linux/drivers/net/ethernet/natsemi/ns83820.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2#define VERSION "0.23"
   3/* ns83820.c by Benjamin LaHaise with contributions.
   4 *
   5 * Questions/comments/discussion to linux-ns83820@kvack.org.
   6 *
   7 * $Revision: 1.34.2.23 $
   8 *
   9 * Copyright 2001 Benjamin LaHaise.
  10 * Copyright 2001, 2002 Red Hat.
  11 *
  12 * Mmmm, chocolate vanilla mocha...
  13 *
  14 * ChangeLog
  15 * =========
  16 *      20010414        0.1 - created
  17 *      20010622        0.2 - basic rx and tx.
  18 *      20010711        0.3 - added duplex and link state detection support.
  19 *      20010713        0.4 - zero copy, no hangs.
  20 *                      0.5 - 64 bit dma support (davem will hate me for this)
  21 *                          - disable jumbo frames to avoid tx hangs
  22 *                          - work around tx deadlocks on my 1.02 card via
  23 *                            fiddling with TXCFG
  24 *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  25 *      20010816        0.7 - misc cleanups
  26 *      20010826        0.8 - fix critical zero copy bugs
  27 *                      0.9 - internal experiment
  28 *      20010827        0.10 - fix ia64 unaligned access.
  29 *      20010906        0.11 - accept all packets with checksum errors as
  30 *                             otherwise fragments get lost
  31 *                           - fix >> 32 bugs
  32 *                      0.12 - add statistics counters
  33 *                           - add allmulti/promisc support
  34 *      20011009        0.13 - hotplug support, other smaller pci api cleanups
  35 *      20011204        0.13a - optical transceiver support added
  36 *                              by Michael Clark <michael@metaparadigm.com>
  37 *      20011205        0.13b - call register_netdev earlier in initialization
  38 *                              suppress duplicate link status messages
  39 *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  40 *      20011204        0.15    get ppc (big endian) working
  41 *      20011218        0.16    various cleanups
  42 *      20020310        0.17    speedups
  43 *      20020610        0.18 -  actually use the pci dma api for highmem
  44 *                           -  remove pci latency register fiddling
  45 *                      0.19 -  better bist support
  46 *                           -  add ihr and reset_phy parameters
  47 *                           -  gmii bus probing
  48 *                           -  fix missed txok introduced during performance
  49 *                              tuning
  50 *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
  51 *      20040828        0.21 -  add hardware vlan accleration
  52 *                              by Neil Horman <nhorman@redhat.com>
  53 *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
  54 *                           -  removal of dead code from Adrian Bunk
  55 *                           -  fix half duplex collision behaviour
  56 * Driver Overview
  57 * ===============
  58 *
  59 * This driver was originally written for the National Semiconductor
  60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  61 * this code will turn out to be a) clean, b) correct, and c) fast.
  62 * With that in mind, I'm aiming to split the code up as much as
  63 * reasonably possible.  At present there are X major sections that
  64 * break down into a) packet receive, b) packet transmit, c) link
  65 * management, d) initialization and configuration.  Where possible,
  66 * these code paths are designed to run in parallel.
  67 *
  68 * This driver has been tested and found to work with the following
  69 * cards (in no particular order):
  70 *
  71 *      Cameo           SOHO-GA2000T    SOHO-GA2500T
  72 *      D-Link          DGE-500T
  73 *      PureData        PDP8023Z-TG
  74 *      SMC             SMC9452TX       SMC9462TX
  75 *      Netgear         GA621
  76 *
  77 * Special thanks to SMC for providing hardware to test this driver on.
  78 *
  79 * Reports of success or failure would be greatly appreciated.
  80 */
  81//#define dprintk               printk
  82#define dprintk(x...)           do { } while (0)
  83
  84#include <linux/module.h>
  85#include <linux/moduleparam.h>
  86#include <linux/types.h>
  87#include <linux/pci.h>
  88#include <linux/dma-mapping.h>
  89#include <linux/netdevice.h>
  90#include <linux/etherdevice.h>
  91#include <linux/delay.h>
  92#include <linux/workqueue.h>
  93#include <linux/init.h>
  94#include <linux/interrupt.h>
  95#include <linux/ip.h>   /* for iph */
  96#include <linux/in.h>   /* for IPPROTO_... */
  97#include <linux/compiler.h>
  98#include <linux/prefetch.h>
  99#include <linux/ethtool.h>
 100#include <linux/sched.h>
 101#include <linux/timer.h>
 102#include <linux/if_vlan.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/jiffies.h>
 105#include <linux/slab.h>
 106
 107#include <asm/io.h>
 108#include <linux/uaccess.h>
 109
 110#define DRV_NAME "ns83820"
 111
 112/* Global parameters.  See module_param near the bottom. */
 113static int ihr = 2;
 114static int reset_phy = 0;
 115static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
 116
 117/* Dprintk is used for more interesting debug events */
 118#undef Dprintk
 119#define Dprintk                 dprintk
 120
 121/* tunables */
 122#define RX_BUF_SIZE     1500    /* 8192 */
 123#if IS_ENABLED(CONFIG_VLAN_8021Q)
 124#define NS83820_VLAN_ACCEL_SUPPORT
 125#endif
 126
 127/* Must not exceed ~65000. */
 128#define NR_RX_DESC      64
 129#define NR_TX_DESC      128
 130
 131/* not tunable */
 132#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
 133
 134#define MIN_TX_DESC_FREE        8
 135
 136/* register defines */
 137#define CFGCS           0x04
 138
 139#define CR_TXE          0x00000001
 140#define CR_TXD          0x00000002
 141/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 142 * The Receive engine skips one descriptor and moves
 143 * onto the next one!! */
 144#define CR_RXE          0x00000004
 145#define CR_RXD          0x00000008
 146#define CR_TXR          0x00000010
 147#define CR_RXR          0x00000020
 148#define CR_SWI          0x00000080
 149#define CR_RST          0x00000100
 150
 151#define PTSCR_EEBIST_FAIL       0x00000001
 152#define PTSCR_EEBIST_EN         0x00000002
 153#define PTSCR_EELOAD_EN         0x00000004
 154#define PTSCR_RBIST_FAIL        0x000001b8
 155#define PTSCR_RBIST_DONE        0x00000200
 156#define PTSCR_RBIST_EN          0x00000400
 157#define PTSCR_RBIST_RST         0x00002000
 158
 159#define MEAR_EEDI               0x00000001
 160#define MEAR_EEDO               0x00000002
 161#define MEAR_EECLK              0x00000004
 162#define MEAR_EESEL              0x00000008
 163#define MEAR_MDIO               0x00000010
 164#define MEAR_MDDIR              0x00000020
 165#define MEAR_MDC                0x00000040
 166
 167#define ISR_TXDESC3     0x40000000
 168#define ISR_TXDESC2     0x20000000
 169#define ISR_TXDESC1     0x10000000
 170#define ISR_TXDESC0     0x08000000
 171#define ISR_RXDESC3     0x04000000
 172#define ISR_RXDESC2     0x02000000
 173#define ISR_RXDESC1     0x01000000
 174#define ISR_RXDESC0     0x00800000
 175#define ISR_TXRCMP      0x00400000
 176#define ISR_RXRCMP      0x00200000
 177#define ISR_DPERR       0x00100000
 178#define ISR_SSERR       0x00080000
 179#define ISR_RMABT       0x00040000
 180#define ISR_RTABT       0x00020000
 181#define ISR_RXSOVR      0x00010000
 182#define ISR_HIBINT      0x00008000
 183#define ISR_PHY         0x00004000
 184#define ISR_PME         0x00002000
 185#define ISR_SWI         0x00001000
 186#define ISR_MIB         0x00000800
 187#define ISR_TXURN       0x00000400
 188#define ISR_TXIDLE      0x00000200
 189#define ISR_TXERR       0x00000100
 190#define ISR_TXDESC      0x00000080
 191#define ISR_TXOK        0x00000040
 192#define ISR_RXORN       0x00000020
 193#define ISR_RXIDLE      0x00000010
 194#define ISR_RXEARLY     0x00000008
 195#define ISR_RXERR       0x00000004
 196#define ISR_RXDESC      0x00000002
 197#define ISR_RXOK        0x00000001
 198
 199#define TXCFG_CSI       0x80000000
 200#define TXCFG_HBI       0x40000000
 201#define TXCFG_MLB       0x20000000
 202#define TXCFG_ATP       0x10000000
 203#define TXCFG_ECRETRY   0x00800000
 204#define TXCFG_BRST_DIS  0x00080000
 205#define TXCFG_MXDMA1024 0x00000000
 206#define TXCFG_MXDMA512  0x00700000
 207#define TXCFG_MXDMA256  0x00600000
 208#define TXCFG_MXDMA128  0x00500000
 209#define TXCFG_MXDMA64   0x00400000
 210#define TXCFG_MXDMA32   0x00300000
 211#define TXCFG_MXDMA16   0x00200000
 212#define TXCFG_MXDMA8    0x00100000
 213
 214#define CFG_LNKSTS      0x80000000
 215#define CFG_SPDSTS      0x60000000
 216#define CFG_SPDSTS1     0x40000000
 217#define CFG_SPDSTS0     0x20000000
 218#define CFG_DUPSTS      0x10000000
 219#define CFG_TBI_EN      0x01000000
 220#define CFG_MODE_1000   0x00400000
 221/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 222 * Read the Phy response and then configure the MAC accordingly */
 223#define CFG_AUTO_1000   0x00200000
 224#define CFG_PINT_CTL    0x001c0000
