linux/drivers/net/ethernet/netronome/nfp/bpf/jit.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
   2/* Copyright (C) 2016-2018 Netronome Systems, Inc. */
   3
   4#define pr_fmt(fmt)     "NFP net bpf: " fmt
   5
   6#include <linux/bug.h>
   7#include <linux/bpf.h>
   8#include <linux/filter.h>
   9#include <linux/kernel.h>
  10#include <linux/pkt_cls.h>
  11#include <linux/reciprocal_div.h>
  12#include <linux/unistd.h>
  13
  14#include "main.h"
  15#include "../nfp_asm.h"
  16#include "../nfp_net_ctrl.h"
  17
  18/* --- NFP prog --- */
  19/* Foreach "multiple" entries macros provide pos and next<n> pointers.
  20 * It's safe to modify the next pointers (but not pos).
  21 */
  22#define nfp_for_each_insn_walk2(nfp_prog, pos, next)                    \
  23        for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  24             next = list_next_entry(pos, l);                    \
  25             &(nfp_prog)->insns != &pos->l &&                   \
  26             &(nfp_prog)->insns != &next->l;                    \
  27             pos = nfp_meta_next(pos),                          \
  28             next = nfp_meta_next(pos))
  29
  30#define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)             \
  31        for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  32             next = list_next_entry(pos, l),                    \
  33             next2 = list_next_entry(next, l);                  \
  34             &(nfp_prog)->insns != &pos->l &&                   \
  35             &(nfp_prog)->insns != &next->l &&                  \
  36             &(nfp_prog)->insns != &next2->l;                   \
  37             pos = nfp_meta_next(pos),                          \
  38             next = nfp_meta_next(pos),                         \
  39             next2 = nfp_meta_next(next))
  40
  41static bool
  42nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  43{
  44        return meta->l.prev != &nfp_prog->insns;
  45}
  46
  47static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
  48{
  49        if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
  50                pr_warn("instruction limit reached (%u NFP instructions)\n",
  51                        nfp_prog->prog_len);
  52                nfp_prog->error = -ENOSPC;
  53                return;
  54        }
  55
  56        nfp_prog->prog[nfp_prog->prog_len] = insn;
  57        nfp_prog->prog_len++;
  58}
  59
  60static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
  61{
  62        return nfp_prog->prog_len;
  63}
  64
  65static bool
  66nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
  67{
  68        /* If there is a recorded error we may have dropped instructions;
  69         * that doesn't have to be due to translator bug, and the translation
  70         * will fail anyway, so just return OK.
  71         */
  72        if (nfp_prog->error)
  73                return true;
  74        return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
  75}
  76
  77/* --- Emitters --- */
  78static void
  79__emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
  80           u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
  81           bool indir)
  82{
  83        u64 insn;
  84
  85        insn =  FIELD_PREP(OP_CMD_A_SRC, areg) |
  86                FIELD_PREP(OP_CMD_CTX, ctx) |
  87                FIELD_PREP(OP_CMD_B_SRC, breg) |
  88                FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
  89                FIELD_PREP(OP_CMD_XFER, xfer) |
  90                FIELD_PREP(OP_CMD_CNT, size) |
  91                FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
  92                FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
  93                FIELD_PREP(OP_CMD_INDIR, indir) |
  94                FIELD_PREP(OP_CMD_MODE, mode);
  95
  96        nfp_prog_push(nfp_prog, insn);
  97}
  98
  99static void
 100emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 101             swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
 102{
 103        struct nfp_insn_re_regs reg;
 104        int err;
 105
 106        err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
 107        if (err) {
 108                nfp_prog->error = err;
 109                return;
 110        }
 111        if (reg.swap) {
 112                pr_err("cmd can't swap arguments\n");
 113                nfp_prog->error = -EFAULT;
 114                return;
 115        }
 116        if (reg.dst_lmextn || reg.src_lmextn) {
 117                pr_err("cmd can't use LMextn\n");
 118                nfp_prog->error = -EFAULT;
 119                return;
 120        }
 121
 122        __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
 123                   indir);
 124}
 125
 126static void
 127emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 128         swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
 129{
 130        emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
 131}
 132
 133static void
 134emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 135               swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
 136{
 137        emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
 138}
 139
 140static void
 141__emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
 142          enum br_ctx_signal_state css, u16 addr, u8 defer)
 143{
 144        u16 addr_lo, addr_hi;
 145        u64 insn;
 146
 147        addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
 148        addr_hi = addr != addr_lo;
 149
 150        insn = OP_BR_BASE |
 151                FIELD_PREP(OP_BR_MASK, mask) |
 152                FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
 153                FIELD_PREP(OP_BR_CSS, css) |
 154                FIELD_PREP(OP_BR_DEFBR, defer) |
 155                FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
 156                FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
 157
 158        nfp_prog_push(nfp_prog, insn);
 159}
 160
 161static void
 162emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
 163             enum nfp_relo_type relo)
 164{
 165        if (mask == BR_UNC && defer > 2) {
 166                pr_err("BUG: branch defer out of bounds %d\n", defer);
 167                nfp_prog->error = -EFAULT;
 168                return;
 169        }
 170
 171        __emit_br(nfp_prog, mask,
 172                  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
 173                  BR_CSS_NONE, addr, defer);
 174
 175        nfp_prog->prog[nfp_prog->prog_len - 1] |=
 176                FIELD_PREP(OP_RELO_TYPE, relo);
 177}
 178
 179static void
 180emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
 181{
 182        emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
 183}
 184
 185static void
 186__emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
 187              bool set, bool src_lmextn)
 188{
 189        u16 addr_lo, addr_hi;
 190        u64 insn;
 191
 192        addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
 193        addr_hi = addr != addr_lo;
 194
 195        insn = OP_BR_BIT_BASE |
 196                FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
 197                FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
 198                FIELD_PREP(OP_BR_BIT_BV, set) |
 199                FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
 200                FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
 201                FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
 202                FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
 203
 204        nfp_prog_push(nfp_prog, insn);
 205}
 206
 207static void
 208emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
 209                 u8 defer, bool set, enum nfp_relo_type relo)
 210{
 211        struct nfp_insn_re_regs reg;
 212        int err;
 213
 214        /* NOTE: The bit to test is specified as an rotation amount, such that
 215         *       the bit to test will be placed on the MSB of the result when
 216         *       doing a rotate right. For bit X, we need right rotate X + 1.
 217         */
 218        bit += 1;
 219
 220        err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
 221        if (err) {
 222                nfp_prog->error = err;
 223                return;
 224        }
 225
 226        __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
 227                      reg.src_lmextn);
 228
 229        nfp_prog->prog[nfp_prog->prog_len - 1] |=
 230                FIELD_PREP(OP_RELO_TYPE, relo);
 231}
 232
 233static void
 234emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
 235{
 236        emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
 237}
 238
 239static void
 240__emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
 241              u8 defer, bool dst_lmextn, bool src_lmextn)
 242{
 243        u64 insn;
 244
 245        insn = OP_BR_ALU_BASE |
 246                FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
 247                FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
 248                FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
 249                FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
 250                FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
 251                FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
 252
 253        nfp_prog_push(nfp_prog, insn);
 254}
 255
 256static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
 257{
 258        struct nfp_insn_ur_regs reg;
 259        int err;
 260
 261        err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
 262        if (err) {
 263                nfp_prog->error = err;
 264                return;
 265        }
 266
 267        __emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
 268                      reg.src_lmextn);
 269}
 270
 271static void
 272__emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
 273             enum immed_width width, bool invert,
 274             enum immed_shift shift, bool wr_both,
 275             bool dst_lmextn, bool src_lmextn)
 276{
 277        u64 insn;
 278
 279        insn = OP_IMMED_BASE |
 280                FIELD_PREP(OP_IMMED_A_SRC, areg) |
 281                FIELD_PREP(OP_IMMED_B_SRC, breg) |
 282                FIELD_PREP(OP_IMMED_IMM, imm_hi) |
 283                FIELD_PREP(OP_IMMED_WIDTH, width) |
 284                FIELD_PREP(OP_IMMED_INV, invert) |
 285                FIELD_PREP(OP_IMMED_SHIFT, shift) |
 286                FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
 287                FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
 288                FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
 289
 290        nfp_prog_push(nfp_prog, insn);
 291}
 292
 293static void
 294emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
 295           enum immed_width width, bool invert, enum immed_shift shift)
 296{
 297        struct nfp_insn_ur_regs reg;
 298        int err;
 299
 300        if (swreg_type(dst) == NN_REG_IMM) {
 301                nfp_prog->error = -EFAULT;
 302                return;
 303        }
 304
 305        err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
 306        if (err) {
 307                nfp_prog->error = err;
 308                return;
 309        }
 310
 311        /* Use reg.dst when destination is No-Dest. */
 312        __emit_immed(nfp_prog,
 313                     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
 314                     reg.breg, imm >> 8, width, invert, shift,
 315                     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
 316}
 317
 318static void
 319__emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
 320           enum shf_sc sc, u8 shift,
 321           u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
 322           bool dst_lmextn, bool src_lmextn)
 323{
 324        u64 insn;
 325
 326        if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
 327                nfp_prog->error = -EFAULT;
 328                return;
 329        }
 330
 331        /* NFP shift instruction has something special. If shift direction is
 332         * left then shift amount of 1 to 31 is specified as 32 minus the amount
 333         * to shift.
 334         *
 335         * But no need to do this for indirect shift which has shift amount be
 336         * 0. Even after we do this subtraction, shift amount 0 will be turned
 337         * into 32 which will eventually be encoded the same as 0 because only
 338         * low 5 bits are encoded, but shift amount be 32 will fail the
 339         * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
 340         * mask range.
 341         */
 342        if (sc == SHF_SC_L_SHF && shift)
 343                shift = 32 - shift;
 344
 345        insn = OP_SHF_BASE |
 346                FIELD_PREP(OP_SHF_A_SRC, areg) |
 347                FIELD_PREP(OP_SHF_SC, sc) |
 348                FIELD_PREP(OP_SHF_B_SRC, breg) |
 349                FIELD_PREP(OP_SHF_I8, i8) |
 350                FIELD_PREP(OP_SHF_SW, sw) |
 351                FIELD_PREP(OP_SHF_DST, dst) |
 352                FIELD_PREP(OP_SHF_SHIFT, shift) |
 353                FIELD_PREP(OP_SHF_OP, op) |
 354                FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
 355                FIELD_PREP(OP_SHF_WR_AB, wr_both) |
 356                FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
 357                FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
 358
 359        nfp_prog_push(nfp_prog, insn);
 360}
 361
 362static void
 363emit_shf(struct nfp_prog *nfp_prog, swreg dst,
 364         swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
 365{
 366        struct nfp_insn_re_regs reg;
 367        int err;
 368
 369        err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
 370        if (err) {
 371                nfp_prog->error = err;
 372                return;
 373        }
 374
 375        __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
 376                   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
 377                   reg.dst_lmextn, reg.src_lmextn);
 378}
 379
 380static void
 381emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
 382               swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
 383{
 384        if (sc == SHF_SC_R_ROT) {
 385                pr_err("indirect shift is not allowed on rotation\n");
 386                nfp_prog->error = -EFAULT;
 387                return;
 388        }
 389
 390        emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
 391}
 392
 393static void
 394__emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
 395           u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
 396           bool dst_lmextn, bool src_lmextn)
 397{
 398        u64 insn;
 399
 400        insn = OP_ALU_BASE |
 401                FIELD_PREP(OP_ALU_A_SRC, areg) |
 402                FIELD_PREP(OP_ALU_B_SRC, breg) |
 403                FIELD_PREP(OP_ALU_DST, dst) |
 404                FIELD_PREP(OP_ALU_SW, swap) |
 405                FIELD_PREP(OP_ALU_OP, op) |
 406                FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
 407                FIELD_PREP(OP_ALU_WR_AB, wr_both) |
 408                FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
 409                FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
 410
 411        nfp_prog_push(nfp_prog, insn);
 412}
 413
 414static void
 415emit_alu(struct nfp_prog *nfp_prog, swreg dst,
 416         swreg lreg, enum alu_op op, swreg rreg)
 417{
 418        struct nfp_insn_ur_regs reg;
 419        int err;
 420
 421        err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
 422        if (err) {
 423                nfp_prog->error = err;
 424                return;
 425        }
 426
 427        __emit_alu(nfp_prog, reg.dst, reg.dst_ab,
 428                   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
 429                   reg.dst_lmextn, reg.src_lmextn);
 430}
 431
 432static void
 433__emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
 434           enum mul_type type, enum mul_step step, u16 breg, bool swap,
 435           bool wr_both, bool dst_lmextn, bool src_lmextn)
 436{
 437        u64 insn;
 438
 439        insn = OP_MUL_BASE |
 440                FIELD_PREP(OP_MUL_A_SRC, areg) |
 441                FIELD_PREP(OP_MUL_B_SRC, breg) |
 442                FIELD_PREP(OP_MUL_STEP, step) |
 443                FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
 444                FIELD_PREP(OP_MUL_SW, swap) |
 445                FIELD_PREP(OP_MUL_TYPE, type) |
 446                FIELD_PREP(OP_MUL_WR_AB, wr_both) |
 447                FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
 448                FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
 449
 450        nfp_prog_push(nfp_prog, insn);
 451}
 452
 453static void
 454emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
 455         enum mul_step step, swreg rreg)
 456{
 457        struct nfp_insn_ur_regs reg;
 458        u16 areg;
 459        int err;
 460
 461        if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
 462                nfp_prog->error = -EINVAL;
 463                return;
 464        }
 465
 466        if (step == MUL_LAST || step == MUL_LAST_2) {
 467                /* When type is step and step Number is LAST or LAST2, left
 468                 * source is used as destination.
 469                 */
 470                err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
 471                areg = reg.dst;
 472        } else {
 473                err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
 474                areg = reg.areg;
 475        }
 476
 477        if (err) {
 478                nfp_prog->error = err;
 479                return;
 480        }
 481
 482        __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
 483                   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
 484}
 485
 486static void
 487__emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
 488                u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
 489                bool zero, bool swap, bool wr_both,
 490                bool dst_lmextn, bool src_lmextn)
 491{
 492        u64 insn;
 493
 494        insn = OP_LDF_BASE |
 495                FIELD_PREP(OP_LDF_A_SRC, areg) |
 496                FIELD_PREP(OP_LDF_SC, sc) |
 497                FIELD_PREP(OP_LDF_B_SRC, breg) |
 498                FIELD_PREP(OP_LDF_I8, imm8) |
 499                FIELD_PREP(OP_LDF_SW, swap) |
 500                FIELD_PREP(OP_LDF_ZF, zero) |
 501                FIELD_PREP(OP_LDF_BMASK, bmask) |
 502                FIELD_PREP(OP_LDF_SHF, shift) |
 503                FIELD_PREP(OP_LDF_WR_AB, wr_both) |
 504                FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
 505                FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
 506
 507        nfp_prog_push(nfp_prog, insn);
 508}
 509
 510static void
 511emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
 512                  enum shf_sc sc, u8 shift, bool zero)
 513{
 514        struct nfp_insn_re_regs reg;
 515        int err;
 516
 517        /* Note: ld_field is special as it uses one of the src regs as dst */
 518        err = swreg_to_restricted(dst, dst, src, &reg, true);
 519        if (err) {
 520                nfp_prog->error = err;
 521                return;
 522        }
 523
 524        __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
 525                        reg.i8, zero, reg.swap, reg.wr_both,
 526                        reg.dst_lmextn, reg.src_lmextn);
 527}
 528
 529static void
 530emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
 531              enum shf_sc sc, u8 shift)
 532{
 533        emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
 534}
 535
 536static void
 537__emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
 538            bool dst_lmextn, bool src_lmextn)
 539{
 540        u64 insn;
 541
 542        insn = OP_LCSR_BASE |
 543                FIELD_PREP(OP_LCSR_A_SRC, areg) |
 544                FIELD_PREP(OP_LCSR_B_SRC, breg) |
 545                FIELD_PREP(OP_LCSR_WRITE, wr) |
 546                FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
 547                FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
 548                FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
 549
 550        nfp_prog_push(nfp_prog, insn);
 551}
 552
 553static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
 554{
 555        struct nfp_insn_ur_regs reg;
 556        int err;
 557
 558        /* This instruction takes immeds instead of reg_none() for the ignored
 559         * operand, but we can't encode 2 immeds in one instr with our normal
 560         * swreg infra so if param is an immed, we encode as reg_none() and
 561         * copy the immed to both operands.
