Half)
2979                        np->advertising |= ADVERTISE_100HALF;
2980                if (advertising & ADVERTISED_100baseT_Full)
2981                        np->advertising |= ADVERTISE_100FULL;
2982        } else {
2983                np->speed  = ecmd->base.speed;
2984                np->duplex = ecmd->base.duplex;
2985                /* user overriding the initial full duplex parm? */
2986                if (np->duplex == DUPLEX_HALF)
2987                        np->full_duplex = 0;
2988        }
2989
2990        /* get the right phy enabled */
2991        if (ecmd->base.port == PORT_TP)
2992                switch_port_internal(dev);
2993        else
2994                switch_port_external(dev);
2995
2996        /* set parms and see how this affected our link status */
2997        init_phy_fixup(dev);
2998        check_link(dev);
2999        return 0;
3000}
3001
3002static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003{
3004        int i;
3005        int j;
3006        u32 rfcr;
3007        u32 *rbuf = (u32 *)buf;
3008        void __iomem * ioaddr = ns_ioaddr(dev);
3009
3010        /* read non-mii page 0 of registers */
3011        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012                rbuf[i] = readl(ioaddr + i*4);
3013        }
3014
3015        /* read current mii registers */
3016        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017                rbuf[i] = mdio_read(dev, i & 0x1f);
3018
3019        /* read only the 'magic' registers from page 1 */
3020        writew(1, ioaddr + PGSEL);
3021        rbuf[i++] = readw(ioaddr + PMDCSR);
3022        rbuf[i++] = readw(ioaddr + TSTDAT);
3023        rbuf[i++] = readw(ioaddr + DSPCFG);
3024        rbuf[i++] = readw(ioaddr + SDCFG);
3025        writew(0, ioaddr + PGSEL);
3026
3027        /* read RFCR indexed registers */
3028        rfcr = readl(ioaddr + RxFilterAddr);
3029        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030                writel(j*2, ioaddr + RxFilterAddr);
3031                rbuf[i++] = readw(ioaddr + RxFilterData);
3032        }
3033        writel(rfcr, ioaddr + RxFilterAddr);
3034
3035        /* the interrupt status is clear-on-read - see if we missed any */
3036        if (rbuf[4] & rbuf[5]) {
3037                printk(KERN_WARNING
3038                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3039                        dev->name, rbuf[4] & rbuf[5]);
3040        }
3041
3042        return 0;
3043}
3044
3045#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3047                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3048                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3049                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3050                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3051                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3052                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053
3054static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055{
3056        int i;
3057        u16 *ebuf = (u16 *)buf;
3058        void __iomem * ioaddr = ns_ioaddr(dev);
3059        struct netdev_private *np = netdev_priv(dev);
3060
3061        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3062        for (i = 0; i < np->eeprom_size/2; i++) {
3063                ebuf[i] = eeprom_read(ioaddr, i);
3064                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3065                 * reads it back "sanely". So we swap it back here in order to
3066                 * present it to userland as it is stored. */
3067                ebuf[i] = SWAP_BITS(ebuf[i]);
3068        }
3069        return 0;
3070}
3071
3072static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073{
3074        struct mii_ioctl_data *data = if_mii(rq);
3075        struct netdev_private *np = netdev_priv(dev);
3076
3077        switch(cmd) {
3078        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3079                data->phy_id = np->phy_addr_external;
3080                fallthrough;
3081
3082        case SIOCGMIIREG:               /* Read MII PHY register. */
3083                /* The phy_id is not enough to uniquely identify
3084                 * the intended target. Therefore the command is sent to
3085                 * the given mii on the current port.
3086                 */
3087                if (dev->if_port == PORT_TP) {
3088                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089                                data->val_out = mdio_read(dev,
3090                                                        data->reg_num & 0x1f);
3091                        else
3092                                data->val_out = 0;
3093                } else {
3094                        move_int_phy(dev, data->phy_id & 0x1f);
3095                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3096                                                        data->reg_num & 0x1f);
3097                }
3098                return 0;
3099
3100        case SIOCSMIIREG:               /* Write MII PHY register. */
3101                if (dev->if_port == PORT_TP) {
3102                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104                                        np->advertising = data->val_in;
3105                                mdio_write(dev, data->reg_num & 0x1f,
3106                                                        data->val_in);
3107                        }
3108                } else {
3109                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111                                        np->advertising = data->val_in;
3112                        }
3113                        move_int_phy(dev, data->phy_id & 0x1f);
3114                        miiport_write(dev, data->phy_id & 0x1f,
3115                                                data->reg_num & 0x1f,
3116                                                data->val_in);
3117                }
3118                return 0;
3119        default:
3120                return -EOPNOTSUPP;
3121        }
3122}
3123
3124static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125{
3126        void __iomem * ioaddr = ns_ioaddr(dev);
3127        struct netdev_private *np = netdev_priv(dev);
3128
3129        if (netif_msg_wol(np))
3130                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131                        dev->name);
3132
3133        /* For WOL we must restart the rx process in silent mode.