 225#define CFG_PINT_DUPSTS 0x00100000
 226#define CFG_PINT_LNKSTS 0x00080000
 227#define CFG_PINT_SPDSTS 0x00040000
 228#define CFG_TMRTEST     0x00020000
 229#define CFG_MRM_DIS     0x00010000
 230#define CFG_MWI_DIS     0x00008000
 231#define CFG_T64ADDR     0x00004000
 232#define CFG_PCI64_DET   0x00002000
 233#define CFG_DATA64_EN   0x00001000
 234#define CFG_M64ADDR     0x00000800
 235#define CFG_PHY_RST     0x00000400
 236#define CFG_PHY_DIS     0x00000200
 237#define CFG_EXTSTS_EN   0x00000100
 238#define CFG_REQALG      0x00000080
 239#define CFG_SB          0x00000040
 240#define CFG_POW         0x00000020
 241#define CFG_EXD         0x00000010
 242#define CFG_PESEL       0x00000008
 243#define CFG_BROM_DIS    0x00000004
 244#define CFG_EXT_125     0x00000002
 245#define CFG_BEM         0x00000001
 246
 247#define EXTSTS_UDPPKT   0x00200000
 248#define EXTSTS_TCPPKT   0x00080000
 249#define EXTSTS_IPPKT    0x00020000
 250#define EXTSTS_VPKT     0x00010000
 251#define EXTSTS_VTG_MASK 0x0000ffff
 252
 253#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 254
 255#define MIBC_MIBS       0x00000008
 256#define MIBC_ACLR       0x00000004
 257#define MIBC_FRZ        0x00000002
 258#define MIBC_WRN        0x00000001
 259
 260#define PCR_PSEN        (1 << 31)
 261#define PCR_PS_MCAST    (1 << 30)
 262#define PCR_PS_DA       (1 << 29)
 263#define PCR_STHI_8      (3 << 23)
 264#define PCR_STLO_4      (1 << 23)
 265#define PCR_FFHI_8K     (3 << 21)
 266#define PCR_FFLO_4K     (1 << 21)
 267#define PCR_PAUSE_CNT   0xFFFE
 268
 269#define RXCFG_AEP       0x80000000
 270#define RXCFG_ARP       0x40000000
 271#define RXCFG_STRIPCRC  0x20000000
 272#define RXCFG_RX_FD     0x10000000
 273#define RXCFG_ALP       0x08000000
 274#define RXCFG_AIRL      0x04000000
 275#define RXCFG_MXDMA512  0x00700000
 276#define RXCFG_DRTH      0x0000003e
 277#define RXCFG_DRTH0     0x00000002
 278
 279#define RFCR_RFEN       0x80000000
 280#define RFCR_AAB        0x40000000
 281#define RFCR_AAM        0x20000000
 282#define RFCR_AAU        0x10000000
 283#define RFCR_APM        0x08000000
 284#define RFCR_APAT       0x07800000
 285#define RFCR_APAT3      0x04000000
 286#define RFCR_APAT2      0x02000000
 287#define RFCR_APAT1      0x01000000
 288#define RFCR_APAT0      0x00800000
 289#define RFCR_AARP       0x00400000
 290#define RFCR_MHEN       0x00200000
 291#define RFCR_UHEN       0x00100000
 292#define RFCR_ULM        0x00080000
 293
 294#define VRCR_RUDPE      0x00000080
 295#define VRCR_RTCPE      0x00000040
 296#define VRCR_RIPE       0x00000020
 297#define VRCR_IPEN       0x00000010
 298#define VRCR_DUTF       0x00000008
 299#define VRCR_DVTF       0x00000004
 300#define VRCR_VTREN      0x00000002
 301#define VRCR_VTDEN      0x00000001
 302
 303#define VTCR_PPCHK      0x00000008
 304#define VTCR_GCHK       0x00000004
 305#define VTCR_VPPTI      0x00000002
 306#define VTCR_VGTI       0x00000001
 307
 308#define CR              0x00
 309#define CFG             0x04
 310#define MEAR            0x08
 311#define PTSCR           0x0c
 312#define ISR             0x10
 313#define IMR             0x14
 314#define IER             0x18
 315#define IHR             0x1c
 316#define TXDP            0x20
 317#define TXDP_HI         0x24
 318#define TXCFG           0x28
 319#define GPIOR           0x2c
 320#define RXDP            0x30
 321#define RXDP_HI         0x34
 322#define RXCFG           0x38
 323#define PQCR            0x3c
 324#define WCSR            0x40
 325#define PCR             0x44
 326#define RFCR            0x48
 327#define RFDR            0x4c
 328
 329#define SRR             0x58
 330
 331#define VRCR            0xbc
 332#define VTCR            0xc0
 333#define VDR             0xc4
 334#define CCSR            0xcc
 335
 336#define TBICR           0xe0
 337#define TBISR           0xe4
 338#define TANAR           0xe8
 339#define TANLPAR         0xec
 340#define TANER           0xf0
 341#define TESR            0xf4
 342
 343#define TBICR_MR_AN_ENABLE      0x00001000
 344#define TBICR_MR_RESTART_AN     0x00000200
 345
 346#define TBISR_MR_LINK_STATUS    0x00000020
 347#define TBISR_MR_AN_COMPLETE    0x00000004
 348
 349#define TANAR_PS2               0x00000100
 350#define TANAR_PS1               0x00000080
 351#define TANAR_HALF_DUP          0x00000040
 352#define TANAR_FULL_DUP          0x00000020
 353
 354#define GPIOR_GP5_OE            0x00000200
 355#define GPIOR_GP4_OE            0x00000100
 356#define GPIOR_GP3_OE            0x00000080
 357#define GPIOR_GP2_OE            0x00000040
 358#define GPIOR_GP1_OE            0x00000020
 359#define GPIOR_GP3_OUT           0x00000004
 360#define GPIOR_GP1_OUT           0x00000001
 361
 362#define LINK_AUTONEGOTIATE      0x01
 363#define LINK_DOWN               0x02
 364#define LINK_UP                 0x04
 365
 366#define HW_ADDR_LEN     sizeof(dma_addr_t)
 367#define desc_addr_set(desc, addr)                               \
 368        do {                                                    \
 369                ((desc)[0] = cpu_to_le32(addr));                \
 370                if (HW_ADDR_LEN == 8)                           \
 371                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
 372        } while(0)
 373#define desc_addr_get(desc)                                     \
 374        (le32_to_cpu((desc)[0]) | \
 375        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 376
 377#define DESC_LINK               0
 378#define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
 379#define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
 380#define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
 381
 382#define CMDSTS_OWN      0x80000000
 383#define CMDSTS_MORE     0x40000000
 384#define CMDSTS_INTR     0x20000000
 385#define CMDSTS_ERR      0x10000000
 386#define CMDSTS_OK       0x08000000
 387#define CMDSTS_RUNT     0x00200000
 388#define CMDSTS_LEN_MASK 0x0000ffff
 389
 390#define CMDSTS_DEST_MASK        0x01800000
 391#define CMDSTS_DEST_SELF        0x00800000
 392#define CMDSTS_DEST_MULTI       0x01000000
 393
 394#define DESC_SIZE       8               /* Should be cache line sized */
 395
 396struct rx_info {
 397        spinlock_t      lock;
 398        int             up;
 399        unsigned long   idle;
 400
 401        struct sk_buff  *skbs[NR_RX_DESC];
 402
 403        __le32          *next_rx_desc;
 404        u16             next_rx, next_empty;
 405
 406        __le32          *descs;
 407        dma_addr_t      phy_descs;
 408};
 409
 410
 411struct ns83820 {
 412        u8                      __iomem *base;
 413
 414        struct pci_dev          *pci_dev;
 415        struct net_device       *ndev;
 416
 417        struct rx_info          rx_info;
 418        struct tasklet_struct   rx_tasklet;
 419
 420        unsigned                ihr;
 421        struct work_struct      tq_refill;
 422
 423        /* protects everything below.  irqsave when using. */
 424        spinlock_t              misc_lock;
 425
 426        u32                     CFG_cache;
 427
 428        u32                     MEAR_cache;
 429        u32                     IMR_cache;
 430
 431        unsigned                linkstate;
 432
 433        spinlock_t      tx_lock;
 434
 435        u16             tx_done_idx;
 436        u16             tx_idx;
 437        volatile u16    tx_free_idx;    /* idx of free desc chain */
 438        u16             tx_intr_idx;
 439
 440        atomic_t        nr_tx_skbs;
 441        struct sk_buff  *tx_skbs[NR_TX_DESC];
 442
 443        char            pad[16] __attribute__((aligned(16)));
 444        __le32          *tx_descs;
 445        dma_addr_t      tx_phy_descs;
 446
 447        struct timer_list       tx_watchdog;
 448};
 449
 450static inline struct ns83820 *PRIV(struct net_device *dev)
 451{
 452        return netdev_priv(dev);
 453}
 454
 455#define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
 456
 457static inline void kick_rx(struct net_device *ndev)
 458{
 459        struct ns83820 *dev = PRIV(ndev);
 460        dprintk("kick_rx: maybe kicking\n");
 461        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 462                dprintk("actually kicking\n");
 463                writel(dev->rx_info.phy_descs +
 464                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 465                       dev->base + RXDP);
 466                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 467                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 468                                ndev->name);
 469                __kick_rx(dev);
 470        }
 471}
 472
 473//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 474#define start_tx_okay(dev)      \
 475        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 476
 477/* Packet Receiver
 478 *
 479 * The hardware supports linked lists of receive descriptors for
 480 * which ownership is transferred back and forth by means of an
 481 * ownership bit.  While the hardware does support the use of a
 482 * ring for receive descriptors, we only make use of a chain in
 483 * an attempt to reduce bus traffic under heavy load scenarios.