 562         */
 563        if (swreg_type(src) == NN_REG_IMM) {
 564                err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
 565                reg.breg = reg.areg;
 566        } else {
 567                err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
 568        }
 569        if (err) {
 570                nfp_prog->error = err;
 571                return;
 572        }
 573
 574        __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
 575                    false, reg.src_lmextn);
 576}
 577
 578/* CSR value is read in following immed[gpr, 0] */
 579static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
 580{
 581        __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
 582}
 583
 584static void emit_nop(struct nfp_prog *nfp_prog)
 585{
 586        __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
 587}
 588
 589/* --- Wrappers --- */
 590static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
 591{
 592        if (!(imm & 0xffff0000)) {
 593                *val = imm;
 594                *shift = IMMED_SHIFT_0B;
 595        } else if (!(imm & 0xff0000ff)) {
 596                *val = imm >> 8;
 597                *shift = IMMED_SHIFT_1B;
 598        } else if (!(imm & 0x0000ffff)) {
 599                *val = imm >> 16;
 600                *shift = IMMED_SHIFT_2B;
 601        } else {
 602                return false;
 603        }
 604
 605        return true;
 606}
 607
 608static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
 609{
 610        enum immed_shift shift;
 611        u16 val;
 612
 613        if (pack_immed(imm, &val, &shift)) {
 614                emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
 615        } else if (pack_immed(~imm, &val, &shift)) {
 616                emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
 617        } else {
 618                emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
 619                           false, IMMED_SHIFT_0B);
 620                emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
 621                           false, IMMED_SHIFT_2B);
 622        }
 623}
 624
 625static void
 626wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
 627{
 628        if (meta->flags & FLAG_INSN_DO_ZEXT)
 629                wrp_immed(nfp_prog, reg_both(dst + 1), 0);
 630}
 631
 632static void
 633wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
 634               enum nfp_relo_type relo)
 635{
 636        if (imm > 0xffff) {
 637                pr_err("relocation of a large immediate!\n");
 638                nfp_prog->error = -EFAULT;
 639                return;
 640        }
 641        emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
 642
 643        nfp_prog->prog[nfp_prog->prog_len - 1] |=
 644                FIELD_PREP(OP_RELO_TYPE, relo);
 645}
 646
 647/* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
 648 * If the @imm is small enough encode it directly in operand and return
 649 * otherwise load @imm to a spare register and return its encoding.
 650 */
 651static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
 652{
 653        if (FIELD_FIT(UR_REG_IMM_MAX, imm))
 654                return reg_imm(imm);
 655
 656        wrp_immed(nfp_prog, tmp_reg, imm);
 657        return tmp_reg;
 658}
 659
 660/* re_load_imm_any() - encode immediate or use tmp register (restricted)
 661 * If the @imm is small enough encode it directly in operand and return
 662 * otherwise load @imm to a spare register and return its encoding.
 663 */
 664static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
 665{
 666        if (FIELD_FIT(RE_REG_IMM_MAX, imm))
 667                return reg_imm(imm);
 668
 669        wrp_immed(nfp_prog, tmp_reg, imm);
 670        return tmp_reg;
 671}
 672
 673static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
 674{
 675        while (count--)
 676                emit_nop(nfp_prog);
 677}
 678
 679static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
 680{
 681        emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
 682}
 683
 684static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
 685{
 686        wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
 687}
 688
 689/* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
 690 * result to @dst from low end.
 691 */
 692static void
 693wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
 694                u8 offset)
 695{
 696        enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
 697        u8 mask = (1 << field_len) - 1;
 698
 699        emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
 700}
 701
 702/* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
 703 * result to @dst from offset, there is no change on the other bits of @dst.
 704 */
 705static void
 706wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
 707                   u8 field_len, u8 offset)
 708{
 709        enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
 710        u8 mask = ((1 << field_len) - 1) << offset;
 711
 712        emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
 713}
 714
 715static void
 716addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
 717              swreg *rega, swreg *regb)
 718{
 719        if (offset == reg_imm(0)) {
 720                *rega = reg_a(src_gpr);
 721                *regb = reg_b(src_gpr + 1);
 722                return;
 723        }
 724
 725        emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
 726        emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
 727                 reg_imm(0));
 728        *rega = imm_a(nfp_prog);
 729        *regb = imm_b(nfp_prog);
 730}
 731
 732/* NFP has Command Push Pull bus which supports bluk memory operations. */
 733static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
 734{
 735        bool descending_seq = meta->ldst_gather_len < 0;
 736        s16 len = abs(meta->ldst_gather_len);
 737        swreg src_base, off;
 738        bool src_40bit_addr;
 739        unsigned int i;
 740        u8 xfer_num;
 741
 742        off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
 743        src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
 744        src_base = reg_a(meta->insn.src_reg * 2);
 745        xfer_num = round_up(len, 4) / 4;
 746
 747        if (src_40bit_addr)
 748                addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
 749                              &off);
 750
 751        /* Setup PREV_ALU fields to override memory read length. */
 752        if (len > 32)
 753                wrp_immed(nfp_prog, reg_none(),
 754                          CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
 755
 756        /* Memory read from source addr into transfer-in registers. */
 757        emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
 758                     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
 759                     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
 760
 761        /* Move from transfer-in to transfer-out. */
 762        for (i = 0; i < xfer_num; i++)
 763                wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
 764
 765        off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
 766
 767        if (len <= 8) {
 768                /* Use single direct_ref write8. */
 769                emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 770                         reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
 771                         CMD_CTX_SWAP);
 772        } else if (len <= 32 && IS_ALIGNED(len, 4)) {
 773                /* Use single direct_ref write32. */
 774                emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 775                         reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
 776                         CMD_CTX_SWAP);
 777        } else if (len <= 32) {
 778                /* Use single indirect_ref write8. */
 779                wrp_immed(nfp_prog, reg_none(),
 780                          CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
 781                emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 782                               reg_a(meta->paired_st->dst_reg * 2), off,
 783                               len - 1, CMD_CTX_SWAP);
 784        } else if (IS_ALIGNED(len, 4)) {
 785                /* Use single indirect_ref write32. */
 786                wrp_immed(nfp_prog, reg_none(),
 787                          CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
 788                emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 789                               reg_a(meta->paired_st->dst_reg * 2), off,
 790                               xfer_num - 1, CMD_CTX_SWAP);
 791        } else if (len <= 40) {
 792                /* Use one direct_ref write32 to write the first 32-bytes, then
 793                 * another direct_ref write8 to write the remaining bytes.
 794                 */
 795                emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 796                         reg_a(meta->paired_st->dst_reg * 2), off, 7,
 797                         CMD_CTX_SWAP);
 798
 799                off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
 800                                      imm_b(nfp_prog));
 801                emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
 802                         reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
 803                         CMD_CTX_SWAP);
 804        } else {
 805                /* Use one indirect_ref write32 to write 4-bytes aligned length,
 806                 * then another direct_ref write8 to write the remaining bytes.
 807                 */
 808                u8 new_off;
 809
 810                wrp_immed(nfp_prog, reg_none(),
 811                          CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
 812                emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 813                               reg_a(meta->paired_st->dst_reg * 2), off,
 814                               xfer_num - 2, CMD_CTX_SWAP);
 815                new_off = meta->paired_st->off + (xfer_num - 1) * 4;
 816                off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
 817                emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
 818                         xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
 819                         (len & 0x3) - 1, CMD_CTX_SWAP);
 820        }
 821
 822        /* TODO: The following extra load is to make sure data flow be identical
 823         *  before and after we do memory copy optimization.
 824         *
 825         *  The load destination register is not guaranteed to be dead, so we
 826         *  need to make sure it is loaded with the value the same as before
 827         *  this transformation.
 828         *
 829         *  These extra loads could be removed once we have accurate register
 830         *  usage information.
 831         */
 832        if (descending_seq)
 833                xfer_num = 0;
 834        else if (BPF_SIZE(meta->insn.code) != BPF_DW)
 835                xfer_num = xfer_num - 1;
 836        else
 837                xfer_num = xfer_num - 2;
 838
 839        switch (BPF_SIZE(meta->insn.code)) {
 840        case BPF_B:
 841                wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 842                                reg_xfer(xfer_num), 1,
 843                                IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
 844                break;
 845        case BPF_H:
 846                wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 847                                reg_xfer(xfer_num), 2, (len & 3) ^ 2);
 848                break;
 849        case BPF_W:
 850                wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 851                        reg_xfer(0));
 852                break;
 853        case BPF_DW:
 854                wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 855                        reg_xfer(xfer_num));
 856                wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
 857                        reg_xfer(xfer_num + 1));
 858                break;
 859        }
 860
 861        if (BPF_SIZE(meta->insn.code) != BPF_DW)
 862                wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
 863
 864        return 0;
 865}
 866
 867static int
 868data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
 869        u8 dst_gpr, int size)
 870{
 871        unsigned int i;
 872        u16 shift, sz;
 873
 874        /* We load the value from the address indicated in @offset and then
 875         * shift out the data we don't need.  Note: this is big endian!
 876         */
 877        sz = max(size, 4);
 878        shift = size < 4 ? 4 - size : 0;
 879
 880        emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
 881                 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
 882
 883        i = 0;
 884        if (shift)
 885                emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
 886                         reg_xfer(0), SHF_SC_R_SHF, shift * 8);
 887        else
 888                for (; i * 4 < size; i++)
 889                        wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
 890
 891        if (i < 2)
 892                wrp_zext(nfp_prog, meta, dst_gpr);
 893
 894        return 0;
 895}
 896
 897static int
 898data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 899                   u8 dst_gpr, swreg lreg, swreg rreg, int size,
 900                   enum cmd_mode mode)
 901{
 902        unsigned int i;
 903        u8 mask, sz;
 904
 905        /* We load the value from the address indicated in rreg + lreg and then
 906         * mask out the data we don't need.  Note: this is little endian!
 907         */
 908        sz = max(size, 4);
 909        mask = size < 4 ? GENMASK(size - 1, 0) : 0;
 910
 911        emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
 912                 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
 913
 914        i = 0;
 915        if (mask)
 916                emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
 917                                  reg_xfer(0), SHF_SC_NONE, 0, true);
 918        else
 919                for (; i * 4 < size; i++)
 920                        wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
 921
 922        if (i < 2)
 923                wrp_zext(nfp_prog, meta, dst_gpr);
 924
 925        return 0;
 926}
 927
 928static int
 929data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 930                          u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
 931{
 932        return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
 933                                  offset, size, CMD_MODE_32b);
 934}
 935
 936static int
 937data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 938                          u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
 939{
 940        swreg rega, regb;
 941
 942        addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
 943
 944        return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb,
 945                                  size, CMD_MODE_40b_BA);
 946}
 947
 948static int
 949construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 950                      u16 offset, u16 src, u8 size)
 951{
 952        swreg tmp_reg;
 953
 954        /* Calculate the true offset (src_reg + imm) */
 955        tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
 956        emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
 957
 958        /* Check packet length (size guaranteed to fit b/c it's u8) */
 959        emit_alu(nfp_prog, imm_a(nfp_prog),
 960                 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
 961        emit_alu(nfp_prog, reg_none(),
 962                 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
 963        emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
 964
 965        /* Load data */
 966        return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size);
 967}
 968
 969static int
 970construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 971                  u16 offset, u8 size)
 972{
 973        swreg tmp_reg;
 974
 975        /* Check packet length */
 976        tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
 977        emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
 978        emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
 979
 980        /* Load data */
 981        tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
 982        return data_ld(nfp_prog, meta, tmp_reg, 0, size);
 983}
 984
 985static int
 986data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
 987                    u8 src_gpr, u8 size)
 988{
 989        unsigned int i;
 990
 991        for (i = 0; i * 4 < size; i++)
 992                wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
 993
 994        emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 995                 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
 996
 997        return 0;
 998}
 999
1000static int
1001data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
1002                   u64 imm, u8 size)
1003{
1004        wrp_immed(nfp_prog, reg_xfer(0), imm);
1005        if (size == 8)
1006                wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
1007
1008        emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
1009                 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
1010
1011        return 0;
1012}
1013
1014typedef int
1015(*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1016             unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1017             bool needs_inc);
1018
1019static int
1020wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1021              unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1022              bool needs_inc)
1023{
1024        bool should_inc = needs_inc && new_gpr && !last;
1025        u32 idx, src_byte;
1026        enum shf_sc sc;
1027        swreg reg;
1028        int shf;
1029        u8 mask;
1030
1031        if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1032                return -EOPNOTSUPP;
1033
1034        idx = off / 4;
1035
1036        /* Move the entire word */
1037        if (size == 4) {
1038                wrp_mov(nfp_prog, reg_both(dst),
1039                        should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1040                return 0;
1041        }
1042
1043        if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1044                return -EOPNOTSUPP;
1045
1046        src_byte = off % 4;
1047
1048        mask = (1 << size) - 1;
1049        mask <<= dst_byte;
1050
1051        if (WARN_ON_ONCE(mask > 0xf))
1052                return -EOPNOTSUPP;
1053
1054        shf = abs(src_byte - dst_byte) * 8;
1055        if (src_byte == dst_byte) {
1056                sc = SHF_SC_NONE;
1057        } else if (src_byte < dst_byte) {
1058                shf = 32 - shf;
1059                sc = SHF_SC_L_SHF;
1060        } else {
1061                sc = SHF_SC_R_SHF;
1062        }
1063
1064        /* ld_field can address fewer indexes, if offset too large do RMW.
1065         * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1066         */
1067        if (idx <= RE_REG_LM_IDX_MAX) {
1068                reg = reg_lm(lm3 ? 3 : 0, idx);
1069        } else {
1070                reg = imm_a(nfp_prog);
1071                /* If it's not the first part of the load and we start a new GPR
1072                 * that means we are loading a second part of the LMEM word into
1073                 * a new GPR.  IOW we've already looked that LMEM word and
1074                 * therefore it has been loaded into imm_a().
1075                 */
1076                if (first || !new_gpr)
1077                        wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1078        }
1079
1080        emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1081
1082        if (should_inc)
1083                wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1084
1085        return 0;
1086}
1087
1088static int
1089wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1090               unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1091               bool needs_inc)
1092{
1093        bool should_inc = needs_inc && new_gpr && !last;
1094        u32 idx, dst_byte;
1095        enum shf_sc sc;
1096        swreg reg;
1097        int shf;
1098        u8 mask;
1099
1100        if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1101                return -EOPNOTSUPP;
1102
1103        idx = off / 4;
1104
1105        /* Move the entire word */
1106        if (size == 4) {
1107                wrp_mov(nfp_prog,
1108                        should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1109                        reg_b(src));
1110                return 0;
1111        }
1112
1113        if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1114                return -EOPNOTSUPP;
1115
1116        dst_byte = off % 4;
1117
1118        mask = (1 << size) - 1;
1119        mask <<= dst_byte;
1120
1121        if (WARN_ON_ONCE(mask > 0xf))
1122                return -EOPNOTSUPP;
1123
1124        shf = abs(src_byte - dst_byte) * 8;
1125        if (src_byte == dst_byte) {
1126                sc = SHF_SC_NONE;
1127        } else if (src_byte < dst_byte) {
1128                shf = 32 - shf;
1129                sc = SHF_SC_L_SHF;
1130        } else {
1131                sc = SHF_SC_R_SHF;
1132        }
1133
1134        /* ld_field can address fewer indexes, if offset too large do RMW.
1135         * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1136         */
1137        if (idx <= RE_REG_LM_IDX_MAX) {
1138                reg = reg_lm(lm3 ? 3 : 0, idx);
1139        } else {
1140                reg = imm_a(nfp_prog);
1141                /* Only first and last LMEM locations are going to need RMW,
1142                 * the middle location will be overwritten fully.
1143                 */
1144                if (first || last)
1145                        wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1146        }
1147
1148        emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1149
1150        if (new_gpr || last) {
1151                if (idx > RE_REG_LM_IDX_MAX)
1152                        wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1153                if (should_inc)
1154                        wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1155        }
1156
1157        return 0;
1158}
1159
1160static int
1161mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1162             unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1163             bool clr_gpr, lmem_step step)
1164{
1165        s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1166        bool first = true, narrow_ld, last;
1167        bool needs_inc = false;
1168        swreg stack_off_reg;
1169        u8 prev_gpr = 255;
1170        u32 gpr_byte = 0;
1171        bool lm3 = true;
1172        int ret;
1173
1174        if (meta->ptr_not_const ||
1175            meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1176                /* Use of the last encountered ptr_off is OK, they all have
1177                 * the same alignment.  Depend on low bits of value being
1178                 * discarded when written to LMaddr register.