3134         * Write NULL to the RxRingPtr. Only possible if
3135         * rx process is stopped
3136         */
3137        writel(0, ioaddr + RxRingPtr);
3138
3139        /* read WoL status to clear */
3140        readl(ioaddr + WOLCmd);
3141
3142        /* PME on, clear status */
3143        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3144
3145        /* and restart the rx process */
3146        writel(RxOn, ioaddr + ChipCmd);
3147
3148        if (enable_intr) {
3149                /* enable the WOL interrupt.
3150                 * Could be used to send a netlink message.
3151                 */
3152                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3153                natsemi_irq_enable(dev);
3154        }
3155}
3156
3157static int netdev_close(struct net_device *dev)
3158{
3159        void __iomem * ioaddr = ns_ioaddr(dev);
3160        struct netdev_private *np = netdev_priv(dev);
3161        const int irq = np->pci_dev->irq;
3162
3163        if (netif_msg_ifdown(np))
3164                printk(KERN_DEBUG
3165                        "%s: Shutting down ethercard, status was %#04x.\n",
3166                        dev->name, (int)readl(ioaddr + ChipCmd));
3167        if (netif_msg_pktdata(np))
3168                printk(KERN_DEBUG
3169                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3170                        dev->name, np->cur_tx, np->dirty_tx,
3171                        np->cur_rx, np->dirty_rx);
3172
3173        napi_disable(&np->napi);
3174
3175        /*
3176         * FIXME: what if someone tries to close a device
3177         * that is suspended?
3178         * Should we reenable the nic to switch to
3179         * the final WOL settings?
3180         */
3181
3182        del_timer_sync(&np->timer);
3183        disable_irq(irq);
3184        spin_lock_irq(&np->lock);
3185        natsemi_irq_disable(dev);
3186        np->hands_off = 1;
3187        spin_unlock_irq(&np->lock);
3188        enable_irq(irq);
3189
3190        free_irq(irq, dev);
3191
3192        /* Interrupt disabled, interrupt handler released,
3193         * queue stopped, timer deleted, rtnl_lock held
3194         * All async codepaths that access the driver are disabled.
3195         */
3196        spin_lock_irq(&np->lock);
3197        np->hands_off = 0;
3198        readl(ioaddr + IntrMask);
3199        readw(ioaddr + MIntrStatus);
3200
3201        /* Freeze Stats */
3202        writel(StatsFreeze, ioaddr + StatsCtrl);
3203
3204        /* Stop the chip's Tx and Rx processes. */
3205        natsemi_stop_rxtx(dev);
3206
3207        __get_stats(dev);
3208        spin_unlock_irq(&np->lock);
3209
3210        /* clear the carrier last - an interrupt could reenable it otherwise */
3211        netif_carrier_off(dev);
3212        netif_stop_queue(dev);
3213
3214        dump_ring(dev);
3215        drain_ring(dev);
3216        free_ring(dev);
3217
3218        {
3219                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3220                if (wol) {
3221                        /* restart the NIC in WOL mode.
3222                         * The nic must be stopped for this.
3223                         */
3224                        enable_wol_mode(dev, 0);
3225                } else {
3226                        /* Restore PME enable bit unmolested */
3227                        writel(np->SavedClkRun, ioaddr + ClkRun);
3228                }
3229        }
3230        return 0;
3231}
3232
3233
3234static void natsemi_remove1(struct pci_dev *pdev)
3235{
3236        struct net_device *dev = pci_get_drvdata(pdev);
3237        void __iomem * ioaddr = ns_ioaddr(dev);
3238
3239        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240        unregister_netdev (dev);
3241        iounmap(ioaddr);
3242        free_netdev (dev);
3243}
3244
3245/*
3246 * The ns83815 chip doesn't have explicit RxStop bits.