 484 * This will also make bugs a bit more obvious.  The current code
 485 * only makes use of a single rx chain; I hope to implement
 486 * priority based rx for version 1.0.  Goal: even under overload
 487 * conditions, still route realtime traffic with as low jitter as
 488 * possible.
 489 */
 490static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 491{
 492        desc_addr_set(desc + DESC_LINK, link);
 493        desc_addr_set(desc + DESC_BUFPTR, buf);
 494        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 495        mb();
 496        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 497}
 498
 499#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 500static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 501{
 502        unsigned next_empty;
 503        u32 cmdsts;
 504        __le32 *sg;
 505        dma_addr_t buf;
 506
 507        next_empty = dev->rx_info.next_empty;
 508
 509        /* don't overrun last rx marker */
 510        if (unlikely(nr_rx_empty(dev) <= 2)) {
 511                kfree_skb(skb);
 512                return 1;
 513        }
 514
 515#if 0
 516        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 517                dev->rx_info.next_empty,
 518                dev->rx_info.nr_used,
 519                dev->rx_info.next_rx
 520                );
 521#endif
 522
 523        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 524        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 525        dev->rx_info.skbs[next_empty] = skb;
 526
 527        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 528        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 529        buf = dma_map_single(&dev->pci_dev->dev, skb->data, REAL_RX_BUF_SIZE,
 530                             DMA_FROM_DEVICE);
 531        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 532        /* update link of previous rx */
 533        if (likely(next_empty != dev->rx_info.next_rx))
 534                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 535
 536        return 0;
 537}
 538
 539static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 540{
 541        struct ns83820 *dev = PRIV(ndev);
 542        unsigned i;
 543        unsigned long flags = 0;
 544
 545        if (unlikely(nr_rx_empty(dev) <= 2))
 546                return 0;
 547
 548        dprintk("rx_refill(%p)\n", ndev);
 549        if (gfp == GFP_ATOMIC)
 550                spin_lock_irqsave(&dev->rx_info.lock, flags);
 551        for (i=0; i<NR_RX_DESC; i++) {
 552                struct sk_buff *skb;
 553                long res;
 554
 555                /* extra 16 bytes for alignment */
 556                skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 557                if (unlikely(!skb))
 558                        break;
 559
 560                skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 561                if (gfp != GFP_ATOMIC)
 562                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 563                res = ns83820_add_rx_skb(dev, skb);
 564                if (gfp != GFP_ATOMIC)
 565                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 566                if (res) {
 567                        i = 1;
 568                        break;
 569                }
 570        }
 571        if (gfp == GFP_ATOMIC)
 572                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 573
 574        return i ? 0 : -ENOMEM;
 575}
 576
 577static void rx_refill_atomic(struct net_device *ndev)
 578{
 579        rx_refill(ndev, GFP_ATOMIC);
 580}
 581
 582/* REFILL */
 583static inline void queue_refill(struct work_struct *work)
 584{
 585        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 586        struct net_device *ndev = dev->ndev;
 587
 588        rx_refill(ndev, GFP_KERNEL);
 589        if (dev->rx_info.up)
 590                kick_rx(ndev);
 591}
 592
 593static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 594{
 595        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 596}
 597
 598static void phy_intr(struct net_device *ndev)
 599{
 600        struct ns83820 *dev = PRIV(ndev);
 601        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 602        u32 cfg, new_cfg;
 603        u32 tanar, tanlpar;
 604        int speed, fullduplex, newlinkstate;
 605
 606        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 607
 608        if (dev->CFG_cache & CFG_TBI_EN) {
 609                u32 __maybe_unused tbisr;
 610
 611                /* we have an optical transceiver */
 612                tbisr = readl(dev->base + TBISR);
 613                tanar = readl(dev->base + TANAR);
 614                tanlpar = readl(dev->base + TANLPAR);
 615                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 616                        tbisr, tanar, tanlpar);
 617
 618                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 619                      (tanar & TANAR_FULL_DUP)) ) {
 620
 621                        /* both of us are full duplex */
 622                        writel(readl(dev->base + TXCFG)
 623                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 624                               dev->base + TXCFG);
 625                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 626                               dev->base + RXCFG);
 627                        /* Light up full duplex LED */
 628                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 629                               dev->base + GPIOR);
 630
 631                } else if (((tanlpar & TANAR_HALF_DUP) &&
 632                            (tanar & TANAR_HALF_DUP)) ||
 633                           ((tanlpar & TANAR_FULL_DUP) &&
 634                            (tanar & TANAR_HALF_DUP)) ||
 635                           ((tanlpar & TANAR_HALF_DUP) &&
 636                            (tanar & TANAR_FULL_DUP))) {
 637
 638                        /* one or both of us are half duplex */
 639                        writel((readl(dev->base + TXCFG)
 640                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 641                               dev->base + TXCFG);
 642                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 643                               dev->base + RXCFG);
 644                        /* Turn off full duplex LED */
 645                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 646                               dev->base + GPIOR);
 647                }
 648
 649                speed = 4; /* 1000F */
 650
 651        } else {
 652                /* we have a copper transceiver */
 653                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 654
 655                if (cfg & CFG_SPDSTS1)
 656                        new_cfg |= CFG_MODE_1000;
 657                else
 658                        new_cfg &= ~CFG_MODE_1000;
 659
 660                speed = ((cfg / CFG_SPDSTS0) & 3);
 661                fullduplex = (cfg & CFG_DUPSTS);
 662
 663                if (fullduplex) {
 664                        new_cfg |= CFG_SB;
 665                        writel(readl(dev->base + TXCFG)
 666                                        | TXCFG_CSI | TXCFG_HBI,
 667                               dev->base + TXCFG);
 668                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 669                               dev->base + RXCFG);
 670                } else {
 671                        writel(readl(dev->base + TXCFG)
 672                                        & ~(TXCFG_CSI | TXCFG_HBI),
 673                               dev->base + TXCFG);
 674                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 675                               dev->base + RXCFG);
 676                }
 677
 678                if ((cfg & CFG_LNKSTS) &&
 679                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 680                        writel(new_cfg, dev->base + CFG);
 681                        dev->CFG_cache = new_cfg;
 682                }
 683
 684                dev->CFG_cache &= ~CFG_SPDSTS;
 685                dev->CFG_cache |= cfg & CFG_SPDSTS;
 686        }
 687
 688        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 689
 690        if (newlinkstate & LINK_UP &&
 691            dev->linkstate != newlinkstate) {
 692                netif_start_queue(ndev);
 693                netif_wake_queue(ndev);
 694                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 695                        ndev->name,
 696                        speeds[speed],
 697                        fullduplex ? "full" : "half");
 698        } else if (newlinkstate & LINK_DOWN &&
 699                   dev->linkstate != newlinkstate) {
 700                netif_stop_queue(ndev);
 701                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 702        }
 703
 704        dev->linkstate = newlinkstate;
 705}
 706
 707static int ns83820_setup_rx(struct net_device *ndev)
 708{
 709        struct ns83820 *dev = PRIV(ndev);
 710        unsigned i;
 711        int ret;
 712
 713        dprintk("ns83820_setup_rx(%p)\n", ndev);
 714
 715        dev->rx_info.idle = 1;
 716        dev->rx_info.next_rx = 0;
 717        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 718        dev->rx_info.next_empty = 0;
 719
 720        for (i=0; i<NR_RX_DESC; i++)
 721                clear_rx_desc(dev, i);
 722
 723        writel(0, dev->base + RXDP_HI);
 724        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 725
 726        ret = rx_refill(ndev, GFP_KERNEL);
 727        if (!ret) {
 728                dprintk("starting receiver\n");
 729                /* prevent the interrupt handler from stomping on us */
 730                spin_lock_irq(&dev->rx_info.lock);
 731
 732                writel(0x0001, dev->base + CCSR);
 733                writel(0, dev->base + RFCR);
 734                writel(0x7fc00000, dev->base + RFCR);
 735                writel(0xffc00000, dev->base + RFCR);
 736
 737                dev->rx_info.up = 1;
 738
 739                phy_intr(ndev);
 740
 741                /* Okay, let it rip */
 742                spin_lock(&dev->misc_lock);
 743                dev->IMR_cache |= ISR_PHY;
 744                dev->IMR_cache |= ISR_RXRCMP;
 745                //dev->IMR_cache |= ISR_RXERR;
 746                //dev->IMR_cache |= ISR_RXOK;
 747                dev->IMR_cache |= ISR_RXORN;
 748                dev->IMR_cache |= ISR_RXSOVR;
 749                dev->IMR_cache |= ISR_RXDESC;
 750                dev->IMR_cache |= ISR_RXIDLE;
 751                dev->IMR_cache |= ISR_TXDESC;
 752                dev->IMR_cache |= ISR_TXIDLE;
 753
 754                writel(dev->IMR_cache, dev->base + IMR);
 755                writel(1, dev->base + IER);
 756                spin_unlock(&dev->misc_lock);
 757
 758                kick_rx(ndev);
 759
 760                spin_unlock_irq(&dev->rx_info.lock);
 761        }
 762        return ret;
 763}
 764
 765static void ns83820_cleanup_rx(struct ns83820 *dev)
 766{
 767        unsigned i;
 768        unsigned long flags;
 769