1179                 */
1180                stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1181                                                stack_imm(nfp_prog));
1182
1183                emit_alu(nfp_prog, imm_b(nfp_prog),
1184                         reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1185
1186                needs_inc = true;
1187        } else if (off + size <= 64) {
1188                /* We can reach bottom 64B with LMaddr0 */
1189                lm3 = false;
1190        } else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1191                /* We have to set up a new pointer.  If we know the offset
1192                 * and the entire access falls into a single 32 byte aligned
1193                 * window we won't have to increment the LM pointer.
1194                 * The 32 byte alignment is imporant because offset is ORed in
1195                 * not added when doing *l$indexN[off].
1196                 */
1197                stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1198                                                stack_imm(nfp_prog));
1199                emit_alu(nfp_prog, imm_b(nfp_prog),
1200                         stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1201
1202                off %= 32;
1203        } else {
1204                stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1205                                                stack_imm(nfp_prog));
1206
1207                emit_alu(nfp_prog, imm_b(nfp_prog),
1208                         stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1209
1210                needs_inc = true;
1211        }
1212
1213        narrow_ld = clr_gpr && size < 8;
1214
1215        if (lm3) {
1216                unsigned int nop_cnt;
1217
1218                emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1219                /* For size < 4 one slot will be filled by zeroing of upper,
1220                 * but be careful, that zeroing could be eliminated by zext
1221                 * optimization.
1222                 */
1223                nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
1224                wrp_nops(nfp_prog, nop_cnt);
1225        }
1226
1227        if (narrow_ld)
1228                wrp_zext(nfp_prog, meta, gpr);
1229
1230        while (size) {
1231                u32 slice_end;
1232                u8 slice_size;
1233
1234                slice_size = min(size, 4 - gpr_byte);
1235                slice_end = min(off + slice_size, round_up(off + 1, 4));
1236                slice_size = slice_end - off;
1237
1238                last = slice_size == size;
1239
1240                if (needs_inc)
1241                        off %= 4;
1242
1243                ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1244                           first, gpr != prev_gpr, last, lm3, needs_inc);
1245                if (ret)
1246                        return ret;
1247
1248                prev_gpr = gpr;
1249                first = false;
1250
1251                gpr_byte += slice_size;
1252                if (gpr_byte >= 4) {
1253                        gpr_byte -= 4;
1254                        gpr++;
1255                }
1256
1257                size -= slice_size;
1258                off += slice_size;
1259        }
1260
1261        return 0;
1262}
1263
1264static void
1265wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1266{
1267        swreg tmp_reg;
1268
1269        if (alu_op == ALU_OP_AND) {
1270                if (!imm)
1271                        wrp_immed(nfp_prog, reg_both(dst), 0);
1272                if (!imm || !~imm)
1273                        return;
1274        }
1275        if (alu_op == ALU_OP_OR) {
1276                if (!~imm)
1277                        wrp_immed(nfp_prog, reg_both(dst), ~0U);
1278                if (!imm || !~imm)
1279                        return;
1280        }
1281        if (alu_op == ALU_OP_XOR) {
1282                if (!~imm)
1283                        emit_alu(nfp_prog, reg_both(dst), reg_none(),
1284                                 ALU_OP_NOT, reg_b(dst));
1285                if (!imm || !~imm)
1286                        return;
1287        }
1288
1289        tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1290        emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1291}
1292
1293static int
1294wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1295              enum alu_op alu_op, bool skip)
1296{
1297        const struct bpf_insn *insn = &meta->insn;
1298        u64 imm = insn->imm; /* sign extend */
1299
1300        if (skip) {
1301                meta->flags |= FLAG_INSN_SKIP_NOOP;
1302                return 0;
1303        }
1304
1305        wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1306        wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1307
1308        return 0;
1309}
1310
1311static int
1312wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1313              enum alu_op alu_op)
1314{
1315        u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1316
1317        emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1318        emit_alu(nfp_prog, reg_both(dst + 1),
1319                 reg_a(dst + 1), alu_op, reg_b(src + 1));
1320
1321        return 0;
1322}
1323
1324static int
1325wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1326              enum alu_op alu_op)
1327{
1328        const struct bpf_insn *insn = &meta->insn;
1329        u8 dst = insn->dst_reg * 2;
1330
1331        wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm);
1332        wrp_zext(nfp_prog, meta, dst);
1333
1334        return 0;
1335}
1336
1337static int
1338wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1339              enum alu_op alu_op)
1340{
1341        u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1342
1343        emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1344        wrp_zext(nfp_prog, meta, dst);
1345
1346        return 0;
1347}
1348
1349static void
1350wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1351                 enum br_mask br_mask, u16 off)
1352{
1353        emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1354        emit_br(nfp_prog, br_mask, off, 0);
1355}
1356
1357static int
1358wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1359             enum alu_op alu_op, enum br_mask br_mask)
1360{
1361        const struct bpf_insn *insn = &meta->insn;
1362
1363        wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1364                         insn->src_reg * 2, br_mask, insn->off);
1365        if (is_mbpf_jmp64(meta))
1366                wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1367                                 insn->src_reg * 2 + 1, br_mask, insn->off);
1368
1369        return 0;
1370}
1371
1372static const struct jmp_code_map {
1373        enum br_mask br_mask;
1374        bool swap;
1375} jmp_code_map[] = {
1376        [BPF_JGT >> 4]  = { BR_BLO, true },
1377        [BPF_JGE >> 4]  = { BR_BHS, false },
1378        [BPF_JLT >> 4]  = { BR_BLO, false },
1379        [BPF_JLE >> 4]  = { BR_BHS, true },
1380        [BPF_JSGT >> 4] = { BR_BLT, true },
1381        [BPF_JSGE >> 4] = { BR_BGE, false },
1382        [BPF_JSLT >> 4] = { BR_BLT, false },
1383        [BPF_JSLE >> 4] = { BR_BGE, true },
1384};
1385
1386static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1387{
1388        unsigned int op;
1389
1390        op = BPF_OP(meta->insn.code) >> 4;
1391        /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392        if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1393                      !jmp_code_map[op].br_mask,
1394                      "no code found for jump instruction"))
1395                return NULL;
1396
1397        return &jmp_code_map[op];
1398}
1399
1400static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1401{
1402        const struct bpf_insn *insn = &meta->insn;
1403        u64 imm = insn->imm; /* sign extend */
1404        const struct jmp_code_map *code;
1405        enum alu_op alu_op, carry_op;
1406        u8 reg = insn->dst_reg * 2;
1407        swreg tmp_reg;
1408
1409        code = nfp_jmp_code_get(meta);
1410        if (!code)
1411                return -EINVAL;
1412
1413        alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1414        carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1415
1416        tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1417        if (!code->swap)
1418                emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1419        else
1420                emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1421
1422        if (is_mbpf_jmp64(meta)) {
1423                tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1424                if (!code->swap)
1425                        emit_alu(nfp_prog, reg_none(),
1426                                 reg_a(reg + 1), carry_op, tmp_reg);
1427                else
1428                        emit_alu(nfp_prog, reg_none(),
1429                                 tmp_reg, carry_op, reg_a(reg + 1));
1430        }
1431
1432        emit_br(nfp_prog, code->br_mask, insn->off, 0);
1433
1434        return 0;
1435}
1436
1437static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1438{
1439        const struct bpf_insn *insn = &meta->insn;
1440        const struct jmp_code_map *code;
1441        u8 areg, breg;
1442
1443        code = nfp_jmp_code_get(meta);
1444        if (!code)
1445                return -EINVAL;
1446
1447        areg = insn->dst_reg * 2;
1448        breg = insn->src_reg * 2;
1449
1450        if (code->swap) {
1451                areg ^= breg;
1452                breg ^= areg;
1453                areg ^= breg;
1454        }
1455
1456        emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1457        if (is_mbpf_jmp64(meta))
1458                emit_alu(nfp_prog, reg_none(),
1459                         reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1460        emit_br(nfp_prog, code->br_mask, insn->off, 0);
1461
1462        return 0;
1463}
1464
1465static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1466{
1467        emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1468                      SHF_SC_R_ROT, 8);
1469        emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1470                      SHF_SC_R_ROT, 16);
1471}
1472
1473static void
1474wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1475            swreg rreg, bool gen_high_half)
1476{
1477        emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1478        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1479        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1480        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1481        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1482        emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1483        if (gen_high_half)
1484                emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1485                         reg_none());
1486        else
1487                wrp_immed(nfp_prog, dst_hi, 0);
1488}
1489
1490static void
1491wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1492            swreg rreg)
1493{
1494        emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1495        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1496        emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1497        emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1498}
1499
1500static int
1501wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1502        bool gen_high_half, bool ropnd_from_reg)
1503{
1504        swreg multiplier, multiplicand, dst_hi, dst_lo;
1505        const struct bpf_insn *insn = &meta->insn;
1506        u32 lopnd_max, ropnd_max;
1507        u8 dst_reg;
1508
1509        dst_reg = insn->dst_reg;
1510        multiplicand = reg_a(dst_reg * 2);
1511        dst_hi = reg_both(dst_reg * 2 + 1);
1512        dst_lo = reg_both(dst_reg * 2);
1513        lopnd_max = meta->umax_dst;
1514        if (ropnd_from_reg) {
1515                multiplier = reg_b(insn->src_reg * 2);
1516                ropnd_max = meta->umax_src;
1517        } else {
1518                u32 imm = insn->imm;
1519
1520                multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1521                ropnd_max = imm;
1522        }
1523        if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1524                wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1525                            gen_high_half);
1526        else
1527                wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1528
1529        return 0;
1530}
1531
1532static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1533{
1534        swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1535        struct reciprocal_value_adv rvalue;
1536        u8 pre_shift, exp;
1537        swreg magic;
1538
1539        if (imm > U32_MAX) {
1540                wrp_immed(nfp_prog, dst_both, 0);
1541                return 0;
1542        }
1543
1544        /* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545         * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546         * to handle such case which actually equals to the result of unsigned
1547         * comparison "dst >= imm" which could be calculated using the following
1548         * NFP sequence:
1549         *
1550         *  alu[--, dst, -, imm]
1551         *  immed[imm, 0]
1552         *  alu[dst, imm, +carry, 0]
1553         *
1554         */
1555        if (imm > 1U << 31) {
1556                swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1557
1558                emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1559                wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1560                emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1561                         reg_imm(0));
1562                return 0;
1563        }
1564
1565        rvalue = reciprocal_value_adv(imm, 32);
1566        exp = rvalue.exp;
1567        if (rvalue.is_wide_m && !(imm & 1)) {
1568                pre_shift = fls(imm & -imm) - 1;
1569                rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1570        } else {
1571                pre_shift = 0;
1572        }
1573        magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1574        if (imm == 1U << exp) {
1575                emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1576                         SHF_SC_R_SHF, exp);
1577        } else if (rvalue.is_wide_m) {
1578                wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1579                            magic, true);
1580                emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1581                         imm_b(nfp_prog));
1582                emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1583                         SHF_SC_R_SHF, 1);
1584                emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1585                         imm_b(nfp_prog));
1586                emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1587                         SHF_SC_R_SHF, rvalue.sh - 1);
1588        } else {
1589                if (pre_shift)
1590                        emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1591                                 dst_b, SHF_SC_R_SHF, pre_shift);
1592                wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1593                emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1594                         dst_b, SHF_SC_R_SHF, rvalue.sh);
1595        }
1596
1597        return 0;
1598}
1599
1600static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1601{
1602        swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1603        struct nfp_bpf_cap_adjust_head *adjust_head;
1604        u32 ret_einval, end;
1605
1606        adjust_head = &nfp_prog->bpf->adjust_head;
1607
1608        /* Optimized version - 5 vs 14 cycles */
1609        if (nfp_prog->adjust_head_location != UINT_MAX) {
1610                if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1611                        return -EINVAL;
1612
1613                emit_alu(nfp_prog, pptr_reg(nfp_prog),
1614                         reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1615                emit_alu(nfp_prog, plen_reg(nfp_prog),
1616                         plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1617                emit_alu(nfp_prog, pv_len(nfp_prog),
1618                         pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1619
1620                wrp_immed(nfp_prog, reg_both(0), 0);
1621                wrp_immed(nfp_prog, reg_both(1), 0);
1622
1623                /* TODO: when adjust head is guaranteed to succeed we can
1624                 * also eliminate the following if (r0 == 0) branch.
1625                 */
1626
1627                return 0;
1628        }
1629
1630        ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1631        end = ret_einval + 2;
1632
1633        /* We need to use a temp because offset is just a part of the pkt ptr */
1634        emit_alu(nfp_prog, tmp,
1635                 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1636
1637        /* Validate result will fit within FW datapath constraints */
1638        emit_alu(nfp_prog, reg_none(),
1639                 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1640        emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1641        emit_alu(nfp_prog, reg_none(),
1642                 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1643        emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1644
1645        /* Validate the length is at least ETH_HLEN */
1646        emit_alu(nfp_prog, tmp_len,
1647                 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1648        emit_alu(nfp_prog, reg_none(),
1649                 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1650        emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1651
1652        /* Load the ret code */
1653        wrp_immed(nfp_prog, reg_both(0), 0);
1654        wrp_immed(nfp_prog, reg_both(1), 0);
1655
1656        /* Modify the packet metadata */
1657        emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1658
1659        /* Skip over the -EINVAL ret code (defer 2) */
1660        emit_br(nfp_prog, BR_UNC, end, 2);
1661
1662        emit_alu(nfp_prog, plen_reg(nfp_prog),
1663                 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1664        emit_alu(nfp_prog, pv_len(nfp_prog),
1665                 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1666
1667        /* return -EINVAL target */
1668        if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1669                return -EINVAL;
1670
1671        wrp_immed(nfp_prog, reg_both(0), -22);
1672        wrp_immed(nfp_prog, reg_both(1), ~0);
1673
1674        if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1675                return -EINVAL;
1676
1677        return 0;
1678}
1679
1680static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1681{
1682        u32 ret_einval, end;
1683        swreg plen, delta;
1684
1685        BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1686
1687        plen = imm_a(nfp_prog);
1688        delta = reg_a(2 * 2);
1689
1690        ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1691        end = nfp_prog_current_offset(nfp_prog) + 11;
1692
1693        /* Calculate resulting length */
1694        emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1695        /* delta == 0 is not allowed by the kernel, add must overflow to make
1696         * length smaller.