3247 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248 * of the nic, thus this function must be very careful:
3249 *
3250 * suspend/resume synchronization:
3251 * entry points:
3252 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253 *   start_tx, ns_tx_timeout
3254 *
3255 * No function accesses the hardware without checking np->hands_off.
3256 *      the check occurs under spin_lock_irq(&np->lock);
3257 * exceptions:
3258 *      * netdev_ioctl: noncritical access.
3259 *      * netdev_open: cannot happen due to the device_detach
3260 *      * netdev_close: doesn't hurt.
3261 *      * netdev_timer: timer stopped by natsemi_suspend.
3262 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3263 *              disable_irq() to enforce synchronization.
3264 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3265 *              sets hands_off, disables interrupts and then waits with
3266 *              napi_disable().
3267 *
3268 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269 */
3270
3271static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272{
3273        struct net_device *dev = dev_get_drvdata(dev_d);
3274        struct netdev_private *np = netdev_priv(dev);
3275        void __iomem * ioaddr = ns_ioaddr(dev);
3276
3277        rtnl_lock();
3278        if (netif_running (dev)) {
3279                const int irq = np->pci_dev->irq;
3280
3281                del_timer_sync(&np->timer);
3282
3283                disable_irq(irq);
3284                spin_lock_irq(&np->lock);
3285
3286                natsemi_irq_disable(dev);
3287                np->hands_off = 1;
3288                natsemi_stop_rxtx(dev);
3289                netif_stop_queue(dev);
3290
3291                spin_unlock_irq(&np->lock);
3292                enable_irq(irq);
3293
3294                napi_disable(&np->napi);
3295
3296                /* Update the error counts. */
3297                __get_stats(dev);
3298
3299                /* pci_power_off(pdev, -1); */
3300                drain_ring(dev);
3301                {
3302                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3303                        /* Restore PME enable bit */
3304                        if (wol) {
3305                                /* restart the NIC in WOL mode.
3306                                 * The nic must be stopped for this.
3307                                 * FIXME: use the WOL interrupt
3308                                 */
3309                                enable_wol_mode(dev, 0);
3310                        } else {
3311                                /* Restore PME enable bit unmolested */
3312                                writel(np->SavedClkRun, ioaddr + ClkRun);
3313                        }
3314                }
3315        }
3316        netif_device_detach(dev);
3317        rtnl_unlock();
3318        return 0;
3319}
3320
3321
3322static int __maybe_unused natsemi_resume(struct device *dev_d)
3323{
3324        struct net_device *dev = dev_get_drvdata(dev_d);
3325        struct netdev_private *np = netdev_priv(dev);
3326
3327        rtnl_lock();
3328        if (netif_device_present(dev))
3329                goto out;
3330        if (netif_running(dev)) {
3331                const int irq = np->pci_dev->irq;
3332
3333                BUG_ON(!np->hands_off);
3334        /*      pci_power_on(pdev); */
3335
3336                napi_enable(&np->napi);
3337
3338                natsemi_reset(dev);
3339                init_ring(dev);
3340                disable_irq(irq);
3341                spin_lock_irq(&np->lock);
3342                np->hands_off = 0;
3343                init_registers(dev);
3344                netif_device_attach(dev);
3345                spin_unlock_irq(&np->lock);
3346                enable_irq(irq);
3347
3348                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3349        }
3350        netif_device_attach(dev);
3351out:
3352        rtnl_unlock();
3353        return 0;
3354}
3355
3356static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357
3358static struct pci_driver natsemi_driver = {
3359        .name           = DRV_NAME,
3360        .id_table       = natsemi_pci_tbl,
3361        .probe          = natsemi_probe1,
3362        .remove         = natsemi_remove1,
3363        .driver.pm      = &natsemi_pm_ops,
3364};
3365
3366static int __init natsemi_init_mod (void)
3367{
3368/* when a module, this is printed whether or not devices are found in probe */
3369#ifdef MODULE
3370        printk(version);
3371#endif
3372
3373        return pci_register_driver(&natsemi_driver);
3374}
3375
3376static void __exit natsemi_exit_mod (void)
3377{
3378        pci_unregister_driver (&natsemi_driver);
3379}
3380
3381module_init(natsemi_init_mod);
3382module_exit(natsemi_exit_mod);
3383
3384