 770        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 771
 772        /* disable receive interrupts */
 773        spin_lock_irqsave(&dev->misc_lock, flags);
 774        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 775        writel(dev->IMR_cache, dev->base + IMR);
 776        spin_unlock_irqrestore(&dev->misc_lock, flags);
 777
 778        /* synchronize with the interrupt handler and kill it */
 779        dev->rx_info.up = 0;
 780        synchronize_irq(dev->pci_dev->irq);
 781
 782        /* touch the pci bus... */
 783        readl(dev->base + IMR);
 784
 785        /* assumes the transmitter is already disabled and reset */
 786        writel(0, dev->base + RXDP_HI);
 787        writel(0, dev->base + RXDP);
 788
 789        for (i=0; i<NR_RX_DESC; i++) {
 790                struct sk_buff *skb = dev->rx_info.skbs[i];
 791                dev->rx_info.skbs[i] = NULL;
 792                clear_rx_desc(dev, i);
 793                kfree_skb(skb);
 794        }
 795}
 796
 797static void ns83820_rx_kick(struct net_device *ndev)
 798{
 799        struct ns83820 *dev = PRIV(ndev);
 800        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 801                if (dev->rx_info.up) {
 802                        rx_refill_atomic(ndev);
 803                        kick_rx(ndev);
 804                }
 805        }
 806
 807        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 808                schedule_work(&dev->tq_refill);
 809        else
 810                kick_rx(ndev);
 811        if (dev->rx_info.idle)
 812                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 813}
 814
 815/* rx_irq
 816 *
 817 */
 818static void rx_irq(struct net_device *ndev)
 819{
 820        struct ns83820 *dev = PRIV(ndev);
 821        struct rx_info *info = &dev->rx_info;
 822        unsigned next_rx;
 823        int rx_rc, len;
 824        u32 cmdsts;
 825        __le32 *desc;
 826        unsigned long flags;
 827        int nr = 0;
 828
 829        dprintk("rx_irq(%p)\n", ndev);
 830        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 831                readl(dev->base + RXDP),
 832                (long)(dev->rx_info.phy_descs),
 833                (int)dev->rx_info.next_rx,
 834                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 835                (int)dev->rx_info.next_empty,
 836                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 837                );
 838
 839        spin_lock_irqsave(&info->lock, flags);
 840        if (!info->up)
 841                goto out;
 842
 843        dprintk("walking descs\n");
 844        next_rx = info->next_rx;
 845        desc = info->next_rx_desc;
 846        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 847               (cmdsts != CMDSTS_OWN)) {
 848                struct sk_buff *skb;
 849                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 850                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 851
 852                dprintk("cmdsts: %08x\n", cmdsts);
 853                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 854                dprintk("extsts: %08x\n", extsts);
 855
 856                skb = info->skbs[next_rx];
 857                info->skbs[next_rx] = NULL;
 858                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 859
 860                mb();
 861                clear_rx_desc(dev, next_rx);
 862
 863                dma_unmap_single(&dev->pci_dev->dev, bufptr, RX_BUF_SIZE,
 864                                 DMA_FROM_DEVICE);
 865                len = cmdsts & CMDSTS_LEN_MASK;
 866#ifdef NS83820_VLAN_ACCEL_SUPPORT
 867                /* NH: As was mentioned below, this chip is kinda
 868                 * brain dead about vlan tag stripping.  Frames
 869                 * that are 64 bytes with a vlan header appended
 870                 * like arp frames, or pings, are flagged as Runts
 871                 * when the tag is stripped and hardware.  This
 872                 * also means that the OK bit in the descriptor
 873                 * is cleared when the frame comes in so we have
 874                 * to do a specific length check here to make sure
 875                 * the frame would have been ok, had we not stripped
 876                 * the tag.
 877                 */
 878                if (likely((CMDSTS_OK & cmdsts) ||
 879                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 880#else
 881                if (likely(CMDSTS_OK & cmdsts)) {
 882#endif
 883                        skb_put(skb, len);
 884                        if (unlikely(!skb))
 885                                goto netdev_mangle_me_harder_failed;
 886                        if (cmdsts & CMDSTS_DEST_MULTI)
 887                                ndev->stats.multicast++;
 888                        ndev->stats.rx_packets++;
 889                        ndev->stats.rx_bytes += len;
 890                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 891                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 892                        } else {
 893                                skb_checksum_none_assert(skb);
 894                        }
 895                        skb->protocol = eth_type_trans(skb, ndev);
 896#ifdef NS83820_VLAN_ACCEL_SUPPORT
 897                        if(extsts & EXTSTS_VPKT) {
 898                                unsigned short tag;
 899
 900                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 901                                __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
 902                        }
 903#endif
 904                        rx_rc = netif_rx(skb);
 905                        if (NET_RX_DROP == rx_rc) {
 906netdev_mangle_me_harder_failed:
 907                                ndev->stats.rx_dropped++;
 908                        }
 909                } else {
 910                        dev_kfree_skb_irq(skb);
 911                }
 912
 913                nr++;
 914                next_rx = info->next_rx;
 915                desc = info->descs + (DESC_SIZE * next_rx);
 916        }
 917        info->next_rx = next_rx;
 918        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 919
 920out:
 921        if (0 && !nr) {
 922                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 923        }
 924
 925        spin_unlock_irqrestore(&info->lock, flags);
 926}
 927
 928static void rx_action(struct tasklet_struct *t)
 929{
 930        struct ns83820 *dev = from_tasklet(dev, t, rx_tasklet);
 931        struct net_device *ndev = dev->ndev;
 932        rx_irq(ndev);
 933        writel(ihr, dev->base + IHR);
 934
 935        spin_lock_irq(&dev->misc_lock);
 936        dev->IMR_cache |= ISR_RXDESC;
 937        writel(dev->IMR_cache, dev->base + IMR);
 938        spin_unlock_irq(&dev->misc_lock);
 939
 940        rx_irq(ndev);
 941        ns83820_rx_kick(ndev);
 942}
 943
 944/* Packet Transmit code
 945 */
 946static inline void kick_tx(struct ns83820 *dev)
 947{
 948        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 949                dev, dev->tx_idx, dev->tx_free_idx);
 950        writel(CR_TXE, dev->base + CR);
 951}
 952
 953/* No spinlock needed on the transmit irq path as the interrupt handler is
 954 * serialized.
 955 */
 956static void do_tx_done(struct net_device *ndev)
 957{
 958        struct ns83820 *dev = PRIV(ndev);
 959        u32 cmdsts, tx_done_idx;
 960        __le32 *desc;
 961
 962        dprintk("do_tx_done(%p)\n", ndev);
 963        tx_done_idx = dev->tx_done_idx;
 964        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 965
 966        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 967                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 968        while ((tx_done_idx != dev->tx_free_idx) &&
 969               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 970                struct sk_buff *skb;
 971                unsigned len;
 972                dma_addr_t addr;
 973
 974                if (cmdsts & CMDSTS_ERR)
 975                        ndev->stats.tx_errors++;
 976                if (cmdsts & CMDSTS_OK)
 977                        ndev->stats.tx_packets++;
 978                if (cmdsts & CMDSTS_OK)
 979                        ndev->stats.tx_bytes += cmdsts & 0xffff;
 980
 981                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 982                        tx_done_idx, dev->tx_free_idx, cmdsts);
 983                skb = dev->tx_skbs[tx_done_idx];
 984                dev->tx_skbs[tx_done_idx] = NULL;
 985                dprintk("done(%p)\n", skb);
 986
 987                len = cmdsts & CMDSTS_LEN_MASK;
 988                addr = desc_addr_get(desc + DESC_BUFPTR);
 989                if (skb) {
 990                        dma_unmap_single(&dev->pci_dev->dev, addr, len,
 991                                         DMA_TO_DEVICE);
 992                        dev_consume_skb_irq(skb);
 993                        atomic_dec(&dev->nr_tx_skbs);
 994                } else
 995                        dma_unmap_page(&dev->pci_dev->dev, addr, len,
 996                                       DMA_TO_DEVICE);
 997
 998                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
 999                dev->tx_done_idx = tx_done_idx;
1000                desc[DESC_CMDSTS] = cpu_to_le32(0);
1001                mb();
1002                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1003        }
1004
1005        /* Allow network stack to resume queueing packets after we've
1006         * finished transmitting at least 1/4 of the packets in the queue.
1007         */
1008        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1009                dprintk("start_queue(%p)\n", ndev);
1010                netif_start_queue(ndev);
1011                netif_wake_queue(ndev);
1012        }
1013}
1014
1015static void ns83820_cleanup_tx(struct ns83820 *dev)
1016{
1017        unsigned i;
1018
1019        for (i=0; i<NR_TX_DESC; i++) {
1020                struct sk_buff *skb = dev->tx_skbs[i];
1021                dev->tx_skbs[i] = NULL;
1022                if (skb) {
1023                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1024                        dma_unmap_single(&dev->pci_dev->dev,
1025                                         desc_addr_get(desc + DESC_BUFPTR),
1026                                         le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1027                                         DMA_TO_DEVICE);
1028                        dev_kfree_skb_irq(skb);
1029                        atomic_dec(&dev->nr_tx_skbs);
1030                }
1031        }
1032
1033        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1034}
1035
1036/* transmit routine.  This code relies on the network layer serializing
1037 * its calls in, but will run happily in parallel with the interrupt
1038 * handler.  This code currently has provisions for fragmenting tx buffers
1039 * while trying to track down a bug in either the zero copy code or
1040 * the tx fifo (hence the MAX_FRAG_LEN).