1697         */
1698        emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1699
1700        /* if (new_len < 14) then -EINVAL */
1701        emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1702        emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1703
1704        emit_alu(nfp_prog, plen_reg(nfp_prog),
1705                 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1706        emit_alu(nfp_prog, pv_len(nfp_prog),
1707                 pv_len(nfp_prog), ALU_OP_ADD, delta);
1708
1709        emit_br(nfp_prog, BR_UNC, end, 2);
1710        wrp_immed(nfp_prog, reg_both(0), 0);
1711        wrp_immed(nfp_prog, reg_both(1), 0);
1712
1713        if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1714                return -EINVAL;
1715
1716        wrp_immed(nfp_prog, reg_both(0), -22);
1717        wrp_immed(nfp_prog, reg_both(1), ~0);
1718
1719        if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1720                return -EINVAL;
1721
1722        return 0;
1723}
1724
1725static int
1726map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1727{
1728        bool load_lm_ptr;
1729        u32 ret_tgt;
1730        s64 lm_off;
1731
1732        /* We only have to reload LM0 if the key is not at start of stack */
1733        lm_off = nfp_prog->stack_frame_depth;
1734        lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1735        load_lm_ptr = meta->arg2.var_off || lm_off;
1736
1737        /* Set LM0 to start of key */
1738        if (load_lm_ptr)
1739                emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1740        if (meta->func_id == BPF_FUNC_map_update_elem)
1741                emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1742
1743        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1744                     2, RELO_BR_HELPER);
1745        ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1746
1747        /* Load map ID into A0 */
1748        wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1749
1750        /* Load the return address into B0 */
1751        wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1752
1753        if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1754                return -EINVAL;
1755
1756        /* Reset the LM0 pointer */
1757        if (!load_lm_ptr)
1758                return 0;
1759
1760        emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1761        wrp_nops(nfp_prog, 3);
1762
1763        return 0;
1764}
1765
1766static int
1767nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768{
1769        __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1770        /* CSR value is read in following immed[gpr, 0] */
1771        emit_immed(nfp_prog, reg_both(0), 0,
1772                   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1773        emit_immed(nfp_prog, reg_both(1), 0,
1774                   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1775        return 0;
1776}
1777
1778static int
1779nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1780{
1781        swreg ptr_type;
1782        u32 ret_tgt;
1783
1784        ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1785
1786        ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1787
1788        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1789                     2, RELO_BR_HELPER);
1790
1791        /* Load ptr type into A1 */
1792        wrp_mov(nfp_prog, reg_a(1), ptr_type);
1793
1794        /* Load the return address into B0 */
1795        wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1796
1797        if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1798                return -EINVAL;
1799
1800        return 0;
1801}
1802
1803static int
1804nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1805{
1806        u32 jmp_tgt;
1807
1808        jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1809
1810        /* Make sure the queue id fits into FW field */
1811        emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1812                 ALU_OP_AND_NOT_B, reg_imm(0xff));
1813        emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1814
1815        /* Set the 'queue selected' bit and the queue value */
1816        emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1817                 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1818                 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1819        emit_ld_field(nfp_prog,
1820                      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1821                      SHF_SC_NONE, 0);
1822        /* Delay slots end here, we will jump over next instruction if queue
1823         * value fits into the field.
1824         */
1825        emit_ld_field(nfp_prog,
1826                      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1827                      SHF_SC_NONE, 0);
1828
1829        if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1830                return -EINVAL;
1831
1832        return 0;
1833}
1834
1835/* --- Callbacks --- */
1836static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1837{
1838        const struct bpf_insn *insn = &meta->insn;
1839        u8 dst = insn->dst_reg * 2;
1840        u8 src = insn->src_reg * 2;
1841
1842        if (insn->src_reg == BPF_REG_10) {
1843                swreg stack_depth_reg;
1844
1845                stack_depth_reg = ur_load_imm_any(nfp_prog,
1846                                                  nfp_prog->stack_frame_depth,
1847                                                  stack_imm(nfp_prog));
1848                emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1849                         ALU_OP_ADD, stack_depth_reg);
1850                wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1851        } else {
1852                wrp_reg_mov(nfp_prog, dst, src);
1853                wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1854        }
1855
1856        return 0;
1857}
1858
1859static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1860{
1861        u64 imm = meta->insn.imm; /* sign extend */
1862
1863        wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1864        wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1865
1866        return 0;
1867}
1868
1869static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1870{
1871        return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1872}
1873
1874static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1875{
1876        return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1877}
1878
1879static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1880{
1881        return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1882}
1883
1884static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1885{
1886        return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1887}
1888
1889static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1890{
1891        return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1892}
1893
1894static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1895{
1896        return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1897}
1898
1899static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1900{
1901        const struct bpf_insn *insn = &meta->insn;
1902
1903        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1904                 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1905                 reg_b(insn->src_reg * 2));
1906        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1907                 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1908                 reg_b(insn->src_reg * 2 + 1));
1909
1910        return 0;
1911}
1912
1913static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1914{
1915        const struct bpf_insn *insn = &meta->insn;
1916        u64 imm = insn->imm; /* sign extend */
1917
1918        wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1919        wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1920
1921        return 0;
1922}
1923
1924static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1925{
1926        const struct bpf_insn *insn = &meta->insn;
1927
1928        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1929                 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1930                 reg_b(insn->src_reg * 2));
1931        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1932                 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1933                 reg_b(insn->src_reg * 2 + 1));
1934
1935        return 0;
1936}
1937
1938static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939{
1940        const struct bpf_insn *insn = &meta->insn;
1941        u64 imm = insn->imm; /* sign extend */
1942
1943        wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1944        wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1945
1946        return 0;
1947}
1948
1949static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1950{
1951        return wrp_mul(nfp_prog, meta, true, true);
1952}
1953
1954static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1955{
1956        return wrp_mul(nfp_prog, meta, true, false);
1957}
1958
1959static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1960{
1961        const struct bpf_insn *insn = &meta->insn;
1962
1963        return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1964}
1965
1966static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1967{
1968        /* NOTE: verifier hook has rejected cases for which verifier doesn't
1969         * know whether the source operand is constant or not.
1970         */
1971        return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1972}
1973
1974static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1975{
1976        const struct bpf_insn *insn = &meta->insn;
1977
1978        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1979                 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1980        emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1981                 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1982
1983        return 0;
1984}
1985
1986/* Pseudo code:
1987 *   if shift_amt >= 32
1988 *     dst_high = dst_low << shift_amt[4:0]
1989 *     dst_low = 0;
1990 *   else
1991 *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992 *     dst_low = dst_low << shift_amt
1993 *
1994 * The indirect shift will use the same logic at runtime.
1995 */
1996static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1997{
1998        if (!shift_amt)
1999                return 0;
2000
2001        if (shift_amt < 32) {
2002                emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
2003                         SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
2004                         32 - shift_amt);
2005                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2006                         reg_b(dst), SHF_SC_L_SHF, shift_amt);
2007        } else if (shift_amt == 32) {
2008                wrp_reg_mov(nfp_prog, dst + 1, dst);
2009                wrp_immed(nfp_prog, reg_both(dst), 0);
2010        } else if (shift_amt > 32) {
2011                emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2012                         reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
2013                wrp_immed(nfp_prog, reg_both(dst), 0);
2014        }
2015
2016        return 0;
2017}
2018
2019static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2020{
2021        const struct bpf_insn *insn = &meta->insn;
2022        u8 dst = insn->dst_reg * 2;
2023
2024        return __shl_imm64(nfp_prog, dst, insn->imm);
2025}
2026
2027static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2028{
2029        emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2030                 reg_b(src));
2031        emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2032        emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2033                       reg_b(dst), SHF_SC_R_DSHF);
2034}
2035
2036/* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2038{
2039        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2040        emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2041                       reg_b(dst), SHF_SC_L_SHF);
2042}
2043
2044static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2045{
2046        shl_reg64_lt32_high(nfp_prog, dst, src);
2047        shl_reg64_lt32_low(nfp_prog, dst, src);
2048}
2049
2050static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2051{
2052        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2053        emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2054                       reg_b(dst), SHF_SC_L_SHF);
2055        wrp_immed(nfp_prog, reg_both(dst), 0);
2056}
2057
2058static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2059{
2060        const struct bpf_insn *insn = &meta->insn;
2061        u64 umin, umax;
2062        u8 dst, src;
2063
2064        dst = insn->dst_reg * 2;
2065        umin = meta->umin_src;
2066        umax = meta->umax_src;
2067        if (umin == umax)
2068                return __shl_imm64(nfp_prog, dst, umin);
2069
2070        src = insn->src_reg * 2;
2071        if (umax < 32) {
2072                shl_reg64_lt32(nfp_prog, dst, src);
2073        } else if (umin >= 32) {
2074                shl_reg64_ge32(nfp_prog, dst, src);
2075        } else {
2076                /* Generate different instruction sequences depending on runtime
2077                 * value of shift amount.
2078                 */
2079                u16 label_ge32, label_end;
2080
2081                label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2082                emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2083
2084                shl_reg64_lt32_high(nfp_prog, dst, src);
2085                label_end = nfp_prog_current_offset(nfp_prog) + 6;
2086                emit_br(nfp_prog, BR_UNC, label_end, 2);
2087                /* shl_reg64_lt32_low packed in delay slot. */
2088                shl_reg64_lt32_low(nfp_prog, dst, src);
2089
2090                if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2091                        return -EINVAL;
2092                shl_reg64_ge32(nfp_prog, dst, src);
2093
2094                if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2095                        return -EINVAL;
2096        }
2097
2098        return 0;
2099}
2100
2101/* Pseudo code:
2102 *   if shift_amt >= 32
2103 *     dst_high = 0;
2104 *     dst_low = dst_high >> shift_amt[4:0]
2105 *   else
2106 *     dst_high = dst_high >> shift_amt
2107 *     dst_low = (dst_high, dst_low) >> shift_amt
2108 *
2109 * The indirect shift will use the same logic at runtime.
2110 */
2111static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2112{
2113        if (!shift_amt)
2114                return 0;
2115
2116        if (shift_amt < 32) {
2117                emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2118                         reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2119                emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2120                         reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2121        } else if (shift_amt == 32) {
2122                wrp_reg_mov(nfp_prog, dst, dst + 1);
2123                wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2124        } else if (shift_amt > 32) {
2125                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2126                         reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2127                wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2128        }
2129
2130        return 0;
2131}
2132
2133static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2134{
2135        const struct bpf_insn *insn = &meta->insn;
2136        u8 dst = insn->dst_reg * 2;
2137
2138        return __shr_imm64(nfp_prog, dst, insn->imm);
2139}
2140
2141/* NOTE: for indirect right shift, LOW part should be calculated first. */
2142static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2143{
2144        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2145        emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2146                       reg_b(dst + 1), SHF_SC_R_SHF);
2147}
2148
2149static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2150{
2151        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2152        emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2153                       reg_b(dst), SHF_SC_R_DSHF);
2154}
2155
2156static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2157{
2158        shr_reg64_lt32_low(nfp_prog, dst, src);
2159        shr_reg64_lt32_high(nfp_prog, dst, src);
2160}
2161
2162static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2163{
2164        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2165        emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2166                       reg_b(dst + 1), SHF_SC_R_SHF);
2167        wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2168}
2169
2170static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2171{
2172        const struct bpf_insn *insn = &meta->insn;
2173        u64 umin, umax;
2174        u8 dst, src;
2175
2176        dst = insn->dst_reg * 2;
2177        umin = meta->umin_src;
2178        umax = meta->umax_src;
2179        if (umin == umax)
2180                return __shr_imm64(nfp_prog, dst, umin);
2181
2182        src = insn->src_reg * 2;
2183        if (umax < 32) {
2184                shr_reg64_lt32(nfp_prog, dst, src);
2185        } else if (umin >= 32) {
2186                shr_reg64_ge32(nfp_prog, dst, src);
2187        } else {
2188                /* Generate different instruction sequences depending on runtime
2189                 * value of shift amount.
2190                 */
2191                u16 label_ge32, label_end;
2192
2193                label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2194                emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2195                shr_reg64_lt32_low(nfp_prog, dst, src);
2196                label_end = nfp_prog_current_offset(nfp_prog) + 6;
2197                emit_br(nfp_prog, BR_UNC, label_end, 2);
2198                /* shr_reg64_lt32_high packed in delay slot. */
2199                shr_reg64_lt32_high(nfp_prog, dst, src);
2200
2201                if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2202                        return -EINVAL;
2203                shr_reg64_ge32(nfp_prog, dst, src);
2204
2205                if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2206                        return -EINVAL;
2207        }
2208
2209        return 0;
2210}
2211
2212/* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213 * told through PREV_ALU result.
2214 */
2215static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2216{
2217        if (!shift_amt)
2218                return 0;
2219
2220        if (shift_amt < 32) {
2221                emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2222                         reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2223                /* Set signedness bit. */
2224                emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2225                         reg_imm(0));
2226                emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2227                         reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2228        } else if (shift_amt == 32) {
2229                /* NOTE: this also helps setting signedness bit. */
2230                wrp_reg_mov(nfp_prog, dst, dst + 1);
2231                emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232                         reg_b(dst + 1), SHF_SC_R_SHF, 31);
2233        } else if (shift_amt > 32) {
2234                emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2235                         reg_imm(0));
2236                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2237                         reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2238                emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2239                         reg_b(dst + 1), SHF_SC_R_SHF, 31);
2240        }
2241
2242        return 0;
2243}
2244
2245static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2246{
2247        const struct bpf_insn *insn = &meta->insn;
2248        u8 dst = insn->dst_reg * 2;
2249
2250        return __ashr_imm64(nfp_prog, dst, insn->imm);
2251}
2252
2253static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2254{
2255        /* NOTE: the first insn will set both indirect shift amount (source A)
2256         * and signedness bit (MSB of result).
2257         */
2258        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2259        emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2260                       reg_b(dst + 1), SHF_SC_R_SHF);
2261}
2262
2263static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2264{
2265        /* NOTE: it is the same as logic shift because we don't need to shift in
2266         * signedness bit when the shift amount is less than 32.
2267         */
2268        return shr_reg64_lt32_low(nfp_prog, dst, src);
2269}
2270
2271static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2272{
2273        ashr_reg64_lt32_low(nfp_prog, dst, src);
2274        ashr_reg64_lt32_high(nfp_prog, dst, src);
2275}
2276
2277static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2278{
2279        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2280        emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2281                       reg_b(dst + 1), SHF_SC_R_SHF);
2282        emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2283                 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2284}
2285
2286/* Like ashr_imm64, but need to use indirect shift. */
2287static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2288{
2289        const struct bpf_insn *insn = &meta->insn;
2290        u64 umin, umax;
2291        u8 dst, src;
2292
2293        dst = insn->dst_reg * 2;
2294        umin = meta->umin_src;
2295        umax = meta->umax_src;
2296        if (umin == umax)
2297                return __ashr_imm64(nfp_prog, dst, umin);
2298
2299        src = insn->src_reg * 2;
2300        if (umax < 32) {
2301                ashr_reg64_lt32(nfp_prog, dst, src);
2302        } else if (umin >= 32) {
2303                ashr_reg64_ge32(nfp_prog, dst, src);
2304        } else {
2305                u16 label_ge32, label_end;
2306
2307                label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2308                emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2309                ashr_reg64_lt32_low(nfp_prog, dst, src);
2310                label_end = nfp_prog_current_offset(nfp_prog) + 6;
2311                emit_br(nfp_prog, BR_UNC, label_end, 2);
2312                /* ashr_reg64_lt32_high packed in delay slot. */
2313                ashr_reg64_lt32_high(nfp_prog, dst, src);
2314
2315                if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2316                        return -EINVAL;
2317                ashr_reg64_ge32(nfp_prog, dst, src);
2318
2319                if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2320                        return -EINVAL;
2321        }
2322
2323        return 0;
2324}
2325
2326static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2327{
2328        const struct bpf_insn *insn = &meta->insn;
2329
2330        wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2331        wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2332
2333        return 0;
2334}
2335
2336static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2337{
2338        const struct bpf_insn *insn = &meta->insn;
2339
2340        wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2341        wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2342
2343        return 0;
2344}
2345
2346static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2347{
2348        return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2349}
2350
2351static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2352{
2353        return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2354}
2355
2356static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2357{
2358        return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2359}
2360
2361static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2362{
2363        return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2364}
2365
2366static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2367{
2368        return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2369}
2370
2371static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2372{
2373        return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2374}
2375
2376static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2377{
2378        return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2379}
2380
2381static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2382{
2383        return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2384}
2385
2386static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2387{
2388        return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2389}
2390
2391static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2392{
2393        return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2394}
2395
2396static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2397{
2398        return wrp_mul(nfp_prog, meta, false, true);
2399}
2400
2401static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2402{
2403        return wrp_mul(nfp_prog, meta, false, false);
2404}
2405
2406static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2407{
2408        return div_reg64(nfp_prog, meta);
2409}
2410
2411static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2412{
2413        return div_imm64(nfp_prog, meta);
2414}
2415
2416static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2417{
2418        u8 dst = meta->insn.dst_reg * 2;
2419
2420        emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2421        wrp_zext(nfp_prog, meta, dst);
2422
2423        return 0;
2424}
2425
2426static int
2427__ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2428           u8 shift_amt)
2429{
2430        if (shift_amt) {
2431                /* Set signedness bit (MSB of result). */
2432                emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2433                         reg_imm(0));
2434                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2435                         reg_b(dst), SHF_SC_R_SHF, shift_amt);
2436        }
2437        wrp_zext(nfp_prog, meta, dst);
2438
2439        return 0;
2440}
2441
2442static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2443{
2444        const struct bpf_insn *insn = &meta->insn;
2445        u64 umin, umax;
2446        u8 dst, src;
2447
2448        dst = insn->dst_reg * 2;
2449        umin = meta->umin_src;
2450        umax = meta->umax_src;
2451        if (umin == umax)
2452                return __ashr_imm(nfp_prog, meta, dst, umin);
2453
2454        src = insn->src_reg * 2;
2455        /* NOTE: the first insn will set both indirect shift amount (source A)
2456         * and signedness bit (MSB of result).
2457         */
2458        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2459        emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2460                       reg_b(dst), SHF_SC_R_SHF);
2461        wrp_zext(nfp_prog, meta, dst);
2462
2463        return 0;
2464}
2465
2466static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2467{
2468        const struct bpf_insn *insn = &meta->insn;
2469        u8 dst = insn->dst_reg * 2;
2470
2471        return __ashr_imm(nfp_prog, meta, dst, insn->imm);
2472}
2473
2474static int
2475__shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2476          u8 shift_amt)
2477{
2478        if (shift_amt)
2479                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2480                         reg_b(dst), SHF_SC_R_SHF, shift_amt);
2481        wrp_zext(nfp_prog, meta, dst);
2482        return 0;
2483}
2484
2485static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2486{
2487        const struct bpf_insn *insn = &meta->insn;
2488        u8 dst = insn->dst_reg * 2;
2489
2490        return __shr_imm(nfp_prog, meta, dst, insn->imm);
2491}
2492
2493static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2494{
2495        const struct bpf_insn *insn = &meta->insn;
2496        u64 umin, umax;
2497        u8 dst, src;
2498
2499        dst = insn->dst_reg * 2;
2500        umin = meta->umin_src;
2501        umax = meta->umax_src;
2502        if (umin == umax)
2503                return __shr_imm(nfp_prog, meta, dst, umin);
2504
2505        src = insn->src_reg * 2;
2506        emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2507        emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2508                       reg_b(dst), SHF_SC_R_SHF);
2509        wrp_zext(nfp_prog, meta, dst);
2510        return 0;
2511}
2512
2513static int
2514__shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2515          u8 shift_amt)
2516{
2517        if (shift_amt)
2518                emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2519                         reg_b(dst), SHF_SC_L_SHF, shift_amt);
2520        wrp_zext(nfp_prog, meta, dst);
2521        return 0;
2522}
2523
2524static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2525{
2526        const struct bpf_insn *insn = &meta->insn;
2527        u8 dst = insn->dst_reg * 2;
2528
2529        return __shl_imm(nfp_prog, meta, dst, insn->imm);
2530}
2531
2532static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2533{
2534        const struct bpf_insn *insn = &meta->insn;
2535        u64 umin, umax;
2536        u8 dst, src;
2537
2538        dst = insn->dst_reg * 2;
2539        umin = meta->umin_src;
2540        umax = meta->umax_src;
2541        if (umin == umax)
2542                return __shl_imm(nfp_prog, meta, dst, umin);
2543
2544        src = insn->src_reg * 2;
2545        shl_reg64_lt32_low(nfp_prog, dst, src);
2546        wrp_zext(nfp_prog, meta, dst);
2547        return 0;
2548}
2549
2550static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2551{
2552        const struct bpf_insn *insn = &meta->insn;
2553        u8 gpr = insn->dst_reg * 2;
2554
2555        switch (insn->imm) {
2556        case 16:
2557                emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2558                              SHF_SC_R_ROT, 8);
2559                emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2560                              SHF_SC_R_SHF, 16);
2561
2562                wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2563                break;
2564        case 32:
2565                wrp_end32(nfp_prog, reg_a(gpr), gpr);
2566                wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2567                break;
2568        case 64:
2569                wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2570
2571                wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2572                wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2573                break;
2574        }
2575
2576        return 0;
2577}
2578
2579static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2580{
2581        struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2582        u32 imm_lo, imm_hi;
2583        u8 dst;
2584
2585        dst = prev->insn.dst_reg * 2;
2586        imm_lo = prev->insn.imm;
2587        imm_hi = meta->insn.imm;
2588
2589        wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2590
2591        /* mov is always 1 insn, load imm may be two, so try to use mov */
2592        if (imm_hi == imm_lo)
2593                wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2594        else
2595                wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2596
2597        return 0;
2598}
2599
2600static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2601{
2602        meta->double_cb = imm_ld8_part2;
2603        return 0;
2604}
2605
2606static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2607{
2608        return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1);
2609}
2610
2611static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2612{
2613        return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2);
2614}
2615
2616static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2617{
2618        return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4);
2619}
2620
2621static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2622{
2623        return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2624                                     meta->insn.src_reg * 2, 1);
2625}
2626
2627static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2628{
2629        return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2630                                     meta->insn.src_reg * 2, 2);
2631}
2632
2633static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2634{
2635        return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2636                                     meta->insn.src_reg * 2, 4);
2637}
2638
2639static int
2640mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2641              unsigned int size, unsigned int ptr_off)
2642{
2643        return mem_op_stack(nfp_prog, meta, size, ptr_off,
2644                            meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2645                            true, wrp_lmem_load);
2646}
2647
2648static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2649                       u8 size)
2650{
2651        swreg dst = reg_both(meta->insn.dst_reg * 2);
2652
2653        switch (meta->insn.off) {
2654        case offsetof(struct __sk_buff, len):
2655                if (size != sizeof_field(struct __sk_buff, len))
2656                        return -EOPNOTSUPP;
2657                wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2658                break;
2659        case offsetof(struct __sk_buff, data):
2660                if (size != sizeof_field(struct __sk_buff, data))
2661                        return -EOPNOTSUPP;
2662                wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2663                break;
2664        case offsetof(struct __sk_buff, data_end):
2665                if (size != sizeof_field(struct __sk_buff, data_end))
2666                        return -EOPNOTSUPP;
2667                emit_alu(nfp_prog, dst,
2668                         plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2669                break;
2670        default:
2671                return -EOPNOTSUPP;
2672        }
2673
2674        wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2675
2676        return 0;
2677}
2678
2679static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2680                       u8 size)
2681{
2682        swreg dst = reg_both(meta->insn.dst_reg * 2);
2683
2684        switch (meta->insn.off) {
2685        case offsetof(struct xdp_md, data):
2686                if (size != sizeof_field(struct xdp_md, data))
2687                        return -EOPNOTSUPP;
2688                wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2689                break;
2690        case offsetof(struct xdp_md, data_end):
2691                if (size != sizeof_field(struct xdp_md, data_end))
2692                        return -EOPNOTSUPP;
2693                emit_alu(nfp_prog, dst,
2694                         plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2695                break;
2696        default:
2697                return -EOPNOTSUPP;
2698        }
2699
2700        wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2701
2702        return 0;
2703}
2704
2705static int
2706mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2707             unsigned int size)
2708{
2709        swreg tmp_reg;
2710
2711        tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2712
2713        return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2,
2714                                         tmp_reg, meta->insn.dst_reg * 2, size);
2715}
2716
2717static int
2718mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2719             unsigned int size)
2720{
2721        swreg tmp_reg;
2722
2723        tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2724
2725        return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2,
2726                                         tmp_reg, meta->insn.dst_reg * 2, size);
2727}
2728
2729static void
2730mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2731                           struct nfp_insn_meta *meta)
2732{
2733        s16 range_start = meta->pkt_cache.range_start;
2734        s16 range_end = meta->pkt_cache.range_end;
2735        swreg src_base, off;
2736        u8 xfer_num, len;
2737        bool indir;
2738
2739        off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2740        src_base = reg_a(meta->insn.src_reg * 2);
2741        len = range_end - range_start;
2742        xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2743
2744        indir = len > 8 * REG_WIDTH;
2745        /* Setup PREV_ALU for indirect mode. */
2746        if (indir)
2747                wrp_immed(nfp_prog, reg_none(),
2748                          CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2749
2750        /* Cache memory into transfer-in registers. */
2751        emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2752                     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2753}
2754
2755static int
2756mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2757                                     struct nfp_insn_meta *meta,
2758                                     unsigned int size)
2759{
2760        s16 range_start = meta->pkt_cache.range_start;
2761        s16 insn_off = meta->insn.off - range_start;
2762        swreg dst_lo, dst_hi, src_lo, src_mid;
2763        u8 dst_gpr = meta->insn.dst_reg * 2;
2764        u8 len_lo = size, len_mid = 0;
2765        u8 idx = insn_off / REG_WIDTH;
2766        u8 off = insn_off % REG_WIDTH;
2767
2768        dst_hi = reg_both(dst_gpr + 1);
2769        dst_lo = reg_both(dst_gpr);
2770        src_lo = reg_xfer(idx);
2771
2772        /* The read length could involve as many as three registers. */
2773        if (size > REG_WIDTH - off) {
2774                /* Calculate the part in the second register. */
2775                len_lo = REG_WIDTH - off;
2776                len_mid = size - len_lo;
2777
2778                /* Calculate the part in the third register. */
2779                if (size > 2 * REG_WIDTH - off)
2780                        len_mid = REG_WIDTH;
2781        }
2782
2783        wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2784
2785        if (!len_mid) {
2786                wrp_zext(nfp_prog, meta, dst_gpr);
2787                return 0;
2788        }
2789
2790        src_mid = reg_xfer(idx + 1);
2791
2792        if (size <= REG_WIDTH) {
2793                wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2794                wrp_zext(nfp_prog, meta, dst_gpr);
2795        } else {
2796                swreg src_hi = reg_xfer(idx + 2);
2797
2798                wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2799                                   REG_WIDTH - len_lo, len_lo);
2800                wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2801                                REG_WIDTH - len_lo);
2802                wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2803                                   len_lo);
2804        }
2805
2806        return 0;
2807}
2808
2809static int
2810mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2811                                   struct nfp_insn_meta *meta,
2812                                   unsigned int size)
2813{
2814        swreg dst_lo, dst_hi, src_lo;
2815        u8 dst_gpr, idx;
2816
2817        idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2818        dst_gpr = meta->insn.dst_reg * 2;
2819        dst_hi = reg_both(dst_gpr + 1);
2820        dst_lo = reg_both(dst_gpr);
2821        src_lo = reg_xfer(idx);
2822
2823        if (size < REG_WIDTH) {
2824                wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2825                wrp_zext(nfp_prog, meta, dst_gpr);
2826        } else if (size == REG_WIDTH) {
2827                wrp_mov(nfp_prog, dst_lo, src_lo);
2828                wrp_zext(nfp_prog, meta, dst_gpr);
2829        } else {
2830                swreg src_hi = reg_xfer(idx + 1);
2831
2832                wrp_mov(nfp_prog, dst_lo, src_lo);
2833                wrp_mov(nfp_prog, dst_hi, src_hi);
2834        }
2835
2836        return 0;
2837}
2838
2839static int
2840mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2841                           struct nfp_insn_meta *meta, unsigned int size)
2842{
2843        u8 off = meta->insn.off - meta->pkt_cache.range_start;
2844
2845        if (IS_ALIGNED(off, REG_WIDTH))
2846                return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2847
2848        return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2849}
2850
2851static int
2852mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2853        unsigned int size)
2854{
2855        if (meta->ldst_gather_len)
2856                return nfp_cpp_memcpy(nfp_prog, meta);
2857
2858        if (meta->ptr.type == PTR_TO_CTX) {
2859                if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2860                        return mem_ldx_xdp(nfp_prog, meta, size);
2861                else
2862                        return mem_ldx_skb(nfp_prog, meta, size);
2863        }
2864
2865        if (meta->ptr.type == PTR_TO_PACKET) {
2866                if (meta->pkt_cache.range_end) {
2867                        if (meta->pkt_cache.do_init)
2868                                mem_ldx_data_init_pktcache(nfp_prog, meta);
2869
2870                        return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2871                } else {
2872                        return mem_ldx_data(nfp_prog, meta, size);
2873                }
2874        }
2875
2876        if (meta->ptr.type == PTR_TO_STACK)
2877                return mem_ldx_stack(nfp_prog, meta, size,
2878                                     meta->ptr.off + meta->ptr.var_off.value);
2879
2880        if (meta->ptr.type == PTR_TO_MAP_VALUE)
2881                return mem_ldx_emem(nfp_prog, meta, size);
2882
2883        return -EOPNOTSUPP;
2884}
2885
2886static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2887{
2888        return mem_ldx(nfp_prog, meta, 1);
2889}
2890
2891static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2892{
2893        return mem_ldx(nfp_prog, meta, 2);
2894}
2895
2896static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2897{
2898        return mem_ldx(nfp_prog, meta, 4);
2899}
2900
2901static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2902{
2903        return mem_ldx(nfp_prog, meta, 8);
2904}
2905
2906static int
2907mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2908            unsigned int size)
2909{
2910        u64 imm = meta->insn.imm; /* sign extend */
2911        swreg off_reg;
2912
2913        off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2914
2915        return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2916                                  imm, size);
2917}
2918
2919static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2920                  unsigned int size)
2921{
2922        if (meta->ptr.type == PTR_TO_PACKET)
2923                return mem_st_data(nfp_prog, meta, size);
2924
2925        return -EOPNOTSUPP;
2926}
2927
2928static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2929{
2930        return mem_st(nfp_prog, meta, 1);
2931}
2932
2933static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2934{
2935        return mem_st(nfp_prog, meta, 2);
2936}
2937
2938static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2939{
2940        return mem_st(nfp_prog, meta, 4);
2941}
2942
2943static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2944{
2945        return mem_st(nfp_prog, meta, 8);
2946}
2947
2948static int
2949mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2950             unsigned int size)
2951{
2952        swreg off_reg;
2953
2954        off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2955
2956        return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2957                                   meta->insn.src_reg * 2, size);
2958}
2959
2960static int
2961mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2962              unsigned int size, unsigned int ptr_off)
2963{
2964        return mem_op_stack(nfp_prog, meta, size, ptr_off,
2965                            meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2966                            false, wrp_lmem_store);
2967}
2968
2969static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2970{
2971        switch (meta->insn.off) {
2972        case offsetof(struct xdp_md, rx_queue_index):
2973                return nfp_queue_select(nfp_prog, meta);
2974        }
2975
2976        WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2977        return -EOPNOTSUPP;
2978}
2979
2980static int
2981mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2982        unsigned int size)
2983{
2984        if (meta->ptr.type == PTR_TO_PACKET)
2985                return mem_stx_data(nfp_prog, meta, size);
2986
2987        if (meta->ptr.type == PTR_TO_STACK)
2988                return mem_stx_stack(nfp_prog, meta, size,
2989                                     meta->ptr.off + meta->ptr.var_off.value);
2990
2991        return -EOPNOTSUPP;
2992}
2993
2994static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2995{
2996        return mem_stx(nfp_prog, meta, 1);
2997}
2998
2999static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3000{
3001        return mem_stx(nfp_prog, meta, 2);
3002}
3003
3004static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3005{
3006        if (meta->ptr.type == PTR_TO_CTX)
3007                if (nfp_prog->type == BPF_PROG_TYPE_XDP)
3008                        return mem_stx_xdp(nfp_prog, meta);
3009        return mem_stx(nfp_prog, meta, 4);
3010}
3011
3012static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3013{
3014        return mem_stx(nfp_prog, meta, 8);
3015}
3016
3017static int
3018mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
3019{
3020        u8 dst_gpr = meta->insn.dst_reg * 2;
3021        u8 src_gpr = meta->insn.src_reg * 2;
3022        unsigned int full_add, out;
3023        swreg addra, addrb, off;
3024
3025        off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
3026
3027        /* We can fit 16 bits into command immediate, if we know the immediate
3028         * is guaranteed to either always or never fit into 16 bit we only
3029         * generate code to handle that particular case, otherwise generate
3030         * code for both.