1041 */
1042static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1043                                           struct net_device *ndev)
1044{
1045        struct ns83820 *dev = PRIV(ndev);
1046        u32 free_idx, cmdsts, extsts;
1047        int nr_free, nr_frags;
1048        unsigned tx_done_idx, last_idx;
1049        dma_addr_t buf;
1050        unsigned len;
1051        skb_frag_t *frag;
1052        int stopped = 0;
1053        int do_intr = 0;
1054        volatile __le32 *first_desc;
1055
1056        dprintk("ns83820_hard_start_xmit\n");
1057
1058        nr_frags =  skb_shinfo(skb)->nr_frags;
1059again:
1060        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1061                netif_stop_queue(ndev);
1062                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1063                        return NETDEV_TX_BUSY;
1064                netif_start_queue(ndev);
1065        }
1066
1067        last_idx = free_idx = dev->tx_free_idx;
1068        tx_done_idx = dev->tx_done_idx;
1069        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1070        nr_free -= 1;
1071        if (nr_free <= nr_frags) {
1072                dprintk("stop_queue - not enough(%p)\n", ndev);
1073                netif_stop_queue(ndev);
1074
1075                /* Check again: we may have raced with a tx done irq */
1076                if (dev->tx_done_idx != tx_done_idx) {
1077                        dprintk("restart queue(%p)\n", ndev);
1078                        netif_start_queue(ndev);
1079                        goto again;
1080                }
1081                return NETDEV_TX_BUSY;
1082        }
1083
1084        if (free_idx == dev->tx_intr_idx) {
1085                do_intr = 1;
1086                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1087        }
1088
1089        nr_free -= nr_frags;
1090        if (nr_free < MIN_TX_DESC_FREE) {
1091                dprintk("stop_queue - last entry(%p)\n", ndev);
1092                netif_stop_queue(ndev);
1093                stopped = 1;
1094        }
1095
1096        frag = skb_shinfo(skb)->frags;
1097        if (!nr_frags)
1098                frag = NULL;
1099        extsts = 0;
1100        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1101                extsts |= EXTSTS_IPPKT;
1102                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1103                        extsts |= EXTSTS_TCPPKT;
1104                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1105                        extsts |= EXTSTS_UDPPKT;
1106        }
1107
1108#ifdef NS83820_VLAN_ACCEL_SUPPORT
1109        if (skb_vlan_tag_present(skb)) {
1110                /* fetch the vlan tag info out of the
1111                 * ancillary data if the vlan code
1112                 * is using hw vlan acceleration
1113                 */
1114                short tag = skb_vlan_tag_get(skb);
1115                extsts |= (EXTSTS_VPKT | htons(tag));
1116        }
1117#endif
1118
1119        len = skb->len;
1120        if (nr_frags)
1121                len -= skb->data_len;
1122        buf = dma_map_single(&dev->pci_dev->dev, skb->data, len,
1123                             DMA_TO_DEVICE);
1124
1125        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1126
1127        for (;;) {
1128                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1129
1130                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1131                        (unsigned long long)buf);
1132                last_idx = free_idx;
1133                free_idx = (free_idx + 1) % NR_TX_DESC;
1134                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1135                desc_addr_set(desc + DESC_BUFPTR, buf);
1136                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1137
1138                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1139                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1140                cmdsts |= len;
1141                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1142
1143                if (!nr_frags)
1144                        break;
1145
1146                buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1147                                       skb_frag_size(frag), DMA_TO_DEVICE);
1148                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1149                        (long long)buf, (long) page_to_pfn(frag->page),
1150                        frag->page_offset);
1151                len = skb_frag_size(frag);
1152                frag++;
1153                nr_frags--;
1154        }
1155        dprintk("done pkt\n");
1156
1157        spin_lock_irq(&dev->tx_lock);
1158        dev->tx_skbs[last_idx] = skb;
1159        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1160        dev->tx_free_idx = free_idx;
1161        atomic_inc(&dev->nr_tx_skbs);
1162        spin_unlock_irq(&dev->tx_lock);
1163
1164        kick_tx(dev);
1165
1166        /* Check again: we may have raced with a tx done irq */
1167        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1168                netif_start_queue(ndev);
1169
1170        return NETDEV_TX_OK;
1171}
1172
1173static void ns83820_update_stats(struct ns83820 *dev)
1174{
1175        struct net_device *ndev = dev->ndev;
1176        u8 __iomem *base = dev->base;
1177
1178        /* the DP83820 will freeze counters, so we need to read all of them */
1179        ndev->stats.rx_errors           += readl(base + 0x60) & 0xffff;
1180        ndev->stats.rx_crc_errors       += readl(base + 0x64) & 0xffff;
1181        ndev->stats.rx_missed_errors    += readl(base + 0x68) & 0xffff;
1182        ndev->stats.rx_frame_errors     += readl(base + 0x6c) & 0xffff;
1183        /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1184        ndev->stats.rx_length_errors    += readl(base + 0x74) & 0xffff;
1185        ndev->stats.rx_length_errors    += readl(base + 0x78) & 0xffff;
1186        /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1187        /*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1188        /*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1189        ndev->stats.tx_carrier_errors   += readl(base + 0x88) & 0xff;
1190}
1191
1192static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1193{
1194        struct ns83820 *dev = PRIV(ndev);
1195
1196        /* somewhat overkill */
1197        spin_lock_irq(&dev->misc_lock);
1198        ns83820_update_stats(dev);
1199        spin_unlock_irq(&dev->misc_lock);
1200
1201        return &ndev->stats;
1202}
1203
1204/* Let ethtool retrieve info */
1205static int ns83820_get_link_ksettings(struct net_device *ndev,
1206                                      struct ethtool_link_ksettings *cmd)
1207{
1208        struct ns83820 *dev = PRIV(ndev);
1209        u32 cfg, tbicr;
1210        int fullduplex   = 0;
1211        u32 supported;
1212
1213        /*
1214         * Here's the list of available ethtool commands from other drivers:
1215         *      cmd->advertising =
1216         *      ethtool_cmd_speed_set(cmd, ...)
1217         *      cmd->duplex =
1218         *      cmd->port = 0;
1219         *      cmd->phy_address =
1220         *      cmd->transceiver = 0;
1221         *      cmd->autoneg =
1222         *      cmd->maxtxpkt = 0;
1223         *      cmd->maxrxpkt = 0;
1224         */
1225
1226        /* read current configuration */
1227        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1228        readl(dev->base + TANAR);
1229        tbicr = readl(dev->base + TBICR);
1230
1231        fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1232
1233        supported = SUPPORTED_Autoneg;
1234
1235        if (dev->CFG_cache & CFG_TBI_EN) {
1236                /* we have optical interface */
1237                supported |= SUPPORTED_1000baseT_Half |
1238                                        SUPPORTED_1000baseT_Full |
1239                                        SUPPORTED_FIBRE;
1240                cmd->base.port       = PORT_FIBRE;
1241        } else {
1242                /* we have copper */
1243                supported |= SUPPORTED_10baseT_Half |
1244                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1245                        SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1246                        SUPPORTED_1000baseT_Full |
1247                        SUPPORTED_MII;
1248                cmd->base.port = PORT_MII;
1249        }
1250
1251        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1252                                                supported);
1253
1254        cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1255        switch (cfg / CFG_SPDSTS0 & 3) {
1256        case 2:
1257                cmd->base.speed = SPEED_1000;
1258                break;
1259        case 1:
1260                cmd->base.speed = SPEED_100;
1261                break;
1262        default:
1263                cmd->base.speed = SPEED_10;
1264                break;
1265        }
1266        cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1267                ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1268        return 0;
1269}
1270
1271/* Let ethool change settings*/
1272static int ns83820_set_link_ksettings(struct net_device *ndev,
1273                                      const struct ethtool_link_ksettings *cmd)
1274{
1275        struct ns83820 *dev = PRIV(ndev);
1276        u32 cfg, tanar;
1277        int have_optical = 0;
1278        int fullduplex   = 0;
1279
1280        /* read current configuration */
1281        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1282        tanar = readl(dev->base + TANAR);
1283
1284        if (dev->CFG_cache & CFG_TBI_EN) {
1285                /* we have optical */
1286                have_optical = 1;
1287                fullduplex   = (tanar & TANAR_FULL_DUP);
1288
1289        } else {
1290                /* we have copper */
1291                fullduplex = cfg & CFG_DUPSTS;
1292        }
1293
1294        spin_lock_irq(&dev->misc_lock);
1295        spin_lock(&dev->tx_lock);
1296
1297        /* Set duplex */
1298        if (cmd->base.duplex != fullduplex) {
1299                if (have_optical) {
1300                        /*set full duplex*/
1301                        if (cmd->base.duplex == DUPLEX_FULL) {
1302                                /* force full duplex */
1303                                writel(readl(dev->base + TXCFG)
1304                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1305                                        dev->base + TXCFG);
1306                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1307                                        dev->base + RXCFG);
1308                                /* Light up full duplex LED */
1309                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1310                                        dev->base + GPIOR);
1311                        } else {
1312                                /*TODO: set half duplex */
1313                        }
1314
1315                } else {
1316                        /*we have copper*/
1317                        /* TODO: Set duplex for copper cards */
1318                }
1319                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1320                ndev->name);
1321        }
1322
1323        /* Set autonegotiation */
1324        if (1) {
1325                if (cmd->base.autoneg == AUTONEG_ENABLE) {
1326                        /* restart auto negotiation */
1327                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1328                                dev->base + TBICR);
1329                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1330                                dev->linkstate = LINK_AUTONEGOTIATE;