3031         */
3032        out = nfp_prog_current_offset(nfp_prog);
3033        full_add = nfp_prog_current_offset(nfp_prog);
3034
3035        if (meta->insn.off) {
3036                out += 2;
3037                full_add += 2;
3038        }
3039        if (meta->xadd_maybe_16bit) {
3040                out += 3;
3041                full_add += 3;
3042        }
3043        if (meta->xadd_over_16bit)
3044                out += 2 + is64;
3045        if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3046                out += 5;
3047                full_add += 5;
3048        }
3049
3050        /* Generate the branch for choosing add_imm vs add */
3051        if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3052                swreg max_imm = imm_a(nfp_prog);
3053
3054                wrp_immed(nfp_prog, max_imm, 0xffff);
3055                emit_alu(nfp_prog, reg_none(),
3056                         max_imm, ALU_OP_SUB, reg_b(src_gpr));
3057                emit_alu(nfp_prog, reg_none(),
3058                         reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3059                emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3060                /* defer for add */
3061        }
3062
3063        /* If insn has an offset add to the address */
3064        if (!meta->insn.off) {
3065                addra = reg_a(dst_gpr);
3066                addrb = reg_b(dst_gpr + 1);
3067        } else {
3068                emit_alu(nfp_prog, imma_a(nfp_prog),
3069                         reg_a(dst_gpr), ALU_OP_ADD, off);
3070                emit_alu(nfp_prog, imma_b(nfp_prog),
3071                         reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3072                addra = imma_a(nfp_prog);
3073                addrb = imma_b(nfp_prog);
3074        }
3075
3076        /* Generate the add_imm if 16 bits are possible */
3077        if (meta->xadd_maybe_16bit) {
3078                swreg prev_alu = imm_a(nfp_prog);
3079
3080                wrp_immed(nfp_prog, prev_alu,
3081                          FIELD_PREP(CMD_OVE_DATA, 2) |
3082                          CMD_OVE_LEN |
3083                          FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3084                wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3085                emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3086                               addra, addrb, 0, CMD_CTX_NO_SWAP);
3087
3088                if (meta->xadd_over_16bit)
3089                        emit_br(nfp_prog, BR_UNC, out, 0);
3090        }
3091
3092        if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3093                return -EINVAL;
3094
3095        /* Generate the add if 16 bits are not guaranteed */
3096        if (meta->xadd_over_16bit) {
3097                emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3098                         addra, addrb, is64 << 2,
3099                         is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3100
3101                wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3102                if (is64)
3103                        wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3104        }
3105
3106        if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3107                return -EINVAL;
3108
3109        return 0;
3110}
3111
3112static int mem_atomic4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3113{
3114        if (meta->insn.imm != BPF_ADD)
3115                return -EOPNOTSUPP;
3116
3117        return mem_xadd(nfp_prog, meta, false);
3118}
3119
3120static int mem_atomic8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3121{
3122        if (meta->insn.imm != BPF_ADD)
3123                return -EOPNOTSUPP;
3124
3125        return mem_xadd(nfp_prog, meta, true);
3126}
3127
3128static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3129{
3130        emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3131
3132        return 0;
3133}
3134
3135static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3136{
3137        const struct bpf_insn *insn = &meta->insn;
3138        u64 imm = insn->imm; /* sign extend */
3139        swreg or1, or2, tmp_reg;
3140
3141        or1 = reg_a(insn->dst_reg * 2);
3142        or2 = reg_b(insn->dst_reg * 2 + 1);
3143
3144        if (imm & ~0U) {
3145                tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3146                emit_alu(nfp_prog, imm_a(nfp_prog),
3147                         reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3148                or1 = imm_a(nfp_prog);
3149        }
3150
3151        if (imm >> 32) {
3152                tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3153                emit_alu(nfp_prog, imm_b(nfp_prog),
3154                         reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3155                or2 = imm_b(nfp_prog);
3156        }
3157
3158        emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3159        emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3160
3161        return 0;
3162}
3163
3164static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3165{
3166        const struct bpf_insn *insn = &meta->insn;
3167        swreg tmp_reg;
3168
3169        tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3170        emit_alu(nfp_prog, reg_none(),
3171                 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3172        emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3173
3174        return 0;
3175}
3176
3177static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3178{
3179        const struct bpf_insn *insn = &meta->insn;
3180        u64 imm = insn->imm; /* sign extend */
3181        u8 dst_gpr = insn->dst_reg * 2;
3182        swreg tmp_reg;
3183
3184        tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3185        emit_alu(nfp_prog, imm_b(nfp_prog),
3186                 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3187        /* Upper word of the mask can only be 0 or ~0 from sign extension,
3188         * so either ignore it or OR the whole thing in.
3189         */
3190        if (is_mbpf_jmp64(meta) && imm >> 32) {
3191                emit_alu(nfp_prog, reg_none(),
3192                         reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3193        }
3194        emit_br(nfp_prog, BR_BNE, insn->off, 0);
3195
3196        return 0;
3197}
3198
3199static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3200{
3201        const struct bpf_insn *insn = &meta->insn;
3202        u64 imm = insn->imm; /* sign extend */
3203        bool is_jmp32 = is_mbpf_jmp32(meta);
3204        swreg tmp_reg;
3205
3206        if (!imm) {
3207                if (is_jmp32)
3208                        emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3209                                 reg_b(insn->dst_reg * 2));
3210                else
3211                        emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3212                                 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3213                emit_br(nfp_prog, BR_BNE, insn->off, 0);
3214                return 0;
3215        }
3216
3217        tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3218        emit_alu(nfp_prog, reg_none(),
3219                 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3220        emit_br(nfp_prog, BR_BNE, insn->off, 0);
3221
3222        if (is_jmp32)
3223                return 0;
3224
3225        tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3226        emit_alu(nfp_prog, reg_none(),
3227                 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3228        emit_br(nfp_prog, BR_BNE, insn->off, 0);
3229
3230        return 0;
3231}
3232
3233static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3234{
3235        const struct bpf_insn *insn = &meta->insn;
3236
3237        emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3238                 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3239        if (is_mbpf_jmp64(meta)) {
3240                emit_alu(nfp_prog, imm_b(nfp_prog),
3241                         reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3242                         reg_b(insn->src_reg * 2 + 1));
3243                emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3244                         imm_b(nfp_prog));
3245        }
3246        emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3247
3248        return 0;
3249}
3250
3251static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3252{
3253        return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3254}
3255
3256static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3257{
3258        return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3259}
3260
3261static int
3262bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3263{
3264        u32 ret_tgt, stack_depth, offset_br;
3265        swreg tmp_reg;
3266
3267        stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3268        /* Space for saving the return address is accounted for by the callee,
3269         * so stack_depth can be zero for the main function.
3270         */
3271        if (stack_depth) {
3272                tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3273                                          stack_imm(nfp_prog));
3274                emit_alu(nfp_prog, stack_reg(nfp_prog),
3275                         stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3276                emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3277                            NFP_CSR_ACT_LM_ADDR0);
3278        }
3279
3280        /* Two cases for jumping to the callee:
3281         *
3282         * - If callee uses and needs to save R6~R9 then:
3283         *     1. Put the start offset of the callee into imm_b(). This will
3284         *        require a fixup step, as we do not necessarily know this
3285         *        address yet.
3286         *     2. Put the return address from the callee to the caller into
3287         *        register ret_reg().
3288         *     3. (After defer slots are consumed) Jump to the subroutine that
3289         *        pushes the registers to the stack.
3290         *   The subroutine acts as a trampoline, and returns to the address in
3291         *   imm_b(), i.e. jumps to the callee.
3292         *
3293         * - If callee does not need to save R6~R9 then just load return
3294         *   address to the caller in ret_reg(), and jump to the callee
3295         *   directly.
3296         *
3297         * Using ret_reg() to pass the return address to the callee is set here
3298         * as a convention. The callee can then push this address onto its
3299         * stack frame in its prologue. The advantages of passing the return
3300         * address through ret_reg(), instead of pushing it to the stack right
3301         * here, are the following:
3302         * - It looks cleaner.
3303         * - If the called function is called multiple time, we get a lower
3304         *   program size.
3305         * - We save two no-op instructions that should be added just before
3306         *   the emit_br() when stack depth is not null otherwise.
3307         * - If we ever find a register to hold the return address during whole
3308         *   execution of the callee, we will not have to push the return
3309         *   address to the stack for leaf functions.
3310         */
3311        if (!meta->jmp_dst) {
3312                pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3313                return -ELOOP;
3314        }
3315        if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3316                ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3317                emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3318                             RELO_BR_GO_CALL_PUSH_REGS);
3319                offset_br = nfp_prog_current_offset(nfp_prog);
3320                wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3321        } else {
3322                ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3323                emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3324                offset_br = nfp_prog_current_offset(nfp_prog);
3325        }
3326        wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3327
3328        if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3329                return -EINVAL;
3330
3331        if (stack_depth) {
3332                tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3333                                          stack_imm(nfp_prog));
3334                emit_alu(nfp_prog, stack_reg(nfp_prog),
3335                         stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3336                emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3337                            NFP_CSR_ACT_LM_ADDR0);
3338                wrp_nops(nfp_prog, 3);
3339        }
3340
3341        meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3342        meta->num_insns_after_br -= offset_br;
3343
3344        return 0;
3345}
3346
3347static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3348{
3349        switch (meta->insn.imm) {
3350        case BPF_FUNC_xdp_adjust_head:
3351                return adjust_head(nfp_prog, meta);
3352        case BPF_FUNC_xdp_adjust_tail:
3353                return adjust_tail(nfp_prog, meta);
3354        case BPF_FUNC_map_lookup_elem:
3355        case BPF_FUNC_map_update_elem:
3356        case BPF_FUNC_map_delete_elem:
3357                return map_call_stack_common(nfp_prog, meta);
3358        case BPF_FUNC_get_prandom_u32:
3359                return nfp_get_prandom_u32(nfp_prog, meta);
3360        case BPF_FUNC_perf_event_output:
3361                return nfp_perf_event_output(nfp_prog, meta);
3362        default:
3363                WARN_ONCE(1, "verifier allowed unsupported function\n");
3364                return -EOPNOTSUPP;
3365        }
3366}
3367
3368static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3369{
3370        if (is_mbpf_pseudo_call(meta))
3371                return bpf_to_bpf_call(nfp_prog, meta);
3372        else
3373                return helper_call(nfp_prog, meta);
3374}
3375
3376static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3377{
3378        return meta->subprog_idx == 0;
3379}
3380
3381static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3382{
3383        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3384
3385        return 0;
3386}
3387
3388static int
3389nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3390{
3391        if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3392                /* Pop R6~R9 to the stack via related subroutine.
3393                 * We loaded the return address to the caller into ret_reg().
3394                 * This means that the subroutine does not come back here, we
3395                 * make it jump back to the subprogram caller directly!
3396                 */
3397                emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3398                             RELO_BR_GO_CALL_POP_REGS);
3399                /* Pop return address from the stack. */
3400                wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3401        } else {
3402                /* Pop return address from the stack. */
3403                wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3404                /* Jump back to caller if no callee-saved registers were used
3405                 * by the subprogram.
3406                 */
3407                emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3408        }
3409
3410        return 0;
3411}
3412
3413static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3414{
3415        if (nfp_is_main_function(meta))
3416                return goto_out(nfp_prog, meta);
3417        else
3418                return nfp_subprog_epilogue(nfp_prog, meta);
3419}
3420
3421static const instr_cb_t instr_cb[256] = {
3422        [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
3423        [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
3424        [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
3425        [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
3426        [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
3427        [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
3428        [BPF_ALU64 | BPF_OR | BPF_X] =  or_reg64,
3429        [BPF_ALU64 | BPF_OR | BPF_K] =  or_imm64,
3430        [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
3431        [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
3432        [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
3433        [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
3434        [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64,
3435        [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64,
3436        [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64,
3437        [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64,
3438        [BPF_ALU64 | BPF_NEG] =         neg_reg64,
3439        [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64,
3440        [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
3441        [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64,
3442        [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
3443        [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3444        [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3445        [BPF_ALU | BPF_MOV | BPF_X] =   mov_reg,
3446        [BPF_ALU | BPF_MOV | BPF_K] =   mov_imm,
3447        [BPF_ALU | BPF_XOR | BPF_X] =   xor_reg,
3448        [BPF_ALU | BPF_XOR | BPF_K] =   xor_imm,
3449        [BPF_ALU | BPF_AND | BPF_X] =   and_reg,
3450        [BPF_ALU | BPF_AND | BPF_K] =   and_imm,
3451        [BPF_ALU | BPF_OR | BPF_X] =    or_reg,
3452        [BPF_ALU | BPF_OR | BPF_K] =    or_imm,
3453        [BPF_ALU | BPF_ADD | BPF_X] =   add_reg,
3454        [BPF_ALU | BPF_ADD | BPF_K] =   add_imm,
3455        [BPF_ALU | BPF_SUB | BPF_X] =   sub_reg,
3456        [BPF_ALU | BPF_SUB | BPF_K] =   sub_imm,
3457        [BPF_ALU | BPF_MUL | BPF_X] =   mul_reg,
3458        [BPF_ALU | BPF_MUL | BPF_K] =   mul_imm,
3459        [BPF_ALU | BPF_DIV | BPF_X] =   div_reg,
3460        [BPF_ALU | BPF_DIV | BPF_K] =   div_imm,
3461        [BPF_ALU | BPF_NEG] =           neg_reg,
3462        [BPF_ALU | BPF_LSH | BPF_X] =   shl_reg,
3463        [BPF_ALU | BPF_LSH | BPF_K] =   shl_imm,
3464        [BPF_ALU | BPF_RSH | BPF_X] =   shr_reg,
3465        [BPF_ALU | BPF_RSH | BPF_K] =   shr_imm,
3466        [BPF_ALU | BPF_ARSH | BPF_X] =  ashr_reg,
3467        [BPF_ALU | BPF_ARSH | BPF_K] =  ashr_imm,
3468        [BPF_ALU | BPF_END | BPF_X] =   end_reg32,
3469        [BPF_LD | BPF_IMM | BPF_DW] =   imm_ld8,
3470        [BPF_LD | BPF_ABS | BPF_B] =    data_ld1,
3471        [BPF_LD | BPF_ABS | BPF_H] =    data_ld2,
3472        [BPF_LD | BPF_ABS | BPF_W] =    data_ld4,
3473        [BPF_LD | BPF_IND | BPF_B] =    data_ind_ld1,
3474        [BPF_LD | BPF_IND | BPF_H] =    data_ind_ld2,
3475        [BPF_LD | BPF_IND | BPF_W] =    data_ind_ld4,
3476        [BPF_LDX | BPF_MEM | BPF_B] =   mem_ldx1,
3477        [BPF_LDX | BPF_MEM | BPF_H] =   mem_ldx2,
3478        [BPF_LDX | BPF_MEM | BPF_W] =   mem_ldx4,
3479        [BPF_LDX | BPF_MEM | BPF_DW] =  mem_ldx8,
3480        [BPF_STX | BPF_MEM | BPF_B] =   mem_stx1,
3481        [BPF_STX | BPF_MEM | BPF_H] =   mem_stx2,
3482        [BPF_STX | BPF_MEM | BPF_W] =   mem_stx4,
3483        [BPF_STX | BPF_MEM | BPF_DW] =  mem_stx8,
3484        [BPF_STX | BPF_ATOMIC | BPF_W] =        mem_atomic4,
3485        [BPF_STX | BPF_ATOMIC | BPF_DW] =       mem_atomic8,
3486        [BPF_ST | BPF_MEM | BPF_B] =    mem_st1,
3487        [BPF_ST | BPF_MEM | BPF_H] =    mem_st2,
3488        [BPF_ST | BPF_MEM | BPF_W] =    mem_st4,
3489        [BPF_ST | BPF_MEM | BPF_DW] =   mem_st8,
3490        [BPF_JMP | BPF_JA | BPF_K] =    jump,
3491        [BPF_JMP | BPF_JEQ | BPF_K] =   jeq_imm,
3492        [BPF_JMP | BPF_JGT | BPF_K] =   cmp_imm,
3493        [BPF_JMP | BPF_JGE | BPF_K] =   cmp_imm,
3494        [BPF_JMP | BPF_JLT | BPF_K] =   cmp_imm,
3495        [BPF_JMP | BPF_JLE | BPF_K] =   cmp_imm,
3496        [BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3497        [BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3498        [BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3499        [BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3500        [BPF_JMP | BPF_JSET | BPF_K] =  jset_imm,
3501        [BPF_JMP | BPF_JNE | BPF_K] =   jne_imm,
3502        [BPF_JMP | BPF_JEQ | BPF_X] =   jeq_reg,
3503        [BPF_JMP | BPF_JGT | BPF_X] =   cmp_reg,
3504        [BPF_JMP | BPF_JGE | BPF_X] =   cmp_reg,
3505        [BPF_JMP | BPF_JLT | BPF_X] =   cmp_reg,
3506        [BPF_JMP | BPF_JLE | BPF_X] =   cmp_reg,
3507        [BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3508        [BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3509        [BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3510        [BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3511        [BPF_JMP | BPF_JSET | BPF_X] =  jset_reg,
3512        [BPF_JMP | BPF_JNE | BPF_X] =   jne_reg,
3513        [BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm,
3514        [BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm,
3515        [BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm,
3516        [BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm,
3517        [BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm,
3518        [BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3519        [BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3520        [BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3521        [BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3522        [BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3523        [BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm,
3524        [BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg,
3525        [BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg,
3526        [BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg,
3527        [BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg,
3528        [BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg,
3529        [BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3530        [BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3531        [BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3532        [BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3533        [BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3534        [BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg,
3535        [BPF_JMP | BPF_CALL] =          call,
3536        [BPF_JMP | BPF_EXIT] =          jmp_exit,
3537};
3538
3539/* --- Assembler logic --- */
3540static int
3541nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3542                     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3543{
3544        if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3545                pr_err("BUG: failed to fix up callee register saving\n");
3546                return -EINVAL;
3547        }
3548
3549        immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3550
3551        return 0;
3552}
3553
3554static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3555{
3556        struct nfp_insn_meta *meta, *jmp_dst;
3557        u32 idx, br_idx;
3558        int err;
3559
3560        list_for_each_entry(meta, &nfp_prog->insns, l) {
3561                if (meta->flags & FLAG_INSN_SKIP_MASK)
3562                        continue;
3563                if (!is_mbpf_jmp(meta))
3564                        continue;
3565                if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3566                    !nfp_is_main_function(meta))
3567                        continue;
3568                if (is_mbpf_helper_call(meta))
3569                        continue;
3570
3571                if (list_is_last(&meta->l, &nfp_prog->insns))
3572                        br_idx = nfp_prog->last_bpf_off;
3573                else
3574                        br_idx = list_next_entry(meta, l)->off - 1;
3575
3576                /* For BPF-to-BPF function call, a stack adjustment sequence is
3577                 * generated after the return instruction. Therefore, we must
3578                 * withdraw the length of this sequence to have br_idx pointing
3579                 * to where the "branch" NFP instruction is expected to be.