1331
1332                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1333                                ndev->name);
1334                } else {
1335                        /* disable auto negotiation */
1336                        writel(0x00000000, dev->base + TBICR);
1337                }
1338
1339                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1340                                cmd->base.autoneg ? "ENABLED" : "DISABLED");
1341        }
1342
1343        phy_intr(ndev);
1344        spin_unlock(&dev->tx_lock);
1345        spin_unlock_irq(&dev->misc_lock);
1346
1347        return 0;
1348}
1349/* end ethtool get/set support -df */
1350
1351static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1352{
1353        struct ns83820 *dev = PRIV(ndev);
1354        strlcpy(info->driver, "ns83820", sizeof(info->driver));
1355        strlcpy(info->version, VERSION, sizeof(info->version));
1356        strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1357}
1358
1359static u32 ns83820_get_link(struct net_device *ndev)
1360{
1361        struct ns83820 *dev = PRIV(ndev);
1362        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1363        return cfg & CFG_LNKSTS ? 1 : 0;
1364}
1365
1366static const struct ethtool_ops ops = {
1367        .get_drvinfo     = ns83820_get_drvinfo,
1368        .get_link        = ns83820_get_link,
1369        .get_link_ksettings = ns83820_get_link_ksettings,
1370        .set_link_ksettings = ns83820_set_link_ksettings,
1371};
1372
1373static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1374{
1375        writel(0, dev->base + IMR);
1376        writel(0, dev->base + IER);
1377        readl(dev->base + IER);
1378}
1379
1380/* this function is called in irq context from the ISR */
1381static void ns83820_mib_isr(struct ns83820 *dev)
1382{
1383        unsigned long flags;
1384        spin_lock_irqsave(&dev->misc_lock, flags);
1385        ns83820_update_stats(dev);
1386        spin_unlock_irqrestore(&dev->misc_lock, flags);
1387}
1388
1389static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1390static irqreturn_t ns83820_irq(int foo, void *data)
1391{
1392        struct net_device *ndev = data;
1393        struct ns83820 *dev = PRIV(ndev);
1394        u32 isr;
1395        dprintk("ns83820_irq(%p)\n", ndev);
1396
1397        dev->ihr = 0;
1398
1399        isr = readl(dev->base + ISR);
1400        dprintk("irq: %08x\n", isr);
1401        ns83820_do_isr(ndev, isr);
1402        return IRQ_HANDLED;
1403}
1404
1405static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1406{
1407        struct ns83820 *dev = PRIV(ndev);
1408        unsigned long flags;
1409
1410#ifdef DEBUG
1411        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1412                Dprintk("odd isr? 0x%08x\n", isr);
1413#endif
1414
1415        if (ISR_RXIDLE & isr) {
1416                dev->rx_info.idle = 1;
1417                Dprintk("oh dear, we are idle\n");
1418                ns83820_rx_kick(ndev);
1419        }
1420
1421        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1422                prefetch(dev->rx_info.next_rx_desc);
1423
1424                spin_lock_irqsave(&dev->misc_lock, flags);
1425                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1426                writel(dev->IMR_cache, dev->base + IMR);
1427                spin_unlock_irqrestore(&dev->misc_lock, flags);
1428
1429                tasklet_schedule(&dev->rx_tasklet);
1430                //rx_irq(ndev);
1431                //writel(4, dev->base + IHR);
1432        }
1433
1434        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1435                ns83820_rx_kick(ndev);
1436
1437        if (unlikely(ISR_RXSOVR & isr)) {
1438                //printk("overrun: rxsovr\n");
1439                ndev->stats.rx_fifo_errors++;
1440        }
1441
1442        if (unlikely(ISR_RXORN & isr)) {
1443                //printk("overrun: rxorn\n");
1444                ndev->stats.rx_fifo_errors++;
1445        }
1446
1447        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1448                writel(CR_RXE, dev->base + CR);
1449
1450        if (ISR_TXIDLE & isr) {
1451                u32 txdp;
1452                txdp = readl(dev->base + TXDP);
1453                dprintk("txdp: %08x\n", txdp);
1454                txdp -= dev->tx_phy_descs;
1455                dev->tx_idx = txdp / (DESC_SIZE * 4);
1456                if (dev->tx_idx >= NR_TX_DESC) {
1457                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1458                        dev->tx_idx = 0;
1459                }
1460                /* The may have been a race between a pci originated read
1461                 * and the descriptor update from the cpu.  Just in case,
1462                 * kick the transmitter if the hardware thinks it is on a
1463                 * different descriptor than we are.
1464                 */
1465                if (dev->tx_idx != dev->tx_free_idx)
1466                        kick_tx(dev);
1467        }
1468
1469        /* Defer tx ring processing until more than a minimum amount of
1470         * work has accumulated
1471         */
1472        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1473                spin_lock_irqsave(&dev->tx_lock, flags);
1474                do_tx_done(ndev);
1475                spin_unlock_irqrestore(&dev->tx_lock, flags);
1476
1477                /* Disable TxOk if there are no outstanding tx packets.
1478                 */
1479                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1480                    (dev->IMR_cache & ISR_TXOK)) {
1481                        spin_lock_irqsave(&dev->misc_lock, flags);
1482                        dev->IMR_cache &= ~ISR_TXOK;
1483                        writel(dev->IMR_cache, dev->base + IMR);
1484                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1485                }
1486        }
1487
1488        /* The TxIdle interrupt can come in before the transmit has
1489         * completed.  Normally we reap packets off of the combination
1490         * of TxDesc and TxIdle and leave TxOk disabled (since it
1491         * occurs on every packet), but when no further irqs of this
1492         * nature are expected, we must enable TxOk.
1493         */
1494        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1495                spin_lock_irqsave(&dev->misc_lock, flags);
1496                dev->IMR_cache |= ISR_TXOK;
1497                writel(dev->IMR_cache, dev->base + IMR);
1498                spin_unlock_irqrestore(&dev->misc_lock, flags);
1499        }
1500
1501        /* MIB interrupt: one of the statistics counters is about to overflow */
1502        if (unlikely(ISR_MIB & isr))
1503                ns83820_mib_isr(dev);
1504
1505        /* PHY: Link up/down/negotiation state change */
1506        if (unlikely(ISR_PHY & isr))
1507                phy_intr(ndev);
1508
1509#if 0   /* Still working on the interrupt mitigation strategy */
1510        if (dev->ihr)
1511                writel(dev->ihr, dev->base + IHR);
1512#endif
1513}
1514
1515static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1516{
1517        Dprintk("resetting chip...\n");
1518        writel(which, dev->base + CR);
1519        do {
1520                schedule();
1521        } while (readl(dev->base + CR) & which);
1522        Dprintk("okay!\n");
1523}
1524
1525static int ns83820_stop(struct net_device *ndev)
1526{
1527        struct ns83820 *dev = PRIV(ndev);
1528
1529        /* FIXME: protect against interrupt handler? */
1530        del_timer_sync(&dev->tx_watchdog);
1531
1532        ns83820_disable_interrupts(dev);
1533
1534        dev->rx_info.up = 0;
1535        synchronize_irq(dev->pci_dev->irq);
1536
1537        ns83820_do_reset(dev, CR_RST);
1538
1539        synchronize_irq(dev->pci_dev->irq);
1540
1541        spin_lock_irq(&dev->misc_lock);
1542        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1543        spin_unlock_irq(&dev->misc_lock);
1544
1545        ns83820_cleanup_rx(dev);
1546        ns83820_cleanup_tx(dev);
1547
1548        return 0;
1549}
1550
1551static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1552{
1553        struct ns83820 *dev = PRIV(ndev);
1554        u32 tx_done_idx;
1555        __le32 *desc;
1556        unsigned long flags;
1557
1558        spin_lock_irqsave(&dev->tx_lock, flags);
1559
1560        tx_done_idx = dev->tx_done_idx;
1561        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1562
1563        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1564                ndev->name,
1565                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1566
1567#if defined(DEBUG)
1568        {
1569                u32 isr;
1570                isr = readl(dev->base + ISR);
1571                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1572                ns83820_do_isr(ndev, isr);
1573        }
1574#endif
1575
1576        do_tx_done(ndev);
1577
1578        tx_done_idx = dev->tx_done_idx;
1579        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1580
1581        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1582                ndev->name,
1583                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1584
1585        spin_unlock_irqrestore(&dev->tx_lock, flags);
1586}
1587
1588static void ns83820_tx_watch(struct timer_list *t)
1589{
1590        struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1591        struct net_device *ndev = dev->ndev;
1592
1593#if defined(DEBUG)
1594        printk("ns83820_tx_watch: %u %u %d\n",
1595                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1596                );
1597#endif
1598
1599        if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1600            dev->tx_done_idx != dev->tx_free_idx) {
1601                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1602                        ndev->name,
1603                        dev->tx_done_idx, dev->tx_free_idx,
1604                        atomic_read(&dev->nr_tx_skbs));
1605                ns83820_tx_timeout(ndev, UINT_MAX);
1606        }
1607
1608        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1609}
1610
1611static int ns83820_open(struct net_device *ndev)
1612{
1613        struct ns83820 *dev = PRIV(ndev);
1614        unsigned i;
1615        u32 desc;
1616        int ret;
1617
1618        dprintk("ns83820_open\n");
1619
1620        writel(0, dev->base + PQCR);
1621
1622        ret = ns83820_setup_rx(ndev);
1623        if (ret)
1624                goto failed;
1625
1626        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1627        for (i=0; i<NR_TX_DESC; i++) {
1628                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1629                                = cpu_to_le32(
1630                                  dev->tx_phy_descs
1631                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1632        }
1633
1634        dev->tx_idx = 0;
1635        dev->tx_done_idx = 0;
1636        desc = dev->tx_phy_descs;
1637        writel(0, dev->base + TXDP_HI);
1638        writel(desc, dev->base + TXDP);
1639
1640        timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1641        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1642
1643        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1644
1645        return 0;
1646
1647failed:
1648        ns83820_stop(ndev);
1649        return ret;
1650}
1651
1652static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1653{
1654        unsigned i;
1655        for (i=0; i<3; i++) {
1656                u32 data;
1657
1658                /* Read from the perfect match memory: this is loaded by
1659                 * the chip from the EEPROM via the EELOAD self test.
1660                 */
1661                writel(i*2, dev->base + RFCR);
1662                data = readl(dev->base + RFDR);
1663
1664                *mac++ = data;
1665                *mac++ = data >> 8;
1666        }
1667}
1668
1669static void ns83820_set_multicast(struct net_device *ndev)
1670{
1671        struct ns83820 *dev = PRIV(ndev);
1672        u8 __iomem *rfcr = dev->base + RFCR;
1673        u32 and_mask = 0xffffffff;
1674        u32 or_mask = 0;
1675        u32 val;
1676
1677        if (ndev->flags & IFF_PROMISC)
1678                or_mask |= RFCR_AAU | RFCR_AAM;
1679        else
1680                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1681
1682        if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1683                or_mask |= RFCR_AAM;
1684        else
1685                and_mask &= ~RFCR_AAM;
1686
1687        spin_lock_irq(&dev->misc_lock);
1688        val = (readl(rfcr) & and_mask) | or_mask;
1689        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1690        writel(val & ~RFCR_RFEN, rfcr);
1691        writel(val, rfcr);
1692        spin_unlock_irq(&dev->misc_lock);
1693}
1694
1695static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1696{
1697        struct ns83820 *dev = PRIV(ndev);
1698        int timed_out = 0;
1699        unsigned long start;
1700        u32 status;
1701        int loops = 0;
1702
1703        dprintk("%s: start %s\n", ndev->name, name);
1704
1705        start = jiffies;
1706
1707        writel(enable, dev->base + PTSCR);
1708        for (;;) {
1709                loops++;
1710                status = readl(dev->base + PTSCR);
1711                if (!(status & enable))
1712                        break;
1713                if (status & done)
1714                        break;
1715                if (status & fail)
1716                        break;
1717                if (time_after_eq(jiffies, start + HZ)) {
1718                        timed_out = 1;
1719                        break;
1720                }
1721                schedule_timeout_uninterruptible(1);
1722        }
1723
1724        if (status & fail)
1725                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1726                        ndev->name, name, status, fail);
1727        else if (timed_out)
1728                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1729                        ndev->name, name, status);
1730
1731        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1732}
1733
1734#ifdef PHY_CODE_IS_FINISHED
1735static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1736{
1737        /* drive MDC low */
1738        dev->MEAR_cache &= ~MEAR_MDC;
1739        writel(dev->MEAR_cache, dev->base + MEAR);
1740        readl(dev->base + MEAR);
1741
1742        /* enable output, set bit */
1743        dev->MEAR_cache |= MEAR_MDDIR;
1744        if (bit)
1745                dev->MEAR_cache |= MEAR_MDIO;
1746        else
1747                dev->MEAR_cache &= ~MEAR_MDIO;
1748
1749        /* set the output bit */
1750        writel(dev->MEAR_cache, dev->base + MEAR);
1751        readl(dev->base + MEAR);
1752
1753        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1754        udelay(1);
1755
1756        /* drive MDC high causing the data bit to be latched */
1757        dev->MEAR_cache |= MEAR_MDC;
1758        writel(dev->MEAR_cache, dev->base + MEAR);
1759        readl(dev->base + MEAR);
1760
1761        /* Wait again... */
1762        udelay(1);
1763}
1764
1765static int ns83820_mii_read_bit(struct ns83820 *dev)
1766{
1767        int bit;
1768
1769        /* drive MDC low, disable output */
1770        dev->MEAR_cache &= ~MEAR_MDC;
1771        dev->MEAR_cache &= ~MEAR_MDDIR;
1772        writel(dev->MEAR_cache, dev->base + MEAR);
1773        readl(dev->base + MEAR);
1774
1775        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1776        udelay(1);
1777
1778        /* drive MDC high causing the data bit to be latched */
1779        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1780        dev->MEAR_cache |= MEAR_MDC;
1781        writel(dev->MEAR_cache, dev->base + MEAR);
1782
1783        /* Wait again... */
1784        udelay(1);
1785
1786        return bit;
1787}
1788
1789static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1790{
1791        unsigned data = 0;
1792        int i;
1793
1794        /* read some garbage so that we eventually sync up */
1795        for (i=0; i<64; i++)
1796                ns83820_mii_read_bit(dev);
1797
1798        ns83820_mii_write_bit(dev, 0);  /* start */
1799        ns83820_mii_write_bit(dev, 1);
1800        ns83820_mii_write_bit(dev, 1);  /* opcode read */
1801        ns83820_mii_write_bit(dev, 0);
1802
1803        /* write out the phy address: 5 bits, msb first */
1804        for (i=0; i<5; i++)
1805                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1806
1807        /* write out the register address, 5 bits, msb first */
1808        for (i=0; i<5; i++)
1809                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1810
1811        ns83820_mii_read_bit(dev);      /* turn around cycles */
1812        ns83820_mii_read_bit(dev);
1813
1814        /* read in the register data, 16 bits msb first */
1815        for (i=0; i<16; i++) {
1816                data <<= 1;
1817                data |= ns83820_mii_read_bit(dev);
1818        }
1819
1820        return data;
1821}
1822
1823static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1824{
1825        int i;
1826
1827        /* read some garbage so that we eventually sync up */
1828        for (i=0; i<64; i++)
1829                ns83820_mii_read_bit(dev);
1830
1831        ns83820_mii_write_bit(dev, 0);  /* start */
1832        ns83820_mii_write_bit(dev, 1);
1833        ns83820_mii_write_bit(dev, 0);  /* opcode read */
1834        ns83820_mii_write_bit(dev, 1);
1835
1836        /* write out the phy address: 5 bits, msb first */
1837        for (i=0; i<5; i++)
1838                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1839
1840        /* write out the register address, 5 bits, msb first */
1841        for (i=0; i<5; i++)
1842                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1843
1844        ns83820_mii_read_bit(dev);      /* turn around cycles */
1845        ns83820_mii_read_bit(dev);
1846
1847        /* read in the register data, 16 bits msb first */
1848        for (i=0; i<16; i++)
1849                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1850
1851        return data;
1852}
1853
1854static void ns83820_probe_phy(struct net_device *ndev)
1855{
1856        struct ns83820 *dev = PRIV(ndev);
1857        int j;
1858        unsigned a, b;
1859
1860        for (j = 0; j < 0x16; j += 4) {
1861                dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1862                        ndev->name, j,
1863                        ns83820_mii_read_reg(dev, 1, 0 + j),
1864                        ns83820_mii_read_reg(dev, 1, 1 + j),
1865                        ns83820_mii_read_reg(dev, 1, 2 + j),
1866                        ns83820_mii_read_reg(dev, 1, 3 + j)
1867                        );
1868        }
1869
1870        /* read firmware version: memory addr is 0x8402 and 0x8403 */
1871        ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1872        ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1873        a = ns83820_mii_read_reg(dev, 1, 0x1d);
1874
1875        ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1876        ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1877        b = ns83820_mii_read_reg(dev, 1, 0x1d);
1878        dprintk("version: 0x%04x 0x%04x\n", a, b);
1879}
1880#endif
1881
1882static const struct net_device_ops netdev_ops = {
1883        .ndo_open               = ns83820_open,
1884        .ndo_stop               = ns83820_stop,
1885        .ndo_start_xmit         = ns83820_hard_start_xmit,
1886        .ndo_get_stats          = ns83820_get_stats,
1887        .ndo_set_rx_mode        = ns83820_set_multicast,
1888        .ndo_validate_addr      = eth_validate_addr,
1889        .ndo_set_mac_address    = eth_mac_addr,
1890        .ndo_tx_timeout         = ns83820_tx_timeout,
1891};
1892
1893static int ns83820_init_one(struct pci_dev *pci_dev,
1894                            const struct pci_device_id *id)
1895{
1896        struct net_device *ndev;
1897        struct ns83820 *dev;
1898        long addr;
1899        int err;
1900        int using_dac = 0;
1901
1902        /* See if we can set the dma mask early on; failure is fatal. */
1903        if (sizeof(dma_addr_t) == 8 &&
1904                !dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(64))) {
1905                using_dac = 1;
1906        } else if (!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
1907                using_dac = 0;
1908        } else {
1909                dev_warn(&pci_dev->dev, "dma_set_mask failed!\n");
1910                return -ENODEV;
1911        }
1912
1913        ndev = alloc_etherdev(sizeof(struct ns83820));
1914        err = -ENOMEM;
1915        if (!ndev)
1916                goto out;
1917
1918        dev = PRIV(ndev);
1919        dev->ndev = ndev;
1920
1921        spin_lock_init(&dev->rx_info.lock);
1922        spin_lock_init(&dev->tx_lock);
1923        spin_lock_init(&dev->misc_lock);
1924        dev->pci_dev = pci_dev;
1925
1926        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1927
1928        INIT_WORK(&dev->tq_refill, queue_refill);
1929        tasklet_setup(&dev->rx_tasklet, rx_action);
1930
1931        err = pci_enable_device(pci_dev);
1932        if (err) {
1933                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1934                goto out_free;
1935        }
1936
1937        pci_set_master(pci_dev);
1938        addr = pci_resource_start(pci_dev, 1);
1939        dev->base = ioremap(addr, PAGE_SIZE);
1940        dev->tx_descs = dma_alloc_coherent(&pci_dev->dev,
1941                                           4 * DESC_SIZE * NR_TX_DESC,
1942                                           &dev->tx_phy_descs, GFP_KERNEL);
1943        dev->rx_info.descs = dma_alloc_coherent(&pci_dev->dev,
1944                                                4 * DESC_SIZE * NR_RX_DESC,
1945                                                &dev->rx_info.phy_descs, GFP_KERNEL);
1946        err = -ENOMEM;
1947        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1948                goto out_disable;
1949
1950        dprintk("%p: %08lx  %p: %08lx\n",
1951                dev->tx_descs, (long)dev->tx_phy_descs,
1952                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1953
1954        ns83820_disable_interrupts(dev);
1955
1956        dev->IMR_cache = 0;
1957
1958        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1959                          DRV_NAME, ndev);
1960        if (err) {
1961                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1962                        pci_dev->irq, err);
1963                goto out_disable;
1964        }
1965
1966        /*
1967         * FIXME: we are holding rtnl_lock() over obscenely long area only
1968         * because some of the setup code uses dev->name.  It's Wrong(tm) -
1969         * we should be using driver-specific names for all that stuff.