3580                 */
3581                if (is_mbpf_pseudo_call(meta))
3582                        br_idx -= meta->num_insns_after_br;
3583
3584                if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3585                        pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3586                               br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3587                        return -ELOOP;
3588                }
3589
3590                if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3591                        continue;
3592
3593                /* Leave special branches for later */
3594                if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3595                    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3596                        continue;
3597
3598                if (!meta->jmp_dst) {
3599                        pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3600                        return -ELOOP;
3601                }
3602
3603                jmp_dst = meta->jmp_dst;
3604
3605                if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3606                        pr_err("Branch landing on removed instruction!!\n");
3607                        return -ELOOP;
3608                }
3609
3610                if (is_mbpf_pseudo_call(meta) &&
3611                    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3612                        err = nfp_fixup_immed_relo(nfp_prog, meta,
3613                                                   jmp_dst, br_idx);
3614                        if (err)
3615                                return err;
3616                }
3617
3618                if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3619                    RELO_BR_REL)
3620                        continue;
3621
3622                for (idx = meta->off; idx <= br_idx; idx++) {
3623                        if (!nfp_is_br(nfp_prog->prog[idx]))
3624                                continue;
3625                        br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3626                }
3627        }
3628
3629        return 0;
3630}
3631
3632static void nfp_intro(struct nfp_prog *nfp_prog)
3633{
3634        wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3635        emit_alu(nfp_prog, plen_reg(nfp_prog),
3636                 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3637}
3638
3639static void
3640nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3641{
3642        /* Save return address into the stack. */
3643        wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3644}
3645
3646static void
3647nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3648{
3649        unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3650
3651        nfp_prog->stack_frame_depth = round_up(depth, 4);
3652        nfp_subprog_prologue(nfp_prog, meta);
3653}
3654
3655bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3656{
3657        return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3658}
3659
3660static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3661{
3662        /* TC direct-action mode:
3663         *   0,1   ok        NOT SUPPORTED[1]
3664         *   2   drop  0x22 -> drop,  count as stat1
3665         *   4,5 nuke  0x02 -> drop
3666         *   7  redir  0x44 -> redir, count as stat2
3667         *   * unspec  0x11 -> pass,  count as stat0
3668         *
3669         * [1] We can't support OK and RECLASSIFY because we can't tell TC
3670         *     the exact decision made.  We are forced to support UNSPEC
3671         *     to handle aborts so that's the only one we handle for passing
3672         *     packets up the stack.
3673         */
3674        /* Target for aborts */
3675        nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3676
3677        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3678
3679        wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3680        emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3681
3682        /* Target for normal exits */
3683        nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3684
3685        /* if R0 > 7 jump to abort */
3686        emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3687        emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3688        wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3689
3690        wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3691        wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3692
3693        emit_shf(nfp_prog, reg_a(1),
3694                 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3695
3696        emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3697        emit_shf(nfp_prog, reg_a(2),
3698                 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3699
3700        emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3701        emit_shf(nfp_prog, reg_b(2),
3702                 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3703
3704        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3705
3706        emit_shf(nfp_prog, reg_b(2),
3707                 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3708        emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3709}
3710
3711static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3712{
3713        /* XDP return codes:
3714         *   0 aborted  0x82 -> drop,  count as stat3
3715         *   1    drop  0x22 -> drop,  count as stat1
3716         *   2    pass  0x11 -> pass,  count as stat0
3717         *   3      tx  0x44 -> redir, count as stat2
3718         *   * unknown  0x82 -> drop,  count as stat3
3719         */
3720        /* Target for aborts */
3721        nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3722
3723        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3724
3725        wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3726        emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3727
3728        /* Target for normal exits */
3729        nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3730
3731        /* if R0 > 3 jump to abort */
3732        emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3733        emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3734
3735        wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3736
3737        emit_shf(nfp_prog, reg_a(1),
3738                 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3739
3740        emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3741        emit_shf(nfp_prog, reg_b(2),
3742                 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3743
3744        emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3745
3746        wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3747        emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3748}
3749
3750static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3751{
3752        unsigned int idx;
3753
3754        for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3755                if (nfp_prog->subprog[idx].needs_reg_push)
3756                        return true;
3757
3758        return false;
3759}
3760
3761static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3762{
3763        u8 reg;
3764
3765        /* Subroutine: Save all callee saved registers (R6 ~ R9).
3766         * imm_b() holds the return address.
3767         */
3768        nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3769        for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3770                u8 adj = (reg - BPF_REG_0) * 2;
3771                u8 idx = (reg - BPF_REG_6) * 2;
3772
3773                /* The first slot in the stack frame is used to push the return
3774                 * address in bpf_to_bpf_call(), start just after.
3775                 */
3776                wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3777
3778                if (reg == BPF_REG_8)
3779                        /* Prepare to jump back, last 3 insns use defer slots */
3780                        emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3781
3782                wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3783        }
3784}
3785
3786static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3787{
3788        u8 reg;
3789
3790        /* Subroutine: Restore all callee saved registers (R6 ~ R9).
3791         * ret_reg() holds the return address.
3792         */
3793        nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3794        for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3795                u8 adj = (reg - BPF_REG_0) * 2;
3796                u8 idx = (reg - BPF_REG_6) * 2;
3797
3798                /* The first slot in the stack frame holds the return address,
3799                 * start popping just after that.
3800                 */
3801                wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3802
3803                if (reg == BPF_REG_8)
3804                        /* Prepare to jump back, last 3 insns use defer slots */
3805                        emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3806
3807                wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3808        }
3809}
3810
3811static void nfp_outro(struct nfp_prog *nfp_prog)
3812{
3813        switch (nfp_prog->type) {
3814        case BPF_PROG_TYPE_SCHED_CLS:
3815                nfp_outro_tc_da(nfp_prog);
3816                break;
3817        case BPF_PROG_TYPE_XDP:
3818                nfp_outro_xdp(nfp_prog);
3819                break;
3820        default:
3821                WARN_ON(1);
3822        }
3823
3824        if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3825                return;
3826
3827        nfp_push_callee_registers(nfp_prog);
3828        nfp_pop_callee_registers(nfp_prog);
3829}
3830
3831static int nfp_translate(struct nfp_prog *nfp_prog)
3832{
3833        struct nfp_insn_meta *meta;
3834        unsigned int depth;
3835        int err;
3836
3837        depth = nfp_prog->subprog[0].stack_depth;
3838        nfp_prog->stack_frame_depth = round_up(depth, 4);
3839
3840        nfp_intro(nfp_prog);
3841        if (nfp_prog->error)
3842                return nfp_prog->error;
3843
3844        list_for_each_entry(meta, &nfp_prog->insns, l) {
3845                instr_cb_t cb = instr_cb[meta->insn.code];
3846
3847                meta->off = nfp_prog_current_offset(nfp_prog);
3848
3849                if (nfp_is_subprog_start(meta)) {
3850                        nfp_start_subprog(nfp_prog, meta);
3851                        if (nfp_prog->error)
3852                                return nfp_prog->error;
3853                }
3854
3855                if (meta->flags & FLAG_INSN_SKIP_MASK) {
3856                        nfp_prog->n_translated++;
3857                        continue;
3858                }
3859
3860                if (nfp_meta_has_prev(nfp_prog, meta) &&
3861                    nfp_meta_prev(meta)->double_cb)
3862                        cb = nfp_meta_prev(meta)->double_cb;
3863                if (!cb)
3864                        return -ENOENT;
3865                err = cb(nfp_prog, meta);
3866                if (err)
3867                        return err;
3868                if (nfp_prog->error)
3869                        return nfp_prog->error;
3870
3871                nfp_prog->n_translated++;
3872        }
3873
3874        nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3875
3876        nfp_outro(nfp_prog);
3877        if (nfp_prog->error)
3878                return nfp_prog->error;
3879
3880        wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3881        if (nfp_prog->error)
3882                return nfp_prog->error;
3883
3884        return nfp_fixup_branches(nfp_prog);
3885}
3886
3887/* --- Optimizations --- */
3888static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3889{
3890        struct nfp_insn_meta *meta;
3891
3892        list_for_each_entry(meta, &nfp_prog->insns, l) {
3893                struct bpf_insn insn = meta->insn;
3894
3895                /* Programs converted from cBPF start with register xoring */
3896                if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3897                    insn.src_reg == insn.dst_reg)
3898                        continue;
3899
3900                /* Programs start with R6 = R1 but we ignore the skb pointer */
3901                if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3902                    insn.src_reg == 1 && insn.dst_reg == 6)
3903                        meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3904
3905                /* Return as soon as something doesn't match */
3906                if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3907                        return;
3908        }
3909}
3910
3911/* abs(insn.imm) will fit better into unrestricted reg immediate -
3912 * convert add/sub of a negative number into a sub/add of a positive one.
3913 */
3914static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3915{
3916        struct nfp_insn_meta *meta;
3917
3918        list_for_each_entry(meta, &nfp_prog->insns, l) {
3919                struct bpf_insn insn = meta->insn;
3920
3921                if (meta->flags & FLAG_INSN_SKIP_MASK)
3922                        continue;
3923
3924                if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3925                        continue;
3926                if (BPF_SRC(insn.code) != BPF_K)
3927                        continue;
3928                if (insn.imm >= 0)
3929                        continue;
3930
3931                if (is_mbpf_jmp(meta)) {
3932                        switch (BPF_OP(insn.code)) {
3933                        case BPF_JGE:
3934                        case BPF_JSGE:
3935                        case BPF_JLT:
3936                        case BPF_JSLT:
3937                                meta->jump_neg_op = true;
3938                                break;
3939                        default:
3940                                continue;
3941                        }
3942                } else {
3943                        if (BPF_OP(insn.code) == BPF_ADD)
3944                                insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3945                        else if (BPF_OP(insn.code) == BPF_SUB)
3946                                insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3947                        else
3948                                continue;
3949
3950                        meta->insn.code = insn.code | BPF_K;
3951                }
3952
3953                meta->insn.imm = -insn.imm;
3954        }
3955}
3956
3957/* Remove masking after load since our load guarantees this is not needed */
3958static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3959{
3960        struct nfp_insn_meta *meta1, *meta2;
3961        static const s32 exp_mask[] = {
3962                [BPF_B] = 0x000000ffU,
3963                [BPF_H] = 0x0000ffffU,
3964                [BPF_W] = 0xffffffffU,
3965        };
3966
3967        nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3968                struct bpf_insn insn, next;
3969
3970                insn = meta1->insn;
3971                next = meta2->insn;
3972
3973                if (BPF_CLASS(insn.code) != BPF_LD)
3974                        continue;
3975                if (BPF_MODE(insn.code) != BPF_ABS &&
3976                    BPF_MODE(insn.code) != BPF_IND)
3977                        continue;
3978
3979                if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3980                        continue;
3981
3982                if (!exp_mask[BPF_SIZE(insn.code)])
3983                        continue;
3984                if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3985                        continue;
3986
3987                if (next.src_reg || next.dst_reg)
3988                        continue;
3989
3990                if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3991                        continue;
3992
3993                meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3994        }
3995}
3996
3997static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3998{
3999        struct nfp_insn_meta *meta1, *meta2, *meta3;
4000
4001        nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
4002                struct bpf_insn insn, next1, next2;
4003
4004                insn = meta1->insn;
4005                next1 = meta2->insn;
4006                next2 = meta3->insn;
4007
4008                if (BPF_CLASS(insn.code) != BPF_LD)
4009                        continue;
4010                if (BPF_MODE(insn.code) != BPF_ABS &&
4011                    BPF_MODE(insn.code) != BPF_IND)
4012                        continue;
4013                if (BPF_SIZE(insn.code) != BPF_W)
4014                        continue;
4015
4016                if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
4017                      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
4018                    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
4019                      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
4020                        continue;
4021
4022                if (next1.src_reg || next1.dst_reg ||
4023                    next2.src_reg || next2.dst_reg)
4024                        continue;
4025
4026                if (next1.imm != 0x20 || next2.imm != 0x20)
4027                        continue;
4028
4029                if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
4030                    meta3->flags & FLAG_INSN_IS_JUMP_DST)
4031                        continue;
4032
4033                meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4034                meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4035        }
4036}
4037
4038/* load/store pair that forms memory copy sould look like the following:
4039 *
4040 *   ld_width R, [addr_src + offset_src]
4041 *   st_width [addr_dest + offset_dest], R
4042 *
4043 * The destination register of load and source register of store should
4044 * be the same, load and store should also perform at the same width.
4045 * If either of addr_src or addr_dest is stack pointer, we don't do the
4046 * CPP optimization as stack is modelled by registers on NFP.
4047 */
4048static bool
4049curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4050                    struct nfp_insn_meta *st_meta)
4051{
4052        struct bpf_insn *ld = &ld_meta->insn;
4053        struct bpf_insn *st = &st_meta->insn;
4054
4055        if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4056                return false;
4057
4058        if (ld_meta->ptr.type != PTR_TO_PACKET &&
4059            ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4060                return false;
4061
4062        if (st_meta->ptr.type != PTR_TO_PACKET)
4063                return false;
4064
4065        if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4066                return false;
4067
4068        if (ld->dst_reg != st->src_reg)
4069                return false;
4070
4071        /* There is jump to the store insn in this pair. */
4072        if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4073                return false;
4074
4075        return true;
4076}
4077
4078/* Currently, we only support chaining load/store pairs if:
4079 *
4080 *  - Their address base registers are the same.
4081 *  - Their address offsets are in the same order.
4082 *  - They operate at the same memory width.
4083 *  - There is no jump into the middle of them.
4084 */
4085static bool
4086curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4087                              struct nfp_insn_meta *st_meta,
4088                              struct bpf_insn *prev_ld,
4089                              struct bpf_insn *prev_st)
4090{
4091        u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4092        struct bpf_insn *ld = &ld_meta->insn;
4093        struct bpf_insn *st = &st_meta->insn;
4094        s16 prev_ld_off, prev_st_off;
4095
4096        /* This pair is the start pair. */
4097        if (!prev_ld)
4098                return true;
4099
4100        prev_size = BPF_LDST_BYTES(prev_ld);
4101        curr_size = BPF_LDST_BYTES(ld);
4102        prev_ld_base = prev_ld->src_reg;
4103        prev_st_base = prev_st->dst_reg;
4104        prev_ld_dst = prev_ld->dst_reg;
4105        prev_ld_off = prev_ld->off;
4106        prev_st_off = prev_st->off;
4107
4108        if (ld->dst_reg != prev_ld_dst)
4109                return false;
4110
4111        if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4112                return false;
4113
4114        if (curr_size != prev_size)
4115                return false;
4116
4117        /* There is jump to the head of this pair. */
4118        if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4119                return false;
4120
4121        /* Both in ascending order. */
4122        if (prev_ld_off + prev_size == ld->off &&
4123            prev_st_off + prev_size == st->off)
4124                return true;
4125
4126        /* Both in descending order. */
4127        if (ld->off + curr_size == prev_ld_off &&
4128            st->off + curr_size == prev_st_off)
4129                return true;
4130
4131        return false;
4132}
4133
4134/* Return TRUE if cross memory access happens. Cross memory access means
4135 * store area is overlapping with load area that a later load might load
4136 * the value from previous store, for this case we can't treat the sequence
4137 * as an memory copy.
4138 */
4139static bool
4140cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4141                 struct nfp_insn_meta *head_st_meta)
4142{
4143        s16 head_ld_off, head_st_off, ld_off;
4144
4145        /* Different pointer types does not overlap. */
4146        if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4147                return false;
4148
4149        /* load and store are both PTR_TO_PACKET, check ID info.  */
4150        if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4151                return true;
4152
4153        /* Canonicalize the offsets. Turn all of them against the original
4154         * base register.
4155         */
4156        head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4157        head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4158        ld_off = ld->off + head_ld_meta->ptr.off;
4159
4160        /* Ascending order cross. */
4161        if (ld_off > head_ld_off &&
4162            head_ld_off < head_st_off && ld_off >= head_st_off)
4163                return true;
4164
4165        /* Descending order cross. */
4166        if (ld_off < head_ld_off &&
4167            head_ld_off > head_st_off && ld_off <= head_st_off)
4168                return true;
4169
4170        return false;
4171}
4172
4173/* This pass try to identify the following instructoin sequences.
4174 *
4175 *   load R, [regA + offA]
4176 *   store [regB + offB], R
4177 *   load R, [regA + offA + const_imm_A]
4178 *   store [regB + offB + const_imm_A], R
4179 *   load R, [regA + offA + 2 * const_imm_A]
4180 *   store [regB + offB + 2 * const_imm_A], R
4181 *   ...
4182 *
4183 * Above sequence is typically generated by compiler when lowering
4184 * memcpy. NFP prefer using CPP instructions to accelerate it.
4185 */
4186static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4187{
4188        struct nfp_insn_meta *head_ld_meta = NULL;
4189        struct nfp_insn_meta *head_st_meta = NULL;
4190        struct nfp_insn_meta *meta1, *meta2;
4191        struct bpf_insn *prev_ld = NULL;
4192        struct bpf_insn *prev_st = NULL;
4193        u8 count = 0;
4194
4195        nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4196                struct bpf_insn *ld = &meta1->insn;
4197                struct bpf_insn *st = &meta2->insn;
4198
4199                /* Reset record status if any of the following if true:
4200                 *   - The current insn pair is not load/store.
4201                 *   - The load/store pair doesn't chain with previous one.
4202                 *   - The chained load/store pair crossed with previous pair.
4203                 *   - The chained load/store pair has a total size of memory
4204                 *     copy beyond 128 bytes which is the maximum length a
4205                 *     single NFP CPP command can transfer.
4206                 */
4207                if (!curr_pair_is_memcpy(meta1, meta2) ||
4208                    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4209                                                   prev_st) ||
4210                    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4211                                                       head_st_meta) ||
4212                                      head_ld_meta->ldst_gather_len >= 128))) {
4213                        if (!count)
4214                                continue;
4215
4216                        if (count > 1) {
4217                                s16 prev_ld_off = prev_ld->off;
4218                                s16 prev_st_off = prev_st->off;
4219                                s16 head_ld_off = head_ld_meta->insn.off;
4220
4221                                if (prev_ld_off < head_ld_off) {
4222                                        head_ld_meta->insn.off = prev_ld_off;
4223                                        head_st_meta->insn.off = prev_st_off;
4224                                        head_ld_meta->ldst_gather_len =
4225                                                -head_ld_meta->ldst_gather_len;
4226                                }
4227
4228                                head_ld_meta->paired_st = &head_st_meta->insn;
4229                                head_st_meta->flags |=
4230                                        FLAG_INSN_SKIP_PREC_DEPENDENT;
4231                        } else {
4232                                head_ld_meta->ldst_gather_len = 0;
4233                        }
4234
4235                        /* If the chain is ended by an load/store pair then this
4236                         * could serve as the new head of the the next chain.
4237                         */
4238                        if (curr_pair_is_memcpy(meta1, meta2)) {
4239                                head_ld_meta = meta1;
4240                                head_st_meta = meta2;
4241                                head_ld_meta->ldst_gather_len =
4242                                        BPF_LDST_BYTES(ld);
4243                                meta1 = nfp_meta_next(meta1);
4244                                meta2 = nfp_meta_next(meta2);
4245                                prev_ld = ld;
4246                                prev_st = st;
4247                                count = 1;
4248                        } else {
4249                                head_ld_meta = NULL;
4250                                head_st_meta = NULL;
4251                                prev_ld = NULL;
4252                                prev_st = NULL;
4253                                count = 0;
4254                        }
4255
4256                        continue;
4257                }
4258
4259                if (!head_ld_meta) {
4260                        head_ld_meta = meta1;
4261                        head_st_meta = meta2;
4262                } else {
4263                        meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4264                        meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4265                }
4266
4267                head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4268                meta1 = nfp_meta_next(meta1);
4269                meta2 = nfp_meta_next(meta2);
4270                prev_ld = ld;
4271                prev_st = st;
4272                count++;
4273        }
4274}
4275
4276static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4277{
4278        struct nfp_insn_meta *meta, *range_node = NULL;
4279        s16 range_start = 0, range_end = 0;
4280        bool cache_avail = false;
4281        struct bpf_insn *insn;
4282        s32 range_ptr_off = 0;
4283        u32 range_ptr_id = 0;
4284
4285        list_for_each_entry(meta, &nfp_prog->insns, l) {
4286                if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4287                        cache_avail = false;
4288
4289                if (meta->flags & FLAG_INSN_SKIP_MASK)
4290                        continue;
4291
4292                insn = &meta->insn;
4293
4294                if (is_mbpf_store_pkt(meta) ||
4295                    insn->code == (BPF_JMP | BPF_CALL) ||
4296                    is_mbpf_classic_store_pkt(meta) ||
4297                    is_mbpf_classic_load(meta)) {
4298                        cache_avail = false;
4299                        continue;
4300                }
4301
4302                if (!is_mbpf_load(meta))
4303                        continue;
4304
4305                if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4306                        cache_avail = false;
4307                        continue;
4308                }
4309
4310                if (!cache_avail) {
4311                        cache_avail = true;
4312                        if (range_node)
4313                                goto end_current_then_start_new;
4314                        goto start_new;
4315                }
4316
4317                /* Check ID to make sure two reads share the same
4318                 * variable offset against PTR_TO_PACKET, and check OFF
4319                 * to make sure they also share the same constant
4320                 * offset.
4321                 *
4322                 * OFFs don't really need to be the same, because they
4323                 * are the constant offsets against PTR_TO_PACKET, so
4324                 * for different OFFs, we could canonicalize them to
4325                 * offsets against original packet pointer. We don't
4326                 * support this.
4327                 */
4328                if (meta->ptr.id == range_ptr_id &&
4329                    meta->ptr.off == range_ptr_off) {
4330                        s16 new_start = range_start;
4331                        s16 end, off = insn->off;
4332                        s16 new_end = range_end;
4333                        bool changed = false;
4334
4335                        if (off < range_start) {
4336                                new_start = off;
4337                                changed = true;
4338                        }
4339
4340                        end = off + BPF_LDST_BYTES(insn);
4341                        if (end > range_end) {
4342                                new_end = end;
4343                                changed = true;
4344                        }
4345
4346                        if (!changed)
4347                                continue;
4348
4349                        if (new_end - new_start <= 64) {
4350                                /* Install new range. */
4351                                range_start = new_start;
4352                                range_end = new_end;
4353                                continue;
4354                        }
4355                }
4356
4357end_current_then_start_new:
4358                range_node->pkt_cache.range_start = range_start;
4359                range_node->pkt_cache.range_end = range_end;
4360start_new:
4361                range_node = meta;
4362                range_node->pkt_cache.do_init = true;
4363                range_ptr_id = range_node->ptr.id;
4364                range_ptr_off = range_node->ptr.off;
4365                range_start = insn->off;
4366                range_end = insn->off + BPF_LDST_BYTES(insn);
4367        }
4368
4369        if (range_node) {
4370                range_node->pkt_cache.range_start = range_start;
4371                range_node->pkt_cache.range_end = range_end;
4372        }
4373
4374        list_for_each_entry(meta, &nfp_prog->insns, l) {
4375                if (meta->flags & FLAG_INSN_SKIP_MASK)
4376                        continue;
4377
4378                if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4379                        if (meta->pkt_cache.do_init) {
4380                                range_start = meta->pkt_cache.range_start;
4381                                range_end = meta->pkt_cache.range_end;
4382                        } else {
4383                                meta->pkt_cache.range_start = range_start;
4384                                meta->pkt_cache.range_end = range_end;
4385                        }
4386                }
4387        }
4388}
4389
4390static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4391{
4392        nfp_bpf_opt_reg_init(nfp_prog);
4393
4394        nfp_bpf_opt_neg_add_sub(nfp_prog);
4395        nfp_bpf_opt_ld_mask(nfp_prog);
4396        nfp_bpf_opt_ld_shift(nfp_prog);
4397        nfp_bpf_opt_ldst_gather(nfp_prog);
4398        nfp_bpf_opt_pkt_cache(nfp_prog);
4399
4400        return 0;
4401}
4402
4403static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4404{
4405        struct nfp_insn_meta *meta1, *meta2;
4406        struct nfp_bpf_map *nfp_map;
4407        struct bpf_map *map;
4408        u32 id;
4409
4410        nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4411                if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4412                    meta2->flags & FLAG_INSN_SKIP_MASK)
4413                        continue;
4414
4415                if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4416                    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4417                        continue;
4418
4419                map = (void *)(unsigned long)((u32)meta1->insn.imm |
4420                                              (u64)meta2->insn.imm << 32);
4421                if (bpf_map_offload_neutral(map)) {
4422                        id = map->id;
4423                } else {
4424                        nfp_map = map_to_offmap(map)->dev_priv;
4425                        id = nfp_map->tid;
4426                }
4427
4428                meta1->insn.imm = id;
4429                meta2->insn.imm = 0;
4430        }
4431
4432        return 0;
4433}
4434
4435static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4436{
4437        __le64 *ustore = (__force __le64 *)prog;
4438        int i;
4439
4440        for (i = 0; i < len; i++) {
4441                int err;
4442
4443                err = nfp_ustore_check_valid_no_ecc(prog[i]);
4444                if (err)
4445                        return err;
4446
4447                ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4448        }
4449
4450        return 0;
4451}
4452
4453static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4454{
4455        void *prog;
4456
4457        prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4458        if (!prog)
4459                return;
4460
4461        nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4462        memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4463        kvfree(nfp_prog->prog);
4464        nfp_prog->prog = prog;
4465}
4466
4467int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4468{
4469        int ret;
4470
4471        ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4472        if (ret)
4473                return ret;
4474
4475        ret = nfp_bpf_optimize(nfp_prog);
4476        if (ret)
4477                return ret;
4478
4479        ret = nfp_translate(nfp_prog);
4480        if (ret) {
4481                pr_err("Translation failed with error %d (translated: %u)\n",
4482                       ret, nfp_prog->n_translated);
4483                return -EINVAL;
4484        }
4485
4486        nfp_bpf_prog_trim(nfp_prog);
4487
4488        return ret;
4489}
4490
4491void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4492{
4493        struct nfp_insn_meta *meta;
4494
4495        /* Another pass to record jump information. */
4496        list_for_each_entry(meta, &nfp_prog->insns, l) {
4497                struct nfp_insn_meta *dst_meta;
4498                u64 code = meta->insn.code;
4499                unsigned int dst_idx;
4500                bool pseudo_call;
4501
4502                if (!is_mbpf_jmp(meta))
4503                        continue;
4504                if (BPF_OP(code) == BPF_EXIT)
4505                        continue;
4506                if (is_mbpf_helper_call(meta))
4507                        continue;
4508
4509                /* If opcode is BPF_CALL at this point, this can only be a
4510                 * BPF-to-BPF call (a.k.a pseudo call).
4511                 */
4512                pseudo_call = BPF_OP(code) == BPF_CALL;
4513
4514                if (pseudo_call)
4515                        dst_idx = meta->n + 1 + meta->insn.imm;
4516                else
4517                        dst_idx = meta->n + 1 + meta->insn.off;
4518
4519                dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4520
4521                if (pseudo_call)
4522                        dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4523
4524                dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4525                meta->jmp_dst = dst_meta;
4526        }
4527}
4528
4529bool nfp_bpf_supported_opcode(u8 code)
4530{
4531        return !!instr_cb[code];
4532}
4533
4534void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4535{
4536        unsigned int i;
4537        u64 *prog;
4538        int err;
4539
4540        prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4541                       GFP_KERNEL);
4542        if (!prog)
4543                return ERR_PTR(-ENOMEM);
4544
4545        for (i = 0; i < nfp_prog->prog_len; i++) {
4546                enum nfp_relo_type special;
4547                u32 val;
4548                u16 off;
4549
4550                special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4551                switch (special) {
4552                case RELO_NONE:
4553                        continue;
4554                case RELO_BR_REL:
4555                        br_add_offset(&prog[i], bv->start_off);
4556                        break;
4557                case RELO_BR_GO_OUT:
4558                        br_set_offset(&prog[i],
4559                                      nfp_prog->tgt_out + bv->start_off);
4560                        break;
4561                case RELO_BR_GO_ABORT:
4562                        br_set_offset(&prog[i],
4563                                      nfp_prog->tgt_abort + bv->start_off);
4564                        break;
4565                case RELO_BR_GO_CALL_PUSH_REGS:
4566                        if (!nfp_prog->tgt_call_push_regs) {
4567                                pr_err("BUG: failed to detect subprogram registers needs\n");
4568                                err = -EINVAL;
4569                                goto err_free_prog;
4570                        }
4571                        off = nfp_prog->tgt_call_push_regs + bv->start_off;
4572                        br_set_offset(&prog[i], off);
4573                        break;
4574                case RELO_BR_GO_CALL_POP_REGS:
4575                        if (!nfp_prog->tgt_call_pop_regs) {
4576                                pr_err("BUG: failed to detect subprogram registers needs\n");
4577                                err = -EINVAL;
4578                                goto err_free_prog;
4579                        }
4580                        off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4581                        br_set_offset(&prog[i], off);
4582                        break;
4583                case RELO_BR_NEXT_PKT:
4584                        br_set_offset(&prog[i], bv->tgt_done);
4585                        break;
4586                case RELO_BR_HELPER:
4587                        val = br_get_offset(prog[i]);
4588                        val -= BR_OFF_RELO;
4589                        switch (val) {
4590                        case BPF_FUNC_map_lookup_elem:
4591                                val = nfp_prog->bpf->helpers.map_lookup;
4592                                break;
4593                        case BPF_FUNC_map_update_elem:
4594                                val = nfp_prog->bpf->helpers.map_update;
4595                                break;
4596                        case BPF_FUNC_map_delete_elem:
4597                                val = nfp_prog->bpf->helpers.map_delete;
4598                                break;
4599                        case BPF_FUNC_perf_event_output:
4600                                val = nfp_prog->bpf->helpers.perf_event_output;
4601                                break;
4602                        default:
4603                                pr_err("relocation of unknown helper %d\n",
4604                                       val);
4605                                err = -EINVAL;
4606                                goto err_free_prog;
4607                        }
4608                        br_set_offset(&prog[i], val);
4609                        break;
4610                case RELO_IMMED_REL:
4611                        immed_add_value(&prog[i], bv->start_off);
4612                        break;
4613                }
4614
4615                prog[i] &= ~OP_RELO_TYPE;
4616        }
4617
4618        err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4619        if (err)
4620                goto err_free_prog;
4621
4622        return prog;
4623
4624err_free_prog:
4625        kfree(prog);
4626        return ERR_PTR(err);
4627}
4628