1970         * For now that will do, but we really need to come back and kill
1971         * most of the dev_alloc_name() users later.
1972         */
1973        rtnl_lock();
1974        err = dev_alloc_name(ndev, ndev->name);
1975        if (err < 0) {
1976                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1977                goto out_free_irq;
1978        }
1979
1980        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1981                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1982                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1983
1984        ndev->netdev_ops = &netdev_ops;
1985        ndev->ethtool_ops = &ops;
1986        ndev->watchdog_timeo = 5 * HZ;
1987        pci_set_drvdata(pci_dev, ndev);
1988
1989        ns83820_do_reset(dev, CR_RST);
1990
1991        /* Must reset the ram bist before running it */
1992        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1993        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1994                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1995        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1996                         PTSCR_EEBIST_FAIL);
1997        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1998
1999        /* I love config registers */
2000        dev->CFG_cache = readl(dev->base + CFG);
2001
2002        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2003                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2004                        ndev->name);
2005                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2006                if (!(dev->CFG_cache & CFG_DATA64_EN))
2007                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2008                                ndev->name);
2009        } else
2010                dev->CFG_cache &= ~(CFG_DATA64_EN);
2011
2012        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2013                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2014                           CFG_M64ADDR);
2015        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2016                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2017        dev->CFG_cache |= CFG_REQALG;
2018        dev->CFG_cache |= CFG_POW;
2019        dev->CFG_cache |= CFG_TMRTEST;
2020
2021        /* When compiled with 64 bit addressing, we must always enable
2022         * the 64 bit descriptor format.
2023         */
2024        if (sizeof(dma_addr_t) == 8)
2025                dev->CFG_cache |= CFG_M64ADDR;
2026        if (using_dac)
2027                dev->CFG_cache |= CFG_T64ADDR;
2028
2029        /* Big endian mode does not seem to do what the docs suggest */
2030        dev->CFG_cache &= ~CFG_BEM;
2031
2032        /* setup optical transceiver if we have one */
2033        if (dev->CFG_cache & CFG_TBI_EN) {
2034                printk(KERN_INFO "%s: enabling optical transceiver\n",
2035                        ndev->name);
2036                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2037
2038                /* setup auto negotiation feature advertisement */
2039                writel(readl(dev->base + TANAR)
2040                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2041                       dev->base + TANAR);
2042
2043                /* start auto negotiation */
2044                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2045                       dev->base + TBICR);
2046                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2047                dev->linkstate = LINK_AUTONEGOTIATE;
2048
2049                dev->CFG_cache |= CFG_MODE_1000;
2050        }
2051
2052        writel(dev->CFG_cache, dev->base + CFG);
2053        dprintk("CFG: %08x\n", dev->CFG_cache);
2054
2055        if (reset_phy) {
2056                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2057                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2058                msleep(10);
2059                writel(dev->CFG_cache, dev->base + CFG);
2060        }
2061
2062#if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2063         * the PCI layer.  FIXME.
2064         */
2065        if (readl(dev->base + SRR))
2066                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2067#endif
2068
2069        /* Note!  The DMA burst size interacts with packet
2070         * transmission, such that the largest packet that
2071         * can be transmitted is 8192 - FLTH - burst size.
2072         * If only the transmit fifo was larger...
2073         */
2074        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2075         * some DELL and COMPAQ SMP systems */
2076        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2077                | ((1600 / 32) * 0x100),
2078                dev->base + TXCFG);
2079
2080        /* Flush the interrupt holdoff timer */
2081        writel(0x000, dev->base + IHR);
2082        writel(0x100, dev->base + IHR);
2083        writel(0x000, dev->base + IHR);
2084
2085        /* Set Rx to full duplex, don't accept runt, errored, long or length
2086         * range errored packets.  Use 512 byte DMA.
2087         */
2088        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2089         * some DELL and COMPAQ SMP systems
2090         * Turn on ALP, only we are accpeting Jumbo Packets */
2091        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2092                | RXCFG_STRIPCRC
2093                //| RXCFG_ALP
2094                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2095
2096        /* Disable priority queueing */
2097        writel(0, dev->base + PQCR);
2098
2099        /* Enable IP checksum validation and detetion of VLAN headers.
2100         * Note: do not set the reject options as at least the 0x102
2101         * revision of the chip does not properly accept IP fragments
2102         * at least for UDP.
2103         */
2104        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2105         * the MAC it calculates the packetsize AFTER stripping the VLAN
2106         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2107         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2108         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2109         * it discrards it!.  These guys......
2110         * also turn on tag stripping if hardware acceleration is enabled
2111         */
2112#ifdef NS83820_VLAN_ACCEL_SUPPORT
2113#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2114#else
2115#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2116#endif
2117        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2118
2119        /* Enable per-packet TCP/UDP/IP checksumming
2120         * and per packet vlan tag insertion if
2121         * vlan hardware acceleration is enabled
2122         */
2123#ifdef NS83820_VLAN_ACCEL_SUPPORT
2124#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2125#else
2126#define VTCR_INIT_VALUE VTCR_PPCHK
2127#endif
2128        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2129
2130        /* Ramit : Enable async and sync pause frames */
2131        /* writel(0, dev->base + PCR); */
2132        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2133                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2134                dev->base + PCR);
2135
2136        /* Disable Wake On Lan */
2137        writel(0, dev->base + WCSR);
2138
2139        ns83820_getmac(dev, ndev->dev_addr);
2140
2141        /* Yes, we support dumb IP checksum on transmit */
2142        ndev->features |= NETIF_F_SG;
2143        ndev->features |= NETIF_F_IP_CSUM;
2144
2145        ndev->min_mtu = 0;
2146
2147#ifdef NS83820_VLAN_ACCEL_SUPPORT
2148        /* We also support hardware vlan acceleration */
2149        ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2150#endif
2151
2152        if (using_dac) {
2153                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2154                        ndev->name);
2155                ndev->features |= NETIF_F_HIGHDMA;
2156        }
2157
2158        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2159                ndev->name,
2160                (unsigned)readl(dev->base + SRR) >> 8,
2161                (unsigned)readl(dev->base + SRR) & 0xff,
2162                ndev->dev_addr, addr, pci_dev->irq,
2163                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2164                );
2165
2166#ifdef PHY_CODE_IS_FINISHED
2167        ns83820_probe_phy(ndev);
2168#endif
2169
2170        err = register_netdevice(ndev);
2171        if (err) {
2172                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2173                goto out_cleanup;
2174        }
2175        rtnl_unlock();
2176
2177        return 0;
2178
2179out_cleanup:
2180        ns83820_disable_interrupts(dev); /* paranoia */
2181out_free_irq:
2182        rtnl_unlock();
2183        free_irq(pci_dev->irq, ndev);
2184out_disable:
2185        if (dev->base)
2186                iounmap(dev->base);
2187        dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2188                          dev->tx_descs, dev->tx_phy_descs);
2189        dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2190                          dev->rx_info.descs, dev->rx_info.phy_descs);
2191        pci_disable_device(pci_dev);
2192out_free:
2193        free_netdev(ndev);
2194out:
2195        return err;
2196}
2197
2198static void ns83820_remove_one(struct pci_dev *pci_dev)
2199{
2200        struct net_device *ndev = pci_get_drvdata(pci_dev);
2201        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2202
2203        if (!ndev)                      /* paranoia */
2204                return;
2205
2206        ns83820_disable_interrupts(dev); /* paranoia */
2207
2208        unregister_netdev(ndev);
2209        free_irq(dev->pci_dev->irq, ndev);
2210        iounmap(dev->base);
2211        dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2212                          dev->tx_descs, dev->tx_phy_descs);
2213        dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2214                          dev->rx_info.descs, dev->rx_info.phy_descs);
2215        pci_disable_device(dev->pci_dev);
2216        free_netdev(ndev);
2217}
2218
2219static const struct pci_device_id ns83820_pci_tbl[] = {
2220        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2221        { 0, },
2222};
2223
2224static struct pci_driver driver = {
2225        .name           = "ns83820",
2226        .id_table       = ns83820_pci_tbl,
2227        .probe          = ns83820_init_one,
2228        .remove         = ns83820_remove_one,
2229#if 0   /* FIXME: implement */
2230        .suspend        = ,
2231        .resume         = ,
2232#endif
2233};
2234
2235
2236static int __init ns83820_init(void)
2237{
2238        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2239        return pci_register_driver(&driver);
2240}
2241
2242static void __exit ns83820_exit(void)
2243{
2244        pci_unregister_driver(&driver);
2245}
2246
2247MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2248MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2249MODULE_LICENSE("GPL");
2250
2251MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2252
2253module_param(lnksts, int, 0);
2254MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2255
2256module_param(ihr, int, 0);
2257MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2258
2259module_param(reset_phy, int, 0);
2260MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2261
2262module_init(ns83820_init);
2263module_exit(ns83820_exit);
2264